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1. INTRODUCTION

The portfolio problem considered here may be stated briefly as follows. An investor holds
divisible assets which can be traded at market prices without transaction costs. Time is
continuous and the planning horizon infinite. There is given a vector semimartingale

X = (xl,...,xA), representing logarithms of asset returns or prices, which is a process with
independent increments (PII) with respect to a given filtration defining the investor’s
information structure. The investor chooses a portfolio plan 7, defined as a predictable
vector process without oscillatory discontinuities, left continuous except perhaps at fixed
discontinuities of X, specifying the proportions wi‘ of capital assigned to the available
assets. These proportions are in general constrained to be non—negative, but if the
X—process is continuous there is a variant of the model in which short sales are allowed;
these assumptions ensure that capital always remains positive. A portfolio plan = is
called sure if it is non—random, snvariable if in addition it is constant over time; sure
portfolio plans are sometimes also called portfolio functions. Each portfolio plan =
generates a portfolio log—returns or compound interest process xw, and x" isaPILif =
is sure, a process with stationary independent increments (PSII) if 7 is invariable. The
investor’s preferences are characterised by a constant b > 0, called the coefficient of
constant relative risk aversion (CRRA), and for b # 1 the objective is to choose

(if possible) a sure 7* such that the function

¥(nT) = (1-b) Len Bel-D)X™(T)

..(1.1)
attains a (finite) maximum among all sure 7 at 7= 7*, simultaneously for all

Te I= [0,00). Such a 7* is called an optimal sure portfolio plan. If b = 1, ¥ is replaced by
ot(rT) = Ex"(T), (1.2)
with OH(7,T) = 00 if Ex"(T) is undefined (i.e. has the form oo —00). If X is a PSII,
the objective stated above may be replaced by that of finding an optimal invariable

portfolio plan, but we shall touch on this case only briefly.



The above formulation may seem arbitrary, as regards both the restriction to sure
solutions and the definition of the objective. In fact, restricting the search for a maximum
of (1) or (2) to sure portfolio plans involves no essential loss. Moreover, it follows from the
results of Foldes (1991a) that, subject to minor conditions, an optimal sure portfolio plan
as defined here exists iff an optimal portfolio—cum—saving (PS) plan exists in a (more or
less) standard continuous—time, infinite—horizon neo—classical model where the X—process
is a PII and the investor’s utility function has the ‘discounted CRRA’ form — see (6) and
(7) below. There is also a correspondence between conditions for optimality in the two
problems. These results are summarised more fully below; they establish the economic
respectability, if not necessarily the empirical realism, of the present formulation.

In the present paper, we shall be concerned mainly with the existence (or non-
existence) and properties of an optimal sure portfolio plan 7*, including the derivation of
programming conditions from which the vectors 7r’1';‘ could be calculated if the character-
istics of the X—process were known. The purpose is partly to extend known results,
particularly to cases where X has non—stationary increments and jumps (which may be
neither bounded nor bounded away from zero), partly to explore and explain the use of the
canonical representation of a semimartingale as a technique for analysing portfolio
problems. There now follow some remarks on proof procedures, the type of results to be
obtained, the economic relevance of the portfolio problem formulated here, the choice of
definitions and the connection with related work —in particular with Foldes (1991a), to
which this paper is a sequel.

The main mathematical argument may be summarised as follows. We assume
b # 1 unless otherwise stated. Given a portfolio plan 7, a formula expressing x" in terms

A and 7 has been derived in Foldes (1990), see also (2.5—6) below, and using

of the x
the canonical representation of X this formula can be written as a sum of integrals with

respect to the (‘local’) characteristics of X. If 7 is sure, the expression pell—b)x™ (1) (if
finite) is a value of the bilateral Laplace Transform of a PII, and the ‘cumulant generating

function’ ¥(7,T) can be written as a sum of integrals, related to the Lévy—Khinchin



formula for the characteristic function of a PII, involving 7 and the characteristics of X
— see below, Theorem 5, also eqs.(3.4) and (7.7—10). One application of this formula is an
alternative proof of a Certainty Equivalence (CE) Theorem appearing in Foldes (1991a);
we return to this point below. If the characteristics of X satisfy some assumptions of non-
degeneracy and smoothness (including the absence of fixed discontinuities) and some
bounds, one can further write
¥(nT) = [7 Y(mt)dt, ..(1.3)
the function 7 being defined for pairs (7,t) where 7 is an admissible portfolio vector. If
the restriction 7> 0 (no short sales) is in force, the domain of 9(-,t) is a unit simplex
o= {rept %20,5,7 =1} (14)
if short sales are not restricted, the domain is RA. It is then shown that a sure 7* is
optimal sure iff for each t the vector w’{ maximises ¥(+,t) on its domain. If 7> 0
applies, the assumptions imply that (-,t) is for each t a strictly concave function on
¢ and that (-,-) is continuous. The existence of a maximum of #(-,t) on ¢ at some
unique 7*(t) and the continuity of 7*(-) and (7*(-),-) then follow directly; moreover
the conditions characterising 7*(t) are obtained by elementary concave programming —
see esp. Theorems 4 and 6. This argument does not apply in the case of continuous X
with short sales permitted, but existence and characterisation of an optimum are obtained
very simply from conditions for a maximum of ¥ or of ¢ if the covariance matrix of
XT - XS for S < T is always positive definite — see Theorem 3.

If X hasaset f#=(r ) Of fixed discontinuities, (3) is replaced by
¥(mT) = [ Yn,t)dt + % ¢r Yml(Tr,) ...(1.5)
each ¢m( -) being defined and (under assumptions) continuous and strictly concave on .
Then a sure 7* is optimal sure iff 1r’€ maximises ¥(-,t) for every t¢_#and maximises
wm( .) forevery t =1 m€ #. The results on existence and uniqueness and the
programming conditions extend in a fairly straightforward way, but in general an optimal

7* will not be left continuous at points of £.



It will be useful to review briefly the theory in Foldes (1991a) in order to provide
some background for the present work. The welfare (or criterion) functional considered

there has the form

0
(1—b)‘1EJ e Pq dt i b1, (1.6)
0
0
EJ nc,-q dt if b=1, ..(1.7)

0
where the discount density q is a positive function of finite variation on compacts of J

which is continuous on the right with limits on the left (corlol). The process ¢, repre-
senting consumption in ‘natural’ units, may be chosen from a class of positive, adapted,
corlol processes satisfying the condition that the corresponding capital process k is
positive. Given a portfolio plan 7, the substitution ¢, = (‘:te_x“(t) defines a consumption
process in ‘r—standardised units’, and it is found that the class of admissible c—processes is
the same for each 7, namely the class % of positive, adapted, corlol processes satisfying
fge(t)dt <K as., where K is the investor’s initial capital. For details see [2] S.2, also
Foldes (1991a), S.2, also Foldes (1990) S.2. A PS plan may then be defined as a pair (c,7),

where ¢ and 7 may be chosen separately, and the welfare functional may be written

o(c,m) = (l—b)_1 E r c%—b o(1-0)x=(t) qdt i b#1, ...(1.6a)
0
olc,m) = jo E(tn c,)q, dt + J (®x])q, i b=1, (L.72)

(assuming suitable conditions of integrability). The supremum of the welfare functional is
denoted ¢*, also *(b) for b+# 1, and a PS plan (c*,7*) is called optimal if

o(c*,7*) = p* and ¢* is finite. Further, one can define the capital process in
r—standardised units corresponding to ¢ by k, =K - jg c(t)dt and the consumption
ratio process 4 by 01; = ¢, /kt =T, /l_ct, so that a plan may also be specified as a pair
(6,7). A consumption plan is called sureif c, or equivalently 6, is non—random, and it is
called invariable if in addition 0, is constant on J; then sure and invariable plans (c,7)

are defined in the obvious way.



The following results concerning certainty equivalence were proved in Foldes
(1991a), under conditions stated below, for the PS model with discounted CRRA utility
and X a PIIL
THEOREM 1: First Certainty Equivalence Theorem.

An optimal sure plan is optimal (i.e. a plan which is optimal in the class of all sure plans
is optimal in the class of all plans).

THEOREM 2: Second Certainty Equivalence Theorem.

If an optimal plan exists, then a sure optimal plan exists (i.e. a plan exists which is both
optimal and sure).

If X is a PSII, it is assumed that q(t) « e ™t for some r, and then ‘sure’ may be replaced
by ‘invariable’ in Theorems 1 and 2.

The CE Theorems were obtained in Foldes (1991a) as corollaries of the Complete
Class Theorem (CCT) for sure plans, which asserts that, for every plan with finite welfare,
there is a sure plan whose welfare is at least as great (and finite). The CCT was proved for
b # 1 under two conditions additional to those assumed throughout the model, namely that
the probability space has some properties of a function space and, for b < 1, that
¢*(f) < co for some [e(0,b); but it was shown that Theorem 2 is valid even without the
latter assumption. For b = 1, the situation is analogous to that for b < 1 if short sales
are permitted and X is continuous, while all results were proved without both additional
conditions in the case 72> 0.

It was further shown in Foldes (1991a) S.4, see also Foldes (1978), that for b # 1

the functional ¢(c,7) has for each fized sure 7 a finite supremum on ¢ iff the integral

1]
N" = N(mq) = J [Bel 1) (t) g 11/b gy .(1.8)
)
converges, the value of the supremum being
(1)L K2 PP, (1.9)
and then this value is attained by precisely one element of ¢, namely the sure element c¢”
defined by
1-b)x=®(t)  1/b
e = (K /AME DM g 1/P ey (1.10)



Finding a sure PS plan (c*,7*) to maximise ¢(c,7) is therefore equivalent to finding a
sure 7* to maximise <p(c1r,1r), or equivalently to maximise (l—b)_l‘ﬁ(w,q). Now, a sure
7 can be chosen separately on each interval (S,T], and bearing in mind that the
corresponding x" will be a PII it is seen that if 7* maximises (l—b)—l‘ﬁ(w,q) among all
sure 7 it also maximises

(15 i B DI(T"6)] — g7 1) — ¥(x,5) (L11)
for each pair S < T, which in turn is equivalent to maximising ¥(,T) for each T, cf. (1)
above. Conversely, if a sure 7* exists such that ¥(7,T) attains a (finite) maximum
among all sure 7 at == #* for all T, then the (right continuous) function Ee(1—D)x*(1)
is finite for all T and one can find discount densities q which decrease fast enough far out
so that 9(7*,q) is finite; for each such q thereis a c* such that (c*,7*) is an optimal
sure (and sure optimal) PS plan.

If b =1, a slightly different procedure shows that, if (c*,7*) is an optimal sure PS
plan, then for suitable q the function 7* maximises (1.2) among all sure =, for each T
simultaneously, or equivalently maximises the increment
Ex"(T) —x"(S)] = ¥4(nT) - ¥(xs) (1.12)
among all sure 7 for each pair S < T. Conversely, a sure 7* having this property
defines an optimal sure (c*,7*) for suitable q — see Foldes (1991a) S.6.

The upshot of this discussion is that, by virtue of Theorem 1, conditions for the
existence of an optimal PS plan, and procedures for constructing such a plan, can (for
suitable q) be obtained by considering the corresponding questions for an optimal sure
portfolio plan as defined by (1) or (2) above. The role of Theorem 2 is to guarantee that no
cases of existence are omitted by reason only of the restriction to sure plans, and in
particular to simplify the construction of examples of non—existence. The function—space
properties used in proving the CCT are not restrictive in the cases which actually arise. As
was mentioned above, it was asserted in Foldes (1991a) that Theorem 1 can be proved
under weaker conditions than those assumed there. An alternative proof procedure was

outlined, but part of the proof was deferred because it uses the representation formula for



¥ or \Il"

to be derived here. The points remaining to be verified to complete the proof
— see Foldes (1991a) eq.(4.12), also (6.12) — are these. Let 7* be an optimal sure
portfolio plan (as defined here). If b # 1 and the restriction 7> 0 applies, it has to be
shown that for each asset A the function

tn BSNE-DXH(E) _ gy pe(1-D)x*(t) (1.13)
is finite and non—decreasing on J. If b # 1 and short sales are allowed (X continuous), it
has to be shown that the functions are constant. For b =1, (13) is replaced by

tn BSNEE)

..(1.14)
These points will be considered below for the various cases which arise.

