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Abstract

We examine the robustness of information cascades in laboratory experiments. Apart
from the situation in which each player can obtain a signal for free (as in the exper-
iment by Anderson and Holt, 1997, American Economic Review), the case of costly
signals is studied where players decide whether or not to obtain private information,
at a small but positive cost. In the equilibrium of this game, only the first player buys
a signal and makes a decision based on this information whereas all following players
do not buy a signal and herd behind the first player. The experimental results show
that too many signals are bought and the equilibrium prediction performs poorly. To
explain these observations, the depth of the subjects’ reasoning process is estimated,
using a statistical error-rate model. Allowing for different error rates on different
levels of reasoning, we find that the subjects’ inferences become significantly more
noisy on higher levels of the thought process, and that only short chains of reasoning

are applied by the subjects.



1 Introduction

In simple cascade games, the players sequentially choose one out of two alternatives,
after receiving private signals about the profitability of the two options, and after
observing the choices of all preceding players. While the signals are not revealed
to subsequent players, the latter may be able to infer the information observed by
their predecessors from the decisions that were made. As a consequence, Bayesian
Nash Equilibrium implies the possibility (depending on the sequence of signals) that
rational herding occurs, i.e., that players disregard their own private information
and follow the decisions of previous players. In this case, no further information is
revealed, and an ”information cascade” develops, with all players choosing the same
option.

Following the papers by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch
(1992), models of information cascades have been used to explain a great number of
economic phenomena. They include consumers herding behind other consumers’
purchasing decisions, herding among security analysts and mutual fund managers,
herding among bank customers resulting in bank runs, waves of mergers and waves
of takeovers, herding among economic forecasters, adoption of certain medical proce-
dures by doctors imitating other doctors, potential employers not hiring a candidate
with a history of joblessness, etc.!

From a behavioral perspective, one can ask whether the reasoning process un-

derlying Bayesian Nash Equilibrium in cascade games is applied by actual decision

'For surveys see Bikhchandani, Hirshleifer, and Welch (1998) as well as Tvo Welch’s homepage

with an annotated bibliography (http://welch.som.yale.edu/cascades/).



makers. This appears particularly doubtful in situations where relatively deep levels
of reasoning are needed, by which we mean that decisions are determined after several
steps of using the knowledge about the knowledge... about the others’ rationality.
However, initial experimental tests of cascade games seem to support the theoretical
predictions. Anderson and Holt (1997) report that in cases where a player should,
in equilibrium, disregard her own signal, most subjects do so and indeed follow the
others’ decisions; a result which has since been replicated by Hung and Plott (2001).
Other researchers find only limited support for Bayesian Nash Equilibrium in these
games. In particular, N6th and Weber (1999) identify a tendency of subjects to follow
their own signals in situations where equilibrium prescribes to follow one’s predeces-
sors. Huck and Oechssler (2000) confront their subjects with related single-person
decision tasks and find that Bayes’ rule is systematically violated. Bracht, Koessler,
Winter, and Ziegelmeyer (2000) study a number of different counting heuristics to
learn whether and how subjects base their decisions on counts of their predecessors’
decisions.

We modify the experimental design of Anderson and Holt (1997) by introducing
a separate stage for each player, at which she is asked whether or not she wants to
receive a signal, at a small but positive cost. This modified game can be viewed as
a "hard” test for Bayesian rationality, in the sense that the equilibrium prediction is
much more extreme: In Bayesian Nash Equilibrium, the first player buys a signal,
chooses the according urn, and all subsequent players blindly follow the first player’s
decision. Thus, after the first player’s choice, no further signals are bought, and

cascades occur with certainty.



The experimental results are not in line with these predictions. While not all of
the subjects acting as first players buy a signal, signal acquisitions in later stages are
excessive, such that overall far too many signals are bought. Subjects tend to follow
the majority of preceding urn choices, but only if this majority is strong enough.
Cascades rarely start after the first player’s urn choice, as subjects at the second
and third stages often buy signals and, if appropriate given their signal, choose in
opposition to their predecessor’s decision. The predictive value of Bayesian Nash
Equilibrium is much lower in the game with costly signals than in a control treatment
where signals are costless, which is comparable to Anderson and Holt’s design.

A natural candidate to explain the excessive signal acquisitions are errors. Sub-
jects may simply err or tremble when making their decisions, given their updated
beliefs. A complementary and perhaps more convincing explanation goes one step
further in the reasoning process: Subjects may not trust their predecessors to reveal
their information as prescribed in equilibrium (e.g., because of errors), and hence pre-
fer to buy signals themselves. According to this hypothesis, it would help the subjects
to know whether or not their predecessors bought signals. We tested this possibility
by including another treatment, the “high information treatment”, in which subjects
were given the information who of the previous subjects had obtained a signal. It
turns out, however, that even more signals are bought in this treatment, and the
prediction of Bayesian Nash Equilibrium — which is identical in both treatments —
performs worse.”

To explain these observations, we conduct a depth-of-reasoning analysis. l.e., we

2 A closely related treatment has been run independently by Kraemer, Noth, and Weber, 2000,

with similar results.



employ a statistical model (based on work by McKelvey and Palfrey, 1998) which
takes all levels of thinking about thinking... about others’ behavior into account,
and allows us to make inferences about the subjects’ updated beliefs after observing
a given choice history. Estimating parameters which capture the error rates on all
levels of the reasoning process, we are able to disentangle various ”anomalies” that
can arise in long chains of reasoning, and to obtain an estimate of the actual depth
of reasoning in the subject pool.

