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Ramsey-goodness—and otherwise

Peter Allen,1,2 Graham Brightwell2 and Jozef Skokan2

March 1, 2013

Abstract

A celebrated result of Chvátal, Rödl, Szemerédi and Trotter states (in slightly
weakened form) that, for every natural number ∆, there is a constant r∆ such that,
for any connected n-vertex graph G with maximum degree ∆, the Ramsey number
R(G,G) is at most r∆n, provided n is sufficiently large.

In 1987, Burr made a strong conjecture implying that one may take r∆ = ∆.
However, Graham, Rödl and Ruciński showed, by taking G to be a suitable expander
graph, that necessarily r∆ > 2c∆ for some constant c > 0. We show that the use of
expanders is essential: if we impose the additional restriction that the bandwidth of
G be at most some function β(n) = o(n), then R(G,G) ≤ (2χ(G) + 4)n ≤ (2∆ + 6)n,
i.e., r∆ = 2∆ + 6 suffices. On the other hand, we show that Burr’s conjecture itself
fails even for P kn , the kth power of a path Pn.

Brandt showed that for any c, if ∆ is sufficiently large, there are connected n-
vertex graphs G with ∆(G) ≤ ∆ but R(G,K3) > cn. We show that, given ∆ and
H, there are β > 0 and n0 such that, if G is a connected graph on n ≥ n0 vertices
with maximum degree at most ∆ and bandwidth at most βn, then we have R(G,H) =
(χ(H) − 1)(n − 1) + σ(H), where σ(H) is the smallest size of any part in any χ(H)-
partition of H. We also show that the same conclusion holds without any restriction
on the maximum degree of G if the bandwidth of G is at most ε(H) log n/ log logn.

1 Introduction

Given two graphs G and H, the Ramsey number R(G,H) is defined to be the smallest N
such that, however the edges of KN are coloured with red and blue, there exists either a red
copy of G or a blue copy of H.
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In the 1980s, Burr [10] and Burr and Erdős [11] made various seemingly natural conjec-
tures on the magnitudes of Ramsey numbers R(G,H) in which one or both graphs is sparse.
In the 1990s, Brandt [7] and Graham, Rödl and Ruciński [27] used expander graphs to give
counterexamples to these conjectures. Our aim in this paper is to show that limiting the
expansion of the graphs suffices to (almost) rescue the conjectures.

There are two slightly different sets of results within this paper. We are interested in
R(G,H) in the case when H is a (small) fixed graph, and G may be much larger, and we are
also interested in the case when H = G. The results we prove have a similar flavour, and we
use similar techniques. To start with, we think of H as a fixed graph.

A very simple general lower bound on the Ramsey number, given by Chvátal and
Harary [15], is R(G,H) ≥ (χ(H) − 1)(|G| − 1) + 1 for connected graphs G – here |G|
denotes the number of vertices of G. To see this, consider a two-colouring of the complete
graph consisting of χ(H) − 1 disjoint red cliques each on |G| − 1 vertices, with only blue
edges between them. The red components are too small to contain G, and the chromatic
number of the subgraph of blue edges is too small for H.

Burr and Erdős [11] defined a connected graph G to be p-good if R(G,Kp) = (p−1)(|G|−
1) + 1; in other words, if the Ramsey number is equal to the lower bound of Chvátal and
Harary. A family G of graphs is defined to be p-good if there is some n0 such that every
G ∈ G with |G| ≥ n0 is p-good. Burr and Erdős were interested in the problem of finding
families of graphs which are p-good for all p. Chvátal [14] showed that the family of trees is
p-good for all p. Burr and Erdős [11] showed that for any k, the family of connected graphs
with bandwidth at most k is p-good for all p (although the value of n0 does increase with
p). They made several conjectures regarding larger families of p-good graphs, many of which
have been answered in a recent paper of Nikiforov and Rousseau [34]. One remaining open
question is to determine whether the family of hypercubes is p-good for any p ≥ 3.

As observed by Burr [9], the idea of the construction of Chvátal and Harary can be
adapted to give a stronger lower bound in many cases. To explain this, we define a graph
parameter: for any graph H of chromatic number χ(H), let σ(H) be the minimum size of
a colour class in a proper χ(H)-colouring of H. Then we can add to Chvátal and Harary’s
construction a further red clique of size σ(H)− 1, provided G is not too small.

Lemma 1 (Burr [9]). For all graphs G and H, with G connected and |G| = n > σ(H), we
have

R(G,H) ≥ (χ(H)− 1)(n− 1) + σ(H).

We say that a connected graph G is H-good if R(G,H) = (χ(H) − 1)(|G| − 1) + σ(H),
and that a family of graphs G is H-good if all sufficiently large members of G are H-good.
Finally, we call a graph class G always-good if G is H-good for every graph H. Burr [9]
showed that, for all graphs G1, the class of graphs homeomorphic to G1 is always-good.

We mention two barriers to always-goodness. One necessary property for a family G to
be always-good is that G does not contain arbitrarily large graphs G in which the maximum
degree ∆(G) is nearly as large as |G|. An explicit version of this principle is illustrated by
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a construction of Brown [8] yielding, for every prime p, a (p2 + p+ 1)-vertex graph Hp with
minimum degree p+1 containing no copy of K2,2. Let Γ be the two-coloured complete graph
obtained from Hp by colouring its edges blue and non-edges red. By definition, Γ does not
contain either a blue copy of K2,2 or a vertex of red-degree p2. It follows that, if G is any
graph on p2 + p vertices with ∆(G) ≥ p2, then R(G,K2,2) ≥ p2 + p + 2, which is strictly
greater than (χ(K2,2)− 1)(|G| − 1) + σ(K2,2) = p2 + p+ 1, so G is not K2,2-good. One can
clearly obtain better bounds by using larger bipartite graphs in place of K2,2.

The class of trees is Kp-good for all p but – for instance by the above argument – not
always-good. The graph families considered by Nikiforov and Rousseau also contain graphs
with such high degrees, and are thus not always-good.

A second barrier to always-goodness is strong vertex expansion. Burr and Erdős con-
jectured that, for any ∆ and p, if n is sufficiently large, then any n-vertex graph G with
∆(G) ≤ ∆ is p-good; Burr [10] made the natural strengthening to conjecture that for any
∆, the graph class {G : ∆(G) ≤ ∆} is always-good. However Brandt [7] showed that, for
∆ ≥ 168, the family of all ∆-regular graphs is not even K3-good; Nikiforov and Rousseau [34]
reduced this degree requirement to 100. Both proofs relied upon the fact that such graphs
can have strong vertex expansion properties. To be precise, Brandt proved the following re-
sult showing that Burr and Erdős’ conjecture is already wrong by an arbitrarily large factor
for p = 3.

Theorem 2 (Brandt [7]). Let c be any constant. Then if ∆ and n are sufficiently large,
there exists an n-vertex graph G with ∆(G) ≤ ∆ such that R(G,K3) > cn.

We show that Brandt’s use of expander graphs is necessary: if G is a graph class with not
only bounded maximum degree but also suitably limited expansion, then the more general
conjecture of Burr is rescued.

We first state our results in terms of restricting the bandwidth of G.

Given a graph F , the kth power of F , denoted F k, is the graph with vertex set V (F )
and edges between any two vertices whose distance in F is at most k. In particular, P k

n is
the kth power of the n-vertex path Pn. For any graph G on n vertices, the bandwidth of G,
bw(G), is the smallest k such that G is a subgraph of P k

n .

First we consider what happens if we bound the bandwidth of graphs G in the class G,
but do not further bound the degree. In this case, to show that G is always-good, it suffices
to show that the class of graphs P k

n is always-good. One may think of k as being fixed, but
in fact our proof works provided k grows more slowly than log n/ log log n.

Theorem 3. For each fixed graph H and natural number k, R(P k
n , H) = (χ(H) − 1)(n −

1) + σ(H) whenever n ≥ (20k|H|)16k|H|.

In particular, if κ(n) is any function with κ(n) = o(log n/ log log n), then the graph class
Bκ = {G : bw(G) ≤ κ(|G|) and G is connected} is always-good.

This result, even in the case where κ(n) is the constant function k, includes the result
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of Burr and Erdős stating that Bk is p-good for all p, as well as the result of Burr that the
class of graphs homeomorphic to any fixed G1 is always-good.

If κ(n) = nε, for any fixed ε > 0, then the class Bκ is not always-good. To see this,
note that R(Ks, Kt) = Ω(st/2) for fixed t as s → ∞, by a standard probabilistic argument
[39]. Therefore also R(P s

n, Kt) = Ω(st/2), since P s
n contains Ks, and so the class of connected

graphs with bandwidth at most nε is not K4/ε-good.

Our proof of Theorem 3 uses a method from [1], inspired by the Szemerédi Regularity
Lemma [40]. This method yields a partition of V (G) and an auxiliary graph G∗ on the
parts, but the partition arises from the direct use of Ramsey’s theorem rather than an
iterated refinement procedure, enabling us to obtain a somewhat reasonable bound on the
size of n we need.

Our next theorem shows that, if we put an absolute bound on the maximum degree
of graphs in our class, it is enough to impose any upper bound on the bandwidth that is
sublinear in the order of the graph.

Theorem 4. For every fixed ∆, and every function β(n) = o(n), the graph class

G∆,β = {G : ∆(G) ≤ ∆, bw(G) ≤ β(|G|), and G is connected}

is always-good.

In other words, a class of connected graphs is always-good if the maximum degree of
graphs in the class is bounded and, for any β > 0, all sufficiently large graphs G in the class
have bandwidth at most β|G|.

Our proof of Theorem 4 follows the same lines as Theorem 3, using also an embedding
method of Böttcher, Schacht and Taraz [6], which does involve the use of the Regularity
Lemma.

As we now explain, Theorem 4 can be converted to a result where the expansion properties
of the graph G are explicitly limited.

Böttcher, Pruessmann, Taraz and Würfl [5] define a graph G to be (b, ε)-bounded if, for
every subgraph G′ of G with |G′| ≥ b, there exists a set U ⊂ V (G′) with |U | ≤ |G′|/2 and
|Γ(U)−U | ≤ ε|U |. Here Γ(U) denotes the neighbourhood of U in the graph G′. They proved
the following theorem.

Theorem 5 (Böttcher, Pruessmann, Taraz and Würfl [5]). For any ∆ ≥ 1 and β1 > 0,
there exist ε > 0, β2 > 0 and n0 such that, whenever n ≥ n0, every (β2n, ε)-bounded n-vertex
graph G with ∆(G) = ∆ has bw(G) ≤ β1n.

We call a graph class G non-expanding on large subsets if for any β, ε > 0 the following
is true. There exists n0 such that if G ∈ G has n ≥ n0 vertices, then G is (βn, ε)-bounded.

An immediate corollary of Theorem 4, together with Theorem 5, is the following.

