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Abstract

An accuracy indicator is an observed variable which is related to the size of measurement

error. Basic and extended models are introduced to represent the properties of a binary accu-

racy indicator. Under specified assumptions, it is shown that an accuracy indicator can identify

a measurement error model. An approach to estimating a distribution function is presented to-

gether with methodology for variance estimation. The approach is applied to data on earnings

from the British Household Panel Survey, where the accuracy indicator is whether or not a pay

slip is observed. A validation study provides justification for the modelling assumptions.

Keywords: accuracy indicator; finite population distribution function; measurement error; pseudo

maximum likelihood
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1 Introduction

Measurement error is widely recognized as an important potential source of estimation bias in sur-

veys. Correcting for such bias requires information about the measurement error process and this

is often difficult to obtain. On some occasions it may be possible to obtain repeated measurements

of the variable of interest through test-retest reinterviews or to calibrate the measuring instrument

by linking survey data to some accurate external data source (Biemer and Lyberg, 2003, Sect. 8.4),

but such exercises are relatively unusual. In other circumstances, it may be possible to record a

variable which meets the requirements of instrumental variable estimation (Wansbeek and Meijer,

2000), that is it is related to the true value of the variable of interest but can be assumed to be

independent of the measurement error. However, such variables may also often not be available.

In this paper we explore the use of an alternative source of information about measurement error.

We consider the use of what we call an accuracy indicator. This is a variable which is related to

the measurement error, but not directly to the true value of the variable. It is like an instrumental

variable in being an observed auxiliary variable, but the underlying assumptions are quite differ-

ent. We shall focus on the case when the accuracy indicator is binary, so that it indicates whether a

measurement is accurate or inaccurate. Such an indicator may be obtained in various ways, includ-

ing by self-report, where a respondent expresses uncertainty about the accuracy of their response

to a factual question (Mathiowetz, 1998), or by the judgement of an interviewer. This paper is

motivated by an application where the variable of interest is earnings and the accuracy indicator

is whether or not the respondent refers to a recent pay slip when responding to the question about

earnings. Answers which refer to a pay slip are treated as accurate. Otherwise, the answer is

assumed to be subject to measurement error. The aim of the paper is to develop an approach to

making inference about the population distribution function of the underlying true earnings vari-

able in the presence of such measurement error. See Eltinge (1999) for an approach to the problem

of distribution function estimation when estimates of the measurement error variance are available

and for some references to related approaches.
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The reporting of an accuracy indicator differs from accuracy verification (e.g. Begg and Greenes,

1983) where, in addition to the survey measure, an accurate measurement is taken, usually just for

a subsample. In this case, both inaccurate and accurate measurements are recorded and the dif-

ference between the two provides an indicator of the accuracy of the first measurement. In our

setting, however, we do not have two measurements, even for a subsample. We only have one

measurement recorded along with an indicator of its accuracy.

The literature on survey measurement error in earnings and its potential biasing effect on data

analysis is large. See e.g. Rodgers et al. (1993), Moore et al. (2000) and Bound et al. (2001). The

literature includes a variety of extensions to the classical additive measurement error model. One

extension, of relevance to our setting with binary accuracy indicators, is a mixture model where re-

spondents either report accurately with a specified non-zero probability or they report inaccurately

with responses subject to a measurement error process (e.g. Kapteyn and Ypma, 2007). Inference

for such binary mixture models has been considered by Horowitz and Manski (1995) and subse-

quent authors, including Kreider and Pepper (2007). They show that, even if some upper bound

is known for the population proportion of inaccurate responders, it is not possible to identify pa-

rameters in the usual sense. Instead they show that only a set of parameters can be identified and

propose associated inference methods. In this literature it is generally assumed that membership

of the subpopulation of accurate responders is unobserved. In our setting, our initial assumption

is that the accuracy indicator enables us to observe which element of the mixture a respondent

belongs to. Dominitz and Sherman (2004, 2006) also consider models for an accuracy indicator,

which we refer to in Section 3.

The paper is structured as follows. The data sources used in the application and to help justify

the modelling assumptions are described in Section 2. The models and estimation methods are

introduced in Sections 3, 4 and 5. The application is described in Section 6 with some brief addi-

tional discussion in Section 7. Some further details of the more technical arguments are provided

in the Appendix and in Supplementary Materials.
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2 Data Sources

We focus on the variable earnings, as a widely used continuous variable in survey research. We

consider estimating the distribution function of this variable, since measurement error will typically

lead to bias in this estimation problem even if the error has zero mean (Fuller, 1995). We use

data from the British Household Panel Survey (BHPS), chosen because its approach to measuring

earnings is fairly standard and there is also a related validation study which we use to motivate our

measurement error model. We make no use of the panel feature of the BHPS. We now proceed to

describe the BHPS and the associated validation study.