Depth-of-reasoning analyses have been conducted by several experimentalists (see
e.g., the papers by Nagel, 1995, Sefton and Yavasg, 1996, and Ho, Camerer, and
Weigelt, 1998), but they all investigate normal-form game play.®> We argue that cas-
cade games are especially well suited for an analysis of depth of reasoning, largely
because they are extensive-form games, and because a player’s payoff is independent
of what other players do: First, subjects do not face problems of calculating a fixed
point or limit point in the strategy space, which typically arises in (behavioral) mod-
els of normal-form game play. Second, the extensive structure clearly defines the
chains of reasoning that a player has to go through. Third, the cascade games under
investigation are relatively long (six players), implying that with enough data we are
able to obtain a complete picture over the full length of the reasoning process (under
the assumptions of the statistical model). Fourth and finally, because cascade games
are extensive-form games in which a player’s payoff is not affected by later players’

actions, the results do not depend on the subjects’ ability to solve a game backwards,

3Relatedly, Stahl and Wilson (1995), Goeree and Holt (2000), Costa-Gomes, Crawford, and
Broseta (2001), and Weizsticker (2002) estimate models of normal-form game play behavior which

allow for a limited depth of reasoning.



which is often doubted.

The model-estimation results suggest that the subjects’ depth of reasoning is
very limited, and that the reasoning gets more and more imprecise on higher levels:
Subjects attribute a significantly higher error rate to their opponents as compared
to their own, and this imbalance gets more extreme when considering the responses
on the next level, i.e., when they think about the error rate that others, in turn,
attribute to their opponents. More strikingly, the reasoning process ends after these
two steps, although several more steps would be possible and payoff-increasing in
the games. In other words, the subjects learn from observing their predecessors’
decisions, but they fail to realize that other subjects also learn from observing their
respective predecessors.

The subjects’ signal acquisition behavior can be explained along the lines of these
estimation results. In the treatment with cost, many subjects do not trust their op-
ponents’ decisions and excessively buy signals if there are only few preceding players.
With more predecessors, they tend to follow the others more, as they expect that sev-
eral of these predecessors made an informed decision. However, they do not reason
far enough to realize that other subjects also sometimes rely on third players’ deci-
sions. Therefore, in later stages of the games, they behave as if many of the preceding
players made an informed decision, regardless of the history. In the high information
treatment, where they learn about the signal acquisitions of their predecessors, they
are often surprised about how little information previous urn decisions were based
on, and hence tend to buy even more signals.

The next section describes the experimental design and procedures. Section 3



presents the results of the different treatments in summary statistics, and Section 4

the statistical depth-of-reasoning analysis. Section 5 concludes.

2 Experimental design and procedure

2.1 Experimental design

This section contains a basic description of the four experimental treatments. We
start by presenting the main treatments, games HC and LC ("high cost” and ”low
cost”, respectively), which involve a cost of obtaining a signal, but are otherwise

almost identical to the baseline experiment conducted by Anderson and Holt (1997).

Game HC/LC:

e Nature draws one of two possible states of nature, w € {A, B}, with commonly
known probability % Nature’s draw is not disclosed to the players. Each state
of nature represents an urn, where urn A contains two balls labelled a and one

ball labelled b, and urn B contains two balls labelled b and one ball labelled a.
e 6 players play in an exogenously given order, as follows: In stage ¢t,t =1,...,6,

the tth player

1. observes the (¢t — 1) urn choices made by the previous players,

2. decides whether or not to obtain a private draw from the urn w (a signal,
with possible realizations s; € {a,b}), at a cost K, where K equals $1.50 in

game HC and $0.50 in game LC, and

3. chooses one of two possible urns, A or B.



If the player’s urn choice coincides with the true urn w, she gets a fixed prize

of U = $12, and nothing otherwise.

e After all decisions are made, w is announced and payoffs are realized.

In both cost treatments, the ratio of the signal cost to the possible prize, K/U,
is below one sixth. Under this condition, the prediction of any Perfect Bayesian
Nash Equilibrium of the game is for the first player to obtain a signal, and for all
subsequent players not to buy a signal and simply to follow the first player’s choice.
To see this, notice that the second player, knowing that the first player obtained a
signal, cannot do better than following the first player’s action, even if she obtains
the opposite signal herself. Therefore, it is optimal for her not to buy a signal and
to follow the first player. The same logic applies to all subsequent players. Thus,
cascades always occur, independent of the signal realizations, and all games can be
used for an analysis of herding behavior.

As the equilibrium prediction critically hinges on the players relying on the first
player to have obtained a signal, one can ask whether the specific uncertainty about
previous signal acquisitions, which is not present in the baseline game by Anderson
and Holt (1997), causes deviations from equilibrium play in the experiment. In order

to examine this hypothesis, we conducted a high information treatment, game HCHI.

Game HCHI:
All stages are as in game HC, except that the tth player, before making her own
decisions, also observes whether or not each of the previous (¢ — 1) players obtained

a signal.

10



With the additional information given in game HCHI, the equilibrium prediction
remains unchanged, as compared to games HC and LC: In equilibrium the play-
ers know each other’s strategies in games HC and LC, so no new information is
revealed. But the subjects’ possible uncertainty about whether or not previous sub-
jects made an informed decision is removed. Hence, if this uncertainty alone drives
non-equilibrium behavior in games HC and LC, deviations should be reduced in game
HCHI.

Finally, a control treatment was conducted with costless signals, as in Anderson

and Holt’s (1997) experiment:

Game NC:
All stages are as in game HC/LC, except that players can obtain signals for free,

i.e., K =0.

In contrast to Anderson and Holt’s design, where players receive their signal
automatically, game NC includes a stage for each player at which she is explicitly
asked whether she wants to obtain a signal. This modification was introduced in
order to make game NC comparable to the other treatments: The structure of the
games is the same, and the instructions could be held essentially identical (see the
supplementary appendix)?.