Corollary 6. Given ∆, let G be a class of connected graphs of maximum degree ∆ which is
non-expanding on large subsets. Then G is always-good.
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Corollary 6 is best possible in the following sense. Brandt’s method [7] can be adapted
easily to show that, for any sufficiently large ∆ and β > 0, if n and p are sufficiently large,
and G is an n-vertex graph with ∆(G) ≤ ∆ which does possess a subgraph G′ on at least βn
vertices with strong expansion properties (for example: if G′ is a typical ∆-regular graph),
then G is not p-good.

There is another sense in which Brandt’s family of counterexamples is the simplest pos-
sible. He showed that the class of connected graphs with maximum degree at most ∆ is not
H-good for H = K3. On the other hand, this class of graphs is H-good for every bipartite
H, as observed by Burr, Erdős, Faudree, Rousseau and Schelp.

Theorem 7 (Burr, Erdős, Faudree, Rousseau and Schelp [12]). For each fixed ∆, let D∆

be the class of connected graphs with maximum degree at most ∆. Then D∆ is H-good for
every bipartite graph H.

We note that there is a natural extension of the notion of H-goodness to the multi-
colour setting. For graphs H1, . . . , Hr, we say that a connected graph G is (H1, . . . , Hr)-good
when there are integers W and Z (depending on (H1, . . . , Hr) but not on G) such that
R(G,H1, . . . , Hr) = W (|G| − 1) +Z. We say that a graph class G is multicolour-always-good
when, for every r ≥ 2 and every collection of graphs H1, . . . , Hr, G is (H1, . . . , Hr)-good for
all sufficiently large G ∈ G. In Section 5, we discuss the problems of finding W and Z, and
prove the following theorem.

Theorem 8. If G is any always-good class of graphs, then G is multicolour-always-good.

We now turn our attention to the case whereG = H, andH is again of bounded maximum
degree. Burr [10] conjectured that, for each fixed ∆, if H is a sufficiently large connected
graph with maximum degree at most ∆, then H is itself H-good, i.e.,

R(H,H) = (χ(H)− 1)(|H| − 1) + σ(H).

In his paper, Burr warns that this conjecture “may be too bold”, and indeed so it proved.

Burr’s conjecture would imply that, for each fixed ∆, R(H,H) ≤ ∆|H|, whenever H is a
sufficiently large graph with maximum degree ∆. Chvátal, Rödl, Szemerédi and Trotter [16]
proved that some result along these lines is true: for every ∆, there is some constant r such
that, whenever H has maximum degree ∆, R(H,H) ≤ r|H|.

For each fixed ∆, let r∆ = lim inf
n→∞

max{R(H,H)/n : H is a connected graph on n vertices

with maximum degree at most ∆}. So the result of Chvátal, Rödl, Szemerédi and Trotter
is that r∆ is finite for all ∆, and Burr’s conjecture would imply that r∆ ≤ ∆.

The question of determining the rate of growth of r∆ was addressed by Graham, Rödl
and Ruciński [27], who proved the following theorem, giving bounds in both directions.

Theorem 9 (Graham, Rödl and Ruciński [27]). There exist constants c, c′ > 0 such that the
following hold.
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(i) Whenever H is an n-vertex graph with ∆(H) ≤ ∆, R(H,H) ≤ 2c
′∆ log2 ∆n.

(ii) For each sufficiently large n, there exists a bipartite n-vertex graph H with ∆(H) ≤ ∆
and R(H,H) > 2c∆n.

Theorem 9 implies that 2c∆ ≤ r∆ ≤ 2c
′∆ log2 ∆, and in particular that Burr’s conjecture is

false. The proof of the lower bound in Theorem 9 relies upon a (probabilistic) construction
of a graph H with maximum degree ∆ and good expansion properties.

Recently, Fox and Sudakov [25] established the alternative upper bound R(H,H) ≤
2c∆(H)χ(H)|H|, for some explicit constant c. In particular, if H is bipartite, this matches
the form of the lower bound in Theorem 9. The result for bipartite graphs was obtained
independently by Conlon [17], and very recently Conlon, Fox and Sudakov [18], improving
on Theorem 9, showed that there is a constant c′′ such that r∆ ≤ 2c

′′∆ log ∆.

We show that the use of expansion in the lower bound is necessary – that is, when both
maximum degree and expansion are restricted, the Ramsey number may be bounded above
by a function linear in both n and ∆. In fact, we will prove something slightly stronger:
when expansion is appropriately restricted, the Ramsey number is primarily controlled by
the chromatic number of H, not the maximum degree, as in Burr’s conjecture.

Observe that simply requiring H to fail some global expansion condition will not suffice to
bound R(H,H) below 2c∆n. To see this, take some large ∆ and n, let H ′ be an (n/10)-vertex
graph with ∆(H ′) ≤ ∆ and R(H ′, H ′) > 2c∆n/10, and form H by adding 9n/10 isolated
vertices to H ′. The new graph H is a poor expander, yet R(H,H) > 2c∆−4n. It follows that,
as before, we need to restrict the expansion of all large subgraphs of H, or equivalently the
bandwidth of H.

We shall show that, if the degree of H is at most ∆, H is sufficiently large, and the
bandwidth of H is at most β|H| for some small constant β, then R(H,H) ≤ (2χ(H)+4)|H|.
Thus imposing a restriction on the bandwidth of H almost rescues Burr’s conjecture.

Our first task in this direction is to investigate the Ramsey numbers of powers of paths.

In Section 6, we consider the Ramsey numbers R(P k
n , P

k
n ) and R(Ck

n, C
k
n). Gerencsér

and Gyárfás [26] showed that R(Pn, Pn) = n − 1 + σ(Pn), and (for n ≥ 5) Faudree and
Schelp [24] and Rosta [36] showed that R(Cn, Cn) = (χ(Cn)− 1)(n− 1) + σ(Cn), matching
the lower bounds in Lemma 1, and in Burr’s conjecture. It is natural to ask whether this
continues to hold (for sufficiently large n) for each k: for powers of paths, this would mean
that R(P k

n , P
k
n ) = (k + 1

k+1
)n+O(1).

In Section 6, we give a construction showing that this is not the case. For convenience,
we state the result when n is a multiple of k + 1.

Theorem 10. For k ≥ 2, and n a multiple of k + 1, we have

R(Ck
n, C

k
n), R(P k

n , P
k
n ) ≥ (k + 1)n− 2k.

This shows in particular that even bounding the bandwidth of H by a constant does not
suffice to rescue Burr’s conjecture.
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We suspect that the inequality above is tight, at least for powers of paths. We have not
been able to show this, but we offer the following upper bounds, which differ from the lower
bounds by a multiplicative factor slightly greater than 2.

Theorem 11. For any k ≥ 2, we have

R(P k
n , P

k
n ) ≤

(
2k + 2 +

2

k + 1

)
n+ o(n) ,

and

R(Ck
n, C

k
n) ≤

(
2χ(Ck

n) +
2

χ(Ck
n)

)
n+ o(n) .

Using Theorem 11, together with the embedding method of Böttcher, Schacht and
Taraz [6], we prove the following result.

Theorem 12. Given ∆ ≥ 1, there exist n0 and β1 such that, whenever n ≥ n0 and H is
an n-vertex graph with maximum degree at most ∆ and bw(H) ≤ β1n, we have R(H,H) ≤
(2χ(H) + 4)n.

As before, we can use Theorem 5 to convert the hypothesis of sublinear bandwidth to a
condition on the expansion of all large subgraphs.

Corollary 13. For any ∆ ≥ 1, there exist n0, β2 and ε such that, whenever n ≥ n0 and H
is a (β2n, ε)-bounded n-vertex graph with maximum degree at most ∆, we have R(H,H) ≤
(2χ(H) + 4)n.

One might hope to show that, under the conditions of Theorem 12 or its corollary,
R(H,H) ≤ (χ(H) +C)n. In order to prove this, a first step would be to show such a bound
for the case H = P k

n , but there are likely to be additional difficulties in the general case.
One asymptotically sharp result in this direction has been proved.

Theorem 14 (Sárközy, Schacht and Taraz [37]). For every γ > 0 and ∆, there exist β > 0
and n0 such that, whenever n ≥ n0 and H is an n-vertex bipartite graph with maximum
degree at most ∆, bw(H) ≤ βn, and parts of size t1 and t2 (where t1 ≤ t2), we have

R(H,H) ≤ (1 + γ) max(2t1 + t2, 2t2) .

A final observation is that combining the Four Colour Theorem [2, 3] and another result
of Böttcher, Pruessmann, Taraz and Würfl [5], namely that the bandwidth of every n-vertex
planar graph of maximum degree ∆ is bounded by 15n/ log∆ n, we obtain, as a corollary to
Theorem 12, the following.

Corollary 15. For every ∆ there exists n0 such that, whenever n ≥ n0 and H is an n-vertex
planar graph with maximum degree ∆, we have R(H,H) ≤ 12n.
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2 A version of the blow-up lemma

In our proofs, we need an embedding lemma, similar in style to the Blow-up Lemma of
Komlós, Sárközy and Szemerédi [31]. That result could be used as it stands, but using an
alternative approach allows us to obtain significantly better bounds on the sizes of the graphs
to which our results apply.

Instead of considering ‘(ε, δ)-super-regular’ pairs of sets (as in the original Blow-up
Lemma), where there are relatively few but well distributed edges, we will be interested
in pairs of vertex sets within two-coloured complete graphs which do not contain a red Ks,s

for some s. By the Kövari-Sós-Turán theorem [32], this condition strongly limits the number
and distribution of red edges. We give two forms.

Theorem 16 (Kövári, Sós and Turán [32]).

(a) For all s, n ∈ N with n ≥ s2, any n-vertex graph which does not contain Ks,s has at

most 2n2− 1
s edges.

(b) Let G be a bipartite graph, with parts X and Y , which does not contain a copy of Ks,s.

If 2
(
s/|Y |

) 1
s ≤ p ≤ 1, then at most 2s/p vertices in X have degree greater than p|Y |.

We can now state and prove our embedding lemma.

Lemma 17. Let t, s, r and d be natural numbers, with s ≥ d2. Suppose that the edges of
a complete graph G with vertex set V are coloured red and blue. Let V1, . . . , Vt be disjoint
subsets of V , each of size at most s. Define a graph G′ on disjoint vertex sets V ′1 , . . . , V

′
t ,

where |V ′i | = max
(
|Vi|−

⌊
4r2s

2r−1
2r (d+1)

⌋
, 0
)

for each i, by putting edges between all vertices
in V ′i and V ′j whenever there is no red Kr,r between Vi and Vj in G. If H is any subgraph of
G′ with maximum degree d, then G contains a blue copy of H.

Proof. Let Gblue be the spanning subgraph of G whose edges are the blue edges of G.

If r = 1, then G′ is isomorphic to a subgraph of Gblue, and the result is trivially true. We
will assume from now on that r ≥ 2.

