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Abstract

Two behavioral models of two-person normal-form game play are presented and es-

timated, using three experimental data sets. The models are variants of the Quantal

Response Equilibrium model de…ned by McKelvey and Palfrey (1995, Games and

Economic Behavior), but allow a player to hold inaccurate beliefs about the behavior

of her opponent. Each model involves two parameters: One captures the player’s own

level of response rationality, the other the level she attributes to her opponent. In

order to allow for type heterogeneity among the subjects in the experiments, para-

metric distributions of these parameters are assumed. The estimation results indicate

that the subjects’ choices follow a speci…c anomalous pattern: On average, subjects

play as if they signi…cantly underestimated their opponent’s rationality.

JEL codes: C23, C91. Keywords: beliefs, prediction accuracy, experiments
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1 Introduction

In analyses of game play data, the question often arises whether agents can be as-

sumed to hold beliefs about their opponents’ behavior that are on average correct.

Particularly if one allows for boundedly rational decisions (or random perturbations in

the subjects’ utilities), the assumption that all players are perfectly informed about

their opponents’ propensities to err may not necessarily be satis…ed. The inter-

pretation of observed decisions, however, may crucially rely on whether or not this

assumption is made.

In this paper, two closely related models of two-person normal-form game play

are formulated and estimated, both of them allowing for relatively general sets of

beliefs about the opponent’s behavior. The models are based on the Quantal Re-

sponse Equilibrium (QRE) de…ned by McKelvey and Palfrey (1995), who proposed a

statistical reaction function prescribing the players’ choice probabilities. In contrast

to the standard QRE analysis, the behavioral models used in this paper each involve

a second response function which a player attributes to her opponent’s play, without

restricting the actual choices of the opponent to follow this perceived behavior. For

example, both players of a two-person game are allowed to view their opponents as

highly irrational agents without responding irrationally to these beliefs themselves.

Or, the models also allow the agents to perceive their opponents as behaving more ra-

tionally than they do themselves (where rationality is understood as precision of best
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responding to given beliefs). It can therefore be tested whether subjects in laboratory

experiments systematically mispredict the degree of their opponents’ rationality and

what kinds of mispredictions the subjects exhibit. For the data considered below, the

estimation results suggest a consistent pattern of subject behavior: On average, sub-

jects choose as if they signi…cantly underestimate the rationality of their opponents

(or simply tend to ignore the other player’s choices) and relatively consistently play

best responses against these beliefs.1

Several models of normal-form game play that also focus on the beliefs subjects

hold about their opponents’ actions have been estimated and tested in the experimen-

tal literature. Stahl and Wilson (1995) formulate a multiple-type model, following

Nagel’s (1995) step-j-thinking approach, in which each player is assumed to belong

to one of several types of players: A ’level-0’ type chooses randomly with equal

probabilities over his actions, a ’level-1’ type consistently plays a best response to

level-0 behavior (i.e., views her opponents to choose at random), a ’level-2’ type best

responds to a mixture of level-0 and level-1 types, a Nash type chooses Nash Equilib-

rium strategies, a ’worldly’ type responds to a hypothetical mixture of level-0, level-1,

and Nash types, and a ’rational expectations’ type correctly anticipates the propor-

tions of all types in the subject pool and chooses a best response to the resulting
1To be more precise, one of the two models produces this result for all three data sets. Under

the assumptions of the other model, the analogous result shows up for two of the three data sets,

with a reverse (and weakly signi…cant) result for the third.
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probability distribution over the opponent’s action set. The model is estimated using

a set of 3x3 normal-form games, resulting in estimated proportions of about 17%

of the subjects being level-0 types, 20% level-1 types, 2% level-2 types, 17% Nash

types, 43% worldly types, and 0% rational expectations types. In Stahl and Wilson

(1994) and Costa-Gomes et al. (2001), related models are estimated from di¤erent

sets of normal-form game data. Their results, however, suggest quite di¤erent type

distributions in the subject pools.2

In the context of the present study, at least two conclusions can be drawn from

these experimental papers. First, there appears to be a large variance in the sub-

jects’ behavioral patterns and in their beliefs about the opponents’ play. No single

type of player can account for the greater part of the observed behavior in the three

experiments. (Rather, the estimation results seem to be highly sensitive toward the

underlying sets of player types in the models and/or toward the speci…c games used

in the experiments.) Second, both the Nash type and the level-1 type constitute non-

negligible parts of the subject populations in all three experiments. In terms of beliefs

attributing a certain degree of rationality to one’s opponents, both extremes seem to
2Stahl and Wilson (1994), whose model includes only the level-0, level-1, level-2, and Nash types,

report estimates of 24% level-1 types, 49% level-2 types, 27% Nash types, and an insigni…cant

proportion being level-0 types. The model by Costa-Gomes et al. (2001) includes a number of

additional types, but also the level-1 and Nash types, which are estimated to account for 23% and

8% of the subject pool, respectively.
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be present in the subject pools.3 Given this evidence, the question adressed here is

whether the extent to which subjects implicitly rely on the opponent’s rationality

does, in the aggregate, re‡ect the actual response rationality (with which subjects

respond to their beliefs). This question cannot be answered within the multiple-type

models cited above, because in the construction of the player types’ beliefs, some of

the types are left out of consideration, so beliefs cannot coincide with actual behavior.