2.1 British Household Panel Survey

The BHPS has undertaken annual waves of data collection on around 5,000 households in Great

Britain since 1991. We use data from Wave 12, conducted in 2002-3, to match the timing of the

validation study. The sample for the survey, drawn at Wave 1, was obtained by multistage sampling

with postcode sectors as primary sampling units. A sample of 250 of these sectors was selected

with probability proportional to a measure of size using systematic sampling from a list of sectors

ordered by region and some socio-economic variables, implying an implicit stratification of the

first stage of sampling. From each selected postcode sector, around 20-30 addresses were selected,

also by systematic sampling, and households selected from the selected addresses. The survey has

been subject to non-response over the successive waves and weights are constructed to compensate

for this nonresponse as well as for the relatively minor variation in sample selection probabilities.

Further details of the survey and aspects of its data quality are provided in Taylor (2006) and Lynn

(2006).

We focus on respondents who were employees and on the variable weekly gross pay, defined as

the gross earnings the respondents report for the last time they were paid divided by the number

of weeks in their reported pay period. We consider a sample of 3,294 individuals, who were in
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Table 1: Measures of dispersion for logarithm of weekly gross pay (£) in BHPS according to

whether latest payslip was seen

Accuracy indicator Interquartile range Standard deviation

Latest payslip seen 0.81 0.67

Latest payslip not seen 0.99 0.87

All cases 0.94 0.83

the original wave 1 sample as well as the wave 12 sample, who responded directly rather than

via a proxy, who reported at Wave 12 that they had been employed and had been paid a positive

amount for a pay period between 1 and 52 weeks. The accuracy indicator records whether the

latest payslip was seen, or an earlier payslip was seen or no payslip was seen. Some 78 cases

were excluded because of missing or inapplicable data on this accuracy indicator and one case was

excluded who reported gross earnings of one pound for a pay period of one year. The principal

source of selectivity in the sample is non-response and it is assumed here that this is handled by

the use of survey weights provided with BHPS data for cross-sectional estimation.

Among the 3,294 individuals, the latest payslip was reported to have been seen for 33% of cases,

an earlier payslip for 2% of cases and no payslip for 65% of cases. The reported weekly gross pay

ranged from a minimum of £8 to a maximum of £2,600, with a lower quartile of £175, a median

of £296 and an upper quartile of £450. Table 1 provides some summary statistics for the logarithm

of this pay variable, according to values of the accuracy indicator. The standard deviation and

the interquartile range are 30% and 22% higher, respectively, for cases where the latest payslip

was not seen relative to cases where it was seen. Such an increase in dispersion is what might be

anticipated as the effect of an increased amount of measurement error. Nevertheless, this is not the

only possible explanation for such an increase, as will be discussed in Section 3, and to gain more

insight into the measurement error we consider the following validation study.
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2.2 Validation Study

This study, entitled ‘Improving Survey Measurement of Income and Employment’ (ISMIE), was

based on the UK part of the European Community Household Panel Survey (ECHP), a study which

includes data collected in a very similar way to the BHPS (Jäckle et al., 2004). The two surveys

were administered jointly at the University of Essex until 2001, when the funding for ECHP ex-

pired. The ISMIE study was undertaken through interviews in early 2003 with respondents drawn

from the final ECHP wave. Validation data were obtained through both linkage to welfare records

and a survey of employers of ISMIE respondents who were in employment. We make use of just

the latter data where the employer data on pay is considered as an alternative measure for compar-

ing against the responses provided by the individual employees. We treat the employer measure

as the true variable prima facie, although recognize that it may itself be subject to occasional er-

rors. There were 156 individuals in the ISMIE study for whom matching data on pay are available

from both the individuals and their employers and for whom the accuracy variable is recorded.

This sample is subject to a series of forms of selection. The final ECHP wave had been subject

to attrition from earlier waves and there was nonresponse to both the ISMIE survey of individuals

and to the survey of their employers. The ISMIE study was based on a low income subsample

from the final wave. Moreover, respondents had to give permission for their data to be linked to

welfare records and to their employers being contacted. Finally, a small number of cases were

removed because their pay periods were unclear. Given all this selection, we look to the validation

data to inform qualitative assumptions about the measurement error process rather than to provide

estimates of its parameters.

Fig. 1 displays a plot of log weekly pay recorded in the employer survey vs. log weekly pay

recorded in the ECHP survey. The two are in reasonable agreement. We use the logarithm of the

ratio of the pay reported by the employer and the employee as a measure of error.