Let p = 4r2s−1/2r: then, for each i, |Vi| − |V ′i | ≤ p(d + 1)s. Note that, if p ≥ 1
d+1

,

then each set V ′i is empty and there is nothing to prove, so we can assume p < 1
d+1

. By
Theorem 16(b), if X and Y are vertex sets within a pair (Vi, Vj) that does not contain a red

Kr,r, and |Y | ≥
√
s

2rr2r−1 , then at most 2r/p vertices in X have red-degree greater than p|Y |.

Choose an embedding ψ : V (H)→ V (G′). Let V (H) = {x1, x2, . . .}. We will successively
choose vertices φ(x1), φ(x2), . . . ∈ V (G) = V (Gblue) which give an embedding φ of H into
Gblue. For each xi ∈ H, set Axi,1 = Vj, where V ′j is the part of G′ containing ψ(xi).

The set Axi,t is called the allowed set of xi at time t; we invariably choose φ(xt) to be
within its allowed set at time t. We maintain two properties. First, if xixj ∈ E(H) and xi
has been embedded, then the allowed set of xj is entirely within the blue-neighbourhood of
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xi. Second, if, at time t, xi has not yet been embedded, then its allowed set has size larger
than ps/2 = 2r2s

2r−1
2r : this quantity is definitely larger than the

√
s

2rr2r−1 required to apply
Theorem 16. At time 1, the first condition is trivially satisfied, and the second is true by
the choice of the sizes of the V ′i .

At time t, we choose a vertex φ(xt) ∈ Axt,t which is blue-adjacent to at least (1−p)|Ax`,t|
of the vertices of Ax`,t for each ` > t with x` adjacent to xt. This is possible since, by
Theorem 16(b), for each of the at most d neighbours of xt not yet embedded, at most
2r/p vertices in Axt,t fail to be blue-adjacent to (1 − p)|Ax`,t| of the vertices of Ax`,t, and
|Axt,t| ≥ ps/2 > d2r

p
by the choice of s.

Having chosen φ(xt), for each ` > t we set Ax`,t+1 equal to Ax`,t−{φ(xt)} if xtx` /∈ E(H),
and equal to Ax`,t ∩ Γblue(φ(xt)) if x` is adjacent to xt. It is clear that the allowed sets
maintain the first property. If xi is a vertex not yet embedded, with ψ(xi) ∈ V ′j , then there
are two reasons why a vertex v ∈ Vj should not be in Axi,t+1: first, it might not be blue-
adjacent to one of the at most d embedded neighbours of xi, and second, it might be the
image under φ of some preceding vertex (in V ′j ) of H. Thus we have

|Axi,t+1| ≥ (1− p)d|Vj| − |V ′j | > (1− pd)|Vj| − (|Vj| − p(d+ 1)s) ≥ ps

2
,

so that the allowed sets maintain both the required conditions. It follows that this algorithm
successfully embeds H into Gblue.

3 Powers of paths versus general graphs

The aim of this section is to prove Theorem 3, stating that R(P k
n , H) = (χ(H)− 1)(n− 1) +

σ(H) whenever n is sufficiently large in terms of k and |H|, and therefore that the family
Bk of graphs of bandwidth at most k is always-good.

First we need to give a stability version of an old theorem of Erdős [20] stating that
R(Pn, K`) = (`− 1)(n− 1) + 1.

Lemma 18. Given ` ≥ 2, 0 ≤ α < 1/2, 0 ≤ ε < (1− α)/`, and n ≥ 1 + 1/ε, the following
is true. If G is a two-coloured graph on (`− 1− α)(n− 1) vertices, in which every vertex is
adjacent to all but at most ε(n− 1) vertices of G, containing neither a red copy of Pn nor a
blue copy of K`, then we can partition V (G) into `− 1 parts each containing at most n− 1
vertices, such that every edge of G within a part is red, and every edge of G between different
parts is blue.

Proof. We prove the statement by induction on `. The case ` = 2 is trivial. Suppose ` ≥ 3,
and that the statement is true for smaller values of `.

Let G satisfy the conditions of the lemma, and let P be a maximal red path in G, so
we have |P | < n. Let u be the first vertex of P , and set X = Γ(u) \ P . By maximality
of P , every vertex of X is blue-adjacent to u. It follows that G[X] is a two-coloured graph
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containing neither a red copy of Pn nor a blue copy of K`−1, in which every vertex is adjacent
to all but at most ε(n− 1) vertices of X. Since we have

|X| ≥ d(u)− (|P | − 1) ≥ (`− 1− α)(n− 1)− ε(n− 1)− (n− 2) > (`− 2− α− ε)(n− 1)

and ε < (1−α− ε)/(`− 1), it follows by induction that we can partition X into `− 2 parts,
X = X1∪· · ·∪X`−2, such that any edge within a part is red, while any edge between different
parts is blue. For convenience, we assume that the sets X1, . . . , X`−2 are in increasing order
of size. Each part contains at most n− 1 vertices, and therefore the smallest part size |X1|
is at least (1− α− ε)(n− 1).

Since 1 − α − 3ε > 0, we have δ(G[Xi]) > |Xi|/2 for each i, and therefore by Dirac’s
theorem G[Xi] is Hamiltonian for each i. Now observe that, for each i,

|Xi|+ |P | ≥ |G| − ε(n− 1)− (`− 3)(n− 1) ≥ (2− α− ε)(n− 1) > (1 + 2ε)(n− 1).

It follows that, if P ′ is a red path in G[P ] covering all but at most ε(n − 1) vertices of P ,
then an endvertex of P ′ cannot send any red edges to any set Xi.

The first vertex u of P has at most ε(n− 1) non-neighbours in G (including itself), so it
must be adjacent to at least one vertex v among the last ε(n− 1) vertices of P . This vertex
v is the endvertex of the red path from u to v following P , which covers all but at most
ε(n− 1) vertices of P . It follows that v has no red neighbours in any set Xi.

Since |X1| > 2ε(n− 1), we can find in X1 a common neighbour x1 of the vertices u and
v; similarly in X2 we can find a common neighbour of u, v and x1, and so on until we find `
vertices forming a clique in G. Since there is no blue K` in G, and since all the other edges
are blue, it must be the case that uv is red. It now follows that every vertex in P is the
endvertex of a path covering all but at most ε(n− 1) vertices of P .

For each 1 ≤ i ≤ ` − 2, let Yi be the red component of G containing Xi, and let Y`−1

be the set consisting of the remaining vertices of G. Since G contains no red Pn, the Yi
are all distinct, and P ⊂ Y`−1. We claim that this partition satisfies the desired properties.
By definition, there are no red edges between any pair of parts. Since every edge in a part
can be extended to a copy of K` in G by choosing greedily one vertex from each other part,
every edge within a part must be red. Finally, since each G[Yi] has minimum degree at least
|Yi| − ε(n− 1) > |Yi|/2, each component contains a spanning path by Dirac’s theorem: as G
contains no Pn, this implies that |Yi| < n for each i.

In the next lemma, we need only the special case of Lemma 18 where G is complete – in
this case, the proof above can be streamlined. We will make use of the full version of the
lemma later.

Our next aim is to prove a similar stability result for R(P k
n , H). We do not need the full

strength of the following result in order to establish the value of R(P k
n , H), but it is necessary

for the proof of Theorem 4 later.

Lemma 19. Let H be a graph, k a natural number, and ε a positive constant at most
1/2|H|2. Set n0 = (1/ε)(200k2|H|/ε)4k|H|. If n ≥ n0 and G is a two-coloured complete
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graph on at least (χ(H) − 1)n − n/6 vertices, which contains neither a red copy of P k
n nor

a blue copy of H, then there is a partition V (G) = V1 ∪ · · · ∪ Vχ(H)−1 ∪ L with the following
properties.

• |L| ≤ εn.

• 2n/3 ≤ |Vi| < n for each i.

• For each i and v ∈ Vi, v has at most ε|Vi| blue neighbours in Vi.

• For each i and j, no vertex in Vi has more than ε|Vj| red neighbours in Vj.

Proof. Suppose we are given a graph H, a natural number k, and a positive ε at most
1/2|H|2. We now choose s = d(128k2|H|/ε)4ke and note that n0 ≥ (3/ε)(2s)|H|.

Take any n ≥ n0, and let G be a two-coloured complete graph on (χ(H) − 1)n − n/6
vertices which contains neither a red copy of P k

n nor a blue copy of H.

Since R(Ks, H) ≤ R(Ks, K|H|) ≤
(
s+|H|
|H|

)
≤ (2s)|H| ≤ εn/3 by the Erdős-Szekeres

bound [23], and G contains no blue copy of H, it follows that any (εn/3)-vertex set in
G contains a red copy of Ks. Thus we can partition V (G) into disjoint s-vertex red cliques
Q1, Q2, . . . , QM and a leftover set L1 with |L1| ≤ εn/3.

Let m = dn/se. Observe that the number M of cliques is at least

(χ(H)− 1)n− n/6− εn/3
s

≥ (χ(H)− 1)(m− 1)− m

6
− εm

3

≥
(
χ(H)− 1− 1

3

)
(m− 1).

We say that two red cliques Qi and Qj, i 6= j, are red-adjacent if the induced bipartite
graph G[Qi, Qj] contains a red K2k,2k, and blue-adjacent otherwise. This gives us an auxiliary
two-coloured complete graph G∗ whose nodes are the M red cliques.

Suppose there is a red-adjacent path Qj1Qj2 · · ·Qjm on m vertices in G∗. We claim that
the sm ≥ n vertices in these m cliques of G can then be covered by a red kth power of a
path. Since each consecutive pair of cliques on the path is red-adjacent in G∗, we can find
vertex-disjoint red copies of Kk,k between each consecutive pair of cliques; now we construct
a copy of P k

sm by traversing the sequence of cliques in order, using the copies of Kk,k to step
from one clique to the next. Therefore there is no red copy of Pm in G∗.

If G∗ contains a blue-adjacent clique with vertex set {Qj1 , . . . , Qjχ(H)
}, then we can apply

Lemma 17, with t = χ(H), d = |H|−1, r = 2k, and the given value of s, to the sets Vi = Qji .
Each vertex set V ′i has size s − b16k2s1−1/4k|H|c ≥ s/2 ≥ |H| (since s ≥ (64k2|H|)4k), and
so the auxiliary graph G′ contains a copy of H, and therefore by Lemma 17 there is a blue
copy of H in G. Therefore there is no blue copy of Kχ(H) in G∗.

Thus G∗ is a two-coloured complete graph on at least (χ(H) − 1 − 1
3
)(m − 1) vertices,

with neither a red Pm nor blue Kχ(H). By Lemma 18, applied with α = 1/3, G∗ must consist
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of χ(H) − 1 red cliques C∗1 , . . . , C
∗
χ(H)−1, each with between 2m/3 and m − 1 nodes, joined

entirely by blue edges. These red cliques in G∗ correspond to red clusters C1, . . . , Cχ(H)−1 in
G, where each cluster contains between 2n/3 and n− 1 vertices.