In any Perfect Bayesian Nash Equilibrium of game NC (of which there are a
multitude, depending on how subjects break ties if indifferent between their possible
decisions), cascades occur with positive probability: If, for example, the third player

receives a private signal a, but the two preceding players both chose B, almost all

“The supplementary appendix can be found at http://www.restud/org.uk /supplements/htm.
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equilibria would prescribe for her to disregard her own signal and also choose B.7 As-
suming a specific tie-rule, one can then observe how many of the subjects’ choices are
consistent with the equilibrium path prescribed by the corresponding equilibrium.®
Importantly, the equilibrium prediction here is different from games HC, LC, and

HCHI, as more signals are obtained. Figure 5 in Appendix A illustrates the possible

equilibrium paths for game NC.

2.2 Experimental procedure

The experiment was run in four sessions at the Computer Lab for Experimental
Research at Harvard Business School, using the software Z-Tree (see Fischbacher,
1999). At the beginning of each session, two draws from physical urns were made
as a demonstration. Afterwards, all obtained signals were displayed on the subjects’
computer screens. The subjects in each session were anonymously divided into groups
of six players who stayed together during the entire session and played the games with

player roles randomly changing after each round. Table 1 shows that in sessions 1 and

>This is not true if the equilibrium prescribes for the second player to always follow the first
player, regardless of his (the second player’s) signal. If, however, the equilibrium tie-rule involves
any positive probability for the second player to follow his own signal if it contradicts the first player’s

decision, then two preceding B’s are sufficient for the third player to disregard her own a signal.

% Anderson and Holt (1997) consider the tie-rule ? Follow your own signal if indifferent”. To simplify
our analysis, we restrict attention to an analogous tie-rule for game NC: ”If indifferent concerning
the urn choice, follow your own signal if you observed one, and randomize otherwise. Concerning the
signal acquisition decision, always obtain a signal unless it is strictly optimal to follow the previous
player’s choice regardless of the signal, in which case you randomize between obtaining a signal and
not.” Consideration of other tie-rules would not change the equilibrium prediction in most cases.

Notice that in HC, LC, and HCHI, the equilibrium prediction does not rely on a specific tie-rule.
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2, the subjects played games HC, NC, and HCHI, and in sessions 3 and 4, subjects

only played game LC.

Table 1 : Experimental sessions.

# of rounds
session # of subjects # of groups treatment order

per treatment

HC, NC, HCHI (2 groups);

1 24 4 15
NC, HC, HCHI (2 groups)
HC, NC, HCHI (1 group);
2 12 2 15
NC, HC, HCHI (1 group)
3 18 3 15 (+15)7 LC
4 12 2 15 LC

Each game was played for 15 rounds, preceded by an unpaid practice round.
Subjects in sessions 1 and 2 were not told what would happen after the first and
second set of 15 rounds. To ensure at least partially that differences in behavior
between games are not due to learning, we switched the order of games HC and NC

within the first two sessions (see last column of Table 1). Game HCHI was always

"In session 3, the subjects played Game LC for another 15 rounds, which had not been announced
to them before. To increase comparability between the different treatments, we decided not to include
these data in the analysis and only used the first 15 rounds. Behavior in the second part of the session

was very similar to the first part.
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played at the end of the session, to prevent subjects from transferring information
about how many subjects bought signals to the other games, which could distort the
results.

Overall, 66 subjects, mostly undergraduate students from universities in the
Boston area, participated in the experiment. Given the number of rounds chosen,
this implies that games HC, NC, and HCHI were played 90 times each and game LC
was played 75 times, yielding a total of 4140 decisions. At the end of each session
one payoff-relevant round per treatment was randomly determined by a draw from a
stack of 15 numbered cards. The earnings from these rounds were added to a show-up
fee of $16. Average earnings were $36.47 in sessions 1 and 2, $29.20 in session 3, and
$22.80 in session 4. The subjects were identified by code numbers only and received

their total earnings in cash directly after the experiment.

3 Results: Descriptive statistics

Figures 1 through 4 summarize to what extent Bayesian Nash Equilibrium predicts
the behavior in the four experimental treatments. For treatments HC, L.C, and HCHI
in particular, they display how often first players bought a signal and chose the in-
dicated urn, and how often second to sixth players did not buy a signal and followed
their predecessor’s urn choice. For treatment NC, the prescribed equilibrium-path
decisions can be taken from Figure 5. For all four treatments, only decisions are
considered that follow an equilibrium-path history of previous play. The first (white)
column reports the relative frequency of subjects making the signal acquisition deci-

sion prescribed on the equilibrium path at each stage, contingent on the observation

14



of equilibrium behavior by the previous subjects. That is, for HC, LC, and HCHI
it shows the proportions of subjects buying a signal at stage 1 and the proportion
of subjects not buying a signal at stages 2 to 6. Likewise, the second (shaded) col-
umn shows the relative frequency of subjects following the equilibrium path in both
the signal acquisition and the urn decision. For games HC, L.C, and HCHI, the col-
umn thus displays the proportion of subjects following their signal at the first stage,
and the proportion of subjects following their predecessor’s choice without buying a
signal at all later stages. The third (black) column represents the cumulated equi-
librium decisions. It shows in how many rounds all decisions up to (and including)
the respective stage follow the equilibrium path, in both signal acquisitions and urn
choices.