In contrast, the behavioral models de…ned below make use of the symmetric struc-

ture of the Quantal Response Equilibrium, in the sense that a player is aware of the

fact that her opponent follows the same behavioral model as herself. At the same

time, since the models allow for inaccurate perceptions of the opponent’s response

precision, the ”rational expectations” assumption made in previous QRE analyses is

relaxed and can be tested. To this end, the two models each involve two parameters

in their basic formulations: One parameter represents the response precision that a

player has herself, the other the precision level that she attributes to her opponent.
3For further results supporting this observation see the games conducted by Van Huyck et al.

(1990, 1991), Beard and Beil (1994), Schotter et al. (1994), Nagel (1995), Ho et al. (1998), Haruvy

and Stahl (1998), and Stahl (1999). The question remains, however, whether the observed choices

can in fact be seen as responses to explicit beliefs held by the subjects, or whether the apparent

belief distortions are due to decision heuristics that do not in any consistent way involve responding

to beliefs about one’s opponents. On this issue see Huck and Weizsäcker (2002) who use direct

methods of belief elicitation to con…rm the apparent level-1 behavior in experimental games.
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The two models di¤er only with respect to the error structure that is assumed, one

using a logistic error speci…cation, the other uniform errors. Both models include

as special cases the level-0, level-1, and Nash types of Stahl and Wilson (1995), as

well as a continuum of other types. In order to allow for variance in beliefs and in

precision of responses to given beliefs, the models’ parameters are assumed to be

distributed according to parametric distributions (with given functional forms), and

the distributions are estimated using maximum-likelihood techniques. The resulting

two econometric models are comparably ‡exible in terms of allowing for a variety of

beliefs and response behavior, and they each involve four parameters that are to be

estimated from the data.

The experimental data sets used in the statistical analysis are taken from the

studies by Stahl and Wilson (1994, 1995) and Costa-Gomes et al. (2001).4 The

estimation results show that the average belief that subjects hold about their oppo-

nent’s response precision is signi…cantly below the actual average response precision.

This can be interpreted as a failure of the ”average” subject to predict her oppo-

nent’s rationality accurately: Subjects act as if they tend to ignore their opponents’

rationality, and could earn more in the experiments if they did not do so.

The remainder of the paper is organized as follows: The next section formulates
4Some of the games are not appropriate for estimating the models, so not all of the data will be

used (see Section 3).

8



the general behavioral model and the two special cases that will be used in the

statistical analysis. An example and a short discussion accompany the de…nitions.

Section 3 presents the maximum-likelihood estimation. In order to give an impression

of the robustness of the results, the estimations are also conducted separately for the

three data sets, and for a number of other subsets of the experimental games. Section

4 concludes.

2 Two models of normal-form game play

Consider a …nite two-player game ¡ = fa; b;Aa; Ab; ua; ubg with players i = a; b, where

Ai is player i’s action set and ui(¢); ui : Aa £ Ab ¡! <; is player i’s (von Neumann-

Morgenstern) utility function, which is assumed to be bounded. Letmi = #Ai be the

number of actions i has to choose from. Furthermore, let Qi be the set of probability

distributions over Ai, i.e., Qi is player i’s set of mixed strategies, where, for any

¼i 2 Qi; ¼i(ai) denotes the probability that ai 2 Ai is chosen according to ¼i:

The basic concept of the subsequent analysis is to make use of response functions

attributed to the players. De…ne the actual response function of player i, denoted

by ri(¢); ri : Qj ¡! Qi; as the mixed strategy that i chooses in response to a mixed

strategy ¼j 2 Qj of player j. For example, ri(¼j) could be an element of the best

response correspondence of i against ¼j, de…ned by

BRi(¼j) = argmax
¼i
ui(¼i; ¼j); i; j 2 fa; bg; i 6= j.
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Or, ri(¼j) could be a constant function not depending on ¼j, e.g. the uniform distri-

bution over all mi actions, which will be denoted by

P i0 = (
1
mi
; :::;

1
mi

); i 2 fa; bg.

To allow for general beliefs about the opponent’s strategy, de…ne also the perceived

response function of player j, erj(¢); erj : Qi ¡! Qj, as the belief that i holds about

the response function employed by j, with i 6= j. In analogy to the above examples,

erj(¼i) could e.g. be an element of BRj(¼i) or be equal to the constant function P j0 .

Using these two response functions, a slight variation of McKelvey and Palfrey’s

de…nition of a QRE strategy can be given as follows.5

De…nition 1 For a given pair of response functions (ri(¢); erj(¢)), player i’s strategy

¼i is a Quantal Response Equilibrium strategy (QRE strategy) if

¼i = ri(erj(¼i)):

If player i plays a QRE strategy for (ri(¢); erj(¢)), she assumes that j acts according

to erj(¢) and responds herself to this belief according to ri(¢), such that the above
5De…nition 1 and the de…nition of a QRE strategy in McKelvey and Palfrey (1995) are not

equivalent because in their formulation the response functions have to be derived from maximization

in a random-utility environment. This theoretically more satisfying approach is, however, much more

”de…nitionally intensive”. The special cases of the QRE strategies used in the data analysis below

will be accompanied by random-utility justi…cations, one of them strictly along the lines of McKelvey

and Palfrey (1995).