Our plan is to show that we can form the required sets Vj by removing a small number of
vertices from each cluster Cj, placing these in the leftover set. Since we only remove vertices
from the clusters, the resulting Vj will all have at most n−1 vertices. As long as the leftover
set contains at most εn ≤ n/6 vertices, it follows that each Vi contains at least

(χ(H)− 1)n− n

6
− (χ(H)− 2)(n− 1)− n

6
>

2n

3
vertices.

Consider a clique Q in the cluster Ci. Let Q′ be a clique in the cluster Cj, where j 6= i.
Then QQ′ is a blue-adjacent edge of G∗: by definition there is no red K2k,2k between Q
and Q′ in G. By Theorem 16(a) the number of red edges between Q and Q′ is at most

2s2− 1
2k ≤ ε2s2/6(χ(H))2 – since s ≥ (12|H|2/ε2)2k. It follows that there are at most

ε2|Ci||Cj|
6(χ(H))2

red edges between Ci and Cj in G. In particular, at most ε|Ci|/3(χ(H))2 vertices of Ci can
have more than ε|Cj|/2 red neighbours in Cj.

For each i, let V ′i be the set of those vertices of Ci which have at most ε|Cj|/2 red
neighbours in Cj for each j 6= i. We have |Ci| − |V ′i | ≤ ε|Ci|/3χ(H) for each i, and so the

set L2 =

χ(H)−1⋃
i=1

(Ci \ V ′i ) of discarded vertices has size at most εn/3.

Suppose that V ′1 contains more than ε2|V ′1 |2/6χ(H) blue edges. This number is at least
2|V ′1 |2−1/|H|, since |V ′1 | ≥ |C1|/2 ≥ n/3, and we comfortably have n ≥ 3(12|H|/ε2)|H|. Thus,
by Theorem 16(a), there is a blue copy H1 of the bipartite graph K|H|,|H| in V ′1 .

We now show that such a blue bipartite graph inside V ′1 can be extended to a blue copy
of the χ(H)-partite graph K|H|,...,|H| in G, by taking a suitable set of |H| vertices from each
other V ′j .

The number of vertices in V ′2 which send red edges to any vertex of H1 is at most
2|H|ε|C2|/2 ≤ |V ′2 | − |H|; in particular, there are |H| vertices of V ′2 which each send blue
edges to every vertex of H1. Thus we have a blue copy H2 of the tripartite graph K|H|,|H|,|H|
in V ′1 ∪ V ′2 .

Repeating this argument for each V ′3 , . . . , V
′
r successively, using that, at each stage,

(χ(H)−1)|H|ε|Cj|/2 ≤ |V ′j |− |H| – this follows because |V ′j | ≥ |Cj|/2 and ε|H|2 ≤ 1/2 – we
find eventually a blue copy Hχ(H)−1 of the χ(H)-partite graph K|H|,...,|H|, as claimed. This
graph contains H, which is a contradiction.

It follows that V ′1 contains at most ε2|V ′1 |2/6χ(H) blue edges, and thus we can delete a
set of at most 2ε|V ′1 |/3χ(H) vertices of V ′1 to obtain a set V1 such that, for each v ∈ V1, v has
at most ε|V ′1 |/2 blue neighbours in V1.
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By symmetry, for each 2 ≤ i ≤ χ(H) − 1, one may remove 2ε|V ′i |/3χ(H) vertices from
V ′i to obtain a set Vi such that each v ∈ Vi has at most ε|V ′i |/2 neighbours in Vi. The set

L3 =

χ(H)−1⋃
i=1

(Vi \ V ′i ) of vertices discarded in this step is again of size at most εn/3.

Now set L = L1∪L2∪L3, so |L| ≤ εn. Note also that each set Vi has size at least |Ci|/2,
so every vertex in each Vi has at most ε|Vi| blue neighbours in Vi, and at most ε|Vj| red
neighbours in each other Vj.

Therefore the partition V (G) = V1 ∪ · · · ∪ Vχ(H)−1 ∪ L is as desired.

Given a graph G possessing a partition as in Lemma 19, one can easily find (by the
Sauer-Spencer Theorem [38]) in Vi a red copy of any graph on |Vi| vertices with maximum
degree at most 1/2ε. However we would like to find a red copy of P k

n , and our method of
proof only gives sets Vi of size (1−ε)n. So, in order to establish the exact value of R(P k

n , H),
we will have to find a way either to incorporate the vertices of the leftover set L into the
sets Vi, or to show that, when this is not possible, G contains a blue copy of H. To do this,
we give an embedding lemma based on the Sauer-Spencer Theorem; we shall apply it in the
case where F is the red graph with vertex set consisting of one of the sets Vi together with
some vertices of L, and J = P k

n .

Lemma 20. Given a natural number ∆ ≥ 1 and any 0 < ε < 1/(∆2 + 4), let F be an n-
vertex graph in which every vertex has degree at least 3∆εn, and all but at most εn vertices
have degree at least (1− 2ε)n. Let J be any n-vertex graph with ∆(J) ≤ ∆. Then J ⊂ F .

Proof. Let P ⊂ V (F ) be those vertices of F with degree less than (1 − 2ε)n. Since |P | ≤
εn < n/(∆2 + 1), we can find a set I ⊂ V (J) with |I| = |P |, and such that no two vertices
of I are either adjacent or have any common neighbour in J (we simply choose vertices
satisfying the conditions greedily).

Let φ : I → P be any bijection from I to P . We construct now a partial embedding
φ′ of I together with all its neighbours Γ(I) into F , extending φ. We do this by taking an
enumeration {x1, . . . , xm} of Γ(I) and, for each i in turn, choosing a vertex yi ∈ V (F ) to be
φ′(xi) with the following properties.

First, we require that yi /∈ φ′(I ∪{x1, . . . , xi−1}). At most |I ∪Γ(I)| ≤ (∆ + 1)εn vertices
of F fail to satisfy this condition.

Second, for any vertex v of I ∪{x1, . . . , xi−1} which is adjacent to xi, yi must be adjacent
to φ′(v). Observe that, in J , there is exactly one vertex of I adjacent to xi and at most ∆−1
other vertices (not in I) adjacent to xi. It follows that at most (n − 3∆εn) + (∆ − 1)2εn
vertices of F fail to satisfy this condition.

Since n > (∆ + 1)εn + (n − 3∆εn) + (∆ − 1)2εn, we will never become stuck, and the
desired extension φ′ exists.

Now let ψ be a bijection from V (J) to V (F ) extending φ′ and such that |{e ∈ E(J) :
ψ(e) /∈ E(F )}| is minimised. We claim that the number of such ‘bad’ edges is in fact zero;
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that is, ψ is an embedding of J into F , as desired.

Suppose this were false: then there is an edge ab of J such that ψ(ab) /∈ E(F ). Because
ψ extends φ′, and φ′ is an embedding, at least one of a and b, say b, is not in I ∪ Γ(I).

Because b /∈ I ∪ Γ(I), every neighbour v of b in J satisfies d(ψ(v)) ≥ (1 − 2ε)n. In
particular, there are at least (1− 2∆ε)n vertices of F which are adjacent to ψ(v) for every
neighbour v of b.

The number of vertices of J which have a neighbour in ψ−1
(
V (F ) \ Γ(ψ(b))

)
is at most

2∆εn, since |V (F ) \ Γ(ψ(b))| ≤ 2εn and J has maximum degree ∆.

Since (1− 2∆ε)n− 2∆εn > 0, there is a vertex c of J such that ψ(c) is adjacent to ψ(v)
for each neighbour v of b and such that c has no neighbours in ψ−1(V (F ) \Γ(ψ(b))); that is,
for each neighbour v of c, ψ(v) is a neighbour of ψ(b).

Now let ψ′ : V (J)→ V (F ) be defined as follows.

ψ′(x) =


ψ(c) if x = b,

ψ(b) if x = c,

ψ(x) if x 6= b, c.

In other words, we swap the targets under ψ of b and c.

By construction, any edge e of J which meets b or c is mapped to an edge of F by ψ′.
Since ψ′(x) = ψ(x) when x 6= b, c, any bad edge of ψ′ not meeting b or c is also a bad
edge of ψ; thus ψ′ has at least one fewer bad edge (namely ab) than ψ, which contradicts
minimality of ψ.

Now we can give the proof of Theorem 3.

Proof of Theorem 3. Given a graph H and a natural number k ≥ 2, set ε = 1/8k2|H| and
n0 = (20k|H|)16k|H| ≥ (1/ε)(200k2|H|/ε)4k|H|. Take any n ≥ n0, and let G be a two-coloured
complete graph on (χ(H)− 1)(n− 1) + σ(H) vertices.

By Lemma 19, if G contains neither a red copy of P k
n nor a blue copy of H, then we have

a partition V (G) = V1 ∪ · · · ∪ Vχ(H)−1 ∪ L such that the following are true.

• |L| ≤ εn.

• 2n/3 ≤ |Vi| < n for each i.

• For each i and v ∈ Vi, v has at most ε|Vi| blue neighbours in Vi.

• For each i and j, no vertex in Vi has more than ε|Vj| red neighbours in Vj.

For each i, let Ci be the set of vertices of L which send at least 6kεn red edges to Vi.

Suppose that for some i we have |Vi ∪Ci| ≥ n. An application of Lemma 20 (with F the
red graph induced on Vi∪Ci, J = P k

n and ∆ = 2k, noting that indeed ε < 1/(4k2 +4)) shows
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that there is a red copy of P k
n in G, which is a contradiction. It follows that, for each i, we

have |Vi ∪ Ci| ≤ n− 1; so∣∣∣∣V (G) \
χ(H)−1⋃
i=1

(Vi ∪ Ci)
∣∣∣∣ ≥ |V (G)| − (χ(H)− 1)(n− 1) = σ(H) .

Thus there is a set S of σ(H) vertices in L, each of which sends at least |Vi| − 6kεn blue
edges to Vi for each i. Take a χ(H)-colouring c of H in which the part with colour χ(H)
has σ(H) vertices. We construct a blue copy of H in G greedily as follows. Let T1 be a
set of |c−1(1)| vertices in V1 each of which is blue-adjacent to every member of S; let T2 be
a set of |c−1(2)| vertices of V2 each of which is blue-adjacent to every member of S ∪ T1,
and so on. The number of vertices of Vi which are red-adjacent to some member of S is
at most σ(H)6kεn; the number which are red-adjacent to some previously chosen vertex of
T1 ∪ · · · ∪ Ti−1 is at most |H|ε|Vi|.

Since σ(H)6kεn+|H|ε|Vi| ≤ (6k+1)|H|εn < n/2 < |Vi|−|H|, we never become stuck. We
obtain a blue complete χ(H)-partite graph which contains H. This completes the proof.