So far, the study of optimal sure portfolio plans has been motivated by pointing out
its connection with the neo-classical PS problem. If one does not insist on a
consumption—based theory, but merely requires a portfolio model with a reasonable
criterion and tractable properties, one may consider in its own right the problem of
choosing a portfolio plan which maximises (1) or (2) simultaneously for all T € on the
set IT of all admissible portfolio plans. Let us call such an element an optimal portfolio plan
in the wide sense. It can be shown, by a slight modification of the argument of
Foldes (1991a), that under minor conditions the following analogues of the CE and CC
Theorems hold:
(). An optimal sure portfolio plan is optimal in the wide sense.
(ii). If a portfolio plan exists which is optimal in the wide sense, then an optimal

sure portfolio plan exists.
(iii). For every portfolio plan 7° for which ¥(x%T) is finite on 7, there exists a
sure 1 satisfying ¥(7°T) < \IJ(7r°,T) < o0 on J.

As above, assertions (i) and (ii) may be obtained as corollaries of (iii), which for b# 1 can
be proved under two special conditions: first, that { has the appropriate function space
properties; secondly, that for each Te J there is some fe(0,b) for which
sup {Ee(l_ﬁ)xﬁ(T): 7€ll} < co. (We leave aside the case b =1 for brevity). The second

condition is not needed in order to show that a portfolio plan which is the unique



optimum in the wide sense is sure. Moreover (i) can be proved, for all b > 0,
independently of (iii) and without the special conditions. These results provide a simpler,
but less deep, justification for restricting choice to sure portfolio plans; they will not be
discussed further here.

In Foldes (1990) and the main discussion in Foldes (1991a), a portfolio plan 7 was
defined simply as an adapted process which is left continuous with right limits (collor); as
noted in the Postscript to the latter paper, such a definition gives rise to cases of non-
existence of an optimum when X is a PII with fixed discontinuities. The present
definition avoids this problem while leaving intact the results from both papers summarised
above. It would be possible to work with a wider definition of a portfolio plan, say as a
vector process 7 satisfying ¥ /\w;\ = 1 which is predictable and locally bounded,
(non—negative if short sales are forbidden). When referrring to this concept, we speak of
predictable portfolio plans, the corresponding sure plans being the (Lebesgue) measurable
portfolio functions. The theory of conditions for optimality in Foldes (1990) goes through
for the predictable portfolio plans, as does the alternative proof of Theorem 1; thus many of
the results obtained below remain valid with minor changes, usually with simpler proofs.
Nevertheless the narrower definition stated at the outset has been preferred here. One
reason is that the proofs of the Complete Class Theorem and Theorem 2 given in
Foldes (1991a) require a plan to be determined by its values on a countable dense set of 7,
and so do not work for general predictable portfblio plans. Also, it is of interest to study
conditions which allow an optimal solution to be found in a relatively small class of
functions. The predictable definition is the more appropriate when the object is to obtain
an existence theorem in a situation where X is specified only as a general semimartingale,
as in Foldes (1991b).

Theoretical and applied works on optimal saving and on portfolio choice using one
version or another of the PII/CRRA specification are legion and I shall not attempt to
review them here. As regards methods, some novelty may be claimed for the present work.

Leaving aside differences from related contributions which have been discussed in my



earlier papers, the main technique introduced here, which to my knowledge has not
previously been applied to portfolio problems, is the use of the canonical representation of
semimartingales and in particular of integrals with respect to jump measures. This
technique has been applied here only to the relatively simple case of PII, but should be
useful in more general problems also. Brief explanations of relevant concepts and results
are given as the discussion proceeds. As regards results, comparisons are complicated by
the diversity of problems, models, assumptions, techniques and the form of presentation.
The relatively straightforward discrete-time case may be left aside. A brief survey of
relevant continuous-time literature appears in Foldes (1990), though this focusses on
conditions for optimality in PS problems with general semimartingale investments and a
general welfare functional. Most results for the PII/CRRA set—up are obtained as
applications of more general theorems, and so are somewhat scattered and piecemeal. The
models which have been considered most fully are those driven by Brownian motion; in
particular, the programming conditions for an optimal portfolio in the CRRA case — see
(3.12), (3.15—16) and (3.18—19) below — are well known. We refer to Pagés (1989) and
Huang & Pagés (1990) for recent results on existence and characterisation of optimal plans
in infinite—horizon PS models driven by Brownian motion. I am not aware of results for
infinite—horizon models with CRRA utilities and a general PII market process which are
readily comparable with those given in Sections 48 below; but the programming
conditions are what one would expect to get from any maximum principle which happened
to be applicable, at least if X has almost surely at most a finite set of discontinuities in
each finite interval of time. The present proofs of both programming conditions and
existence are remarkably elementary, and the discussion of existence (and non—existence)
contains some points which, though quite simple, do not appear to be generally known.
The argument is arranged as follows. We begin in Section 2 by stating some
definitions and recalling some formulae from Foldes (1990) and (1991a). Section 3
considers the case where X is continuous. The formula for ¥(x,T) is derived and used to

complete the alternative proof of Theorem 1, and results on the existence and character-

10



isation of optimal plans are obtained, distinguishing between the cases with and without
short sales. The reason for discussing the continuous case separatély is partly to emphasise
the simplicity of the proofs, partly to dispose of the case where short sales are allowed.
Also, a case—by—case approach shortens the formulae to be considered and involves only a
little repetition, because the independence of the components of a PII allows results to be
combined by multiplication or addition. Section 4 turns to the case where X has jumps
but no fixed discontinuities, and derives a formula for ¥(7,T) as well as some bounds on
the integrals appearing in this formula. Some additional assumptions are stated and their
implications discﬁssed. With these preliminaries, the rest of the proof of Theorem 1 as well
as results on existence and characterisation of optimal sure portfolio plans are quickly
obtained in Section 5. The case where X is a PSII is briefly considered in Section 6. The
effect of fixed discontinuities is discussed in Section 7. Up to this point it is assumed that
b # 1, and Section 8 reviews the modifications needed in the case of logarithmic utility.
Section 9 concludes with a review of examples of non—existence found in the course of the

discussion.
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2. THE MODEL
As explained in Section 1, the portfolio model considered here is essentially the PS model
defined in Foldes (1991a) S.2 with a modified criterion, and the latter is in turn a slightly
modified version of the model in Foldes (1990). To keep the exposition more or less
self—contained, we set out in this Section the main points needed here.

There is given a time domain J= [0,00), a complete probability space (£,.¢,P)
with a filtration 2 = (J‘t; teJ) satisfying the ‘usual conditions’ of right continuity and
completeness, where £= ‘/‘m while ./50 = "‘o— is generated by the P—null sets. In the
product space {2 x J we define the o—algebras ¢ and £ of optional and predictable sets.
The following conventions apply to processes and functions unless we state or imply
otherwise. Scalar processes take finite real values, while vector processes are SlA—valued
functions of (w,t) with a fixed integer A > 1. The Euclidian norm in both ® and 2l s
written |-|. If processes ¢ and (’ are indistinguishable, we write { = ¢’ and treat
them as identical. For a scalar process, ¢ > 0 means ((w,t) > 0 for all (w,t), (>0
means ((w,t) > 0 for all (w,t), while similar notation for vector processes means that the
condition applies to each component. The terms positive, negative, increasing, decreasing
have their strict meaning. Processes are assumed, or may easily be shown to be, at least
optionally measurable. For processes, finite variation means a.s. finite variation of the
paths on compacts of J. A process ( is called locally integrable if there is a sequence of
stopping times T T oo a.s. such that E|{(T )| < oo for each n, similarly integrable on
compacts if E|{(T)| < oo for each Te J. Processes are defined only for t > 0 but are
formally regarded as left continuous at t = 0, i.e. we set ((0—) = ¢(0). Semimartingales
and their components are by definition finite and corlol on J. Thus for stochastic integrals
we have J[o,’r] = j( 0.1’ which we write as jg ; similarly for other time integrals. We
write & (¢ for the martingale exponential of a semimartingale, see Doléans-Dade (1970),
Z= &1 for the inverse (mart—log) when this exists; in particular, if 7 is a semi-

martingale such that N and n,_ are always positive, we have
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(n), = JZ(m,t dn,  for Ted, as.
The concepts of semimartingale and process with independent increments (PII) are always
defined relative to 2. All PII considered here are assumed or may be shown to be semi-
martingales, and we usually say simply ‘PII’ rather than ‘PII-semimartingale’.
Definitions and properties of such processes will be broadly as in Jacod (1979) and
Jacod & Shiryaev (1987); an excellent survey covering most of the points needed here
appears in Shiryaev(1981). Further useful surveys dealing with PSII are Fristed (1974) and
Taylor (1973).

As in Foldes (1990) and (1991a), a finite number of assets (or securities) indexed by
A =1,...,A are assumed to be available at all times. For each A there is given a

A with x)‘(w,O) = 0 called the log—returns or compound interest process

semimartingale x
for X\, and the formula A = exp{x)‘} defines a positive semimartingale called the returns
or price process for . The vector X = (xl,...,xA) is called the market log—returns
process. Decompositions of x)‘ and X are written variously as

= (MAc + VAc) N (M)‘d n VAd) = gAC n x)‘d,

X = M+ Vo) + M3+ vd) = x¢4 x4 (2.1)
where M’\c

while VAC

and M)‘d are continuous and compensated—jump martingales respectively,
and V)‘d are continuous and discontinuous processes of finite variation; all
these processes vanish at t=0, and in general only M’\c is uniquely defined. When some

A etc. for those which are

components are missing we sometimes write just M’\, V)‘, x
present. In this paper, it is further assumed that X is a vector PII, i.e. for each T, the
increments Xt_XT for t > T are independent of JT. The set of fixed times of
discontinuity of X is denoted £.

A portfolio plan © or 7—plan is defined as a vector process with components 7r’\
which is predictable, free of oscillatory discontinuities, left continuous for t¢ #, and
satisfies
2,1 (wyt) = 1 .(2.2)

for all (w,t). It is convenient to set 7{0) = 7(0+); this convention, together with the

13



assumption that X does not jump at zero, will ensure that all important properties
assumed or proved below for t > 0 extend to t > 0 if appropriate one—sided limits are
taken, and we shall omit further comments on this point. If X has no fized
discontinuities, a m—plan is simply an adapted collor process satisfying (2). We denote by
11° the set of all portfolio plans and by T the subset satisfying 7 > 0, or explicitly

0¢< T (wt) < 1 (2.3)
for all (w,t) and each A\. The set of all = which are admissible in a particular problem is
denoted by II. Special importance attaches to sure portfolio plans. We say that = is sure
if it is indistinguishable from a non—random function on J, and denote by n%, s the
corresponding subsets of °, 1'I+, or simply I if it does not matter which case is
considered. We say that = is invariable if it is sure and there is a vector 7 such that

T, = 7 for all t.

Given a portfolio plan 7, the portfolio returns process z" is defined as the unique
q

semimartingale satisfying the equation

T
2M(T) = 1 + E/\J (1) (1) ) g (b))
0
and it may be checked that z:r and zf_ are positive for all t a.s. iff
A AxN(t
zlr/z:r_ =X, m e () >0 ..(2.4)

for all t a.s. This condition, which may be interpreted as a requirement of solvency for
the investor, is satisfied for all 7€II° if X is continuous, and for all el (no short
sales) with a general X. Accordingly it was assumed in Foldes (1990) and (1991a) that
O=1t in general, while both cases II = M° and I =IO were considered for
continuous X. We retain these assumptions, which also apply to the summary of previous
work in Section 1 above, for the next few paragraphs, but in later Sections we shall be
concerned only with sure T, so that I will be replaced by IS, I by 1%,

Since (2.4) will be satisfied for all 7 considered here, we may write z”" = e with
x™(t) and x"(t—) defined and finite for all t a.s. The process x" is called the

log—returns or compound interest process for 7. The change—of—variables formula yields

14



T
j Mgt = A4 4+ 5, [ —1 - axd,
. <

the sum on the right converging absolutely for all T a.s., and using this formula we may

calculate x"(T) explicitly as

7d

x"(w,T) =x' = x,;rc+xT

T
= | 5, aMA°
+ 15,7 VA 4 4y By a0 — 3 5,3, 2t g€, mtey
+ /3 A'/r’\ am*d
A AnA

+ EtST[AxW—EAW AM?]; ...(2.5)
here [ = Ig , all variables and angle brackets on the right of the equation should have the
subscript t, and
sz;r ={n [E/\ﬂ'i‘ exp(Axi‘)] ’ ...(2.6)
— see Foldes (1990) eqgs.(2.1-17) for details. The sum over t in the last line of (5) converges

absolutely for all T a.s. The symbols xTe xrd are just shorthand for the first two lines
y

T’ T
and the last two lines on the right of (5) respectively, and of course x™

=0 when X is
continuous. The first and third lines represent local martingales, the second and fourth
processes of finite variation, so that (5) gives a decomposition of x" analogous to that of
x’\ in (1). In particular, if the ‘single—asset portfolio X\’ is defined by
7r)‘ =1, 1rf‘ =0 forl# ), ..(2.7)
the four lines on the right of (5) may be identified with the corresponding terms in (1);
thus we may without ambiguity write x)‘ instead of x", with similar notation for other
functions to be introduced later.