10



…xed-point property holds. For example, if (ri(¢); erj(¢)) are best responses of the

two players, then a QRE strategy ¼i is a Nash Equilibrium strategy. Notice that

the actual behavior of player j does not enter the de…nition of a QRE strategy –

rather it is only i’s perception of j’s behavior that matters. The approach is entirely

decision-theoretic, because the QRE is understood here as an equilibrium as perceived

by player i: The …xed-point property above makes a choice prediction for only one

player, i, who behaves as if both players play according to a QRE with response

functions (ri(¢); erj(¢)). In the data analysis, the fact that QRE strategies are de…ned

with respect to one player only (in the version of De…nition 1) will allow the case that

the predictions for the two players of a game are inconsistent.

In order to obtain well-de…ned choice predictions that can be analyzed using data

from experimental games, it remains to specify the form of the response functions ri(¢)

and erj(¢). Before turning to the data analysis in Section 3, the following subsections

therefore present two parametrized special cases of QRE strategies.

2.1 Asymmetric Logit Equilibrium strategies

First de…ne uik(¼j) to be player i’s expected utility from playing the (pure) action aik

against the strategy ¼j of player j; i.e., uik(¼j) =
Pmj
l0=1 ¼j(a

j
l0) ui(aik; a

j
l0); i; j = a; b.

Player i’s actual response function ri(¢) is the logistic response function with precision

parameter ¸i (¸i ¸ 0) if for all actions aik 2 Ai and all player-j strategies ¼j 2 Qj it
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holds that the probability weight on the action aik, denoted by rik(¼j ; ¸
i), is given by

rik(¼
j; ¸i) =

e¸iuik(¼j)
Pmi
k0=1 e

¸iuik0 (¼
j)

.

The logistic response function has the property that the probability weights on the

actions aik are ordered in correspondence to the ordering of the expected utilities

uik(¼j), k = 1; :::;mi. Also, varying the precision parameter ¸i corresponds to varying

the distance between the logistic response and the best response to ¼j. The greater

¸i, the more probability weight lies on the actions that are best responses to ¼j. As ¸i

approaches in…nity, rik(¼j; ¸
i) approaches zero if and only if aik is not a best response

to ¼j.

Analogously, de…ne ujl (¼i) to be j’s expected utility from action ajl chosen in

response to strategy ¼i. Then, the perceived response function erj(¢) is the logistic

response function with precision parameter ȩj (ȩ
j ¸ 0) if for all ajl 2 Aj and all

¼i 2 Qi it holds that the probability weight on ajl is given by

erjl (¼
i; ȩ
j
) =

eȩ
j
ujl (¼

i)

Pmj
l0=1 e

ȩjuj
l0 (¼
i)

.

De…nition 2 For given precision parameters ¸i and ȩj, let ri(¢) and erj(¢) be the

logistic response functions with ¸i and ȩj respectively. Then player i’s strategy ¼i is

an Asymmetric Logit Equilibrium strategy (ALE strategy) with parameters (¸i; ȩ
j
) if

¼i is a QRE strategy for (ri(¢); erj(¢)).

The class of ALE strategies allows for a relatively wide variety of game play
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behavior. For example, in the special case that ¸i and ȩj are equal, ¸i = ȩj =

¸, the set of ALE strategies with parameters (¸i; ȩ
j
) is equal to the set of Logit

Equilibrium strategies with parameter ¸, as de…ned by McKelvey and Palfrey (1995).

Hence, any Logit Equilibrium strategy is an ALE strategy. As with Logit Equilibrium

strategies, a player takes the opponent’s propensity to choose non-optimal responses

into consideration when playing an ALE strategy (as well as the fact that the opponent

does so, too, and so on) and chooses in accordance with the solution of the resulting

…xed-point problem. However, the di¤erence between the two choice predictions is

that playing an ALE strategy a player with a precision parameter ¸i is not assumed

to attribute the identical parameter value to her opponent’s behavior. The parameter

ȩj only re‡ects i’s expectation of j’s behavior, and no consistency or ”rationality” of

expectations will be imposed in the data analysis below.6

Also, the class of ALE strategies encompasses most of the player types introduced
6Player i’s second-order belief concerning the response precision, i.e. the belief she supposes her

opponent to hold about ¸i, is assumed to be correct, as in the Logit Equilibrium. Although this

assumption could, in principal, be relaxed as well, such a more general analysis is not attempted

here. One may argue that it is more natural to assume that second-order beliefs coincide with the