The proof above is not the simplest way to obtain Theorem 3: it is possible to work
directly with the structure of the auxiliary graph G∗ constructed in the proof of Lemma 19.
However, this proof lends itself to the generalisation required to prove Theorem 4.

4 Poor expanders are always-good

In this section we prove Theorem 4. We use the same general approach as in the previous
section, but here we make use of the Szemerédi Regularity Lemma [40], together with a
theorem of Böttcher, Schacht and Taraz [6], in order to replace the graph P k

n in Theorem 3
with a general graph G of bounded maximum degree and fairly small bandwidth.

Given ε > 0, let G be an n-vertex graph. For U and V disjoint subsets of V (G), let
e(U, V ) denote the number of edges of G between U and V , and define the density d(U, V )
of the pair (U, V ) as

d(U, V ) =
e(U, V )

|U ||V |
.

We call (U, V ) an ε-regular pair if, for all pairs of subsets U ′ ⊂ U and V ′ ⊂ V with |U ′| ≥ ε|U |
and |V ′| ≥ ε|V |, we have |d(U ′, V ′)− d(U, V )| < ε.

Suppose we have a partition V (G) = Z0∪Z1∪· · ·∪Zr satisfying the following properties.

• |Z0| ≤ εn.

• For each 1 ≤ i ≤ r, there are at most εr sets Zj such that (Zi, Zj) is not ε-regular.

• |Z1| = |Z2| = · · · = |Zr|.
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Then we call this partition ε-regular. We call the partition classes clusters and we refer to Z0

as the exceptional cluster. In his seminal work [40], Szemerédi proved that every sufficiently
large graph has an ε-regular partition in which the number of clusters is bounded by a
function of ε and is independent of the number of vertices. We shall use this result in the
following form.

Theorem 21 (Regularity Lemma). For any ε > 0 and k0, there exist K and n0 such that,
whenever n ≥ n0 and G is an n-vertex graph, G possesses an ε-regular partition with between
k0 and K clusters.

When we have an ε-regular partition of a graph G, we associate with it a cluster graph
R(G) whose nodes are the clusters of the partition (excluding Z0) and whose edges correspond
to ε-regular pairs of clusters – possibly only those whose density is above some given density
threshold d. One can easily prove that under very simple conditions, if R(G) contains a fixed
graph H, then G must also contain H as a subgraph. This is summarized in the following
lemma (see, for instance, Diestel [19]).

Lemma 22. For every d > 0, ∆ ≥ 1, there exists ε22 = ε22(d,∆) ≤ 1/2 with the following
property. Let G be an n-vertex graph and R(G) be a cluster graph with r ≤ d∆n/4 clusters,
ε ≤ ε22, and with density threshold d. Then, for every graph H with ∆(H) ≤ ∆, if R(G)
contains H as a subgraph, then G also contains H.

To handle bounded degree graphs with small bandwidth, we require the following theo-
rem, essentially due to Böttcher, Schacht and Taraz [6].

Theorem 23 (Böttcher, Schacht and Taraz [6]). For any µ, γ > 0 and for any natural
numbers χ and ∆ there exists ε23 > 0 such that, for all 0 < ε ≤ ε23, there is a K23 such that,
for all K ≥ K23, there exist β > 0 and n23 such that the following holds for all n ≥ n23 and
0 ≤ η < 1.

Let F be an n-vertex graph, and R(F ) the cluster graph corresponding to an ε-regular
partition of F with r ≤ K parts whose edges correspond to ε-regular pairs of density at
least γ. Suppose that in R(F ) there is a copy of P χ−1

(η+µ)r with the further property that every

χ-clique is contained in a (χ + 1)-clique of R(F ). Then whenever G is an ηn-vertex graph
with maximum degree ∆, chromatic number χ and bandwidth βn, we have G ⊂ F .

To be specific, Lemma 8 of [6] provides a graph homomorphism with certain additional
desirable properties from G to R(F ), in particular that no vertex of R(F ) is the target of
‘too many’ vertices of G. Since in our situation we seek to embed only ηn vertices into
(η + µ)r clusters (and therefore we have at least (η + µ/2)n vertices in the union of the
clusters of the P χ−1

(η+µ)r in R(F ) but only ηn in G, as opposed to the requirement in [6] for

a spanning embedding), we may in particular presume that for each i the homomorphism
allocates at most (1 − µ/4)|Zi| vertices of G to the cluster Zi. One can then complete the
embedding of G into F by using the Blow-up Lemma of Komlós, Sárközy and Szemerédi [31]
(again following the method of [6], Proof of Theorem 2). It should be emphasized that the

16



major source of difficulty in [6] is the requirement for a spanning embedding: obtaining an
embedding covering a (1− µ)-fraction of F (essentially our situation) is relatively trivial.

Whenever we use this, we will in fact find a copy of P χ
(η+µ)r in R(F ); this certainly contains

a copy of P χ−1
(η+µ)r in which every χ-clique extends to a (χ + 1)-clique. For convenience, we

presume the parameter n23 is chosen to be at least as large as required for Theorem 21 to
provide an ε-regular partition.

In our proof of Theorem 4, we shall use Theorem 23 with η = 1/(χ(H)− 1). Since it is
required that η < 1, we need to treat separately the case when H is bipartite: we appeal to
Theorem 7.

Our general strategy for proving Theorem 4 is very similar to that in the proof of Theo-
rem 3. We will need to be able to apply a version of our stability result, Lemma 19, to cluster
graphs. This means that we need the following variant of Lemma 19, where our two-coloured
graphs are not complete, but rather have minimum degree (1 − ε)n for some ε > 0 (whose
size we may choose as small as we desire).

Lemma 24 (Modified Lemma 19). Let H be a graph, k a natural number, and ε′ a positive
constant at most 1/2|H|2. There exists ε24 < ε′ such that for every positive ε < ε24 there
is an n24 for which the following holds. If n ≥ n24 and G is a two-coloured graph on N ≥
(χ(H)− 1)n− n/6 vertices with ∆(Ḡ) < εn, which contains neither a red copy of P k

n nor a
blue copy of H, then there is a partition V (G) = V1 ∪ · · · ∪ Vχ(H)−1 ∪ L with the following
properties.

• |L| ≤ ε′n.

• For each i, 2n/3 ≤ |Vi| < n.

• For each i and v ∈ Vi, v has at most ε′|Vi| blue neighbours in Vi.

• For each i and j, no vertex in Vi has more than ε′|Vj| red neighbours in Vj.

Proof. (Sketch) This is an entirely straightforward modification of the proof of Lemma 19.
There are two changes which must be made.

First, we can no longer use the Erdős-Szekeres bound R(Ks, K|H|) ≤
(|H|+s
|H|

)
to find red

s-cliques. It is easy to prove (albeit with slightly worsened bounds) that, if n is large enough,
then any two-coloured graph with minimum degree (1− ε)n contains either Ks or K|H|.

Second, the auxiliary graph G∗ must be defined slightly differently. Just as before, we say
two cliques Qi and Qj are red-adjacent if the induced bipartite graph G[Qi, Qj] contains a
red K2k,2k. If however Qi and Qj are not red-adjacent, then we have two possibilities. If there
are at least 2

√
ε|Qi||Qj| non-edges of G in G[Qi, Qj] then Qi and Qj are non-adjacent in G∗.

If Qi and Qj are not red-adjacent, and the number of non-edges of G in G[Qi, Qj] is less than
2
√
ε|Qi||Qj|, then Qi and Qj are blue-adjacent. Observe that if there is a vertex Qi with√
εv(G∗) non-neighbours in G∗, then there are at least 2

√
ε|Qi|(v(G∗)−1)|Qi| nonedges in G∗
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adjacent to Qi, so a vertex v ∈ Qi of minimum degree in G has more than εn non-neighbours
in G. This contradiction yields ∆(Ḡ∗) <

√
εv(G∗).

The rest of the proof goes through unchanged: note that since G∗ is now not a complete
graph, we use the full strength of Lemma 18 in this setting.

We are now ready to prove the main result of this section.

Proof of Theorem 4. Fix a graph H with χ(H) ≥ 3 and an upper bound ∆ on the maximum
degree of G. We need to show that, if β > 0 is sufficiently small, then for all sufficiently
large n, every connected n-vertex graph G with ∆(G) ≤ ∆ and bw(G) ≤ βn satisfies
R(G,H) = (χ(H)− 1)(n− 1) + σ(H).

We set γ = 1
200∆2|H| and µ = 1

12χ(H)2
, and choose ε′ such that

ε′ < min

{
ε22(1/2,∆),

1

2|H|2
,

1

∆2 + 4

}
and 4(χ(H)+3)ε′+8γ < min

{
1

∆2 + 4
,

1

(6∆ + 2)|H|

}
hold. We then choose ε such that ε < ε′, ε < ε23(µ, γ, χ(H),∆), and ε < ε24(H,χ(H), ε′).

Let k0 be such that k0 ≥ 2/ε, k0 > K23(µ, γ, χ(H),∆, ε), and k0 > n24(H,χ(H), ε′, ε).
Let K and n0 be constants such that the conclusion of Theorem 21 holds, with parameters
ε and k0, so in particular K ≥ k0 > K23(µ, γ, χ(H),∆, ε). Now let β > 0 and n23 ≥ n0 be
constants such that the conclusion of Theorem 23 holds.

Take any n ≥ max(n23, K2∆+2), and set η = 1/(χ(H)−1) ≤ 1/2. Let G be any connected
n-vertex graph with bw(G) ≤ βn and ∆(G) ≤ ∆, so χ(G) ≤ ∆ + 1.

Let F be a two-coloured complete graph on (χ(H)− 1)(n− 1) + σ(H) vertices. Our aim
is to prove that F contains either a red copy of G or a blue copy of H.

By applying Theorem 21 to the red graph of F , we obtain an ε-regular partition, and
hence a cluster graph R(F ) with some number r of vertices, k0 ≤ r ≤ K. By moving
the vertices of at most χ(H) clusters to the exceptional set Z0, we may assume that r =
(χ(H) − 1)m for some integer m. When (A,B) is a pair of clusters which is ε-regular, we
have an edge AB in R(F ). This graph R(F ) is very nearly complete: each vertex has degree
at least (1 − ε)r. When the density of red edges in (A,B) is more than γ, we colour AB
red, otherwise we colour it blue. Notice that if AB is blue, then the density of blue edges in
(A,B) is at least 1/2.

If there is a blue copy of H in R(F ), then, by Lemma 22 with d = 1/2, F contains a blue
copy of H, and we are done.

Also, if there is a red copy of P
χ(H)
(η+µ)r in R(F ), then, by Theorem 23, there is a red copy

of G in F , and again we are done.

Observe that (χ(H) − 1)(η + µ)r − (η + µ)r/6 < r. Thus if R(F ) contains neither a

red P
χ(H)
(η+µ)r nor a blue H, then, by Lemma 19, we have a partition V (R(F )) = W1 ∪ · · · ∪

Wχ(H)−1 ∪ L′ with the following properties.
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• |L′| ≤ ε′(η + µ)r.