Note that restricting the decisions to those arising along an equilibrium-path
history has different implications in the four games. For games HC and LC, all
decisions following histories that contain only urn A choices or only urn B choices
are considered in the construction of the corresponding figures. For game HCHI, an
additional requirement is that the first player bought a signal and the others did not.
The equilibrium paths of game NC can be different from those in the other games,

as summarized in Figure 5.8

®Histories are still included after certain out-of-equilibrium decisions, as long as the latter do not
lead to an observable history that cannot be part of an equilibrium. This allows for unobservable
deviations in signal acquisitions (in games HC, LC, and NC). Also, if for example the first player
observes a signal a but chooses urn B, the second player’s decision would still be included in the
graphs. However, for the third column, representing the cumulation of equilibrium behavior, all

observable and unobservable decisions must be in equilibrium.
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Figure 1: Frequencies of decisions that are consistent with Perfect Bayesian Nash
Equilibrium in Game HC, conditional on equilibrium-path play up to the respective

stage.
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Figure 2: Frequencies of decisions that are consistent with Perfect Bayesian Nash
Equilibrium in Game LC, conditional on equilibrium-path play up to the respective

stage.
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Figure 3: Frequencies of decisions that are consistent with Perfect Bayesian Nash
Equilibrium in Game HCHI, conditional on equilibrium-path play up to the respective

stage.
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Figure 4: Frequencies of decisions that are consistent with Perfect Bayesian Nash
Equilibrium in Game NC, conditional on equilibrium-path play up to the respective

stage.
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Consider the results of treatment HC, in Figure 1. The white column indicates
for the first stage that 52% of all signal acquisition decisions are in line with the
equilibrium prediction (i.e., the subjects decided to see a signal). Of the observed
urn choices at stage 1, almost all were as predicted when the subject had obtained
a signal. This can be taken from the second column of the figure, which is almost
of the same size as the first. It is also evident from the figure that the number of
equilibrium signal acquisition decisions increases at later stages. As the equilibrium
predicts not to see a signal at stages 2 to 6, the white columns show that subjects
acting as player 2 buy too many signals whereas later players rarely buy signals if
previous play is consistent with Bayesian Nash Equilibrium. This suggests that most
subjects follow the majority of urn choices once enough people have chosen the same
urn. Apparently, they do not consider the first player’s choice as strong enough
evidence, but herd after two or more identical urn choices.

Similar observations hold for treatment LC where, however, more signals are
bought at early stages. Concerning treatment HCHI, notice that the proportions
of observed equilibrium signal decisions and of observed equilibrium signal and urn
decisions at stages 2 to 6 are smaller than in treatment HC (with the single exception
of signal acquisitions at stage 4). Thus, providing the subjects with information about
who of the preceding players saw a signal does not lead to more decisions consistent
with equilibrium behavior. The results of the no-cost treatment NC are closest to the
equilibrium prediction: The proportion of signal and urn decisions consistent with

equilibrium is quite stable, at a level of at least 80% in all stages.”

9 Notice, however, that taking an equilibrium signal decision in treatment NC is less difficult than

in the three treatments with costly signals, because seeing a signal is always an optimal decision.
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These observations are corroborated by the third (black) column, which shows
the cumulative proportions of equilibrium play. In the course of the six stages, this
proportion decreases quite dramatically in the treatments with a signal cost. In treat-
ments HC, LC, and HCHI respectively, only 12%, 3%, and 4% of all games display
equilibrium behavior of all six participants. In treatment NC, all six participants
play according to the equilibrium in 41% of the 90 rounds. Hence, with a positive
signal cost the equilibrium prediction performs worse, according to these aggregate
numbers.

For games HC, LC, and HCHI the figures reveal how often subjects actually herd,
i.e., how often they ”correctly” follow their predecessors. In the equilibria of these
games, herding should occur in all stages after stage 1, as the prediction for players 2
through 6 is to blindly follow suit. In roughly two thirds of the cases where subjects
observed an equilibrium-path history they played in accordance with this prediction
(69% in HC, 61% in LC, and 61% in HCHI.) In game NC, however, obtaining a
signal is always optimal, so a different measure of the propensity to herd is needed.
Consider the cases in treatment NC where a player saw a signal contradicting the
equilibrium prediction for her urn choice, after an equilibrium-path history. Subjects

herded (i.e. disregarded their signal) in 78% of these cases (63/81).1Y Additionally, in

(Cf. Footnote 6 for the tie rule applied.) Note also that players must see a signal in equilibrium if
no information cascade has started yet. This explains why some of the white columns in Figure 4

are below 100%.
7n the corresponding treatment by Anderson and Holt (1997), 70% of the subjects followed the

equilibrium prescription to herd in such herding situations. The percentage of rounds in which
complete equilibrium play occurred was higher in their experiment, at 60%, as compared to 41%

in Game NC. This difference can be explained by the fact that in our design, subjects also had to

19



14% (32/224) of the cases in which the signal realization is irrelevant for the optimal
urn choice (again, after an equilibrium history) did a subject not obtain a signal and
followed the predecessors’ urn choices.

While the equilibrium is often socially inefficient (in cases of false cascades where
all players choose the wrong urn), in none of the four treatments did the observed
deviations from equilibrium play increase the overall efficiency, computed as the sum
of all players’ payoffs, relative to the equilibrium. Expressed in percentages of the
total payments that would have been received in equilibrium (given nature’s initial
draw and the signal realizations), total earnings in the four treatments were: 81.3%
in HC, 96.8% in LC, 78.6% in HCHI, and 91.4% in NC. Earnings are closer to the
equilibrium in game LC than in NC although there are much less equilibrium decisions
in LC than in NC. This is explained by the fact that too many players buy a signal
in LC, which increases total earnings as signals are not very costly and additional
information is revealed.!!

We now include behavior off the equilibrium path in the descriptive data analy-
sis. Generally, analyzing off-equilibrium behavior is difficult in cascade experiments

due to the sheer number of different possible histories of signal and urn decisions.

decide whether to see a signal or not.