”true” precision level ¸i than to assume that …rst-order beliefs (ȩj
) do, because second-order beliefs

concern the player’s own behavior. However, it is clearly possible that a misspeci…cation of second-

order beliefs leads to the apparent distortions of …rst-order beliefs that are reported in Section 3. For

alternative speci…cations of second-order (and higher-order) beliefs in models of quantal response

see Stahl and Wilson (1994, 1995), Goeree and Holt (2000) and Kübler and Weizsäcker (2002).
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by Stahl and Wilson (1994, 1995). In particular, if ¸i = 0 holds, then i is a level-0

type. If ¸i = 1 and ȩj = 0, i is a level-1 type. In the case ¸i = ȩj = 1, i is

a Nash type. Hence, the class of ALE strategies can be seen as a two-dimensional

continuum between these three archetypical patterns of behavior. For intermediate

values of ¸i and ȩj, player i exhibits a ’worldly-like’ behavior: She considers j to be

neither completely irrational nor unboundedly precise in his responses, and she takes

into account the fact that j believes her, i, not to be perfectly rational either.7

As an illustration, consider the 2x2 game ¡1 given in the Table I, which is one of

the games used for the data analysis in Section 3. In ¡1, the column player’s strategy

R is dominated, and the game has a unique Nash Equilibrium at (U;L).

Insert Table I about here.

The ALE strategies for di¤erent parameter constellations (¸row; ȩ
col
) are shown

in Figure 1.8 Figure 1a depicts the graph of the row player’s ALE strategies for
7Due to the symmetric structure of the ALE strategy, player i is assumed to expect her opponent

j to exhibit this ’worldly-like’ behavior, too, if (¸i; ȩj
) > 0. In contrast, the worldly type of Stahl

and Wilson (1995) expects level-0, level-1, and Nash behavior but does not believe in the existence

of other worldly players.
8The strategies were calculated with a grid-search algorithm similar to the ”Gobit-All” algorithm

used in the software package Gambit, which produces QRE strategies (see McKelvey et al., 1996).

The entries in the matrix were transformed into US$ payo¤s in the same way as in the experiment

by Costa-Gomes et al. (2001), where the game was used; see Appendix B.
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varying values of ȩcol: ¸row is held constant at ¸row = 16, and ȩcol varies on a

logarithmic scale. In Figure 1b, ȩcol is held constant at ȩcol = 16, and ¸row varies.

Both parts of the …gure show the ALE probability of the row player choosing action

U (marked ”Pr(U)”) and the row player’s corresponding belief about the column

player’s probability to choose L (marked ”Pr(L)”).

Insert Figure 1 about here.

Figure 1a illustrates the dependence of the row player’s behavior on the precision

parameter ȩcol that she attributes to the column player. For small values of ȩcol,

implying in a perceived strategy of the column player that is close to the uniform

distribution, the row player ”rationally” responds with almost none of the probability

weight lying on U . As ȩcol increases, i.e., as the column player’s hypothetical response

becomes closer to the best response, the row player increases her probability weight

on U , and eventually (for large values of ȩcol) her strategy approaches the Nash

Equilibrium strategy. Figure 1b, on the other hand, shows that regardless of the

value of her own precision parameter ¸row, the row player expects her opponent

to choose L (which is his best response) with almost full probability mass, so she

responds by playing U with the greater probability. Again, for large values of ¸row,

i.e., as her own response precision gets larger, her ALE strategy approaches the Nash

Equilibrium strategy.

Viewing the game from the perspective of the column player, notice that due
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to the symmetric structure of the QRE condition (see De…nition 1) it holds that

whenever ¼i is an ALE strategy for player i with parameters (¸i; ȩ
j
) it is also true

that ¼j = erj(¼i; ȩ
j
) is an ALE strategy for j with parameters (ȩ

j
; ¸i). Hence, the

column player’s hypothetical choice probabilities depicted in the …gure can equally

be viewed as his actual choice probabilities prescribed by ALE strategies with the

parameter constellations in the reverse order.

Following this interpretation, Figure 1b also shows that the column player’s actual

ALE behavior with a precision level of ¸col = 16 does not depend on his belief about

the row player to any signi…cant degree. Since R is a dominated strategy, it is always

a best response for the column player to choose L. Similarly, in Figure 1a, as ¸col

rises (for a given value of ȩrow), more and more probability mass lies on L, and the

column player’s ALE strategy approaches the Nash Equilibrium strategy.9

9An ALE strategy can alternatively be viewed as the equilibrium choice distribution in a game

with random errors (following extreme-value distributions) perturbing the payo¤s. For Logit Equilib-

rium strategies, this was demonstrated by McKelvey and Palfrey (1995). Following their approach,

one can immediately establish two important properties of ALE strategies: First, ALE strategies

exist for all values of (¸i; ȩj
), and second, if ¸i and ȩj

both converge to in…nity, any limiting ALE

strategy is a Nash Equilibrium strategy of the unperturbed game. These results follow from McK-

elvey and Palfrey (1995), Theorem 1 and Theorem 2, respectively. For a discussion see also McKelvey

and Palfrey (1998) as well as Zauner (1999), who applies di¤erent speci…cations of the error structure

to random-utility models. A common interpretation of such random-utility perturbations is to view
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2.2 Asymmetric Noisy Nash Equilibrium strategies

This subsection presents a parametrization of QRE strategies that is, although some-

what less elegant, easier to compute and to interpret than the one in the previous

subsection. This second model is the uniform-error analogon to the class of ALE

strategies, meaning that the players are assumed to erroneously choose non-optimal

responses with constant probabilities, which do not depend on the expected utilities

resulting from these actions. Speci…cally, some proportion of the probability weight

in a player i’s response function is assumed to lie on the uniform distribution over all

of her mi actions, P i0.