• For each i, 2(η + µ)r/3 ≤ |Wi| < (η + µ)r.

• For each i and v ∈ Wi, v has at most ε′|Wi| blue neighbours in Wi.

• For each i and j, no vertex in Wi has more than ε′|Wj| red neighbours in Wj.

Consider the cluster A ∈ Wi, and let j 6= i. Set

δ = 2 (4ε′ + 2ε(χ(H)− 1) + 4(γ + ε)),

and let A′ be the set of vertices in A which send more than δn/2 red edges to Wj. Suppose
that |A′| ≥ ε|A|.

In R(F ), A sends red edges to at most ε′|Wj| clusters of Wj. To these clusters, A′ sends
at most ε′|Wj| · |A′|(N/r) red edges.

There are further at most εr clusters of Wj which are not adjacent in R(F ) to A, corre-
sponding to non-ε-regular pairs in F . To these clusters, A′ sends at most εr · |A′|(N/r) red
edges.

The remaining clusters of Wj are linked by blue edges in R(F ) to A. Hence, their red
density is at most γ and they are ε-regular. Using ε-regularity, the total number of red edges
from A′ to these clusters is bounded by |Wj| · (γ + ε)|A′|(N/r).

Using that |Wi| < (η + µ)r = m + µr < 2m and N/r = n/m + σ(H)/r < 2n/m, we
obtain

ered(A′,
⋃

Wj) < (4ε′ + 2ε(χ(H)− 1) + 4(γ + ε))|A′|n = δ|A′|n/2.

On the other hand, it follows from the definition of A′ that ered(A,
⋃
Wj) > δn|A′|/2, which

is a contradiction. Hence, |A′| < ε|A|.

Since this holds for each cluster of Wi and every j 6= i, we can remove at most (χ(H)−
2)ε|

⋃
Wi| vertices from

⋃
Wi to obtain a set Vi of vertices of F which sends at most δn/2

red edges to
⋃
Wj for every j 6= i.

Since |Vi| > n/2 for each i, we certainly have that for each i 6= j, every vertex in Vi has
at most δ|Vj| red neighbours in Vj.

Given i, by an identical argument to that in the proof of Lemma 19, if there are more
than δ2|Vi|2/6 blue edges in Vi, then Vi contains a blue copy of K|H|,|H| which we can extend
to a blue copy of H in F . It follows that we can remove at most 2δ|Vi|/3 vertices from Vi
to obtain a set V ′i such that every vertex in V ′i has at most δ|Vi|/2 blue neighbours in Vi.
Thus, for each i, every vertex in V ′i has at least (1− δ)|V ′i | red neighbours in V ′i .

We can now complete the proof in an identical fashion to the proof of Theorem 3. We
let the set L contain all those vertices of F which are in no set V ′i . We let Ci be the set of
vertices in L which send at least 3∆δn edges to V ′i . By Lemma 20, if for some i we have
|V ′i ∪ Ci| ≥ n, then we can find a red copy of G in F .
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But if for each i we have |V ′i ∪Ci| ≤ n− 1, then we can find a set S of σ(H) vertices of L
which each sends at least (1−3∆δ)n blue edges to each set V ′i . As in the proof of Theorem 3,
we can now construct a blue copy of H in F greedily. This completes the proof.

5 Multi-colour problems

In this section, we prove Theorem 8, stating that if G is an always-good family of graphs,
then G is also multicolour-always-good; that is, given r ≥ 2 and graphs H1, . . . , Hr, there
are integers W and Z (not depending on G) such that, for all sufficiently large G ∈ G,
R(G,H1, H2, . . . , Hr) = W (|G| − 1) + Z.

Our first step is to give explicit definitions of the constants W and Z as the solutions to
two further Ramsey-type problems involving H1, . . . , Hr.

The first is a variant of the standard Ramsey problem. We define the homomorphism
Ramsey number Rhom(H1, . . . , Hr) to be the smallest N such that, if F is any r-coloured com-
plete graph on N vertices, there exists a colour i such that there is a graph homomorphism
from Hi into the ith colour subgraph of F . Then we let

W = Rhom(H1, . . . , Hr)− 1.

It is clear that Rhom(H1, . . . , Hr) ≤ R(H1, . . . , Hr), and sometimes this inequality is sharp –
if all the graphs are complete graphs – but in general it is not; for example, Rhom(C3, C5) = 5
although R(C3, C5) = 9. It may be of independent interest to investigate the properties of
Rhom further.

Given a graph G, a vertex x of G, and an integer m ≥ 1, the m-blow-up of G at x is the
graph obtained by replacing x with an independent set {x1, . . . , xm}, each vertex of which
has the same adjacencies as x has in G. The m-blow-up of the graph G is the graph obtained
by blowing up by m at each vertex of G. It is clear that there is a homomorphism of Hi into
the ith colour subgraph of G if and only if there is some m-blow-up of G whose ith colour
subgraph contains H. Hence Rhom can be also defined in terms of blow-ups.

We define Z as the smallest natural number N with the following property. For any
labelled graph F on W + N vertices, with all edges incident to at least one of the first W
vertices present, if F is r-coloured and F ′ is obtained from F as the m-blow-up of the first
W vertices for some sufficiently large m = m(H1, . . . , Hr), then there is some i such that Hi

is contained within the ith colour subgraph of F ′.

It is clear that, for any connected n-vertex graph G with n ≥ Z, R(G,H1, . . . , Hr) ≥
W (n−1)+Z. Indeed, let F be a labelled r-coloured graph onW+Z−1 vertices demonstrating
that Z cannot be replaced by Z − 1. We obtain an r-coloured complete graph F ′ on W (n−
1) + Z − 1 vertices by taking the (n − 1)-blow-up of the first W vertices of F and then
replacing every non-edge with a red edge. Then certainly there is no red copy of G in F ′,
and, by the definition of Z, for each i ∈ [r], there is no copy of Hi in F ′.

We now prove Theorem 8.
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Proof. Given an always-good class of graphs G, let r ≥ 2 be any integer and H1, . . . , Hr any
collection of r graphs. Let W , Z, and m = m(H1, . . . , Hr) be defined as above.

Suppose that ` is some integer sufficiently large that the following procedure succeeds.

Let F denote a complete (W +1)-partite graph K`,`,...,`,Z , with an r-colouring of its edges.
Let (U1, V1), . . . , (U(W2 ), V(W2 )) be an enumeration of all the pairs of parts of F , excluding the

last part. Set Γ0 equal to the set of vertices in these first W parts.

Now, for each 1 ≤ i ≤
(
W
2

)
in turn, consider the complete bipartite r-coloured subgraph

Ji of F induced by the pair (Ui∩Γi−1, Vi∩Γi−1). Let Bi be a maximum-size monochromatic
complete balanced bipartite subgraph of Ji, and form Γi by deleting from Γi−1 all vertices
in Ui ∩ Γi−1 and Vi ∩ Γi−1 except those in Bi.

Observe that, at each step i, the r-coloured complete bipartite graph Ji must have one
colour present with edge density at least 1/r, and thus the Kövári-Sós-Turán Theorem
(Theorem 16) provides a lower bound on the size of the monochromatic complete balanced
bipartite subgraph Bi found at step i. In particular, by choosing ` sufficiently large, we may
conclude that, at the end of the process, the set U ∩ Γ(W2 ) contains at least rZm vertices for

every part U of F , except the last one.

Now let F ′ be the r-coloured (W + 1)-partite graph obtained from F by removing all
vertices Γ0−Γ(W2 ) – in other words, we take the r-coloured complete W -partite graph induced

on Γ(W2 ) and add back the last part of F . By construction, the edges between any two of

the first W parts of F ′ form a monochromatic complete bipartite graph. Let F ′′ be obtained
by deleting from the first W parts of F ′ a minimum set of vertices such that the edges from
any vertex in the (W + 1)-st part of F ′′ to any of the first W parts are monochromatic. By
choice of `, the first W parts of F each still contain at least m vertices. By the definition of
W and Z, for some i, a copy of Hi of colour i is contained in F ′′, and, hence, in F .

Now, because G is always-good, in particular it is H-good for H = K`,`,...,`,Z . Note that
χ(H) = W + 1 and σ(H) = Z. Thus, whenever G ∈ G is sufficiently large, and F is any
{red}∪ [r]-coloured complete graph on W (|G|−1)+Z vertices, either F contains a red copy
of G, or F contains an r-coloured copy of H = K`,`,...,`,Z , and hence a copy of Hi of colour i
for some i ∈ [r].

In the proof above, the required size of ` is a tower of height O(W 2), and in turn W can
be very large in comparison to the small graphs—for instance, if each of the small graphs is
the clique Ks, then W = 2Ω(s).

As an illustration of the use of Theorem 8, we show how to find the Ramsey numbers for
a collection of odd cycles, provided they are suitably long.

Corollary 25. For any odd integers `1, . . . , `r, with `s > 2s for each 1 ≤ s ≤ r, and every
sufficiently large n,

R(Cn, C`1 , . . . , C`r) = 2r(n− 1) + 1.

Proof. Since the family of cycles is always-good by Theorem 3, and thus by Theorem 8
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multicolour-always-good, we need only solve the two auxiliary Ramsey-type problems to
find W and Z.

We first need to show that Rhom(C`1 , . . . , C`r) = 2r + 1. For the lower bound, it is a
standard result that the edge-set of K2r can be partitioned into r colour classes so that no
colour class contains an odd cycle. For such a colouring, there is no homomorphism from
the odd cycle C`i to the ith colour class, for any i.

For the upper bound, we proceed by induction on r. The result is trivial for r = 1, so we
suppose r > 1. For any r-coloured K2r+1, either there is an odd cycle Q in colour r, in which
case there is a homomorphism from C`r to Q – here we use the assumption that `r ≥ 2r + 1
– or the graph of edges coloured by r is bipartite, in which case one of its parts contains an
(r − 1)-coloured K2r−1+1, and the result follows by induction.

Secondly, we need to show that Z = 1. Any labelled graph F onW+Z = Rhom(C`1 , . . . , C`r)
vertices, with all edges incident to at least one of the first W vertices present, is complete.
Hence, if F is r-coloured, then, for some i, there is a homomorphism from C`i into the ith
colour subgraph of F . Thus, F contains an odd cycle Q of length at most `i in colour i.

For m = max(`1, . . . , `r), let F ′ be obtained from F as the m-blow-up of the first W
vertices. Given an odd cycle Q in colour i, we have freedom to choose a homomorphism
which maps only one vertex of C`i to a chosen vertex of Q. By m-blowing-up the remaining
vertices of Q, we obtain enough room to embed the remaining vertices of C`i .