Box plots of this measure are presented in Fig. 2 separately for cases where the latest pay slip was
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Figure 1: Logarithm of gross weekly pay reported by employer vs. logarithm of gross weekly pay

reported by employee from ISMIE validation study

seen (50 cases) and when it was not (106 cases). We observe that, for the former group, the upper

and lower quartiles are visually indistinguishable. This provides evidence that the ECHP measure

can be viewed as accurate for over 50% of the cases when the latest pay slip is seen. Nevertheless,

there are some cases where measurement error appears to arise, although it is possible that these

discrepancies between the two sources arise from error in the employer survey. On the other hand,

the distribution of the errors seems reasonably well approximated by as classical normal error

model with zero mean when the latest pay slip is not seen.
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Figure 2: Boxplots of the logarithm of the ratio of the gross weekly pay (£) reported by the em-

ployer and the employee according to whether the payslip is seen by the interviewer in the ECHP

survey
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3 Models and Estimation Problem

Let yi be the true value of a survey variable of interest for unit i in a finite population U =

{1, . . . ,N}. Let ai be a binary indicator of whether yi is measured accurately and let y∗i denote

the measured value of yi. As our basic model, we assume that

y∗i =


yi + εi if ai = 0

yi if ai = 1,

where εi denotes measurement error. It is assumed that a sample is drawn from the population

using a probability design and that y∗i and ai are observed for sample units.

As an extended model, motivated by the validation study in Section 2.2, we suppose that some

measurement error may also arise for a proportion of the cases observed to be accurate. Thus,

rather than observe ai, we suppose that a∗i is observed, where

ai = 0 a∗i = 0

ai =


0 with probability p

1 with probability 1 − p

a∗i = 1.

We suppose that p is a specified known value derived from some external source, which we may

wish to vary in a sensitivity analysis. When p = 0, the extended model reduces to the basic model.

Dominitz and Sherman (2004, 2006) also present models for an observed accuracy indicator a∗i ,

although Dominitz and Sherman (2004) assumes that y∗i = yi necessarily when a∗i = 1, which

we assume only in our basic model. Even this model differs from that of Dominitz and Sherman

(2004, 2006) since they assume that y∗i = yi with non-zero probability if ai = 0 unlike in our more

classical measurement error model, where we shall suppose that εi is continuously distributed. As

noted by a referee, the former model may be plausible if the reason why some respondents do not

consult their payslip is because they have accurate knowledge of their pay. However, we shall not

consider this model further here.
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A fundamental identification problem affecting the estimation of the distribution of yi arises

from the potential confounding between measurement error and the selection of cases with ai = 0

vs. 1. When ai is an indicator of whether the respondent refers to documentary records, there are

at least two possible explanations of a difference in the distribution of y∗i between cases with ai = 0

vs. ai = 1. The difference could be due to the presence of measurement error when ai = 0 and its

absence when ai = 1 or it could be due to the fact that the use of documentary records may depend

on characteristics which are related to true earnings. For example, imagine that some people have

a simple source of earnings and are always paid the same amount. The task of remembering their

pay may be so simple that there is no need to refer to documentary records. On the other hand,

other people may have more complex sources of earnings, increasing the difficulty of answering

accurately a question about pay and thus, potentially, increasing the chance that documents are

referred to. The distribution of earnings may differ between these two types of employee and thus

could explain differences in the distribution of y∗i between cases with ai = 0 vs. ai = 1 even if no

measurement error arises in either case. To address this identification challenge of disentangling

measurement error from selection, we shall suppose that an additional vector xi of variables is

observed in the survey and that the following assumption holds:

• ai and yi are conditionally independent given xi, i ∈ U.

We also assume that the vectors

•
(
ai, a∗i , yi, y∗i , xi

)
are independent, i ∈ U,

•
(
yi, y∗i

)
is conditionally independent of a∗i given (ai, xi), i ∈ U.

We shall make parametric assumptions regarding the distribution of
(
yi, y∗i

)
given (ai, xi). Specifi-

cally, we suppose that this distribution depends on ψ = (γ, η), where the parameters γ and η index

the following conditional distributions:

• yi | xi
indep
∼ f (yi | xi;γ),
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• y∗i | xi, yi, ai = 0 indep
∼ g(y∗i | xi, yi, ai = 0; η).

The first of these conditional distributions represents the superpopulation model which gener-

ates the population values yi. The second conditional distribution represents the measurement error

model. The target of inference is taken to be the finite population distribution function

F(c) = N−1
∑
i∈U

I(yi ≤ c)

for an arbitrary fixed value c, where I(y ≤ c) is the indicator function that takes the value one if

y ≤ c and zero otherwise. The methodology developed in this paper is also applicable to other

characteristics of the distribution of the yi, but we focus on this parameter for concreteness.

The observed data are given by {(y∗i , a
∗
i , xi) : i ∈ A}, where A is the index set of the observed

units. We refer to A as the sample, but note that in practice it refers to the selected sample after

removing nonresponding units. The basic problem of interest then is how to use these data to

estimate F(c).

4 Estimation

Our aim is to construct an estimator of F(c) which is consistent with respect to the joint distribution

induced by the parametric models, specified in the last section, and the mechanism by which the

sample A is selected. We refer to the latter mechanism as the design mechanism and refer to mo-

ments with respect to this mechanism as design moments. In practice, we note that this mechanism

represents a combination of sampling and nonresponse. We suppose that, without measurement

error, sample weights wi can be determined so that (
∑

i∈A wi)−1 ∑
i∈A wiI(yi ≤ c) is a consistent es-

timator of F(c) with respect to the design and hence with respect to the joint distribution. In the

presence of measurement error with yi replaced by y∗i , the direct estimator

F̂d(c) =

(∑
i∈A

wi

)−1 ∑
i∈A

wiI(y∗i ≤ c) (1)
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will, in general, be inconsistent for F(c) even if εi has zero mean (Fuller, 1995). A typical pattern

would be for F̂d to be upwardly biased for values of c in the lower tail of the distribution and

downwardly biased for values of c in the upper tail.