Player i’s actual response function ri(¢) is called the uniform-error response func-

tion with error rate ²i (²i 2 [0; 1]) if, for all player-j strategies ¼j 2 Qj,

ri(¼j; ²i) = (1 ¡ ²i)dBR
i
(¼j) + ²iP i0;

where dBR
i
(¼j) is an arbitrary element of i’s set of best responses to ¼j, BRi(¼j), and

i; j 2 fa; bg; i 6= j. Analogously, player j’s perceived response function erj(¢) is called

the uniform-error response function with error rate e²j (e²j 2 [0; 1]) if for all ¼i 2 Qi it

holds that

erj(¼i;e²j) = (1 ¡ e²j)dBR
j
(¼i) + e²jP j0 ;

where dBR
j
(¼i) 2 BRj(¼i), i; j 2 fa; bg; i 6= j.

them as representing the impact of computational errors.
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De…nition 3 For a given pair of error rates (²i;e²j), let ri(¢) and erj(¢) be the uniform-

error response functions with ²i and e²j respectively. Then player i’s strategy ¼i is an

Asymmetric Noisy Nash Equilibrium strategy (ANNE strategy) with parameters (²i;e²j)

if ¼i is a QRE strategy for (ri(¢); erj(¢)).

As with ALE strategies, the class of ANNE strategies encompasses a variety of

behavioral patterns, depending on the pair of parameters (²i;e²j). If ²i = 1, then i

is a level-0 type and fully randomizes between her actions. If ²i = 0 and e²j = 1

hold, i is a level-1 type, and in the case ²i = e²j = 0 she is a Nash type. For

intermediate values of (²i;e²j), player i plays ’worldly-like’, similar to the case of an

ALE strategy with (¸i; ȩ
j
) > 0: She thinks of her opponent as neither perfectly

precise nor perfectly imprecise in his responses, and she considers the fact that j also

takes her own imprecision into account.

In contrast to ALE strategies, which cannot be derived analytically for most games

and parameter pairs (¸i; ȩ
j
), ANNE strategies can be calculated exactly, in analogy

to solving for the Nash Equilibrium strategies of a game. Figure 2 depicts the ANNE

strategies of game ¡1 (see Table I) for varying parameter constellations, and for both

players (again marked ”Pr(U)” and ”Pr(L)”, indicating the respective probabilities

to choose the Nash strategies). In Figure 2a, ²row is held constant at ²row = 0:2 and

e²col varies between 0 and 1, whereas in Figure 2b ²row varies and e²col is held constant

at 0:2.
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Insert Figure 2 about here.

As Figure 2a shows, the row player’s ANNE strategy is close to her Nash Equi-

librium strategy U as long as e²col is below some critical value e²colcrit ¼ 0:73. For values

of e²col above e²colcrit, the row player considers the column player to randomize enough to

make the action D her best response against any resulting probability distribution.

As is the case with ALE strategies, the column player’s perceived choice probabilities

depicted in the …gures can equally be viewed as his actual ANNE strategies with the

reversed order of parameters. Hence, Figure 2b shows that under the ANNE assump-

tions, paralleling the ALE case, the column player plays his dominant strategy L with

a high probability regardless of the row player’s actions.

A comparison of Figures 1a and 2a shows that the change in the row player’s

behavior is smoother with ALE strategies and varying ȩcol than it is with ANNE

strategies and varying e²col. Hence, the ALE strategy model is more ‡exible in the

sense that even for a high precision in her actual responses, the row player may choose

”intermediate” strategies.10

10To explore the applicability of the ANNE strategy model, it is useful to ask for a random-utility

justi…cation of the assumption that players choose ANNE strategies, similar to the reinterpretation of

ALE strategies in Footnote 9. Using standard concepts of Bayesian game analysis, it is possible, for

any pair of parameters (²i;e²j) 2 [0; 1]£ [0; 1], to construct a …nite game of incomplete information in

which the players’ equilibrium probability distributions over their choices are equal to the probability

distributions resulting from playing ANNE strategies with parameters (²i;e²j). This construction is
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3 Data analysis

3.1 Likelihood functions

In this subsection, the basic assumptions underlying the parameter estimations are

formulated – in particular concerning the introduction of type heterogeneity – and

likelihood functions for both the ALE strategy model and the ANNE strategy model

are presented. The following subsections will describe the experimental data, and

present and illustrate the estimation results.

Consider a number of N subjects, i = 1; :::; N , each of whom is confronted with a

set of Hi two-person normal-form games. Let c(i; h) be the action chosen by subject

i in game h, h = 1; :::; Hi. Also, let ci = fc(i; h)gHih=1 denote the vector of i’s joint

choices.

Now suppose that choice probabilities are given by a model of normal-form game

play, such as the ALE strategy model or the ANNE strategy model. Let Pihk(µi)

be the probability that subject i chooses action k in game h, where µi is i’s vector

relegated to Appendix A. Due to this reinterpretation, existence of ANNE strategies is established.