A well-known problem raised by Bondy and Erdős [4] is to determine the r-colour Ramsey
number R(Cn, . . . , Cn), when n is odd. The lower bound 2r−1(n − 1) + 1 is pointed out in
that paper, and this is widely believed to give the correct value of the Ramsey number
provided n is sufficiently large – our result above may be seen as giving a weak support for
that conjecture. The conjecture was proved in the case r = 3 by Kohayakawa, Simonovits
and Skokan [29]: for n odd and sufficiently large, R(Cn, Cn, Cn) = 4n− 3.

6 Powers of paths and cycles against themselves

Our purpose in this section is to give both upper and lower bounds on the Ramsey numbers
R(P k

n , P
k
n ) and R(Ck

n, C
k
n), for fixed k and large n. In the next section, we will move on to

consider general graphs with bounded maximum degree and limited bandwidth.

We start with a construction giving a lower bound better than the one from Burr’s
construction (Lemma 1). We begin by assuming that n is a multiple of k+1: for convenience
we restate Theorem 10.

Theorem 10. For k ≥ 2,

R(Ck
(k+1)t, C

k
(k+1)t), R(P k

(k+1)t, P
k
(k+1)t) ≥ t(k + 1)2 − 2k .
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Note that χ(Ck
(k+1)t) = χ(P k

(k+1)t) = k+ 1, while σ(Ck
(k+1)t) = σ(P k

(k+1)t) = t, so Lemma 1

gives the lower bound k[(k + 1)t − 1] + t on both Ramsey numbers, which is kt − k below
the value in Theorem 10.

Proof. We colour Kt(k+1)2−2k−1 as follows. Partition [t(k + 1)2 − 2k − 1] into disjoint sets
A1, . . . , Ak each on kt−1 vertices, B1, . . . , Bk each on 2t−1 vertices, and C on t−1 vertices.

Now colour edges as follows. Within each set Ai we have only red edges. Within each
set Bi we have only blue edges. Between two sets Ai and Aj, i 6= j, we have only blue edges;
between Bi and Bj, i 6= j, only red edges.

For each i, we have only red edges between Ai and Bi, while between Ai and Bj for i 6= j
we have only blue edges. Finally, we take any colouring within C, and join all its vertices in
blue to every Ai and in red to every Bi.

In the red graph, any copy of P k
m, for any m > k, with one vertex in a set Ai must lie

entirely within Ai ∪Bi, Ai is too small to contain k colour classes of P k
(k+1)t, hence, Bi must

contain two vertices from two distinct vertex classes, which is impossible because all its edges
are blue. But if the sets Ai are not to be used, then an entire colour class of P k

(k+1)t would
have to lie in C, which is again too small.

The argument showing that there is no copy of P k
(k+1)t in the blue graph is very similar.

Suppose there is such a copy Q, and suppose first that it includes some vertex v of some Bi.
The set T of the next k vertices on Q forms a blue clique adjacent to v, so there is at most
one vertex of T in each of the Aj with j 6= i, and so at least one vertex of T in Bi. Thus Q
lies within Bi∪

⋃
j 6=iAj. Moreover, at most k−1 out of each set of k+1 consecutive vertices

on Q are in the Aj, and so there are at least 2t vertices of Q in Bi, which is impossible. As
before, if the sets Bi are not used for Q, then an entire colour class of Q would lie in C,
which is again too small.

For k > 2, the construction above can be generalised. First we take an auxiliary red-
blue-coloured graph J , which is a copy of Kk,k, with parts {a1, . . . , ak} and {b1, . . . , bk}, with
the property that each ai is incident with at least one blue edge and each bi with at least
one red edge. Each such J will give us a different construction of a two-coloured graph on
t(k + 1)2 − 2k − 1 vertices with no monochromatic P k

(k+1)t, as follows. Take disjoint vertex

sets A1, . . . , Ak, B1, . . . , Bk, C, with |C| = t− 1. The set Ai has (`i + 1)t− 1 vertices, where
`i is the number of blue edges incident with ai in J , and the set Bi has (mi+1)t−1 vertices,
where mi is the number of red edges incident with bi in J . The total number of vertices is
always t(k + 1)2 − 2k − 1.

As before, within each Ai we have red edges, and between different Ai we have blue edges,
while within each Bi we have blue edges, and between different Bi we have red edges. The
colouring inside C is arbitrary, and its vertices are joined in blue to every Ai and in red to
every Bi. The edges between Ai and Bj all have the colour of the edge between ai and bj
in J . The proof that such a two-coloured graph contains no monochromatic P k

(k+1)t is similar
to that in Theorem 10.
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When k+1 does not divide n, still Burr’s construction can be improved upon. For powers
of paths, the adjustments required are small, so we concentrate on powers of cycles.

Theorem 26. For k ≥ 2 and any 1 ≤ r ≤ k,

R(Ck
(k+1)t+r, C

k
(k+1)t+r) ≥ (k + 1)[(k + 2)t+ 2r − 2] + r .

The lower bound on R(Ck
(k+1)t+r, C

k
(k+1)t+r) coming from Lemma 1 is (k + 1)[(k + 1)t +

r − 1] + r.

Proof. We colour K(k+1)((k+2)t+2r−2)+r−1 as follows. Partition [(k+1)((k+2)t+2r−2)+r−1]
into disjoint sets A1, . . . , Ak+1 each on kt + r − 1 vertices, B1, . . . , Bk+1 each on 2t + r − 1
vertices, and C on r − 1 vertices.

Now we colour edges as in the proof of the previous theorem. The proof that such a
two-coloured graph contains no monochromatic Ck

(k+1)t+r follows the proof of Theorem 10
and we omit it here.

We believe that the constructions above are, at least asymptotically, optimal.

The rest of this section is devoted to proving the upper bounds on R(P k
n , P

k
n ) and

R(Ck
n, C

k
n) given in Theorem 11. Our first step is to prove an upper bound on R(Pn, P

k
n ), for

which we need the following three results.

First, we recall the Erdős-Gallai extremal theorem for cycles [22].

Theorem 27 (Erdős-Gallai [22]). Let G be a graph on n vertices, and c an integer, 3 ≤ c ≤ n.
Then either G contains a cycle of length at least c or

e(G) < (c− 1)(n− 1)/2 + 1 .

Second, we need a result on maximum cycles in graphs. The lemma below is simple, and
convenient for our purposes: a much stronger result has recently been proved by Kohayakawa,
Simonovits and Skokan [30]

Lemma 28. Given a graph G containing vertex disjoint cycles Ct and Ct′, if G contains no
cycle of length greater than t, then the bipartite graph G[V (Ct), V (Ct′)] contains no copy of
Ks,s, where s =

⌈
t
t′

⌉
+ 2.

Proof. Suppose not, and let G, Ct, Ct′ form a counterexample. Now G contains a copy of
the bipartite graph Ks,s whose parts are in V (Ct) and V (Ct′), so in particular there are two
vertices of this complete bipartite graph in Ct which are joined in Ct by a path P of length at
least s−1

s
t, and two more in Ct′ joined by a path P ′ in Ct′ of length at least s−1

s
t′. The vertices

in V (P )∪ V (P ′) form a cycle of length at least s−1
s

(t+ t′) > t, which is a contradiction.

Third, a standard greedy method allows us to find a copy of P k
n in a very dense graph

on only slightly more than n vertices.
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Lemma 29. Let k and n be natural numbers, and ε a real number, satisfying 0 < ε ≤
(k + 3)−1 and n > 3ε−2. If H is any graph on at least n + (k + 2)εn vertices, such that the
complement H contains no cycle of length at least ε2n, then H contains a copy of P k

n .

Proof. By Theorem 27, H has at most (ε2n− 1)(|H| − 1)/2 + 1 < ε2|H|n/2 edges. If H had
more than n+kεn vertices of degree greater than εn, then it would have at least (n+kεn) εn

2

edges, which is a contradiction. So at least n + kεn vertices of H have degree less than
εn. Let H ′ be the subgraph of H induced by these vertices. Then H ′ has at least n + kεn
vertices, the neighbourhood of any set of k vertices of H ′ contains at most kεn vertices, and
so, in H ′, every set of k vertices has at least n common neighbours. We can embed P k

n into
H ′ by a simple greedy procedure: we choose any vertex to be the first vertex of the path,
any neighbour to be the second vertex of the path, and so on. At each embedding step, we
only need to find a vertex which is adjacent to all of the last k vertices embedded, and which
has not yet been used in the embedding. Such a vertex is guaranteed to exist since any k
vertices of H ′ have at least n common neighbours, and we only need to embed a total of n
vertices.

Now we can prove our upper bound on the Ramsey number of a path versus a power of
a path.

Lemma 30. For any natural number k,

R(Pn, P
k
n ) ≤

(
k + 1 +

1

k + 1

)
n+ o(n) .

Note that this upper bound is significantly larger than the lower bound R(Pn, P
k
n ) ≥ k(n−

1) + σ(P k
n ) ∼

(
k + 1

k+1

)
n. We conjecture that the lower bound is correct. An improvement

in this upper bound would improve the upper bound in Theorem 11 by a corresponding
amount, but this is not the source of the factor of 2 between our lower and upper bounds.

Proof. We show that, for any 0 < ε ≤ (k + 3)−1, the Ramsey number R(Pn, P
k
n ) is bounded

above by (
k + 1 +

1

k + 1
+ (k + 3)ε

)
n (1)

for

n >
(
16(2k + 1)ε−8

)4ε−2

. (2)

Accordingly, we assume that n is indeed greater than (16(2k + 1)ε−8)
4ε−2

. Let G be a
two-edge-coloured complete graph on

(
k + 1 + 1

k+1
+ (k + 3)ε

)
n vertices which contains no

red Pn. We choose successively vertex-disjoint maximum-length red cycles in G. Let V1 be
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the vertex set of the longest red cycle of G, V2 the vertex set of the longest red cycle of
G− V1, and so on.

Since Pn ⊂ Cn, we have n − 1 ≥ |V1| ≥ |V2| ≥ · · · . Let r be the greatest index

such that |Vr| ≥ ε2n, and let W = V (G) −
r⋃
i=1

Vi. Since the sets Vi are disjoint, we have

r ≤ (k + 1 + 1
k+1

+ (k + 3)ε)ε−2 < ε−3, independently of n.

If |W | ≥ n + (k + 2)εn, then the graph of blue edges in W satisfies the conditions of
Lemma 29, so G contains a blue copy of P k

n . Therefore we will assume |W | < n+ (k+ 2)εn.

Let s =
⌈
n
ε2n

⌉
+ 2 < 2ε−2. By Lemma 28, for any 1 ≤ i < j ≤ r, there is no red copy

of Ks,s in G whose parts are in Vi and Vj respectively. We wish to use this together with
Lemma 17 to find a blue copy of P k

n (which has maximum degree 2k). We will use the
fact that P k

n is a subgraph of the complete (k + 1)-partite graph with parts of size
⌈

n
k+1

⌉
.

Observe that no part Vi has size greater than n, and the union of all the parts has size at
least

(
k + 1

k+1
+ ε
)
n.