To correct for this inconsistency, we consider instead the corresponding weighted estimator of

the expectation of F(c) conditional on the population values of y∗i , a∗i , and xi, given by F̂(c; ψ̂),

where

F̂(c,ψ) =

(∑
i∈A

wi

)−1 ∑
i∈A

wiE
{
I(yi ≤ c) | y∗i , a

∗
i , xi;ψ

}
depends on the parameter vector ψ through the conditional expectation

E
{
I(yi ≤ c) | y∗i , a

∗
i , xi;ψ

}
and ψ̂ is the pseudo-maximum likelihood estimator of ψ to be defined below. We assume here that

sampling is noninformative given the observed variables, that is that

E
{
I(yi ≤ c) | y∗i , a

∗
i , xi, i ∈ A;ψ

}
= E

{
I(yi ≤ c) | y∗i , a

∗
i , xi;ψ

}
.

We wish to consider estimation for both the basic and extended models, but since the former is

a special case of the latter model (by taking p = 0), we will assume the observations follow the

extended model. In this case, we may write

E
{
I(yi ≤ c) | y∗i , a

∗
i , xi;ψ

}
=



(
1 − pi(ψ)

)
I(y∗i ≤ c) + pi(ψ)Pi(c;ψ) if a∗i = 1

Pi(c;ψ) if a∗i = 0,

where pi(ψ) ≡ Pr
[
ai = 0 | y∗i , a

∗
i = 1, xi;ψ

]
and Pi(c;ψ) ≡ E

{
I(yi ≤ c) | y∗i , ai = 0, xi;ψ

}
and we

have

F̂(c; ψ̂) =

[∑
i∈A

wi

]−1[∑
i∈A

wia∗i
{
(1 − p̂i)I(y∗i ≤ c) + p̂iP̂i(c)

}
+

∑
i∈A

wi(1 − a∗i )P̂i(c)
]
, (2)

where p̂i = pi(ψ̂) and P̂i(c) = Pi(c; ψ̂).

In our application, we consider a particular Gaussian parametric model where

yi | xi ∼ N(x>i β, σ
2), y∗i | xi, yi, ai = 0 ∼ N(yi, τ

2),
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so that γ = (β, σ2) and η = τ2. This model provides a reasonable fit to the kind of log weekly pay

data discussed earlier in Section 2.2. Under this model, it may be shown that

yi | y∗i , ai = 0, xi ∼ N
(
µ∗i , σ

∗2),
where µ∗i = (1 − ρ)x>i β + ρy∗i , σ∗2 = σ2(1 − ρ) and ρ = σ2/(σ2 + τ2), implying that

Pi(c;ψ) = Φ

(c − µ∗i
σ∗

)
(3)

where Φ(.) denotes the standard normal distribution function. It can also be shown that

pi(ψ) =
p

√
σ2 + τ2

φ
( y∗i − x>i β
√
σ2 + τ2

)/
f (y∗i | a

∗
i = 1, xi;ψ), (4)

where

f (y∗i | a
∗
i = 1, xi;ψ) =

p
√
σ2 + τ2

φ
( y∗i − x>i β
√
σ2 + τ2

)
+

1 − p
σ

φ
(y∗i − x>i β

σ

)
and φ(·) denotes the standard normal density function.

In order to determine F̂(c; ψ̂), it only remains to define the pseudo maximum likelihood esti-

mator of the parameter vector ψ, which we take to be the solution of the pseudo score equation

Sobs(ψ) = 0 (Skinner, 1989), where the pseudo–score function for ψ based on the observed data is

defined as

Sobs(ψ) =
∑
i∈A

wi
∂

∂ψ
ln f (y∗i | a

∗
i , xi;ψ) ≡

∑
i∈A

wiSobs,i(ψ), (5)

and f (y∗i | a∗i , xi;ψ) is the conditional density of y∗i given a∗i and xi. Under regularity conditions,

we may write

Sobs,i(ψ) = E
[
Scom,i(ψ) | y∗i , a

∗
i , xi

]
, (6)

where

Scom,i(ψ) =
∂

∂ψ
ln f (y∗i , yi, ai | a∗i , xi;ψ)

13



is the score function for ψ based on the complete vector of observations, i.e., (y∗i , yi, a∗i , ai, xi), for

the i–th unit.