Also, notice that it holds for almost all games ¡ and all parameters (²i;e²j) that the ANNE strategy

for a player is unique if either she or her opponent has a strictly dominant strategy, because the

other player then has a (generically) unique best response. This property is useful for the data

analysis in the following section, in that it provides a simple su¢cient condition for the model to

make an unambiguous prediction.
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of parameters determining her choice probabilities in the underlying model: In the

context of ALE strategies, µi is given by (¸i; ȩ
j
); in the context of ANNE strategies,

µi is given by (²i;e²j). The vector µi can also be thought of as subject i’s type. With

this notation, the probability that i chooses c(i; h) in game h is equal to Pihc(i;h)(µi).

Hence, the likelihood of subject i’s type µi, given her joint choices ci, can be written

as

bLi(µijci) =
HiY

h=1
Pihc(i;h)(µi). (1)

An assumption that is implicitly made by the construction of bLi(µijci) is that subject

i’s type is …xed over all games h, h = 1; :::; H i. (Given this assumption, it is an im-

portant feature of both ALE strategies and ANNE strategies that they allow a player

i with a …xed type µi to exhibit a ‡exible behavior over di¤erent games, depending

on the payo¤s of the games.11) Also, it is assumed that the H i choices are made

independently, given the probabilities Pihc(i;h)(µi).

In order to allow for heterogeneity among the N subjects, suppose that µi is a

random variable drawn from a distribution with density function g(µij¯); where ¯ is

a vector of parameters determining the density function g(¢). (The vector ¯ will be

11Consider for example Figure 2a and imagine a second game, ¡0
1, in which the critical value of e²col

at which the row player’s strategy changes discontinuously, i.e. a value e²col0
crit corresponding to e²col

crit,

is lower: e²col0
crit < e²col

crit. Then for a continuum of parameter pairs (²row;e²col) the ANNE strategies of

the row player would prescribe a high probability of choosing the Nash Equilibrium strategy in ¡1,

but not in ¡0
1. A similar observation applies to ALE strategies.
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estimated from the data.) Subject i’s contribution to the overall likelihood is then

given by the expected value of bLi(µijci);

Li(¯jci) =
Z

bLi(µijci)g(µij¯)dµi

=
Z HiY

h=1
Pihc(i;h)(µi)g(µij¯)dµi.

Finally, let c = fcigNi=1 be the vector containing all observed choices by theN subjects.

Assuming that the N subject types (µ1; :::; µN) are identically and independently dis-

tributed, with densities (g(µ1j¯); :::; g(µN j¯)), the likelihood of the parameter vector

¯ is

L(¯jc) =
NY

i=1
Li(¯jci). (2)

It remains to specify the distribution of subject types, g(¢). For the sake of

greater parsimony of the models, standard parametric distribution functions, with

given functional forms, are assumed.12 In particular, suppose for the two parameters

of the ALE strategies, ¸i and ȩj, that they are independently drawn from two gamma

distributions with densities f°(¸ij½;K) and f°(ȩ
jje½; fK), respectively, for all subjects

i = 1; :::; N . A gamma distribution has a unimodal density function f°(¢j½;K) de-

12An alternative approach would be to use nonparametric density estimations. Stahl and Wilson

(1994, 1995), who base their analysis on a behavioral model that is related to ALE strategies and

involves three type parameters, assume a distribution over the three-dimensional parameter space

that contains several distinct mass points, re‡ecting the di¤erent player types.
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pending on two distribution parameters, ½ and K, and is de…ned by

f°(¸j½;K) =
½K

¡(K)
e¡½¸¸K¡1; ¸ ¸ 0; ½ > 0; K > 0;

where ¡(K) denotes the gamma function given by

¡(K) =
Z 1

0
tK¡1e¡tdt.

The expected values of ¸i and ȩj are then given by K
½ and eK

e½ respectively, their

variances are K½2 and eK
e½2 respectively. Substituting the joint density of ¸i and ȩj,

g°(¸i; ȩ
jj½;K; e½; fK) = f°(¸ij½;K) ¢ f°(ȩ

jje½; fK),

into (2) completes the construction of the likelihood function for the ALE strategy

model.

The family of gamma distributions contains a number of familiar distributions

as special cases, such as the Â2-distribution, the exponential distribution, and the

extreme value distribution. Also, it allows for the case that almost all probability

mass is concentrated in an arbitrarily small interval around a speci…c value of ¸i (or

ȩj respectively), which corresponds to the case of homogeneity among the subjects.

Hence, although the model contains only the four parameters (½;K; e½; fK) that are

to be estimated from the data, it allows for a relatively large variety of possible

distributions of behavioral patterns in the experiment.

In the estimations using the ANNE strategy model, both parameters ²i and e²j

are assumed to be drawn from independent distributions that belong to the family
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of beta distributions over the range [0; 1]; with densities f¯(²ija; b) and f¯(e²jjea;eb),

respectively. A beta distribution depends on two distribution parameters a and b;

and has a density function given by

f¯(²ja; b) =
¡(a+ b)
¡(a)¡(b)

²a¡1(1 ¡ ²)b¡1; ² 2 [0; 1]; a; b > 0;

where ¡(¢) is de…ned as above. The beta density function is symmetric in the case

a = b and asymmetric otherwise, and it can be hump-shaped or U-shaped, depending

on the values of a and b. Its mean is given by a
a+b , its variance is ab

(a+b+1)(a+b)2 . Like the

gamma distribution, the beta distribution also contains the special case that almost

all probability mass lies in an arbitrarly small interval around a speci…c value of ².