For later reference we note that, if X has bounded jumps, the solvency condition
(2.4) can be satisfied, and the process x" defined, even if limited short sales are allowed.

A= 1,let % denote the sum of

More precisely, for an arbitrary vector 7 € RA with ¥ /\‘7?
its negative co—~ordinates, and let

7 = {7l 7 (wt) > —p all (wt)}. ...(2.8)
Then, if (say)

|Ax)‘(w,t)| <1 all (wt) and A, ...(2.9)
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one can find p > 0 so small that (- 4) is satisfied for all 7€ IIP. Indeed, if ¢ is an
arbitrary vector in 21 with If’\l <1 for each A, we have

Z ety Fr.eman g (1_;.).emin)‘ & Fet (1=7)-e 7%, ...(2.10)
which is positive if 7~ > 1/ (1—e2), so that it is enough to take

0 < 1/(e21). (2.11)

It can be checked that, if = is sure, x" is a PII, and if = is invariable then x” is
a PSII. Note also that a sure = is bounded on compacts of J in all cases considered here:
by the collor property if 7€lI°® and X is continuous, by (3) if 1rEH+s, (and by definition
in the case of measurable portfolio functions). Since from now on we shall consider only
sure 7, we shall often say ‘all 7, ‘optimal 7*’ etc. instead of ‘all sure 7, ‘optimal
sure 7% etc.

The definitions of the investor’s objective and of the concept of optimal sure
portfolio plan have been given in the first paragraph of Section1 — see (1.1) and (1.2), also
(1.11) and (1.12) for an alternative formulation — and need not be repeated, but for
precision some remarks should be added. Optimality is, of course, always defined relative
to some admissible set II. Also, we speak of an optimal 7* only when the maximum in

(1-b)x(T) is defined and

question is defined and finite. Specifically, if b # 1, then Ee
positive for all (7,T) since x"(T) is finite, so that (1-b)¥(m,T) > —oo always. Thus for
b <1 anoptimal 7* cannot exist unless ¥(x,T) is finite for all (x,T). On the other
hand, for b > 1 an optimal #* can exist even if ¥(7,T) = —oo for some (7,T). If X is
continuous, ¥ is in any case always finite — cf. (3.4) below. For brevity we often write
n"(t) = o(1-0)x(t) ..(2.12)

7d 7d

similarly 7™, 7"C when x" is replaced by x"°, x"* etc.

16



3. CONTINUOUS X
In this Section, X is a continuous vector PII, so that (2.1) reduces to
X = X®=M®+ vV® =M + V. The situation usually considered in portfolio problems with
a continuous PII is that where VC is a linear drift and M® is a Brownian motion with
covariance, but we may as well begin with the general case. Thus MC is a continuous
Gaussian martingale with angle bracket (M®) where (M®) ; is the matrix with elements
(M}‘C,MILC)t , the vector function V° and the matrix function (M®) being deterministic
continuous functions of finite variation on compacts, and for each S < T the ‘covariance
matrix’ (M) T (MC)S is symmetric, non—negative definite — see Jacod (1979) 4.9-10,
4.15, 5.10, also Jacod & Shiryaev (1987) 1.4.9-10, I1.4—5. To shorten the notation, we
sometimes drop the superscript c .

We first complete the alternative proof of Theorem 1 for continuous X. The first step
is to calculate ¥(m,T) — which we write here as ¥(,T) — for sure =, where I may for
the moment be T1° or I*5. We refer to (2.5), write out the formula for 7" = g(1-b)x"
with x7 =x"° and note that = is bounded on compacts of 7, so that

s{(1-b)f 5, aMNy, =

exp{(l—b) T3, Pam? — 4 (1-b)2ft zgﬁ#am*,m‘)} (3.1
is a (true) martingale and its expectation is 1. Now exp{(l—b)x,if} may be written (on
adding and subtracting terms) as the product of this martingale and the expression
exp{(l—b) iP5,V + 310" 5, PaM?) - 4p(1-b) [t zAz“’\#d(M*,M‘)}. (3.2)

The expression (2) is deterministic since 7 is sure; denoting it by V,7rr, we obtain

m _ T _ T
En, = Eexp{(1-b)x;} =V, ...(3.3)
or, taking logarithms, dividing by (1-b) and referring to (1.1),
¥(n,T) = J7 5,7 [dvﬁc + 3, - poE rtam?mtoy t] . .(34)

If 7* and = are two elements of Hs, an analogous procedure, using the martingale

g{J B -br**)dM™}, yields
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In E exp{xg—bx;}
= 123, (A -brtd) [dV’\c + 3d(MA) — %bEU"‘Ld(MAC,MQC)]

— b7 5,5, (PN rltaaremto), ..(3.5)
where x* = x‘”*, hence
in E exp{x,;r—bx,’;} — in E exp{(1-b)x}}
= EI\(W)‘—ﬂ’*A)[dV/\c + 1M — bEUr*ld(M)‘c,Mu)]. .(3.6)
Note that, with X continuous and =, 7* sure and bounded on compacts, the expressions
(1-6) are always finite for T < oo.

Now let 7* be optimal sure, so that 7* maximises ¥° for all T among all 7 € II.
For any 7= 7*+4r € II, the functions 7*+aér with 0 < @< 1 arein II, so that by
optimality and (4) we obtain
0> (1/a)[¥°(r*+abn,T) — ¥(2*,T)]

=2 5, 6n* [dV)‘+§d(M)‘) - bzﬂ*‘d(MA,M%]— yabfT 3,5, s ertaemA MYy, ..(3.7)
The last term vanishes as a | 0, yielding the result that the expression (6) is non—positive
for arbitrary sure 7. Given any interval [S,T), one can set 7 equal to the ‘single—asset
portfolio A’ on that interval and = = 7* elsewhere, implying that the function
tn E exp{xg—bx,’;} —in E exp{(1-b)x}} ...(3.8)
is non—increasing on J —see (1.13). In case II = n%, an arbitrary 67 can be replaced
by —6ém, and then the function (8) is identically zero on . Taking into account the
discussion of Section 1, this proves Theorem 1 for both cases with X continuous.

Regarding uniqueness of an optimal sure plan, this is assured if for each pair S < T
the matrix (MC)T — (M%) g 18 positive definite. To see this, suppose that 7* and = are
optimal sure and note that (6), with | g replaced by j: , is non—positive. Interchanging
7* and =, adding the resulting inequalities and rearranging one obtains
02 b J7 8,3, ()t abyaut MY, -.(3.9)

contrary to positive definiteness unless 7* and 7 coincide on the interval.
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Now let II = IT°® and consider in more detail the conditions characterising an
optimal sure 7*. On writing out the condition that (8) vanishes identically on J one has
A A T Py W
Vo + H(M7),— bJ7 By d(MA M)
= (T3 [de + 3d(MYy — bztvr*"d(ML,ML)] ..(3.10)
forall T, A =1,...,A. Assuming now that V¢ and (Mc) are absolutely continuous and
introducing the (a.e. defined, measurable) derivatives
ACja A Ac 4 Le M
dvi /dt = v d(M™*M )t/dt =05
(10) may be rewritten in the familiar differential form as

A AX L AL L[ L LL L L
vi + 40y —bE el = X 7 [vt + 40" — by mi oy ] ~ ...(3.12)

(311)

for almost all t, A = 1,...,A. If these equations are to be satisfied by a collor vector

A AL must be

function 7*, then (apart from special cases) each of the functions v* and o
assumed to be collor. Unless otherwise stated, we shall for simplicity assume from now on
that V¢ and (M%) actually have continuous derivatives (11) on 7, and further that for
each t the matrix [ai‘l] is positive definite. (At t = 0, we take the right derivative and
set the left derivative equal to it). Then the necessary conditions for a collor vector
function 7* to be optimal in T1°° are that for each t the vector 7:’,: satisfies the
equations (12) for each ), as well as the constraint ¥ ,\w’{)‘ = 1. A function 7* satisfying
these conditions is continuous. Of course, the concavity of UC ensures that the stated
conditions are also sufficient for optimality. To see this formally, evaluate
¥C(x,T) — ¥(#*,T) from (4) to obtain an expression like that in the second line of (7)
with @ =1; the first term in this expression vanishes by (12) since ¥ 5%% = 0 while the
second term is non—positive definite, so ¥E(x,T) — ¥%(x*,T) < 0 as required.

By way of transition to the question of ezistence, we note that under present
assumptions the equations (12) characterising 7«‘; could also be obtained as follows.
Define a function of the vector ¥ € 8% and of te. by
E(R) = 5,7 [v’t\ + 3o - %bEt\'frtaid], .(3.13)
and note that the function ¥° given by (4) has for each 7 ¢ 1% a time derivative

Yy t) = (8/0t)L°(myt). ..(3.14)
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Consider, for each t separately, the problem of choosing a vector 7 to maximise v/)c( 1)

subject to the constraint
v

5 = 1 ...(3.15)
Introducing a multiplier ﬂt for the constraint, one obtains necessary conditions for a
maximum at a point T = w’{ in the form

A A vl AL
vi + io} —bZUrf'at = ﬂt, A=1,.,A, ...(8.16)
and on multiplying by \7'r£ and adding up the resulting equations one sees that ﬂt agrees
with the right—hand side of (12). The conditions that (12) holds for a given vector 7= L
satisfying (15), or equivalently that (15) and (16) hold for some 7 = 7r’1‘;‘ and some number
ﬂt’ are clearly also sufficient for a constrained maximum of wc(- ,t) at 7rj: Now write the

system (15—16) as a matrix equation of the form

§.7 = ¥, : .-(3.17)
where (dropping the subscript t)
(boll. . bolh g 1 (o1 4 30tt
§= : ], 7= , v=1|- ...(3.17a)
baAl . . baAA 1 7rA VA + -}(IAA
1 . .1 0 B (1

The equation (17) has a unique solution ir’: = (7r’{, ﬂt) if the bordered matrix §t is
non—singular, which will be the case if the covariance matrix S, = [ai‘L] is positive
definite. (To check this, note that the latter condition implies that the quadratic form

h’(bSt)h, hERA, is positive definite, hence is also positive definite subject to X )\h)‘ = 0;

~

but this implies that det(S) < 0, see for instance Samuelson (1961) p.378.) It is also

A AL

evident that the solution #* will be a continuous function of t if the v" and ¢ re

1
all continuous, as will the functions 7*:t » 7!1; and tw zpc(w’{,t). Thus 7* isin II°°, and
since 7} maximises ¥%(7,t) subject to (15) for each t, it follows that 7* maximises
‘I’c(ﬂ’,T) on TI% foreach T and so is optimal sure. This completes the existence proof

for the case I = 1%, To sum up so far, we have
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THEOREM 3: Optimality Theorem for X Continuous, Il = .
If continuous derivatives v;\ and a’t\l‘ exist on J and the matrix [ai‘t] is positive
definite for each t, there exists a unique optimal sure portfolio plan 7*. For each t, the
vector 7} is characterised by the equations (3.16) —or (3.12) — and (3.15). The functions
th w’,: and t» wc(w:,t) are continuous.

nts

We turn to the case II = , assuming again that continuous derivatives v’\ and

o™ exist and that the matrices [a’t\f'] are positive definite. A modified version of the
approach based on maximising, for each t separately, the function ¥°(7,t) defined in (13)
yields a very simple treatment of the ezistence and properties of an optimal sure . |
Consider choosing a vector in the simplex o — see (1.4) — to maximise %°(-,t). This
function is continuous, and it is strictly concave on o since the form ))27r)‘ # M’
positive definite; thus it attains a maximum at some unique point 71’1';‘ Conditions which
are necessary and sufficient for a maximum are easily obtained, for example with the aid of
Lagrange multipliers for the constraints %450 and % = 1, and take the form

w30 each A, et =1 /- <0, 2 1) =0, each & ..(3.18)
where

7;\" = v;\ + %ai‘)‘ - bﬂlw’gﬁa’w’, y{ = 2)\7:*)‘ Ac ...(3.19)
If t is now varied, it follows directly from the conditions of the problem, or from any one
of a number of ‘maximum’ theorems — see Bank (1983) esp. T.4.3.3 — that continuity of

A and a’\t

the coefficients v with respect to t and uniqueness of the solution 7r’1';‘ for
each t implies continuity of the functions 7*:1t» 7} and t» 1/)c(7r’,:,t), (and if multipliers
are used, these are continuous also). Thus 7* € H+s, and since 7} maximises ¥(-,t) for
each t it is obvious that #* is optimal. In case X is a continuous PSII, i.e. a
Brownian motion with drift and covariance, the solution n’{ is of course constant on .