Now choose `1 to be the smallest index such that

`1∑
i=1

(
|Vi| − 4s2n

2s−1
2s (2k + 1)

)
≥
⌈

n

k + 1

⌉
.

Since 4s2n
2s−1
2s (2k + 1)r < εn (here we use (2)), by (1) this is possible and, furthermore,

`1∑
i=1

|Vi| < n (in fact, this sum can exceed 2
⌈

n
k+1

⌉
+ εn only when `1 = 1).

For each 2 ≤ j ≤ k in succession, let `j be the smallest index such that

`j∑
i=`j−1+1

(
|Vi| − 4s2n

2s−1
2s (2k + 1)

)
≥
⌈

n

k + 1

⌉
.

Again, this is possible because

`j−1∑
i=1

|Vi| < (j − 1)n and 4s2n
2s−1
2s (2k + 1)r < εn, and we also

have

`j∑
i=`j−1+1

|Vi| < n.

We apply Lemma 17 to the parts V1, . . . , Vr of G. Let V ′1 , . . . , V
′
r be the parts of G′ as

in the lemma; since for each 1 ≤ i < j ≤ r the sets Vi and Vj are blue-adjacent, the parts

V ′i and V ′j span a complete bipartite graph. Let W1 =

`1⋃
i=1

V ′i , Wj =

`j⋃
i=`j−1+1

V ′i for each

2 ≤ j ≤ k, and Wk+1 =
r⋃

i=`k+1

V ′i . Since |W1|, . . . , |Wk| < n and (1) holds, we are guaranteed
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to find that |Wk+1| ≥
⌈

n
k+1

⌉
. The Wj form the parts of a complete (k + 1)-partite subgraph

of G′, so that P k
n can be embedded into G′. By Lemma 17, G contains a blue copy of P k

n .

It is now straightforward to prove our desired bounds on R(P k
n , P

k
n ) and R(Ck

n, C
k
n).

Proof of Theorem 11. Given ε > 0, let s = s(n) be any sufficiently slowly growing function
of n and n0 be any sufficiently large integer. Suppose n > n0.

Suppose first that we seek either a monochromatic P k
n , or a monochromatic Ck

n where
k + 1 divides n. Let G be a two-coloured complete N -vertex graph, where

N =

(
2k + 2 +

2

k + 1

)
n+ εn .

We partition V (G) into a collection R of red s-cliques, B of blue s-cliques, and a leftover
set of at most 22s vertices. Without loss of generality, we assume that |R| ≥ |B|.

We call two cliques Ri and Rj ∈ R red-adjacent when G[Ri, Rj] contains a copy of K4k,4k,
and blue-adjacent otherwise. This defines the two-coloured complete graph G∗ on R. For
t = n/s+ εn/4s(k + 2), we have

|G∗| ≥ N − 22s

2s
≥ N − εn/2

2s
≥
(
k + 1 +

1

k + 1

)
t+

εt

8
.

If we find a red copy of Pt in G∗, then we immediately find a red copy both of P k
n and of Ck

n

in G, as st ≥ n.

But by Lemma 30, if we do not have in G∗ a red copy of Pt, then we do have a blue copy
of P k

t ; by Lemma 17, we find in G a copy of P k
n and, provided that k + 1 divides n, also of

Ck
n, as required.

If we seek a monochromatic copy of Ck
n and k + 1 does not divide n, then observe that

(provided n > (k + 1)2) we have χ(Ck
n) = k + 2. We use the same strategy, now applying

Lemma 30 to find either a red Pt or blue P k+1
t in the (by assumption larger) graph G∗, to

obtain the desired result.

We note that the primary reason why the upper bound we obtain is larger than the
conjectured value by approximately a factor of 2 is that, in this proof, we simply throw away
the minority colour cliques.

7 Ramsey numbers of poor expanders

In this section we prove Theorem 12. We prove this theorem by combining Theorem 23 with
a variation of Theorem 11.
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Lemma 31. Given sufficiently small ε > 0 and integer k, there exists n0 such that the
following holds. Let n ≥ n0 and G be any three-edge-colouring of the complete graph K(2k+3)n,
with edges coloured either ‘red’, ‘blue’, or ‘bad’, such that no more than εn bad edges meet
any single vertex. Then G contains either a red or a blue copy of P k

n .

The proof of this lemma is a straightforward modification of the proof of Theorem 11, in
much the same way as Lemma 24 is a straightforward modification of Lemma 18. As there,
we must replace the Erdős-Szekeres bound with an easy modification to find red and blue
cliques, and, as there, we must permit our auxiliary graph G∗ to contain some non-edges
(but not too many at any vertex). It is straightforward to check that the remainder of the
proof is insensitive to this change; we omit the details.

We are now in a position to complete the proof of Theorem 12.

Proof of Theorem 12. Given ∆, let µ = 1/(30(∆+1)2) and γ = 1/2. For k, 2 ≤ k ≤ ∆+1, let
β23 = β23(k), ε23 > 0, and n23 = n23(k) be constants such that whenever n ≥ n23, Theorem 23
permits the embedding into a (2k + 4)n-vertex graph F (possessing a suitable ε23-regular
partition) of any n-vertex graph G with ∆(G) ≤ ∆, χ(G) = k, and bw(G) ≤ β23n.

We set β = min{β23(k), 2 ≤ k ≤ ∆ + 1} and n0 = max{n23(k), 2 ≤ k ≤ ∆ + 1}. Let G be
any n-vertex graph with ∆(G) ≤ ∆ and bw(G) ≤ βn. Set k = χ(G) ≤ ∆ + 1, and let F be
any complete 2-coloured graph on (2k + 4)n vertices.

By Theorem 21, F possesses an ε23-regular partition. Let R(F ) be the corresponding
(2k+3)m-vertex cluster graph, with edges coloured ‘red’ when they correspond to ε23-regular
pairs whose density of red edges is at least 1

2
, ‘blue’ when they correspond to ε23-regular pairs

whose density of red edges is less than 1
2
, and ‘bad’ otherwise.

By Lemma 31 applied to R(F ), R(F ) contains either a red or a blue copy of P k
m. By

symmetry we may presume that it is a red copy.

Observe that 1
2k+4

+µ ≤ 1
2k+3

. It follows that we may set η = 1
2k+4

and apply Theorem 23
to the graph formed by the red edges of F , with the ε23-regular partition given, to find a
copy of G; this is a red copy of G in F , completing the proof.

We made no effort to optimise the constants implicit in either Lemma 31 or Theorem 12.
It seems very likely that given any ε > 0 there is δ > 0 such that the following is true for
sufficiently large n. If F is any two-coloured complete graph on R(P k

n , P
k
n ) + εn vertices,

then even after deleting δn edges meeting each vertex of F , there remains either a red or a
blue copy of P k

n in F . It would then follow that given ε > 0, if G is any n-vertex graph with
maximum degree ∆, chromatic number k and bandwidth βn, where β is sufficiently small
and n sufficiently large, then R(G,G) ≤ R(P k

n , P
k
n ) + εn.

It seems likely that R(G,G) ≤ R(P k−1
n , P k−1

n ) + εn is true. However to prove this (at
least by the methods used here) one would need to be able to find in the Szemerédi cluster
graph not only a monochromatic (k − 1)st power of a path of sufficient length, but also
a structure (for example an appropriately positioned (k + 1)-clique in the same colour)
permitting redistribution of vertices between colour classes.
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8 Open Problems

We collect here some open problems related to our work, including some that we have
mentioned in the paper.

First, we wonder whether there is scope for some improvement in Theorem 4: can we
weaken the hypothesis that the bandwidth be sublinear?

Problem 32. Is there, for any d ≥ 3, a constant εd > 0 such that the class Gd,εdn of graphs
G with maximum degree d and bandwidth at most εd|G| is always-good?

Another possibility for weakening the hypotheses of Theorem 4 is to replace the bound
on the maximum degree by a bound on the degeneracy of G.

Conjecture 33. For each fixed d, and each function β(n) = o(n), the class G ′d,β of graphs
G with degeneracy at most d and bandwidth at most β(|G|) is always-good.

We discussed in the introduction the need for n to be quite large in terms of |H| in order
for R(P k

n , H) to be as small as (χ(H) − 1)(n − 1) + σ(H), for k ≥ 2. However there seems
to be no such barrier for k = 1.

Conjecture 34. For every graph H, R(Pn, H) = R(Cn, H) = (χ(H) − 1)(n − 1) + σ(H)
whenever n ≥ χ(H)|H|.

We believe that, for many graphs H, even just n ≥ |H| suffices. One such an example is
the R(Cn, K`) with n ≥ ` case of this conjecture, which is an old question of Erdős, Faudree,
Rousseau and Schelp [21]. Even in this case the best result is that the formula holds for
n ≥ 4`+ 2, due to Nikiforov [33].

We believe that our lower bound on R(P k
n , P

k
n ) is in fact the correct value for this Ramsey

number. We state this conjecture for n a multiple of k + 1, for convenience, but we believe
that our construction in Section 6 is optimal for all sufficiently large values of n.

Conjecture 35. For k ≥ 2, and n a sufficiently large multiple of k + 1, we have

R(P k
n , P

k
n ) = (k + 1)n− 2k.

We believe that the same result is also true for Ck
n.

A proof of the above conjecture would give some improvement in the bound in Theo-
rem 12. As mentioned in the introduction, we expect the following to be true.

Conjecture 36. For each ∆ ≥ 1, there exist n0, β and C such that, whenever n ≥ n0 and
H is an n-vertex graph with maximum degree at most ∆ and bandwidth at most βn, we have
R(H,H) ≤ (χ(H) + C)n.
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As discussed at the end of the previous section, we may be able to take C to be arbitrarily
small.

The graph P 3
n is easily seen to be planar for every n; by Theorem 10 we have R(P 3

n , P
3
n) ≥

4n−6 when 4 divides n. We know of no planar graphs with larger Ramsey number bar a few
small graphs (R(K4, K4) = 18, R(K5− e,K5− e) = 22, see [35]), but we have not made any
serious efforts to discover such. Chen and Schelp proved [13] that there exists an absolute
constant C such that R(H,H) ≤ Cn for every n-vertex planar graph H. The best value
known to us for C is obtained by combining a theorem of Graham, Rödl and Ruciński [27]
(essentially Theorem 9) with the Kierstead-Trotter bound [28] that all planar graphs are
10-arrangeable, which yields C ≈ 10200. By Corollary 15 we can reduce C to 12 for bounded
degree planar graphs. We offer the following conjecture.

Conjecture 37. For every sufficiently large n and every planar graph H on n vertices, we
have R(H,H) ≤ 12n.
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[37] G. Sárközy, M. Schacht and A. Taraz, Two and three colour Ramsey numbers for
bipartite graphs with small bandwidth, in preparation.

[38] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B
25 (1978), 295–302.

[39] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977),
69–76.
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