For any subject i, the joint density of the actual and perceived error rates (²i;e²j)

is, under the above assumptions, given by

g¯(²i;e²jja; b; ea; eb) = f¯(²ija; b) ¢ f¯(e²jjea; eb),

which can be substituted into (2).

3.2 Estimation results using all data

Stahl and Wilson (1994, 1995) conducted two experiments with 40 and 48 subjects,

respectively, playing a total of 22 symmetric 3x3 normal-form games. Costa-Gomes,

Crawford, and Broseta’s (2001) experiment involved 72 subjects who were confronted

with 18 normal-form (2x2, 3x2, and 4x2) games each. In the latter experiment, all 18
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games were asymmetric and the subjects were divided into row players and column

players, but the games were chosen such that the subjects were confronted with two

almost identical versions of each of 9 games, played with switched player roles (and

with slightly altered payo¤s), so all subjects played almost identical sets of games.13

In all three experiments, no feedback information was given between the subjects’

decisions. Also, importantly, in all sessions the experimenters took careful measures

to ensure that the subjects understood the procedures and the rules of the games.14

Of the 40 games played, 23 have the property that both ALE strategies and ANNE

strategies are unambiguous predictions for the greatest part of the possible parameter
13The data used are those of the ”Baseline” and the ”OB” treatment in the authors’ terminology.

One possible source of noise in the data is given by the fact that the 45 subjects of the Baseline

treatment had to click on the cells of the payo¤ matrices with the computer mouse in order to

see the payo¤s. However, Costa-Gomes et al. (2001) report statistical tests indicating that the

choice behavior between the two treatments was di¤erent only within the limits of chance, so the

data can be pooled. A further di¤erence in experimental design between the experiments occured

concerning the payo¤ determination: While Costa-Gomes et al. (2001) randomly selected one

opponent for each subject in each game, the payo¤s in the experiments in Stahl and Wilson (1994,

1995) were determined by calculating each participant’s expected outcomes from playing against

the distribution of all her possible opponents (i.e., subjects were ”playing against the …eld”) and by

applying a binary-lottery procedure.
14Costa-Gomes et al. (2001) dismissed a total of 20 students who had shown up for the experiment,

after they failed in the screening tests.
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constellations (¸i; ȩ
j
) and (²i;e²j) respectively.15 More precisely, for these 23 games

both the sets of ALE strategies and ANNE strategies are singletons for more than

95% of the possible parameter constellations (so a unique probability distribution over

the players’ actions is predicted for these parameters). In order to avoid equilibrium

selection problems in the present analysis, only these 23 games are used for the

estimations (Games 1, 2, 3, 5, and 8, in Stahl and Wilson, 1994, Games 1, 4, 5, and

12, in Stahl and Wilson, 1995, and all of Costa-Gomes et al.’s games except Games

5A, 6A, 7A, and 8A).16 For all parameter constellations where more than one …xed

point exists, it is, for simplicity, assumed in the data analysis that the subjects play

each ALE strategy or ANNE strategy, respectively, with equal probability.

The 23 games used are shown in Appendix B, which also contains the aggregate

choices of the N = 160 subjects. All of the selected games have unique Nash Equi-

15The parameter range for ¸i and ȩj
is arti…cially restricted to [0; 30] in this and all subsequent

parts of the analysis. For larger values of ¸i [ȩj
], the respective ALE strategies in all games are very

close to the case that ¸i = 30 [ȩj
= 30]. In particular, the ALE strategies, or Logit Equilibrium

strategies, for ¸i = ȩj
= 30 prescribe choice probabilities that are essentially identical to the Nash

Equilibrium predictions, for the greatest part of the games.
16The relative numbers of unique predictions made by the models are calculated by solving for the

ALE and ANNE predictions on a …nite grid over the two-dimensional parameter spaces. The cuto¤

value of 95% is chosen somewhat arbitrarily. However, a separate analysis, using the set of (30)

games in which both models make unique predictions for more than 90% of the possible paramenter

constellations, yielded estimation results similar to those reported below.
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libria; three of them have Nash Equilibria in mixed strategies, and the remaining 20

games are strict dominance solvable.

Table II contains the maximum-likelihood estimates of the two models’ respective

distribution parameters. The estimates were obtained by maximizing the logarithm

of (2) using a standard grid-search algorithm. The maximum values of the log-

likelihood functions are also given in the table, denoted by l¤. Figures 3 and 4 depict

the estimated density functions of the parameter pairs (¸i; ȩ
j
) and (²i;e²j) respectively.

Insert Table II about here.

Insert Figure 3 about here.

Insert Figure 4 about here.