In the next two Sections we shall review the preceding arguments — for the case II = nts
only — and consider in what respects the presence of jumps creates complications. Here we

state
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THEOREM 4: Optimality Theorem for X Continuous, II = nts.

If continuous derivatives vf‘\ and a’t\l' exist on J and the matrix [or;\t] is positive
definite for each t, there exists a unique optimal sure non—negative portfolio plan 7*. For
each t, the vector 73 is characterised by the conditions (3.18-19). The functions t » ot
and tn ¢°(7f{,t) are continuous.

REMARK. In Theorems 3 and 4, ‘continuous’ may be replaced by ‘collor’. If measurable
(instead of only collor) portfolio functions are admitted, then — subject to reservations
about null sets — analogous results hold with ‘continuous’ replaced by ‘measurable and

bounded on compacts’ or, in the case of Theorem 4, simply by ‘measurable’.
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4. MOVING DISCONTINUITIES
Suppose that X with X(0) = 0 is a general PII-semimartingale without fized times of

discontinuity. We may suppose that X has a ‘canonical’ representation of the form

T T
X = MIC 4 V2O 4 J J . (u-F)(d£,dt) + J J . (de,dt), L (41)
o |&[<1 0’]¢|>1
A =1,..,A, where for the moment M’\c and V)‘c just have the properties specified in the
Ad Ad .

first paragraph of Section 3; the two remaining terms correspond to M”~ and V"~ in
(2.1). Before developing our theory further, we set out some facts about the measures p
and F and the integrals which they define; full details may be found in Jacod (1979),
Jacod & Shiryaev (1987), Shiryaev (1981).

We introduce an auxiliary ‘space of jumps’ = which is a copy of RA, with vectors

A

£ = (51,...,§A) and Euclidian norm |£|. Denoting by 2" the Borel setsin =, we

define optional and predictable o—algebras in (Qx 9)xE by O = Ox ﬂA , B= Px 3t
Next, p= p(w;d&,dt) is a random measure, i.e. for each w there is a o—finite measure on
the Borel sets of =x 7. Specifically, x is the (Poissoﬁ) measure of jumps associated with
the PII X and is defined by

A d) = Boo o Tax + 0} (s,x5)(36:48),

ie if AX(ws)=£#0, then g places a unit mass (6~function) at the point (w,£,s). If
teJ and (A ) is a sequence of pairwise disjoint Borel sets of Zx(t,00) with

Ex(A ) < 0o, the random variables y(A ) are independent of one another and of .6 .
The deterministic measure F(d¢,dt) is the compensating or intensity (Lévy) measure for

i, defined for Borel sets A of =xJ by F(A) = Eu(A). It is non—negative, o—finite and
atomless with F({0}x 9) = 0, F(Ex{0}) = 0, and satisfies

JT JH(1A| ¢|2)F(d€,dt) < oo for each Te J. ...(4.2)
0'E

F may be factorised (not uniquely) in the form
F(d¢,dt) = £(dé,t)dG(t) ...(4.3)

where G with G(0) = 0 is non—decreasing and finite on J, also continuous because X
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has no fixed discontinuities, and f is a transition measure, i.e. f(-,t) is a Borel measure
on E for each t while f(A,.) is a measurable function of t for each Borel set A ¢ Z\{0}.
Let W = W(w,¢,t) denote a P—measurable function. For real-valued W > 0, the

integral

[ [ = [ [ wsgomunsan ws

0
is defined pathwise for T < oo in the usual way, and the definition extends to W of

-t
—

indefinite sign and T such that jg Jz IW|dp < co. This integral represents an optional
process in the usual sense. For vector—valued W, jg J = W-du denotes the vector process
with co—ordinates jg Iz W’\-du. Similar remarks apply to | g fz W-dF, except that
this integral represents a predictable process. For W 2> 0, the definition of F as the

compensating measure for p leads to

T T
B [ wap=E] [ WP  for T¢oo . (4.5)
ovzo ovo
In particular, if W is the indicator of a set {|&|>1}x[0,T] with Te ., (2) implies
E u{{]£|>1}x[0,T]} = F{{[{|>1}x[0,T]} < co. ++(4.6)

As a further example, if we set W = 5)‘1 {l¢]>1} the integral on the left of (4) agrees
with the last term in (1); it is, for each w, a representation of the sum of jumps Axi‘
occurring not later than T, restricted to those vectors AXt for which

IAX,E|2 = 2)‘(Axfc\)2 > 1. The number of such jumps is a.s. finite, so that the sum
converges absolutely; thus the integral is a right continuous process of finite variation, and

it is consistent with our general definitions to write
T
vad = vMe,T) = I J
o [¢[>1
In general, V’\d need not be locally integrable.

£} (de, dt). (4)

The situation is different if {|£|>1} is replaced in the preceding examples by
{| €] <1}, because the X—process may have a countable infinity of jumps in every
neighbourhood of the zero level during a finite interval [0,T]. Thus, in general, the p and
F measures of a set {|€]<1}x[0,T] will be only o—finite, and the integral analogous to (7)

may be undefined, i.e. have the form oo —00. A more general definition of integrals
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representing sums of jumps is therefore needed.

Returning to the case of a general real or vector—valued WeQP and defining
]g Jz IW|dp and | g = I[W|dF as above, it can be shown that local integrability of these
two processes are equivalent conditions. If one of these holds, we may define a new process

— T - =
£y =13 )z W-d(uF) by

E JE Wed(pF) = LT, JE Wedp - J:JE W-dF, ..(4.8)

and this process is a local martingale. If | g J= |W|dp, or equivalently j'(r) f= |W|dF, is

integrable on compacts, then (8) is a (true) martingale. More generally, if

JZ Jg IR ATPREL IR AL (49)

is locally integrable,the expression

T

fwm) = [ [ Wogt)-(-F)uigd) (410)
0'E

may be defined as the value at (w,T) of a compensated—jump local martingale £ with

£(0) =0 such that
AL(w)t) = JH W(w,&,t){wrdEx{t}). (4.11)
If now we set W(w,é,t) = f)‘I {1e1<1} it follows from (2) that the (deterministic)

integral jg jl £l Sl(5’\)2-dF is defined and finite, so that the criterion (9) is satisfied and

the process

M4 = MM, T) = J Z JI a A (1-F)(de,dt) .(4.12)

is well defined as a compensated—jump local martingale with Méd = 0. In fact, we have

T A2 T A2
dp= -dF < oo
Ojlﬁlsl“) ’ JOjlflsl(g) <

from which it follows that M9 is actually a martingale with E(Mgd)2 < oo for each

Ady2
E 5, (AM}9) =EJ

Te 7, see Jacod & Shiryaev (1987) 1.4.50(c), Jacod (1979) 3.65—66, and of course
E(MA) = o.
Reverting now to W = {’\I{I ¢|>1} the condition (9) is that Ig II £]>1 |§’\|dp,

or equivalently T f’\ dF, be integrable on compacts. In case this condition
o’|¢|>1 &
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holds, the process jg jl ¢>1 f)‘-d(u—F) is a martingale with zero expectation. Referring

)‘d= 0 and that V)‘c

T T is deterministic and

to (1), and bearing in mind that EM?c = EM
finite, it is seen that the condition in question is equivalent to Exé being defined and

finite, and then we obtain

xy—Ex) = MAC + ﬁ L . d(u-F), .(4.13)
a PII-martingale with zero expectation. |

Suppose conversely that £ with £(0) = 0 is a given PII-local martingale without
fixed discontinuities and with ElIT defined and finite for each T. We may replace X by £,
XA by L)‘ throughout the preceding discussion — with corresponding changes in the
meaning of M, V¢ p, F etc. but wifhout otherwise changing the notation — and in
particular obtain (13) with E% - EL,’r\ on the left. On the other hand, it is known that
each E,i,‘ , considered simply as a local martingale with E())‘ = 0, has a representation given
by the right—hand side of (13), see Jacod (1979) 3.77. From this we infer that £ is in fact
a true martingale with Eﬁt =L 5 =0 7

Finally, some simple points which will be needed below. If £ is any
PII-semimartingale with finite expectation, it follows from first principles that £— EL is
a martingale M, which may be assumed right continuous. Then EL = f-M is also a
semimartingale, which for a deterministic function means that it is right continuous and of
finite variation on compacts, Jacod (1979) 2.27, Jacod & Shiryaev (1987) 1.4.29. Similarly,

if £ is a positive PII—semimartingale, then EL is positive, and if EL is finite then

L/EL is a positive martingale M and EL = £/M is a semimartingale.

* * *

We return to our model, with X asin (1), v4 ang M4

asin (7) and (12),
=175 Applying (7) and (12) to the decomposition of x” in (2.5) and taking into

account (2.6), the last two lines of (2.5) may be written as

7d _ a,7md TUO mpl
xp = M7 4+ x 77+ x7 ...(4.14)
where
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M;.‘rd = n [ EAW%EA] (“—F)(déadt)’
Yo [¢l<1
T ¢
THO  _ AN ¢ A
1 ‘uou{lslsl}[“n(zme R RAEICIX O
T o
mul A
*1 —uoﬂ{|¢|>1}[‘“(”me )| idedt). .(4.15)
For 7rEH+s, the integrands appearing here are deterministic, and those in the first two

lines are bounded. The compensated integral in the first line again represents a martingale
with zero expectation. The integrals in the second and third lines are a.s. defined and
finite for each T and represent processes of finite variation because the corresponding
sums converge absolutely. The first two lines of (15) derive only from Md, the last only

from Vd

, and it follows from the properties of p that the third line is independent of the
other two. Note also that, with = deterministic, each line of (15) represents a PII, and

these processes are stochastically continuous because X has no fixed discontinuities.
mF0 _7F1

Now denote by Xy Xp the expressions obtained on replacing g by F in the
second and third lines of (15). Then we have
7d 1 FO F1l :
Ex.~ = E(x,;w'o + x;‘r,u ) = x,;,r + }(,71‘r ...(4.16)

provided that the integral Ex,i‘m1 is defined. This is seen as follows. The first line of (15)
has zero expectation. The second represents a stochastically continuous PII with jumps
bounded in absolute value by a constant, which therefore has finite moments of all orders
— see Gihman & Skorohod (1975) IV.1, Lemma 2. Thus (dropping the superscript = for
brevity) ExT“O is defined and finite for each T, and we may replace p therein by F; but
F and the integrand are deterministic, so Exfjfo = Exgo = xgo. Passing to the third line,
we consider separately the processes x”li formed by restricting the integration to
positive and negative values of the integrand. For integrands of fixed sign we may replace

¢ by F when forming the expectation, yielding Exéfli = Ex,_}[“li = xgli. If Exle is

defined, at least one of the terms xgli must be finite, and the result follows. It further
follows from the integral representation and the continuity of G in (3) that x;rF © and

(when finite) X1

o are continuous functions of T.
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We now assume until further notice that b# 1 and consider how to extend the
theory of Section 3. The present Section will derive various preliminary results, leaving

the discussion of the existence and properties of optimal plans to Section 5. The first task

1-b)x~(T) T

is to derive an explicit expression for Ee( with sure 7. Since x" is finite, this
expectation must always be positive, but now it need no longer be finite. The theory of
Section 3 may be regarded as dealing with the case where y and F vanish, whereas here
we shall assume until further notice that M® and V¢ vanish. Referring again to the
formula (2.5) for x" and noting that for sure r the second line on the right side is
deterministic while the first is independent of the third and fourth, it is clear that the

formula for Ee(l_b)x“

when all terms are present will simply be the product of that
obtained in Section 3 and that derived under our new assumptions. The formula for ¥
when all terms are present will be the corresponding sum, which we now write as
U =0%4 ¥4, The conditions for optimality will also combine in a straightforward way.
However, some care is needed when making additional assumptions about the
‘characteristics’ V°, (Mc) and F separately, because a decomposition like (1) is not
unique. In this Section and the next we sometimes omit the superscript d.