' Criticizing the above calculations, it can be argued that our notion of efficiency is only appropriate
in the laboratory, where there are no effects on third parties who are not part of the game. When
such externalities are present, stopping a wrong cascade can potentially generate large welfare gains.
Bikhchandani, Hirshleifer, and Welch (1992) provide the historical example of doctors performing
tonsillectomies on a routine basis, merely because other doctors have done the same before. In this
case, the wrong cascade had very serious negative externalities (children were injured during the

procedure, tonsils have been found to be a defense against infections, etc.).
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However, transition matrices can be used to organize the data by pooling histories
with identical numbers of urn A and B choices (Tables 3 to 6 in Appendix A). These
matrices indicate (7) the proportion of signals bought, and (7i) the proportion of sub-
jects disregarding their own signal in favor of the urn most frequently chosen by the
predecessors, after a history with a given number of urn ”A” and ”B” choices. (Urns
are interchangeable in our symmetric setup, and the urn chosen more often than the
other is called urn ”A”. The urn less frequently chosen is called urn "B”. Quotation
marks are used to indicate this change in notation.)

The tables show that the greater the difference between the number of previous
urn ”A” and urn "B” choices, the less signals are bought. This holds both on and
off the equilibrium path. For example, the second row of Table 3 (for game HC)
shows that the relative frequency of obtained signals decreases from 47% after one
urn ”A” and one urn ”B” choice, to 3% after four urn ”A” choices and one urn ”B”
choice. In addition, in game NC (the only treatment where the number of herding
decisions after seeing a signal is large enough to draw any conclusions) the greater
the difference between the number of urn 7 A” and urn ”B” choices, the more subjects
disregard their own signal.

To check whether these behavioral patterns changed over the course of the exper-
imental sessions, we also computed transition matrices for earlier and later rounds
separately by splitting the data between rounds 1-8 and 9-15. No significant changes
in the transition probabilites are discernible in any of the four treatments. (The
tables are not included in the paper.)

Note that the transition matrices in Tables 3 to 6 control neither for the order
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of urn ”A” and urn ”"B” decisions in the histories considered, nor for the knowledge
about previous signal acquisitions in treatment HCHI. We therefore conducted pro-
bit regressions, which are presented in the supplementary appendix. To sum up the
findings, the order of previous ”A” and ”B” choices has little or no impact on later
decisions, whereas the difference between the number of ” A” and ”B” choices signif-
icantly affects behavior. This is consistent with the observed tendency to follow the
majority of urn choices once it is strong enough. Furthermore, in treatment HCHI
subjects clearly take into account whether the urn choices of their predecessors are
based on a signal or not. Urn choices that do not follow signal draws are essentially
disregarded by later players.

Finally, consider Figures 1 to 4 again, and in particular the columns for the first
stage of each game. As these columns never reach 1, some first players deviate from
equilibrium play, either when deciding whether to buy a signal or when choosing
the urn. In particular, 48% of all first players in treatment HC decide not to see a
signal, 31% in treatment LC, 53% in treatment HCHI, and 11% in treatment NC.!?
Since there is no uncertainty about others’ behavior involved, these decisions may
be viewed as mistakes, at least if subjects are considered to be risk-neutral money
maximizers. An obvious question is whether anticipating these apparent mistakes
rationalizes some of the behavior at later stages. Below, a model is estimated to

determine — among other things — whether players expect other players to deviate

12The number of equilibrium deviations of first players in NC does not differ much from Anderson
and Holt’s results. In their experiment, 10% of the subjects in the first stage did not follow their
private signal. This happened in about 7% of all cases where first players saw a signal in our

experiment.
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from money-maximizing decisions and whether they expect them to do so as often
as is actually observed. For this analysis, the decision data need not be separated

according to the histories of previous play, but all data can be used simultaneously.

4 A statistical depth-of-reasoning analysis

In this section, we present and estimate an error-rate model which allows us to make
inferences about the subjects’ reasoning processes. The model uses logistic response
functions to determine choice probabilities, but specifies separate parameters for the
response rationality on each level of reasoning, i.e., it allows for different error rates
at each step of thinking about thinking... about others’ behavior. In particular, the
model does not impose the assumption that subjects have a correct perception of
other subjects’ error rates, or that they have a correct perception of other subjects’
perceptions of third subjects, and so on.

We will first present the behavioral assumptions describing the single-person de-
cision process of a subject who decides at stage t. Let a; be the probability of the
event that the true urn is A, given the tth subject’s information before she has the
opportunity to see a signal. Let a(s¢, o) be the subject’s updated probability of A,
after observing a private signal s; € {a,b}, or after deciding not to buy a signal,
which will be denoted by s; = 0.1 Also, denote by ¢; € {A, B} the subject’s urn
choice. Her expected payoff from choosing A, after buying a signal with realization

St, is given by w(A, s, r) = an(st,:)U — K, and the payoff from choosing B is

za o~ L()1 .
13 Using Bayes’ rule, it holds that &;(a, o) = =—2r—— and & (b, a;) = —2p0~———. If no signal
Sartg(l-o) goart+5(l-op)

is bought, no updating can occur, so (0, ) = .
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u(B, s, o) = (1 — ay(s, a))U — K. If the subject has not bought a signal, K is not
subtracted.
Subjects are assumed to employ a logistic choice function with precision parameter

A1 > 0 when making their choices, i.e., to choose A with probability

exp(Mu(A, sg, aq))

ct=A,B exp(Aru(et, st, )

PI'(A, St, Ot )‘1) =

and to choose B with the remaining probability mass.