An expression for Scom,i(ψ) is given in the Appendix both for the general case and for the the

particular Gaussian parametric model introduced earlier. In the latter case, it is also shown that the

three components of Sobs,i(ψ) are

Sobs,i(β) =
ρ

σ2 w∗i,1xi(y∗i − x>i β), (7)

Sobs,i(σ2) =
ρ

2σ2 w∗i,1 +
ρ2

2σ4 w∗i,2(y∗i − x>i β)2 (8)

and

Sobs,i(τ2) = −
ρ

2σ2 w∗i,3 +
ρ2

2σ4 w∗i,3(y∗i − x>i β)2. (9)

where w∗i,1 = (1−a∗i ) + a∗i
{
pi + (1− pi)/ρ

}
, w∗i,2 = (1−a∗i ) + a∗i

{
pi + (1− pi)/ρ2}, w∗i,3 = (1−a∗i ) + a∗i pi

and pi ≡ pi(ψ).

It follows that the pseudo–maximum likelihood estimator of ψ = (β, σ2, τ2) can be expressed as

β̂ =

{∑
i∈A

xiwiŵ∗i,1x>i
}−1 ∑

i∈A

xiwiŵ∗i,1y∗i ,

σ̂2 =

∑
i∈A wia∗i (1 − p̂i)(y∗i − x>i β̂)2∑

i∈A wia∗i (1 − p̂i)
(10)

τ̂2 =

∑
i∈A wiŵ∗i,3(y∗i − x>i β̂)2∑

i∈A wiŵ∗i,3
− σ̂2,

where ŵ∗i,1, ŵ∗i,3 and p̂i take the same form as w∗i,1, w∗i,3 and pi with ψ replaced by ψ̂. Expressing

(10) as β̂ = g1(β̂, σ̂2, τ̂2), σ̂2 = g2(β̂, σ̂2, τ̂2) and τ̂2 = g3(β̂, σ̂2, τ̂2), we compute β̂, σ̂2 and τ̂2 by

iterating between σ̂2
(t+1) = g2(β̂(t), σ̂

2
(t), τ̂

2
(t)), τ̂

2
(t+1) = g3(β̂(t), σ̂

2
(t), τ̂

2
(t)) and β̂(t+1) = g1(β̂(t), σ̂

2
(t+1), τ̂

2
(t+1))

until convergence. A formal demonstration of the consistency of the pseudo–maximum likelihood

estimator ψ̂ for ψ and of the pointwise consistency of F̂(c; ψ̂) for F(c), assuming a fixed known

value of p, is provided in the Supplementary Materials, adapting Theorem 1.3.9 of Fuller (2009).
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5 Variance estimation

For simplification, we shall assume that the sampling fraction is negligible, as seems reasonable in

our application, so that the variance of F̂(c; ψ̂)− F(c) with respect to the joint distribution induced

by the design and the model can be adequately captured by the model expectation of its design

variance and so we seek an approximately unbiased estimator of this design variance. Following

standard arguments (e.g. Fuller, 2009, p. 379), a linearization estimator of the design covariance

matrix of the pseudo maximum likelihood estimator ψ̂ is given by

V̂(ψ̂) =
{
Iobs(ψ̂)

}−1V̂{Sobs(ψ̂)}
{
Iobs(ψ̂)

}−1
, (11)

where

Iobs(ψ) =
∑
i∈A

wi

{
−

∂

∂ψ
S>obs,i(ψ)

}
(12)

is the observed information matrix and V̂{Sobs(ψ̂)} is an estimator of the design covariance matrix

of Sobs(ψ), evaluated at ψ = ψ̂. An expression for Iobs(ψ), in the case of the Gaussian parametric

model, is given in the Appendix.

The estimator of interest F̂(c; ψ̂) in (2) may be expressed as

F̂(c; ψ̂) =

∑
i∈A wizi(ψ̂)∑

i∈A wi
,

where

zi(ψ) = a∗i
{
(1 − pi(ψ))I(y∗i ≤ c) + pi(ψ)Pi(c;ψ)

}
+ (1 − a∗i )Pi(c;ψ).

A linearization estimator of the design variance of F̂(c; ψ̂), which takes account of the estima-

tion error in ψ̂, is given by

V̂
[
F̂(c; ψ̂)

]
=

1[∑
i∈A wi

]2 V̂
{∑

i∈A

wiηi(c; ψ̂)
}

(13)

where V̂
[∑

i∈A wiηi(c; ψ̂)
]

is an estimator of the design variance of
∑

i∈A wiηi(c;ψ), evaluated at

ψ = ψ̂, and

ηi(c;ψ) = zi(ψ) +

{∑
i∈A

wi
∂zi(ψ)
∂ψ

}>
I−1
obs(ψ)Sobs,i(ψ) − F̂(c;ψ). (14)
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An expression for ∂zi(ψ)/∂ψ is given in the Appendix. Fuller justifications and further details of

the expressions in this section are given in the Supplementary Materials. The nature of the variance

estimators V̂ on the right hand sides of (11) and (13) will depend on the sampling scheme and we

shall leave specification of these until the next section.