Fix 7€ H+s and for the time being write simply = e(:l —b)x(t ) X= x7rd.
We require a formula for E”t' Since 7 is a semimartingale with N and M positive,
the stochastic integral #n = [(1/n_)dn is well defined. Using the change—of—variables

formula, then substituting from (2.5) and (2.6) and simplifying, we have
T
dn(t 1-b)ax(t
()= Jo 7?{:} = (1=b)xy + By [e(-0)ax(t) ) _ (1_p)ax(t)]

Aood A_8xM£)y1-b M)
=(1—b)J 5, m)dM) +zt<T (2, ID s damd], L)

the sums over t converging absolutely for each T, a.s. Arguing as for (14—15) above, this
may be written as

- md , quo , qul
(.,Zn)T = (l—b)MT +J + 35 ...(4.18)

where
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IH0 = J#(rT) = zm[(z A A“t)l b—l—(l——b)E/\w)‘AM’\]
= J”I(”’T) =2 I{let|>1}[(z)\7r)‘ Axt)l - ]
1 _
=JOJI€I>1[(E/\W¢G£X)1 b_l]”(dg’dt)' ...(4.20)

The expectation of (18) is calculated in much the same way as for (14). The integrands are
again deterministic. The term M7rd has zero expectation. The processes JHO , J“1 are

stochastically continuous PII of finite variation, and we define JFO, JF1

as in (19) and (20)
with u replaced by F. Since the jumps of JH® are bounded, this process has finite
moments, and on forming the expectation we may again replace p by F; then, since F

and the integrand are deterministic, (19) yields

T
F A EN1-D A
EI° = 3° = J J [(2)‘71' & 1—(1-b)8, 7y ¢ ]F(df,dt). ..(4.21)
o [¢[<1
Turning to (20), we note that by (6) the negative part of I has finite expectation for

each Te 7. For the positive part, the expectation is defined (but could be +00), and

arguing as above we obtain

T A
10N Al L =J J [( edH)1P ]F(df,dt). .. (4.22)
T g A
To sum up so far, we have
—o0 < E(#7), = Jgo + JFl ; IJ;:OI < 00; J 1y —00; ...(4.23)
T
E(fn),<oo iff I <oo iff J JIEI DRSS )1‘b F(d¢,dt) < co. ...(4.24)
>1

Note also that, since 7 and .#7 are PII without fixed discontinuities, it follows as for (16)
above that the expectation of each of these processes is continuous as long as it remains
finite.

We now want to show that we may write
tn En, = E( 2y ...(4.25)

whenever one side or the other is defined and finite for all Te .
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Suppose first that E(.£7), < oo for all T. Define a process L by
L, = (£n), —E(Z0),;
since #n is a PII, L is a PIl-martingale with EL, =0, and E( .,2’77)t is of finite
variation. Since & .#n= 7 and E(.77) is continuous, we have
( é’L)T = nT-exp{—E( Zn)p} >0, (.é’L)o =1
Further, if L is a martingale with EL = 0, then &L is a local martingale with
0<E(E L)T <1, and since &L is also a PII and has finite expectation it is a martingale;
thus (25) follows from
1 = E(&L), = En-exp{-E(n),}.

Suppose conversely that Er]T < oo for all T, and bear in mind that EnT > 0;
(25) will follow if we show that E(.#n), < oo, and according to (22—24) it is enough to
show that Eng = ng is finite for all T. Taking into account the independence

d

properties of p, it is enough to prove this under the assumption that X = V- . Then (18)

reduces to £ = gl , or equivalently

T
1
mp— 1 =J 7, _dIbL.
0
Taking expectations, we may once again replace .I“1 by the deterministic function J Fl,

and then by Fubini’s theorem

T
E(ng)—1= Jo E(n,_)dJEL.
Now E(n,_) = (E7),_; to check this, note that the process Y defined by Y, = n,/En,
is a PIl-martingale, hence E(Y, ) = E(Y,) = 1, see Dellacherie & Meyer (1980) V1.2.4,
yielding the result. Since E(7,) = (En), is a continuous semimartingale with (En) =1,

we can apply the change—of—variables formula to obtain

- JZ[d B t_] = (LEn), = ta(En,) | ...(4.26)

The modifications needed if one side or the other of (25) is finite only on an interval
of J are straightforward, and it is clear that

En,=oco iff E(fm),=oc0 iff JF'=co. ..(4.27)

T
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It is convenient at this point to introduce some alternative notation. For 7 € ¢
and £€ §2A define functions
h(%,¢) = (1-b) 2 [(2 PP 1oyt el Sl}s%*g"] ,
b°(%,€) = BRI ¢y n!(%,¢) = h(F,&)I {el>1) ..(4.28)
and for i = 0,1 write

#i(n,T) = (1-b) L JF(x,T) = J: L H(r,, £)F(d€, dt). ..(4.29)

Taking into account the independence properties of the various components of X and the
results of Section 3, the preceding discussion can be summed up in

THEOREM 5: ‘Bilateral Laplace Transform’ for Compound Interest Processes.

Let X be a PII-semimartingale with no fixed times of discontinuity and representation

d d’ vd

(4.1), and let X°= MS+V© xd = xx¢ = Md+V , where M are defined as in

(4.12) and (4.7). Given a fixed sure 730, let x" =x"° + x™ e the portfolio
log—return for 7, where x7rc’ x7rd are calculated from XC, Xd separately, i.e x"C is
given by the first two lines of (2.5), xmd by the last two lines. Then, for b # 1,

¥(r,T) & (10b) U B OXT _ 9ty 4 0(mT), ..(4.30)

where ¥° is given by (3.4) and
d o 1 T
v4(7T) = ¥or,T) + ¥}(x,T) =J J_ h(r,, £)F(de,dt). (4.31)
oYz

We have (1-b)¥(7,T) > —oo always, (1-b)¥(7,T) < oo iff the integral in (4.24) converges.
REMARKS. (i) There are straightforward extensions of the above statements to cases where
the integral in (24), with jg replaced by jg , converges for some pairs S < T but not for
others, but we shall usually make assumptions which exclude this possibility.

(ii) As one might expect, the expression for (1—b)‘Ild given by (31) with (28)
agrees with the formula which would have been obtained if we had started with the Lévy-
Khinchin formula for the characteristic function of X4 — see Jacod (1979) 3.55, Jacod &
Shiryaev (1987) IL.4c — then calculated Eexp{iux;rd}, and finally replaced iu by 1-b.
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(iii) The essential point of the argument following (25) is that &L is a true
martingale, given that L is one. The best general criterion (without independence of
increments) for showing that a discontinuous exponential supermartingale is actually a
martingale appears to be that given by Lepingle & Mémin (1978) eq.(3.8). Noting that
A( °z"n) (1 —bax(t) _ 1, where x = x7rd, this criterion applied to the present situation
shows that a sufficient condition for &L tobea martifxgale is that the expression
E M p[{1+A( 1)} exp{-A( ), /11+( £}

—Eexpl [e(b‘l)’”‘t —1- (b—1)Axt] .(4.32)

t<{T
be finite for each TeJ. On the_other hand, the assumption that (24) converges means
— taking into account (21-23) — that
E B[O = 1 - (10 1A .(4.33)
is finite, showing that the criterion is far from providing a necessary condition.

* * *

In our discussion of optimal portfolios we shall sometimes consider assumptions
additional to those which have been imposed so far; the rest of this Section reviews these
assumptions and some of their consequences. We begin with conditions yielding
F—integrable bounds on the integrands in the expressions JF°(7r,T) and J Fl(7r,T) which
for given Te S are uniform across all sure 7 > 0, and so define uniform bounds for the
integrals themselves. Starting with the formula (22) for J , it follows from (6) that the
term —1 is integrable, so that it is enough to consider the positive part of the integrand.

For b <1 we have

EreIP ¢ pet b ¢ ge1-D)EX (4.34)

A

using the inequalities Hardy et al. (1952) T.27 and 0 < 7~ < 1, so that for given T the

J Fl(7r,T) are uniformly bounded if
T
J Jl | e(l_b)P‘F(dg,dt) < oo foreach ), ...(4.35)
£l>1

or equivalently if
JFl(/\,T) < oo for each A. ...(4.36)

Now note that, for every b # 1, Jensen’s inequality implies
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—_ -] — —bYEX
(1-b) L EPeN P 5 (1by Laate(IDIEY .(4.37)
so that for b > 1 it is again seen that (35) or (36) is sufficient for a uniform bound.
We nezt consider the formula (21) for J FO('II’,T). Note first that
A
5 et » &1 ...(4.38)
by convexity, so that for b < I we have
1-b

[32e] 1-myEte » DEPS el o, ..(4.39)
showing that the integrand in (21) is non—negative. A simple upper bound (though not the

best possible) is obtained from

(22810 1 - bzt ¢ (IDImINEY 1 (1-b)min, ¢, ...(4.40)
showing that for given T the J*O(m,T) are uniformly bounded if
T
J J (I DImaxNE® 1 _ (1bymin, £}] F(ag,dt) < oo. . (441)
o”|£[<1
In case b > 1, the integrand in (21) no longer has definite sign, but using (37) we get
[5e] 1P _(ps e < me[e(DI L (1m)e?], .(4.42)
so that the J*O(x,T) are uniformly bounded if
T
I7°0T) = J JI | [P 1 _ (1 )¢ P(dg,at) < oo for each A, . (4.43)
o0’ |&|<1

We already know that this condition is indeed satisfied — see (23). To get an integrable
lower bound, we note that
(22812 _1- ety IDImANE (1 bymin, ¢ .(4.44)
for b > 1, so that (41) is again sufficient.

Taking into account (28)—(29), we may sum up this discussion of bounds as follows.
PrOPOSITION 1. Let b# 1 and fix TeJ.
(i) The functions ¥°(m,T), or equivalently the J(r,T), are finite for all = € mts,
If (41) is satisfied, there is a Borel function 1°t on RA, vanishing for |[¢] > 1, such that
10o(r,6)| <kOT(e),  Feor cewh .(4.45)

JT JH hOT(&)F(dé,dt) < oo; ...(4.46)
oYz

then the \IIO(7r,T) are uniformly bounded for all 7reII+s, and bounds may be calculated
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from (41) and, for b > 1, from (43).

(ii) The functions ‘111(7r,T), or equivalently the J 1(1r,T), are finite for all el ™S iff (35) is
satisfied. Then there is a Borel function h'* on &A, vanishing for |¢| < 1, such that
Inlne)) <nlte),  Feor cewh o (447)

JT J_ nl T (EF(de,dt) < oo; ...(4.48)
(0}

the . \Ill(vr,T) are uniformly bounded for all 7rEl'I+s, and bounds may be calculated from
(35) and (6).
(iii) Finiteness of the functions ¥(7,T), \Ild(vr,T), \Ill(7r,T), J 1(1r,T) are equivalent
conditions. Thus the ¥(r,T) are finite for all 7€lI™ and all Te J iff W(),T) is finite
on J for each single—security portfolio A.

| If a discount density q is given, the result for the PS model corresponding to (iii) is
as follows: if the maximum welfare from consumption is finite for each single-asset
portfolio, then the same is true for every non-negative sure portfolio plan. If b < 1 and
the Complete Class Theorem applies, it follows that the same is true for every non-negative
portfolio plan; in this case, the condition that (35) holds for each T is harmless in the
sense that a single exception would imply the existence of a portfolio-cum-saving plan
yielding infinite welfare. For b > 1, on the other hand, it appears that (35) does imply
substantive restrictions. Without this condition, it is conceivable that \Ild(A,T) =— 00
for each A (for some or all T) — for example, if each asset has a symmetric stable
distribution with index < 2 — yet that \Ild(1r,T) is finite for all T for some sure m; (at
any rate, I have not shown that this cannot happen).

The condition that J*Y(mT) < 0o forall 7 and T is of course satisfied if
(1—b)Axi‘ is bounded above for all A and t by a constant. Such an assumption may be
reasonable in a crude empirical sense, and indeed some markets limit the size of price
jumps by regulation; but working with bounded distributions limits statistical modelling,
regulated prices are not market—clearing prices, and it is usually difficult to specify realistic

(approximately least) upper bounds. Again, the model would be simplified if it were
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assumed that there is a smallest possible size of jump (in case a jump occurs at all), since
then we could set J¥°=0 forall 7 by changing the scale of the X—process; but once
again this may be undesirable for modelling reasons.

We next consider assumptions specifying additional smoothness for the measure F.
Recalling that F(d¢,dt) may be written f(d£,t)dG(t), we shall in the rest of this Section
assume the following:

G is absolutely continuous with a (version of its) derivative g which is positive and
continuous on J. ...(4.49)
The measures ft = f(d¢,t) for t > 0 are mutually absolutely continuous with Radon-
Nikodym derivatives denoted by

0t,r('f) = df /df_, ...(4.50)
and, for each 72 0,

0t,r(£) -1, uniformlyin {40, as t - 7. ...(4.51)

Under (49), each of the integrability conditions (35), (41), (43), (46), (48) implies
for almostall t < T the corresponding conditions with jg deleted and F(d¢,dt) replaced
by f(d¢,t); let us call the latter derivative conditions and write them as (35)’,...,(48). It
then follows easily from (50)—(51) that each integrability condition implies the corre-
sponding derivative condition for all t < T. In the same way, it follows from (6) that
f,{l1£]|>1} < oo for each t. Also,if F(Z xJ) >0, then f,(E) >0 for each t.