When deciding whether to buy a signal or not, subjects are assumed to anticipate
their own decision probabilities when choosing an urn, to calculate the expected
payoffs from their two options accordingly, and to decide logistically: Let (b, o)),
by € {"Buy”,” Don't Buy”}, be the subject’s expected payoffs from buying and not

buying respectively.'* The probability of buying a signal is then given by

exp(MT(” Buy”, ay))
Pr(” Buy”; a4, A1) = — .
CBu 00 M) = S (b, )

This two-step decision process is an immediate application of the logit Agent Quantal
Response Equilibrium defined by McKelvey and Palfrey (1998), to the present single-
person decision problem. As usual in such logistic-choice models, the parameter
A1 captures the response precision of the decision maker: The higher A{, the more
“rational” are the decisions. As A1 approaches infinity, decision probabilities become

arbitrarily close to an optimal pair of responses, given the prior ay; if Ay = 0, behavior

" These expected payoffs are given by u(” Buy”, ) = (ou(2 Pr(A; a, o, A1)+ 2 Pr(A4; b, a, A1) +
(1—a¢)(3 Pr(B;sa, ar, A1) + 5 Pr(B; b,ar, A1) )U — K and a(” Don't Buy”, o) = o Pr(4;0, cp, A1) +
(1 — o) Pr(B; 0,04, A1). For all estimates, expectations over the payoff-relevant rounds were used,

i.e., all dollar amounts were divided by 15.
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is completely random. Also, for any A\; > 0, the probability of making a non-optimal
decision decreases with the expected loss from this decision.!?

Now consider the question how a subject makes use of her predecessors’ decisions
when forming her prior belief az. It is assumed the subject is aware that all other
subjects follow the logistic decision process described above, with the exception that
she attributes a possibly different precision parameter to the decisions of her oppo-
nents: g instead of A;. (This is similar to the model estimated in Weizséicker, 2002.)
Thereby, the ”rational expectations” assumption of the Quantal Response Equilib-
rium, that subjects are informed about the error rate of their opponents, is avoided
and can be tested.

Analogously, when a subject considers the reasoning that others apply when think-
ing about third subjects, we allow for a third parameter A3, which she supposes each
of her predecessors attributes to each of his or her predecessors. For even longer
chains of reasoning, additional higher-level parameters are used. Since the longest
chains of reasoning in the games involve five steps of thinking about other subjects,
the resulting model includes six parameters altogether: A; through Ag. Using this set
of parameters, and starting with a; = 0.5, one can recursively construct the players’
updated probabilities that A is the true urn, for any history of observed choices (see
the supplementary appendix).

Note that the subscript of A indicates the number of iterations made when thinking

about how others think about how others..., not the stage at which the player has to

15 A common interpretation is that A; captures the impact of computational errors made by the
subjects. For a random-utility justification of Quantal Response Equilibrium models and further

discussion see e.g. McKelvey and Palfrey (1995, 1998).
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make a decision.!® Also, it is important to notice that higher-level parameters are only
applied when a player goes through chains of reasoning of the according length, and
not when she directly considers the decision of others who decided several steps before
herself. For example, player 3 attributes the precision parameter Ag to the decisions
of both previous decision makers, because she uses both players’ urn choices directly
when forming her updated belief. She also attributes the parameter A3 to player 1,
but only when she considers how player 2 thinks about player 1’s decision. As another
example, player 6 attributes g to all five previous decision makers. He also considers
how each of them considers his or her respective predecessors, and attributes the
corresponding higher-order parameters to these steps of reasoning. E.g., when player
6 considers how player 3 considers player 1’s urn decision, he attributes A3 to player
1 and Ag to player 3. When player 6 considers how player 3 considers how player 2
considers player 1’s decision, then )\, is attributed to player 1, A3 to player 2, and Ao
to player 3.

The model contains a number of special cases that can be tested using the ex-
perimental data. If all six parameters are equal, we have the logit Agent Quantal
Response Equilibrium applied to the entire game. It prescribes that the subjects know
the error rate of the other subjects, on all levels of reasoning.!” If all parameters are

infinite, Perfect Bayesian Nash Equilibrium is predicted. Of particular interest are

16 Anderson and Holt (1997) also conducted an analysis of their data based on the logit Agent
Quantal Response Equilibrium, but assumed rational expectations of players and a fixed set of

different A-parameters at different stages.

'"In the context of normal-form games, this assumption has been tested using related behavioral
models by both Goeree and Holt (2000) and Weizsicker (2002), and has uniformly been rejected for

a large number of games.
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those cases in which one of the parameters is equal to zero, because this reflects the
limit in the depth of reasoning. E.g., if Ao = 0 holds, then players behave as if re-
sponding to random behavior by all other players, since no information is inferred
from previous decisions. If the first two parameters are strictly positive but A3 = 0
holds, then players only make direct inferences from their predecessors’ choices, and
do not take into account that their predecessors also think about third players when
making their decisions. Similar statements apply to cases in which higher-level pa-
rameters vanish. Hence, the length of the reasoning process in the subject pool is
reflected by the first parameter that is indistinguishable from zero in the estimation
results.

Some special cases of the model can be interpreted as behavioral heuristics that
players might apply in the games. In particular, when A\; — oo and Ay = 0, players use
the rule ”follow your own signal” as they perceive other players to be randomizing.'®
Note also that when A = Ao — oo and A3 = 0, players apply a counting heuristic in
the cascade games we consider. l.e., they follow the majority of urn decisions, and
if there is no majority, they buy a signal and follow it. The counting heuristic is a
best response if a player believes that her predecessors do not learn anything from
the actions of their predecessors and if she therefore supposes that her predecessors
buy a signal and follow it.