A simulation study was conducted with values of n increasing from 200 to 1,000. Confidence

intervals based upon the variance estimation approach above were found to have appropriate cov-

erage even when n = 200 across a range of values of c with F(c) varying between 0.03 and 0.97.

The study is described in the Supplementary Materials.

6 Application to BHPS data

In this section we apply the estimation methods set out in Sections 4 and 5 to the BHPS data

described in Section 2.1. For the purpose of variance estimation, we treat the sampling design of

the BHPS as a stratified multistage design where the primary sampling units (PSUs) can be treated

as if they were selected from the strata with replacement (Skinner et al., 1989, Sect. 2.13). We

approximate the stratification scheme by one with H = 11 design strata consisting of Government

Office regions. Based on these assumptions, we use the following expression for the V̂ term on the

right–hand side of (11)

V̂{Sobs(ψ̂)} =

H∑
h=1

nh

nh − 1

{ nh∑
j=1

(uh j − ūh)(uh j − ūh)>
}
,

where h denotes stratum, j denotes PSU, nh is the number of selected PSUs in stratum h, uh j =∑
i∈Ah j

wiSobs,i(ψ̂) and ūh = n−1
h

∑nh
j=1 uh j. We use the following similar expression for the V̂ term on

the right–hand side of (13):

V̂
{∑

i∈A

wiηi(c; ψ̂)
}

=

H∑
h=1

nh

nh − 1

{ nh∑
j=1

η̂h j(c)2 −
η̂h·(c)2

nh

}
,

where η̂h j(c) =
∑

i∈Ah j
wiηi(c; ψ̂) and Ah j denotes the set of sample units in PSU j in stratum h.

Before constructing such estimators, however, our first step was to investigate the choice of x

for the regression model f (yi | xi;γ), where we took y to be the logarithm of weekly gross pay. We
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wish to choose x so that the assumption of conditional independence between ai and yi given xi

in Section 3 is reasonable. For this purpose, we consider the kinds of predictors of pay in a wage

equation, assuming that any systematic reason for a respondent to refer to a pay slip will relate

to such kinds of observable characteristics of the respondent or their employer and not to any

additional factors which are directly related to pay. We included the logarithm of hours worked

as well as an indicator of part-time status (above or below 30 hours per week) in x in order to

control for the dependence of pay on time worked and then considered standard variables used in

wage equations including qualifications, region, industry, occupation and employer size as well as

socio-demographic variables including gender and marital status.

The nature of the period according to which someone was paid was found not only to have a

significant effect on the reported pay variable, after controlling for the above x variables, but it

also appeared to lead to different amounts of measurement error. It seems plausible that the task

of recalling pay and hence measurement error will differ between such periods. After some ex-

ploratory analysis, we decided to divide the sample into two groups, defined according to whether

the pay period was less than a month or was greater than or equal to a month (the percentages of

the sample in these two groups were 37% and 63% respectively).

Given our choice of x, we then applied the pseudo maximum likelihood method to estimate

the model parameters and the population distribution function for each of the two pay period

subpopulations separately. In each case, we considered the following values of p: 0, 0.2 and

0.4, viewed as plausible in the light of the validation study. Table 2 shows the pseudo maximum

likelihood estimates of τ2 together with standard errors in parentheses, calculated as described

earlier. As in the exploratory data analysis, we found virtually no evidence of measurement error

when the pay period was one month or more. There was, however, evidence of a non-zero value

of τ2 when the pay period was less than a month, especially as p increased.

We compared the distribution function of y estimated using our proposed method with that

estimated using the direct method in (1) based on the reported values. For the pay period of one

17



Table 2: Pseudo maximum likelihood estimates of τ2 according to pay period and choice of p.

Figures in parentheses are the standard errors of the estimates

p

Pay period 0.0 0.2 0.4

1–4 weeks 0.0406 0.0705 0.0919

(0.0209) (0.0286) (0.0276)

1 month or more 0.0004 0.0006 0.0015

(0.0145) (0.0236) (0.0651)

month or more there was negligible difference between these estimated distribution functions for

each of the three values of p. For the other pay period there were noticeable differences. The

estimated lower part of the distribution function for the pay period of under a month is shown in

Fig. 3 for alternative choices of p. There is a tendency for the proposed method to lead to lower

estimates than the direct method for low values of pay and for this adjustment to be larger the

larger the value of p. For example, when weekly pay is £20, the estimated distribution function is

adjusted down from 1.61% to 1.52% when p = 0 and to 1.26% when p = 0.2. When weekly pay

is £30, the estimated distribution function is adjusted down from 4.27% to 3.95% when p = 0 and

to 3.56 when p = 0.2. The general pattern of downward adjustment for measurement error at the

low end of a pay distribution seems plausible (c.f e.g. Skinner et al., 2002). The dependence on p

might be anticipated by the fact that the larger the value of p the larger the proportion of cases for

which measurement error applies and, hence, the greater the potential for adjustment. However, as

p changes the parameter estimates change, as we saw in Table 2, so the sensitivity of results to the

value of p is rather more complex.