We may now write (31) as

v 1) = J:[ J_ h(wt,ﬁ)f(dg,t)]g(t)dt .(4.52)
where h is defined by (28). Also, by analogy with (3.13—14), we write

Wm0 = S hROREg);  ¥imt) = (3/a) 8%, 0);

W t) = 5(78) + vihe):; W, t) = (8))¥(x, t); ..(4.53)
the first equation in each line is to be read as the definition of a function on /= J, the
second as a property. If h is replaced in the first line by h° or hl, the resulting function
is written ¥° or 1/)1, and of course ¢d = 1/)0 + wl. It follows readily from Proposition 1
that, under (49) and (50-51), the functions ¢d, °, 1[)1 are defined for all (7,t), and
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¥°(7,t) is always finite; if (35) is satisfied for all T, then ¢1(‘7?,t) is also finite for all (7,t).
Further, since h(-,£) is strictly concave on ¢ for each ¢, these assumptions imply that
the integral 'qbd(- ) in concave on o for each t, indeed strictly concave if (E) > 0;
similarly if b, 93, f are replaced by 1°, ¢4, £.1 (l¢|<1y OF 36ain by n! 414
"el>1y-

If (35) is satisfied, then ¢1(7r,t) is continuous on ¢xJ. To check this, note first
that by Proposition 1(ii) the assumption implies (48) for all T, hence also (48)’. Now let
(7,t,) begivenandlet t -t 7 - 7; then, using the definition of Y and (50) we have
P (Fpta) — 9 0ty) = J=[0(F008, , (Olt,) bR, Olty)] deit,),
and this tends to zero as n - oo by dominated convergence, taking into account (48)’,
(49) and (51).

A similar argument, using part (i) of Proposition 1, shows that ¥° is continuous on
ofx T if (41) is satisfied. However, this result can be obtained even without (41), as follows.
Note as a first step that, by virtue of the independence properties noted above, we may
w.l.0.g. assume that X = Md, hence ¥ = 1p°, h = h®. The second step is to show that,
for fized 7, the integral
¥o(m,7) = [z BO(T,O)f(d&,7)e(), -.(4.54)
is continuous on ¢’. Of course, we now have |AX]|<1, hence |Ax)‘|$1, for all (w,t). As
noted in Section 2, this condition implies that, for a given vector 7, the function
) A%AeAxx(w’t) remains positive even if some co—ordinates of 7 are negative, provided
that thesum 7 of negative co—ordinates is less in absolute value than some sufficiently
small p> 0 —see(2.11). Let
o = {reat: 5,7
It follows that 2)\\7’r)‘e§x is defined on #”x{| £|<1} for small p, and is bounded there by a

=1 and 7 > p}.

constant depending on b and p; the same is therefore true of ho(\fr,f) — see (28). For
each 7€ P, consider the invariable portfolio plan 7 defined by setting T, = 7 for
each t. This plan generates a certain log—returns process x", and as in the argument

preceding Theorem 5 it is seen that the function ¥°(w,T) is well defined and finite for
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each T. Consequently, by (49-51), ¥°(,7) is defined and finite for all 7€ o*? for each
fixed 7. Now ¢ is convex and contains o in its interior. A calculation of second
derivatives shows that ho(.,f) is a strictly concave function of ¥ on o, so that ¢°(-,7)
is concave on o#’. This implies that °(+,7) is continuous on the interior of &, in
particular on ¢.

The third step, which will complete the proof, is to show that 1/)0(7r,-) is
continuous in t and that the continuity is uniform with respect to 7€ ¢¥. Suppose first
that b < 1, so that h®» 0 on ¢ —see (28) and (39). For given (7,7) and 0 < € < 1,
there exists a § > 0 such that [t—7| < § implies | 0t,7'(5)—1| < ¢ forall ¢ and
l1-e < g,/8,. < 1+¢ —see (49) and (51). Consequently, using (50),
|9°(7.8) = 9°(1, 1) < 2 DO(TE)1 6, (€)gy—g, |H(d4,)

< [(1+6)® — 1]g,_- max {f= O(F,E)f(d€,7) : Fe ). ..(4.55)
The maximum exists because the integral is continuous on ¢, and the right—hand side
tends to zero as € - 0, yielding the result.

If b> 1, the function h® does not have definite sign. However, writing
h%(78) = {B°(7,&) -5, 0°(\ &)} + {Z,0°(\¢8)}, .--(4.56)
it follows from the definition of h°(),£) and (42) that, for 7€ ¢, each of the terms in
braces has definite sign. Moreover, a part of the argument in the second step above, with
7= X, shows that each h°(),¢) is integrable with respect to f(d¢,7). The result then
follows from inequalities like (55) with h°(7,¢) replaced by
1h%(7,8) = 2,008 + [2,0°(08)].

This discussion may be summed up by
ProPOSITION 2. Let b # 1. Suppose that F(Z xJ) > 0, that F satisfies (4.49) and
(4.50—51), and that (4.35) holds for each T. Then ¢°(7,t), 1/;1(\7?,'0) and ¢d ="+ ¢1
are defined, finite and continuous on ¢’x J; consequently the functions \110(7r,T) and
‘Ill(vr,T), or equivalently the JF°(1r,T) and J Fl(7r,T), are uniformly bounded on nts

for each T. Further, for each T, ¢d(-,t) is strictly concave on .
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5. OPTIMAL PORTFOLIOS WITH MOVING DISCONTINUITIES

We return to the discussion of optimality and extend the theory of Section 3 to the case
where X is a PII with no fixed times of discontinuity and II = s, Other assumptions
stated in earlier Sections will be introduced as required, but are not in force at the outset.
We make use of the decomposition X = X°+ Xd, referring to Sections 3 and 4 for
components of formulae which stem from X° and Xd respectively.

We begin by completing, in outline, the alternative proof of Theorem 1. It is enough
to show that, if #* is optimal sure, then for each ) the function (1.13) is finite and
non—decreasing on J. For brevity, write

R, = R(r,7*T)=tnE (1) —bx*(1)

...(5.1)
where initially 7 and #* are arbitrary fixed elements of . Once again, the first step
is to derive an explicit formula for this expectation. We proceed as in Sections 3—4, but
instead of 7, = exp{(l—b)x?rr} we consider the process (, = exp{x,;r —bx}}. A formula

for ( is obtained as before from (2.5—6), and once again we separate the continuous and

d d

discontinuous parts, writing (c, (d, Rc, R" etc. and noting that (= (c(d, R =R®+R%
Now R,g is always finite and has been calculated in (3.5). An argument like that starting

with (4.17), with ¢ instead of 7, yields —in abridged notation —

a_r e85, et Ao Ay A
RT - JOJE [(SAWte )(E'Aﬂ}{ € ) -1 —I{lflsl}zA(Wt —b7|"€ )f ]F(df’dt), (52)
and referring to (4.28—31) it is seen that Rd(1r,7r,T) = (1—b)\1'd(7r,T). We have

Rg > — oo always, and —cf. (4.24) —

T

R < oo iff J JIﬂ>1[()3A1ri‘ef*)(zﬂ>t*"efx)‘b] F(d¢,dt) < oo. .(5.3)

0
Now let 7* be optimal sure, so that as in (3.7) we have

0> (1/a)[¥(r*+aér,T) - ¥(7*,T)], 0<a<l ...(5.4)
forall 7= r*+6re IS, Optimality implies that ¥(7*,T) is finite, and we assume for
the time being that ¥(7*+aém,T) is also finite for all ér, @ and T. Write

§¥(a) = ¥(r*+obn,T) — ¥(1%,T), ¥ =0°4 Wd, substitute into (4) for ¥ from (3.4)
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and for ¥9 from (4.31) with (4.28), and in the resulting expression pass to the limit under
the integral signs as « | 0. (To justify this, note that 0 = §¥(0) > §¥(a) and that in the
formula for §¥(a) the integrands are concave functions of o vanishing at a =0, so
that in the formula for §¥(a)/a the integrands not decrease as o decreases, and their
value at @ =1 defines an integrable lower bound.) Writing R(,7*T) = R;r,

R(#*,7*,T) = R}, this calculation yields

02 1113 [6%(a)/] = RT—RE > ¥(n,T)—¥(r*,T), ...(5.5)

and since R} = (1-b)¥(r*T) it follows in particular that R” is finite. Asin Section 3,
one can set 7 equal to the single—asset portfolio A during any given interval [S,T) and
7= 7* elsewhere, implying

AR} - (2 -RY) (56)

0> (R
ie. R —R* is non—increasing.

This completes the proof if ¥(7*+aér,T) is finite for all é7, o and T, but in fact
this assumption is inessential. Of course, if b < 1 we must have ¥ < co always if an
optimum is to exist. We also know that finiteness of X implies (1-b)¥ > — c0. There
remains the possibility that b > 1 and ¥(7,T) = — oo for some sure 7= 7* + ér and
some T. Now, the argument in the preceding paragraph requires only that

¥(7*+ abém,T) > —oo for small & > 0, which in turn requires that
() def JT j [2/\(#;)‘+ a67ri‘)e§)‘)] 1-b F(d¢,dt) < oo.
oY |¢]>1

Since T+ abr* = (1—a)7r*)‘+a1r)‘ > (1—a)7r*)‘ , we have, for b > 1,
[2,(rP+asr)eN] 1P ¢ (1-0) 1P E, AN 1D,
and on integrating this gives
(a) < (1-2)~0x(0),
which is finite since ¥(#7*,T) is finite.||

Regarding the uniqueness of an optimal sure 7*, we need only add to the remarks of
Section 3 that the function h(7,£) defined in (4.28) is, for fixed ¢, a strictly concave
function of the vector T, so that, if one writes F(d¢,dt) = f(d¢,t)dG(t) asin (4.3), it is
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seen from (4.30-31) that r* must be uniqueif G is strictly increasing and f(Z,t) > 0
for all t. Thus it is sufﬁcient for uniqueness if esther these conditions or the conditions
assumed in Theorem 4 are satisfied.

We turn to the ezistence and characterisation of an optimal sure 7*, assuming now
that all the assumptions mentioned in Theorem 4 and Proposition 2 are in force. Consider
the problem of maximising 9(7,t) on ¢ for fized t > 0. Explicitly, we now have
YTt) = EA\%A(vi‘ + s}ai‘)‘ - %bﬂt\frl'ai‘l')

+(1—b)_1L [(EA\fr’\egx)l—b -1- (1) 51}Z*A gA] £(dé,t)g(t)

= o5 (7t) + (7t (5.7)
— see (3.13) and (4.53) with (4.28). As shown in Sections 3 and 4, (-,t) is finite and
continuous on ¢ and so is bounded and attains its maximum at some point 1r’1';‘; further,

¥(-,t) is strictly concave, so that #f is the unique maximum. The derivation of

i
programming conditions characterising a maximum is also straightforward. The problem is
to maximise (7) subject to the constraints 750 and ¥ = 1. It m; is a solution, then

02 (1/a)[Y(nt+admt) — Y t)], 0<eall,

forall ™= T+ abT € . This condition has the same form as (4), and under present
assumptions all values of %(-,t) are uniformly bounded; the passage to the limit under
the integral sign as a | 0 may therefore be justified as in the paragraph following (4), and
the limit is non—positive and uniformly bounded for all admissible 47. Explicitly, we get
0>3 /\6‘7?)‘7;‘ > constant for every T = T + 6T € f, where

L
7 =} + 1o} —vrymtalt 4 J [ef*(zmtef -1y, | sl}gA]f(df,t)g(t). (5.8)

On choosing for 7 the single—asset portfolios one obtains necessary conditions of the form
A . A_ .
7f€ >0 each 2)‘7;’{ =1;
A A
N =70, N7 —7)=0 each ) 7t =By .(5.9)
cf.(3.18-19). It remains to ‘assemble’ the solutions } into a function 7*:tw 7} defined
for t > 0. Asin Section 3, the continuity of this function, and that of the ‘maximum value

function’ ¢ ¢(n},t), follows from the continuity of (,t)#» 9(7,t). This can be checked
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by a direct argument, taking into account the uniqueness of 1[’{ for each t, or it can be
inferred from a ‘maximum theorem’, e.g. Bank (1983) T.4.3.3. Thus 7r*EH+s, and
obviously 7* maximises ¥(x,T) for each T. To sum up, we have
THEOREM 6: Optimality Theorem for X with Moving Discontinuities, II = nts,

Let X have representation (4.1). Suppose that M® and V® satisfy the assumptions of

d and Vd satisfy the

Theorem 4, that X has no fixed discontinuities, and that M
assumptions of Proposition 2. Then there exists a unique optimal sure non—negative
portfolio plan 7*. For each t, the vector 1:’{ is characterised by the programming

conditions (5.8-9). The functions t» 7} and
trP(rft) = (l—b)_l(d/dt)tn [E e(l_b)x*(t)] are continuous.
REMAREKS. (i) The simplicity of the proof of Theorem 6 is due partly to the assumptions
which ensure the uniqueness of the maximising vector 71’,: , and also, for b > 1, to the
assumption ruling out the possibility that (,t) takes the value — oo for some T,
possibly on different subsets of ¢ for different t. Without these simplifications, a problem
of ‘continuous selection’ arises if a continuous optimal #* is required — see Bank (1983),
Wagner (1989), also Dutta & Mitra (1989); I have not attempted to work out the details.
(ii) For simplicity, conditions have been imposed on the characteristics of X which
yield a continuous, rather than merely a collor, optimal sure #*. If only a collor 7* is
required, it is clear that v’\, a)‘t and g need only be collor, but the choice of a suitable
definition of ‘left continuity with right limits’ for the family (f,) is less obvious. It is
enough (but perhaps too much) to assume in place of (4.50—51) that for each 7 the
measures (ft;tg'r) are absolutely continuous with respect to fT with dft /dfT—+ 1

uniformly in € as t | 7, and further that there exists a measure f_. , absolutely

4
continuous with respect to each ft with t > 7, such that dfT n / dft—-) 1 uniformly as t}r.