Table 2 reports the results of the maximum-likelihood estimation of the model, for
the four separate data sets and the pooled data. The table also contains the levels of

significance for each parameter to be distinguishable (i) from zero and (i) from the

18See the papers cited in Footnote 3 for related evidence in normal-form games, as well as Beard

and Beil (1994) and Huck and Weizsécker (2002) for games of extensive form.
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parameter on the next-higher level of reasoning, which are obtained using appropriate

likelihood-ratio tests. An empty cell in the table (”-”) indicates that the parameter

is not identified. This happens if at the maximum value of the likelihood function

a lower-level parameter is estimated to be zero, so beyond this level of reasoning no

information is used when decisions are made.

Table 2 : Response precisions estimated from the experimental data.

Data: pooled HC LC HCHI NC
A1 10.45 11.36 8.19 12.97 10.84
(0.000, 0.000) | (0.000, 0.139) | (0.000, 0.941) | (0.000, 0.000) | (0.000, 0.000)
A2 5.94 8.12 8.31 4.71 3.77
(0.000, 0.000) | (0.000, 0.000) | (0.000, 0.000) | (0.000, 0.000) | (0.000, 0.000)
A3 1.65 1.29 2.44 0.00 0.00
(0.795, 0.194) | (0.994, 0.641) | (0.905, 0.575) | (1.000, 0.970) | (1.000, 0.996)
M 0.00 0.00 0.61 - -
(1.000, 0.968) | (1.000, 0.975) | (1.000, 0.908)
A5 - - 373.32 - -
(1.000, 0.981)
A6 - - 0.00 - -
(0.996, -)
1 -2045.9389 -518.1821 -470.2698 -523.7681 -464.9299

Note: Numbers in parentheses are (i) the marginal level of significance for the parameter

to be different from zero, and (ii) the marginal level of significance for the parameter to be

different from the parameter on the next-higher level.
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The estimates show a clear distortion in the subjects’ perception of their oppo-
nents: With only two insignificant exceptions, the response parameters decrease from
one level of reasoning to the next, in all four data sets. The hypothesis that all six
parameters are equal is rejected on high levels of significance, for each of the data
sets. In particular, a comparison of the estimates for A\; and Ao shows that subjects
on average attribute a lower response precision to their opponents than they have
themselves.'? More strikingly, in all four treatments there is a large gap between
the estimated response precisions of the next levels, as Ay significantly differs from
A3. The parameter A3, in turn, cannot be distinguished from zero in any of the data
sets.?!

Taken together, the results suggest that the subjects apply only short chains of
reasoning, and that the perceived response precisions get lower and lower on higher
levels of reasoning. This points at a consistent underestimation of the opponents’
response rationality. As an alternative interpretation, one may think of these biases
as evidence that the subjects’ reasoning gets more and more fuzzy on higher levels.

Along these lines, one can explain the observed deviations from equilibrium play

YNote that the high Aj-parameter is compatible with the relatively small number of subjects
buying a signal in the first stage. The reason is that the expected payoff from buying a signal is not
much higher than from not buying a signal, especially in the high-cost treatments HC and HCHI.
However, with a high value of A1, a person is likely to follow her signal if she has bought one, because

payoff differences with respect to urn choice are larger.

20The hypothesis that the parameter values decrease with a constant ratio between one parameter
and the next, as suggested by the model of Goeree and Holt (2000), can only be rejected for the data
of the LC treatment, at a 5% level of significance. For the pooled data, the hypothesis is accepted

(p = 0.266).
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in the games, and in particular of the observed signal acquisition behavior. First, the
subjects distrust the response rationality of previous players (as A\; exceeds Az), and
hence tend to buy signals themselves. Second, they behave as if disregarding the fact
that their predecessors often use the information that is conveyed by third subjects’
decisions. Subjects fail to realize that other subjects may have had good reasons
not to obtain a signal in later stages of the games, and therefore do not recognize
herding behavior. Thus, they consider every urn choice of their predecessors as
(about) equally informative and follow the majority. However, in the high information
treatment, they learn how little information is accumulated in the course of the game,
which induces them to buy signals at later stages with an even higher probability.

To test the robustness of the statistical results, we also considered three varia-
tions of the above model estimations, one allowing for more general risk attitudes,
another for learning effects, and the third for subject heterogeneity. The results of
the estimations are shortly summarized in the following.

Concerning the question of risk considerations, we followed the analyses by Goeree
and Holt (2000) and Goeree, Holt, and Palfrey (2002) who incorporate constant-
relative-risk-aversion utilities into related models of probabilistic choice, instead of
assuming risk neutrality. The according generalization of our model estimations
leaves the main results untouched, as the A\-parameters decrease from one level to the

next, and A3 is still indistinguishable from zero in all data sets.?!

21T keep the paper short, we do not specifiy the details of the estimations and results here. In
two treatments (HC and HCHI) we find significant evidence of risk aversion, in one treatment (LC)
risk-loving behavior. However, a caveat is that when estimating risk attitudes from experimental

data, the results crucially rely on the mental frame or status-quo point that subjects are assumed to
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Now consider the question whether the observed belief distortions are stable over
the 15 rounds of the games. Expressed in terms of the statistical model, there are
two possible ways in which subjects may learn: The A\-parameters could increase, and
they could lie closer together in later rounds. In order to investigate these issues, we
again partitioned the data sets into two subsets each, one containing only decisions
made earlier in the games (rounds 1-8), the other only later decisions (rounds 9-15),
and reestimated the error-rate model using these subsets of data separately. As in the
descriptive analysis of Section 3, no significant evidence of learning can be discerned
(with significance levels above p = 0.2 in all four treatments, using likelihood ratio
tests). Tables 8 and 9 in the supplementary appendix show that both in earlier and
in later rounds of the games the estimated A-parameters are smaller on higher levels
of reasoning, and that, again, A3 cannot be distinguished from zero in any of the data
subsets.