Pointwise confidence intervals for F(c) were calculated by obtaining standard errors first for

logit{F̂(c)} using the methods described earlier and in Section 5 together with a linearization ad-

justment for the logit transformation, calculating standard normal theory confidence intervals for
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Figure 3: Estimated distribution functions of the logarithm of gross weekly pay for the direct

method ( ) and for the pseudo-maximum likelihood method with three values of p (0.0 ,

0.2 · · · · · · and 0.4 ) using BHPS data

logit{F(c)} and then transforming back to obtain intervals for F(c) which would fall within the

bounds [0, 1]. The intervals are displayed in Fig. 4 for p = 0.4 together with point estimates. The

plot relates, as in Fig. 3, to those paid at periods of less than a month. The adjustment might be

viewed as reasonably modest in the sense that the direct estimator mainly lies within the proposed

confidence intervals. Simultaneous intervals would, of course, be even wider.

7 Discussion

We have shown that it is feasible to use an accuracy indicator to adjust the estimation of a distribu-

tion function for measurement error. Although we have focussed on the estimation of a distribution

function for concreteness, our approach could in principle be applied to other estimation problems,
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Figure 4: Estimated distribution functions of the logarithm of gross weekly pay for the direct

method ( ) and for the pseudo-maximum likelihood method with p = 0.4 ( ) using BHPS

data. Dotted lines give the 95% pointwise confidence limits using the proposed method with

p = 0.4

for example in regression with covariates measured with error. The tractability of our approach has

benefited in this paper from certain Gaussian assumptions. Of course, departures from these as-

sumptions may arise. Rodgers et al. (1993) illustrate such departures for similar earnings data

and we observe some suggestion of non-normality in the tails of the distributions for our data.

To develop methodology to handle other less tractable distributions we are exploring the potential

use of parametric fractional imputation (Kim, 2011). Dominitz and Sherman (2006) show how to

identify and estimate bounds for a distribution function with an underlying binary mixture model

for measurement error. As suggested by a referee, it would be interesting to compare empirically

the results of their approach with ours.
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We have considered only the case of a binary accuracy indicator. The use of ordinal and con-

tinuous accuracy indicators is also left for exploration in further work.

We have presented an approach which allows for a sensitivity analysis to departures from a basic

binary accuracy indicator model according to values of p. In simulation work not reported here,

we have studied the effect of misspecification of p. On the whole, the results of the study were

encouraging, for example showing that if the true value of p was 0.3 then it made little difference

in bias terms whether a value of p = 0.1, 0.3 or 0.5 was specified. The effect of specifying p = 0

when the true value of p was 0.3 was a little more damaging with the bias adjustment still being

in the right direction but with some underadjustment. The effect of specifying p = 0.3 when the

true value of p was 0 seemed less damaging. In general, it does seem sensible to consider the

possibility that p , 0 unless there are strong a priori grounds to suppose that when the accuracy

indicator indicates accurate measurement then no measurement error can have occurred.
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Appendix

Under the extended model we may write

f (y∗i , yi, ai | a∗i , xi;ψ) = f (ai | a∗i , xi;ψ) f (yi | a∗i , ai, xi;ψ) f (y∗i | yi, a∗i , ai, xi;ψ)

= f (ai | a∗i ) f (yi | xi;γ) f (y∗i | yi, ai, xi;ψ)

=



f (yi | xi,γ)g(y∗i | yi, ai = 0, xi; η), a∗i = 0, ai = 0

p f (yi | xi,γ)g(y∗i | yi, ai = 0, xi; η), a∗i = 1, ai = 0

(1 − p) f (y∗i | xi;γ), a∗i = 1, ai = 1, yi = y∗i

0, otherwise.

It follows that

Scom,i(ψ) = (1 − ai)
{
∂

∂ψ
ln f (yi | xi;γ) +

∂

∂ψ
ln g(y∗i | yi, ai = 0, xi; η)

}
+

a∗i ai
∂

∂ψ
ln f (y∗i | xi;γ).

Under the further assumptions that yi | xi ∼ N(x>i β, σ
2) and y∗i | xi, yi, ai = 0 ∼ N(yi, τ

2), we have

ln f (yi | xi;γ) = −
1
2

ln(2π) −
1
2

lnσ2 −
1

2σ2 (yi − x>i β)2

and

ln g(y∗i | xi, yi, ai = 0; η) = −
1
2

ln(2π) −
1
2

ln τ2 −
1

2τ2 (y∗i − yi)2

and so we obtain

Scom,i(β) = (1 − ai)
1
σ2 xi(yi − x>i β) + a∗i ai

1
σ2 xi(y∗i − x>i β), (15)

Scom,i(σ2) = (1 − ai)
{
−

1
2σ2 +

(yi − x>i β)2

2σ4

}
+ a∗i ai

{
−

1
2σ2 +

(y∗i − x>i β)2

2σ4

}
(16)
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and

Scom,i(τ2) = (1 − ai)
{
−

1
2τ2 +

(y∗i − yi)2

2τ4

}
. (17)