(iii) If non—negative measurable portfolio functions are admitted, a result
analogous to Theorem 6 holds with ‘continuous’ replaced by ‘measurable’, provided that
due allowance is made for null sets. In this case, ‘continuous’ may be replaced by

‘measurable’ in the assumptions of Theorem 4. The assumption in (4.49) that g is
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continuous may be omitted, and conditions (4.50—51) are not needed. The only new point
of substance to be verified is that the functions t » 1r"';‘ and t» ¢(7r’1';‘,t) are measurable;
this may be obtained (for example) as a special case of the implicit function lemma in
Benes (1970).

(iv) We conclude this Section with an important, if rather obvious, general point.
Under present assumptions, the analytic properties of an optimal portfolio plan, in
particular the properties of continuity, reflect corresponding properties of the functions
v’\, a)"’, f and g which determine the characteristics of the market process X, not the

properties of the sample paths of X. In particular, jumps of X at movable (totally

inaccessible) times do not as such give rise to portfolio discontinuities.

42



6. STATIONARY INCREMENTS

Only a few words need be added here about the special case where X is a

PSII—semimartingale with X(0) = 0 and q(t) = e ™

assumptions imply that the functions vi‘ and a;\f' exist and have constant values v’\

AL

with some real 1. These
and ¢”", and that for all t one can set dG(t)/dt=g(t)=1, f(.,t)=1(.) withsome
measure f, sothat F(d¢,dt) may be replaced throughout by f(d¢)dt. Of course, X has
no fixed discontinuities. For brevity, we consider only the case II = H+s, but the
discussion of the case II = 1% with X continuous in Section 3 could be extended along
similar lines. We set K o=L

The following is now an immediate corollary of Theorem 5.
PROPOSITION 3. If 7ell™® is such that U(r,T) is finite, then
¥(m,T) = [7 9(m,)dt, ...(6.1)
where 1 is defined as in (5.7) with the variable t omitted and g = 1. Similarly, (1) holds
if ¥ and 9 are replaced by ¥° and ¢° with ¢° defined asin (3.13), or again by gd
and 1/)d with 1/)d asin (4.53). If = isinvariable, ie. if m, = forallt, where = is
some fixed vector in ¢f, then x" is a PSII and

¥(m,T) = TY(m). ...(6.2)
If U(m,T) is finite on 7 for all 7elIS, then (7) is defined and finite on o and
conversely. In this case ¢ is concave and continuous on ¢/. Ifin addition either [a)‘t] is
positive definite or f(£) > 0, then ¢ is strictly concave on ¢, and an optimal sure =
exists and is unique and invariable. The programming conditions characterising an optimal
vector 7} are obtained immediately from (5.8—9). Formula (1) and the strict concavity

have been used (with a promise of proof to come) in Foldes (1991a) S.5, and the additional

points to be made about the present special case have been set out there.
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7. FIXED DISCONTINUITIES
The consequences of allowing X to have fixed discontinuities will be discussed rather
briefly, omitting arguments analogous to those given in earlier Sections. Thus we shall not
set out the extension of the alternative proof of Theorem 1 to this case; it follows the same
lines as in Section 5, but with a more complicated formula for ¥ — see (7—10) below.

If X is a PII-semimartingale with a set # of fixed times of discontinuity, one can
represent X as the sum X + X of two independent PII-semimartingales, where X has no
fixed discontinuities and X has no continuous part and no moving discontinuities. We set
X 0= X o = 0- For simplicity, we assume from the outset that X has the properties assumed

for X in Theorem 6. 1 When X is replaced by X in the discussion of previous Sections,

we write 7, T, ﬁd, W in place of u, F, Md, Vd; in particular, X has a representation like

(4.1), and ﬁd, ﬁd are defined as in (4.12) and (4.7) with appropriate replacements.

Let (Tm) be an enumeration of the points of £, and let Aim with components
Aié‘l be the corresponding random variables representing jumps of X at T In general, a
finite interval of J can contain an infinite subset of £, so that the Ty DAy 1ot be in

ascending order. A canonical representation of X may be written

o=l O

A -
+3 JI e F(de{ry ) + 3, me

by jg and simultaneously {7_} by {t}. For brevity,

e} idex{r_)) (1)

of course, one can replace X
Tm€T

we shall sometimes write F_(d¢) or dr  for F(déx{r_}). Adjusting for differences of

! The usual definitions — see Jacod (1979) p.91 — are X = [I{ ¢} dX, ¥ = X —X; but
then the Lévy measure F of X will be insufficiently smooth at points of _# to satisfy the
conditions of Theorem 6. Thus we are in effect assuming that X (as usually defined) can
be altered on £ so as to satisfy these conditions and still be a PII-semimartingale

independent of X.
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notation and the replacement of integrals by sums, the properties of z and F and the
integrals which they define are mainly analogous to those explained in Section 4, up to the
point where portfolios were introduced. We shall therefore only comment on a few points.
An additional property of F is that the sum ETm ¢t =€l df‘m converges absolutely for
each T. Thus the second and third sums on the right of (1) are of finite variation and

’\d, while the first sum is taken as the martingale part i If each [0,T]

comprise V
contains only a finite subset of _#, the right—hand side of (1) reduces to
% ¢r J= E’\ #(déx{r_}), and then compensated integrals are not needed. If F is
factorised in the form f(d¢,t)de(t) asin (4.3), the function ¢ with ¢(0) =0 is corlol,
non—decreésing and finite on J, with jumps at points of _# and constant otherwise.

The definitions of integrals of the form [, f= W-dj and [J [- W-dF with We
are analogous to those in Section 4. An integral jg Jz W-d(p—F) —cf. (4.8) and (4.10) —

now assumes the form

%ot | W€ R)dexdry ), (1.2)

where Wm(g) = W(w,f,'rm). The expression corresponding to (4.9) which must be locally
integrable if (2) is to be well defined is

2 _
2"'mSTJ' [lel .I'Wm|$1+ |Wm|'I|wm|>1]dF1 ..(7.3)

and then (2) represents a compensated—jump local martingale £ with £(0) = 0 such that
Aﬁt =0 for t¢ _#and
AL(wyr) = [ Wi (€)- (P dex{ry, ) (7.4)
this should be compared with (4.11), noting the appearance of F. The analogue of (4.13)
remains valid, as does the assertion that a PII-local martingale £ (possibly with fixed
discontinuities ) satisfying E[L;| < co for Te€J is a true martingale.

Now let IT be the set of all sequences (7,) with 7 _€o’ foreach m. According
to the definition in Section 2, an element 7€ I has the form

where 7 is a collor element of IS and eil.
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We denote by X" the process defined by (2.5-6) with X, M9, v4

X, ﬁd, W and 7 by 7, and write ¥(x,T) = ¥(7,T), ¥7t) = PT,t) for the functions

replaced by

calculated like ¥(m,T), 4(mt) in the proof of Theorem 6 with the same replacements and
%, F instead of py, F. In the same way, X" will be the process defined by (2.5—6) with
X, ﬁd, 7l and 7. The calculation of x™ and its expectation (if defined) is analogous to

A A g3 -
(4.14-16), except that a term ETmST ]l £l<1 EAWmﬁ -dFm must be added to x;rﬂo,

;‘c;rFO, :‘c,"rr and E:’c?rr; then one obtains simply
_ AN |
Bl = 3, J: tn(z, 72 eEr(dex{r}). .(7.6)

We retain the notation ¥(#,T) for the function (1.1) calculated from X and define

¥(n,T) = ¥(%,T) = (1-b) “Ln Ee(1DIX(T) (7.7
for te I and 1rEH+s, or equivalently 7€ll. At present, (1-b)¥ = oo is permitted, but
T is finite by the assumptions of Theorem 6.

Now note that, with probability one, X, is unaltered for all TeJ ifin (4.1) the
points of _# are omitted from the time integrals, so that X", ¥(,T) are unaltered also.
Taking into account the independence of X and X, it is clear that
¥(7,T) = ¥(7,T) + ¥(7,T) ...(7.8)
for Te I and 7el™s, Consequently an element 7* maximises ¥(7,T) among all 7€ mts
for each te Jiff both
(i) 7 maximises ¥(7,T) among all collor 7elI*® for each Te I — or equivalently, under

the assumptions of Theorem 6, 7} maximises P(7,t) on of for each t€ I\ 4, and
(ii) 7 maximises ¥(#%,T) among all 7€l for each T€ ., or equivalently for each Te ¢.
Thus, under present definitions, optimal portfolio choice at fixed times of discontinuity of
X may be considered separately from choice at other times. We now confine attention to
problem (ii).

We require a formula for ¥(7,T). For each 7€ o, define

(1-b)y, (%) = an[zA%'\e“*](l‘b) = n L[xﬁ%fx](l‘b) F_(de), (7.9)

where 13IIl is the law of the vector Aim. The definition of a fixed discontinuity means
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that l;m is not degenerate at the origin, so that (l—b)zl)m > —oo always. If #has at

most a finite number of points in each finite interval of 7, it is not hard to see that
¥(7,T) = ETmST wm(irm). ...(7.10)
In the general case, it still seems fairly obvious that (10) is valid if ¥(7,-) is finite on 7,
or equivalently if the series on the right is absolutely convergent for each T, but it is of
interest to outline an argument analogous to that used in the proof of Theorem 5.

Let 7 = exp{(1-b)x}, % =", Az =%(r)—x(r ). Weform #79 asin
(4.17) with Md, x, = teplaced by M-, X, 7, noting that now we have simply

T(qy /= - = - 1-b)ax
(Mg = S0/ 80 =3 q [r)filry-) ~1] =5, o [elI0)Fn
Taking expectations, replacing u by F where appropriate and simplifying we have

A EN01-D =
B( )y = B, ¢ |_[@maeHI) - 1]F (o),
and it follows from the properties of F that the sum on the right either converges
absolutely or diverges to +o0 , the equality being valid in either case. Further, since the

integrand vanishes at ¢ = {0}, we may replace f‘m by P m and write the equation as

et [e(l‘b)¢m(7rm) - 1]. (7.11)

Now, if E7 is finite on J, the change—of—variables formula shows that (.,Z’ET;)T is given

E( ﬁ?)T = ETmSTE[e(l—b)A}—Em_l] =3

by either of the sums in (11) and that these sums converge absolutely. Thus ZE7 = E .27
whenever one side or the other is defined and finite on 7, which may be compared with
(4.25-6); on calculating Ef = & Z(E7) = &E(.£5) and adjusting the constants we
obtain (10). Conversely, suppose that the sum on the right of (10) converges absolutely for
each T, denote its value by (l—b)_ltn (p» and note that (. defines a (deterministic)
semimartingale with ( =1. Calculating (.£(), we again obtain the sum in the middle
term of (11), which is absolutely convergent and equal to E(.#7), , hence also to
(JETy)T ; but then Ef, = (, < 00, which yields (10).] |

Thus the series on the right of (10) converges absolutely iff the left side is defined
and finite. We fix T and note some conditions which are sufficient to ensure that this

convergence occurs for all 7€ll, and further that ¥(#,T) is uniformly bounded. Using
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(4.34)if b< 1, (437)if b> 1, itisseen that 9 In(\7Jr) is finite for all 7€ o if
N L D)5 (dg) = 5,E1DINT) o o (7.12)

Thus (1—b))37_m ¢ Yp(Tyy) is uniformly bounded above for 7ell if

M. % J _ D)5 (2g) < oo, (7.13)

and uniformly bounded below if

—b)min. £: -
HTmST L e(1 b)miny ¢ Pm(df) > 0 incase b <1,
= N )
HTmST L o(1—b)maxy P (d§) > 0 incase b>1. ..(7.14)

We now assume — without necessarily adopting (13—14) — that ¥(7,T) is defined
and finite for all 7€l and Te .9 and that (12) is satisfied for each m. As in Section 4, it
follows from (12) by dominated convergence that "/'m is continuous on ¢’. Thus a
maximum exists at some point 7*, and it further follows from (12) that necessary
conditions may be obtained by differentiating under the integral sign in (9). These
conditions are also sufficient, and the maximising point is unique, because 9 o 18 strictly
concave on . Thus (as might have been expected) the portfolio problem can be solved
for each Tm separately; we omit further details.