Estimations of the A-parameters for each subject separately, summarized in Table
10 in the supplementary appendix, confirm the previous results. Of the 36 subjects
who played three games (HC, HCHI, and NC) 30 subjects have a A;-parameter which
exceeds Ao, and for 31 out of 36 subjects Ao exceeds A3. These relations are similar
when considering single games. Also, the table shows that more than half of the sub-
jects have an estimated A3 = 0, which again supports our finding from the aggregated

dataset.

? 7 outside”

have. The reason is that neither all contingencies within the experiment, nor the subjects
wealth can be considered. See Rabin (2000) for a more rigorous discussion. In our risk-attitude

analysis, subjects were assumed to view each round of the experiment separately.
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5 Conclusions

The paper investigates cascade formation with costly signals. The experimental data
exhibit substantial divergence from equilibrium play. In particular, players who have
to decide early (but not first) buy too many signals, whereas players who decide
toward the end of the games seem confident that previous decisions were based on
private signals, hence buy less signals themselves, and herd. We explain these find-
ings by limited depth of reasoning, using an error-rate model that allows for false
beliefs about the opponents’ behavior. The estimation results suggest that players
systematically misperceive other players in two ways. First, they attribute an error
rate to their opponents that is higher than their own. This bias leads them to rely too
little on their predecessors, and hence to acquire too many signals themselves. Sec-
ond, players do not consider what their predecessors thought about their respective
predecessors. Thus, they do not understand that some of the decisions they observe
have been herding decisions, not based on any private information. Many players
therefore follow the majority of urn choices, once this majority is sufficiently strong.

The results of the model estimation provide a unified explanation for both, the
herding behavior observed in some earlier cascade experiments, as well as the devia-
tions that we and other researchers discuss. Along these lines, the results can perhaps
help to assess the value of Bayesian Nash predictions in other situations where social
learning is possible. Fads may well occur — not because decision makers follow the
equilibrium reasoning, but rather because they tend to believe that previous decision
makers were informed, and hence follow the majority. It may be worth noting that

if such behavior is prevalent, the order of the previous players’ decisions is generally
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irrelevant for the outcome of a cascade game, because each predecessor is viewed as
if following only his or her own signal. (This conclusion is also supported by the
regression analysis presented in the supplementary appendix.) The independence of
the order of choices would hold even if some players had better private information
than others.

On a more general level, it seems worthwhile to compare the estimated length
of the subjects’ reasoning process with the results of previous studies investigating
lengths of reasoning in experimental games (see the citations in the introduction).
In contrast to these studies, we employ a random-utility (or quantal-response) model
of behavior, with incomplete information about the others’ randomization processes,
and draw our conclusions from the estimations of unobservable parameters. Despite
these differences in the estimation approaches, our results are consistent with most of

the earlier work: The average subject does not make more than two steps of reasoning.
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APPENDIX

A Figure 5 and Tables 3-6
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Figure 5: Equilibrium paths in game NC, starting with signal ”a”

signal

urn choice

signal

urn choice

signal

urn choice

signal

urn choice

signal

urn choice

signal

urn choice

E
th

.-

9
g
}

»7.

)

a/b/-
HERD

and all subsequent players follow the previous urn choice.

37

. "JHERD?” indicates that current



Table 3: Transition matrix for HC

gy A 0 1 2 3 4 5
0 47/90 (.52) 40/90 (.44) 7/59 (.12) 7/49 (.14) 5/45 (.11) 1/41 (.(
- 2/17 (.12) 2/3 (.67) 3/5 (.60) 1/3 (.33) (no case
. 15/32 (.47) 17/41 (.41) 2/33 (.06) 1/33 (.03)
- 4/10 (.40) (no cases) (no cases)
) 4/12 (.33) 8/16 (.50)
— 0/5 (.00)
Note : Number in first row of each cell shows proportion of players who bought a signal
after corresponding choices of A7 and "B” by predecessors. Number in second row shows
proportion of players choosing "A” after seeing signal ”b”. 7A” is the urn more
frequently chosen (which can be A or B in the experiment).
Table 4: Transition matrix for LC
gy A 0 1 2 3 4 5
0 52/75 (.69) 43/75 (.57) 17/49 (.35) 9/45 (.20) 5/39 (.13) 4/36 (.
- 3/20 (.15) 3/5 (.60) 4/5 (.80) 3/3 (1.00) 4/4 (1.
. 19/26 (.73) 16/30 (.53) 7/26 (.27) 6/21 (.29)
— 2/7 (.29) 1/4 (.25) 2/2 (1.00)
) 3/10 (.30) 9/18 (.50)
— 4/6 (.67)

Note : See Table 3.
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Table 5: Transition matrix for HCHI

- A 0 1 2 3 4 5
. 42/90 (A7) | 43/90 (48) | 17/56 (.30) | 13/45(29) | 6/34 (.18) | 3/30
- 1/18 (.06) | 1/6 (.17) 1/6 (.17) 0/2 (.00) 0/1 1
12/34 (.35) | 18/45 (.40) | 14/42 (.33) | 10/37 (.27)
1 - 1/7 (.14) 1/7 (.14) 0/3 (.00)
4/14 (29) | 10/23 (.43)
2 - 0/6 (.00)
Note : See Table 3.
Table 6: Transition matrix for NC
- A 0 1 2 3 4
. 80/90 (.89) | 83/90 (.92) | 54/60 (.90) | 43/49 (.88) | 37/46 (.80) | 33/4
- 4/23 (17) | 13/20 (.65) | 19/21 (.90) | 14/20 (.70) | 12/1
30/30 (1.00) | 39/41 (.95) | 23/27 (.85) | 24/28 (.86)
1 - 3/19 (16) | 4/9 (.44) 6/8 (.75)
15/17 (.88) | 21/22 (.95)
2 - 2/11 (.18)

Note : See Table 3.
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