Since yi | y∗i , ai = 0, xi ∼ N
{
(1 − ρ)x>i β + ρy∗i , σ

2(1 − ρ)
}

we have

E
[
yi − x>i β | y

∗
i , ai = 0, xi

]
= ρ(y∗i − x>i β),

E
[
(yi − x>i β)2 | y∗i , ai = 0, xi

]
= σ2(1 − ρ) + ρ2(y∗i − x>i β)2,

E
[
y∗i − yi | y∗i , ai = 0, xi

]
= (1 − ρ)(y∗i − x>i β)

and

E
[
(y∗i − yi)2 | y∗i , ai = 0, xi

]
= σ2(1 − ρ) + (1 − ρ)2(y∗i − x>i β)2.

We may use these results to evaluate the conditional expectations of (15)–(17) given (y∗i , a
∗
i , xi), as

in (6), and hence obtain expressions (7)–(9).

Turning to variance estimation, the information matrix in (12) may be expressed, in the case of

the Gaussian parametric model, as:

Iobs(ψ) = −
∑
i∈A

wi


∂
∂β

S>obs,i(β) ∂
∂β

Sobs,i(σ2) ∂
∂β

Sobs,i(τ2)

∂
∂β>

Sobs,i(σ2) ∂
∂σ2 Sobs,i(σ2) ∂

∂σ2 Sobs,i(τ2)

∂
∂β>

Sobs,i(τ2) ∂
∂σ2 Sobs,i(τ2) ∂

∂τ2 Sobs,i(τ2)


,

where the derivatives of Sobs,i(ψ) with respect to the components of ψ are as follows

∂

∂β
S>obs,i(β) = −

ρ

σ2

{
w∗i,1xix>i +

(1 − ρ)
ρ

a∗i
∂pi

∂β
x>i (y∗i − x>i β)

}
,

∂

∂β
Sobs,i(σ2) = −

ρ2

σ4 w∗i,2xi(y∗i − x>i β) + a∗i
∂pi

∂β

{
−
ρ − 1
2σ2 +

ρ2 − 1
2σ4 (y∗i − x>i β)2

}
,

∂

∂β
Sobs,i(τ2) = −

ρ2

σ4 w∗i,3xi(y∗i − x>i β) + a∗i
∂pi

∂β

{
−

ρ

2σ2 +
ρ2

2σ4 (y∗i − x>i β)2
}
,
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∂

∂σ2 Sobs,i(σ2) = −
ρ2

2σ4 w∗i,1 +
(1 − ρ)

2σ2 a∗i
{
∂pi

∂σ2 +
1 − pi

ρ2

}
−[

ρ3

σ6 w∗i,2 +
(1 − ρ)

2σ4 a∗i
{
(1 + ρ)

∂pi

∂σ2 +
2(1 − pi)

σ2

}]
(y∗i − x>i β)2,

∂

∂σ2 Sobs,i(τ2) = −
ρ2

2σ4 w∗i,3 −
ρ

2σ2 a∗i
∂pi

∂σ2 +

{
−
ρ3

σ6 w∗i,3 +
ρ2

2σ4 a∗i
∂pi

∂σ2

}
(y∗i − x>i β)2

and

∂

∂τ2 Sobs,i(τ2) =
ρ2

2σ4 w∗i,3 −
ρ

2σ2 a∗i
∂pi

∂τ2 +

{
−
ρ3

σ6 w∗i,3 +
ρ2

2σ4 a∗i
∂pi

∂τ2

}
(y∗i − x>i β)2,

where

∂pi

∂β
= −pi(1 − pi)

(1 − ρ)
σ2 xi(y∗i − x>i β), (18)

∂pi

∂σ2 = −pi(1 − pi)
{
−

(1 − ρ)
2σ2 +

(1 − ρ2)
2σ4 (y∗i − x>i β)2

}
(19)

and

∂pi

∂τ2 = pi(1 − pi)
{
−

ρ

2σ2 +
ρ2

2σ4 (y∗i − x>i β)2
}
. (20)

The term ∂zi(ψ)/∂ψ in (14) may be expressed as

∂zi(ψ)
∂ψ

= a∗i
{
−
∂pi(ψ)
∂ψ

(
I(y∗i < c) − Pi(c;ψ)

)
+ pi(ψ)

∂Pi(c;ψ)
∂ψ

}
+ (1 − a∗i )

∂Pi(c;ψ)
∂ψ

,

where ∂pi(ψ)/∂ψ is obtained from (18)–(20) and

∂Pi(c;ψ)
∂ψ

= −φ
(c − µ∗i
σ∗

)


(1−ρ)

σ
√

1−ρ
xi

(1−ρ)
2σ2

{
(c−x>i β)+ρ(y∗i −x>i β)

}
σ
√

1−ρ

ρ2

2σ2(1−ρ)

{
(c−y∗i )−(1−ρ)(y∗i −x>i β)

}
σ
√

1−ρ


.
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