We shall not attempt an exhaustive discussion of non—existence, but clearly such
cases arise for b <1 (b > 1) if, for some m, (1—b)1/)m(5'r) = oo for some (every) 7. If
some interval [0,T] contains an infinite subset of ¢, there are the additional possibilities
that the terms of the series (10) are all finite, but that their sum diverges to +00 (—o0)
for some (all) .

It is of interest to ask whether, if an optimal element of mts

exists, it may in some
cases be possible to choose a collor optimal element even in the presence of fixed
discontinuities. Consider first cases with X = 0. If _# consists of a single time 7> 0 and
7* is optimal sure, then any 7 with #(7) = 7*(7) is also optimal, and a collor version is
obviously defined by setting #(t) = 7*(7) for t < 7. Again,if ¢ = (7,) has no point of

accumulation in J, the times T €30 be enumerated in an ascending sequence with
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intervals of positive length between successive times, and if 7* is optimal sure we obtain a
collor version by setting (t) = 7*(r) on (7,_;,7,]- The situation is quite different if
# has a finite point of accumulation. Suppose for instance that # consists of an ascending
sequence (T In) together with its finite limit 7. Let 7* be optimal sure and suppose
that for each m the vector 7*(7_) = n} is the unique element of o maximising ¥,
similarly for 7*(r <>) = vﬁ; and ¢, . In the absence of a suitable relationship between the
laws of AX m and aX, there need be no convergence of 7* to 3, so that in general
there will be no collor function = satisfying (7)) = 7} and (r ) = 7. (The
difficulty disappears if, for example, the f‘m are absolutely continuous with respect to F o
with derivatives 0 (¢) = dF /dF_ tendingto 1 uniformlyin {#0 as m- oo, and if
for each A the variable e( 1-b)& is F o—integrable. The argument is similar to that in
Section 4, the inequalities (4.34) or (4.37) being used to justify the passage to the limit
under the integral sign, and the uniqueness of solutions to show that =} = lim 7rI"I‘1 .) The
case where X is a continuous PII and ¢ consists of a single time 7> 0 has been
illustrated in Foldes (1991a) 5.7. If 7* is optimal with (say) =} unique for each t€ 7,
there is in general no reason why 7:’{ should converge to 7r"T‘ as tI7, so 7 need not be
collor at 7. In this case there seem in general to be no grounds for imposing conditions on
the characteristics of X which would ensure convergence. Note that the conclusion that
no collor optimum exists does not stand if there is an interval of the form [r—§ 1) during
which X is constant, or if there is an interval (7—6,7] during which no portfolio revision

is permitted — roughly speaking, if ‘the market is closed pending an announcement’. The

case where X is a PII with movable discontinuities and ¢ = {r} is similar.
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8. LOGARITHMIC UTILITY
In case b = 1, an optimal sure portfolio plan is an element 7* of I1® which maximises
\Ilt(w,T), or equivalently Ex™(T), for each T among all 7ell®>. We shall review this
case briefly, noting only the main alterations to the preceding theory. We assume that X
has no fixed discontinuities.

To obtain an explicit formula for ExW(T) with 7 sure, consider the right—hand
side of (2.5) line by line. The first line is a martingale with zero expectation. The second
line is deterministic, so Ex™ is just the expression in that line, which is always defined
7FO + xﬂ‘l

and finite. If X has (moving) discontinuities, there are additional terms x

given by (4.16) with (4.15); thus, with obvious notation,

L Lo L1 7F0 7F1

70+ X7 ..(8.1)
if x,}rFl = Ex,;.,r'“1 is defined, and we set \II’L(W,T) = \Il“(r,T) = —o0 otherwise. The

\IIL(W,T)=\IIC+\II + v =Ex,7rrc+x
calculation of a formula for {n Eex)\ TX _see (1.14) — is performed in the same way as
for similar expressions with b # 1.

Suppose first that X is continuous and reconsider the proof of Theorem 1 in
Section 3. It is found that \Ilzc(w,T) is given by (3.4) with b = 1, and clearly
tn Ee¥" ~** is given by (3.5) with b = 1; the proof then goes through, with '€ in place
of U without substantial change. The proof for general X with II = nts also
proceeds along the same lines as for b # 1, but since in this case the theorem has been
proved in Foldes (1991a) by a simpler method and without restrictive assumptions (except,
for brevity, that Ex:;r is always finite) we shall not go into details. Returning to the case
of continuous X, the rest of Section 3 applies with only routine changes. In particular, the
programming conditions for an optimum remain valid if we set b = 1, and Theorems 3
and 4 stand.

Passing to Section 4, we need to replace the bounds for the integrands in J FO and

TFo

gl by analogous bounds — uniform with respect to 7 — for the integrands in x and

x7rF1 7Fo0

. For x™" we refer to the second line of (4.15), replacing p by F. Using (4.38), it
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is seen that the integrand is non—negative. On the other hand, the integrand is bounded
above by [ma.x)‘f —mm)‘.f ]I{lflq} , Or again, using fnz < z—1, by

,\[ef)‘ - { -1]1 {l€1<1} - Turning to x™ Pl and referring to the third line of (4.15), we
obtain from (4.38) a lower bound for the integrand of 2/\[1r 3 ]I {|¢]>1} which in turn
is bounded below by —X Al f |1 {1£]>1} - An upper bound is obtained from

tnsr?ed ¢ Tl & ¢ el = 3.

On the other hand, if 7 is the one—security portfolio A, we have

T
x)fl = J J £2F(de,dt), ..(8.2)

0’|¢|>1
and if this is defined and finite the integral with 5)‘ replaced by | 5)‘| must also be finite.
Combining these remarks we have — cf. Proposition 1 (iii) —
ProPosITION 4. For given T, \Iif‘(w,T) is finite for every 7ell ™S iff \I:t(,\,T) is finite for
each A.

The rest of Section 4 requires only routine changes. Introducing assumptions (4.49)

and (4.50-51) and writing, for 7 € o and ¢ ¢ &,
L,v v A v
b'(%,¢) = (B Fed) ~Ig ) B, (83)

we define hl'o, hu, @bf’d, wﬁo, qbu by analogy with the definitions of h°, n! etc. —see
(4.28) and (4 53). The bounds on the integrands in x™° and x™1 mentioned above are
bounds on ht O(x ,{) and hu( t,f) which are uniform with respect to 7 for t < T.
Each upper or lower bound for nto and ptl which is F(d¢,dt)—integrable on RA x [0,T]
defines a corresponding upper or lower bound for wﬁo(‘;r,t) and 1pu(‘7'r,t) on ¢ for each
t < T; and if F—integrable upper and lower bounds are in force in both cases for each T

then 1/)10 and 1/)1'1, hence also vﬂ, = ¢£° + ¢“

, are continuous on ¢/xJ. In fact, it
can be shown as in Section 4 that ¢£0 is continuous in any case. The concavity properties
of the functions are as in Section 4, and it follows that Proposition 2 holds for b =1
provided that (4.35) is replaced by the condition that the integrals (8. 2) are defined and

finite for all A and T, and that ¢, ¥, J*°, I*L etc. are replaced by 1,b ‘Il!' Fo x1 ete.
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Turning to Section 5 (and skipping the proof of Theorem 1), we replace the formula
for 9 in (5.7) by the corresponding expression for 'dzt and obtain programming conditions
as before. There are minor differences in the calculation, but the conditions are the same
as (5.9), provided that one sets b=1 in (5.8). Theorem 6 then stands with % replaced

by ¢£ and the assumptions of Theorem 4 and Proposition 2 revised as above.
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9. CONCLUSION: CASES OF NON-EXISTENCE OF AN OPTIMUM
We conclude with an informal survey of cases where either no optimum exists in the
PII/CRRA model or where existence has not been proved. Here we take into account both
the results of the present paper concerning sure portfolio plans and the results of
Foldes (1991a) concerning portfolio—cum—saving plans which were summarised in Section
1. Until further notice we assume b # 1.

Because of Theorems 1 and 2, non—existence of an optimal PS plan is (subject to
minor conditions) equivalent to non—existence of an optimal sure PS plan. Further, because
of Theorem 4 of Foldes (1991a), cases of non—existence of an optimal sure plan can be
classified into (i) cases where there is no optimal sure portfolio plan, i.e. no 7*ell® which
maximises (1.1) for each T, and (ii) cases where such a 7* does exist but there is no c*
which is 7*—optimal. A case of type (ii) is equivalent to a case of non—existence of an
optimal c—plan in a CRRA model of certainty with one asset, a problem which has been
extensively studied. As stated above —see (1.8—10) — an optimal c* exists under our
assumptions iff N™ < oo . We shall not go further into the classification of parameter
values for which this criterion may fail, but merely remark that the definition of an

—hix*
optimal 7* includes the requirement that ge{l—0)x*(1)

< oo for each T, and then it is
always possible to find some discount density q for which a 7*—optimal element c*
exists. |

We turn to cases of non—existence of an optimal sure 7* when II = l'[+s, taking as
benchmark the situation where all assumptions mentioned in Theorem 6 are in force and
relaxing them one at a time. If b < 1, the presence in 78 of some portfolio plan 7 such

(1-b)x*(1) = oo at some T implies non—existence, and it has been shown that

(1-b)xN(r)

that Ee
this is equivalent to the presence of some asset A such that Ee = oo for some

T. Symmetric stable processes with infinite variance (which have sometimes been proposed
as models for speculative prices) provide examples. If b > 1, there obviously cannot be an

optimum if Ee(1=D)X(T) _ o at some T for every rell™S, and according to
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—b)x>
Proposition 1 above this possibility is excluded if Ee(1 b)xX(1) < oo for all T for each

(1-b)xN(T) _ oo for each )\ but

asset A; whether it can happen that, at some T, Ee
'Ee(l_b)x“ () < oo for some 7reH+s, and whether an optimal sure 7* can exist in such a
case, remain open questions. Note that problems of this type cannot occur when X is
continuous. We now restrict attention to cases with Ee(l_b)x“(T) finite for all T and all
sure .

There then remain — the classification is somewhat arbitrary — various possible
causes of non—existence due to insufficient smoothness of the characteristics of X with
respect to time. If X is continuous, or has a continuous component, cases of
non—existence of an optimal element in % or m® can occur if (M% and V® do not
possess céllor derivatives; (however, if measurable derivatives exist, conditions for the
existence of an optimal sure measurable 7 are readily obtained). There are analogous
cases of non—existence in II7° when X has movable discontinuities and the functions
f(d¢,.) and g(.) are insufficiently smooth —indeed, this is clear from the non—uniqueness
of the decomposition (2.1) of X. If X has a set £ of fixed discontinuities with a finite
point of accumulation, or if X has fixed discontinuities as well as either a continuous
component or a component with movable discontinuities, there is in general no optimal
collor 1, however an optimal sure xelIT® will exist under conditions stated above. Once
again, there are cases of non—existence due to infinite expectations. In addition, if X is
continuous and II = I1°, singularity of a covariance matrix (Mc)T - (Mc)S can give
rise to non—existence in the form of an infinite sequence of ever—better portfolio plans,
diverging in norm and yielding unbounded ‘arbitrage’ profits.

Finally, if b = 1, the problems of the existence of an optimal ¢* and of an optimal
7* can be stated quite separately if one takes the functional as given in the form (1.7), and
then an optimal c* exists iff the functions q and q-|{n q| are Lebesgue integrable on
J —see Foldes (1991a) eq.(6.6). The cases of non—existence of an optimal sure portfolio
plan broadly parallel those for b # 1. In particular, if II = H+s, existence fails if (i) for

T . .
some 7, Ex, = oco for some T, or (ii) for every , Ex,}r =—00 (or Exfrr is undefined)
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for some T. Cases involving infinite values of ot cannot arise if Ex;‘ is defined and
finite for all A and T. There then remain possibilities of non—existence due to insufficient
smoothness of the characteristics of X. If X is continuous and II = I1°, there can again

be non—existence due to singularity of a covariance matrix.
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