As the …gures illustrate, the estimations reveal considerable di¤erences between

the distributions of the subjects’ actual response parameters (¸i and ²i) and the

distributions of the response parameters that the subjects attribute to their opponents

(ȩj and e²j). In particular, it appears that subjects have a systematically distorted

perception of their opponents: Both distributions of the actual response parameters

¸j and ²j lie more in the ”rational” area of the parameter range, as compared to

the distributions of the perceived response parameters ȩj and e²j. The estimated

means are E[¸i] = 7:20 as compared to E[ȩ
j
] = 3:92, and E[²i] = 0:30 as compared

to E[e²j] = 0:58 (with estimated variances of var(¸i) = 20:83, var(ȩ
j
) = 26:62,
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var(²i) = 0:02, and var(e²j) = 0:10).

This discrepancy between the means of the subjects’ actual and perceived re-

sponse parameters can be tested statistically by reestimating the models under the

restriction that the expected values of the respective pairs of parameters are equal,

i.e., under the null hypotheses that E[¸i] = E[ȩ
j
] and E[²i] = E[e²j ] hold respectively.

Denoting the log-likelihood of the restricted model by lr, the likelihood-ratio statistic

2(l¤¡ lr) is (asymptotically) Â2-distributed with one degree of freedom. The resulting

critical signi…cance levels of rejecting the null hypotheses are p = 0:021 for the ALE

strategy model and p = 2:749¢10¡9 for the ANNE strategy model (two-tailed). Hence,

the observation that subjects on average behave as if underestimating the response

precision of their opponents is statistically signi…cant in the data set, and highly so

under the ANNE assumptions.17 18

The related hypotheses that the actual and perceived response parameters are
17The observation that subjects tend to ignore their opponent’s rationality has, to my knowledge,

…rst been explicitely stated by Beard and Beil (1994) in the context of extensive-form games. See also

the other experimental studies cited in Footnote 3, as well as the related papers by Goeree and Holt

(2000) and Kübler and Weizsäcker (2002), all of which roughly support this hypothesis. Di¤erent

structural models employing ”non-equilibrium beliefs” have been estimated by Costa-Gomes and

Zauner (1999) and Camerer et al. (2002).
18It is important to recall that the analysis in this paper only considers one-shot games. Repeti-

tions of experimental games, or other dynamic settings, may well help the subjects learn to avoid

the observed tendency to ignore the other player’s rationality.
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chosen from identical distributions, i.e., that both ½ = e½ and K = fK hold under the

ALE strategy model, and that both a = ea and b = eb hold under the assumptions of

the ANNE strategy model, are rejected on levels of signi…cance of p = 5:083 ¢ 10¡9

and p = 1:227 ¢ 10¡10, respectively.

Now consider the question whether the introduction of type variation, in contrast

to assuming that all subject types are equal, does signi…cantly increase the models’

statistical …t in the data. More speci…cally, restricting both ¸i and ȩj to equal a

constant value, ¸i = ȩj = ¸, amounts to assuming that all subjects play Logit

Equilibrium strategies with a …xed parameter ¸ (see Subsection 2.1). Since this set of

assumptions is also nested in the model (because the familiy of gamma distributions

contains the homogeneity case, where all subjects have the same parameter), one

can again perform a likelihood-ratio test, with the according test statistic being Â2-

distributed with three degrees of freedom. The maximum-likelihood estimation of ¸

is 3:06, and the Logit Equilibrium model is rejected on a signi…cance level of p =

1:083 ¢ 10¡39. Analogously, the ANNE strategy model with the restriction ²i = e²j = ²

is rejected on a sini…cance level of p = 3:525 ¢ 10¡63; with an estimated value of

² = 0:53.

Also, one can ask whether the hypothesis of type homogeneity can be sustained

at any reasonable level of signi…cance if one allows for a wrong perception of the

opponent. That is, one may formulate the hypotheses that ¸i = ¸ and ȩj = ȩ both
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hold for all subjects under the ALE assumptions (for some …xed values ¸ and ȩ),

and that ²i = ² and e²j = e² both hold for all subjects under the ANNE assumptions

(for some ² and e²). The two according likelihood-ratio test statistics (following Â2-

distributions with two degrees of freedom) yield rejections of these sets of assumptions

on the p = 2:155 ¢10¡34 level for the ALE strategy model, and on the p = 2:573 ¢10¡64

level for the ANNE strategy model. One can conclude from the tests described in this

and the previous paragraph that there is substantial variation in the subject pool in

terms of belief and response precision.

Nevertheless, it may be of interest to know whether the estimated perceived and

actual response precisions coincide if one restricts the subject population to be homo-

geneous. (Under the ALE asumptions, this amounts to a test discriminating between

Logit Equilibrium strategies and the more general ALE strategies.) The according

ML estimates of the response parameters are ¸ = 4:08 and ȩ = 2:18 in the ALE

strategy model, and ² = e² = 0:53 in the ANNE strategy model. Hence, the two mod-

els yield qualitatively di¤erent results under the restriction of subject homogeneity:

Only the ALE estimations reveal a tendency of the subjects to underestimate the

opponent’s response precision (on a signi…cance level of p = 6:605 ¢ 10¡8).

In sum, the estimations of the models using all available experimental data suggest

that while any assumption of type homogeneity is rejected on very high levels of

signi…cance, there is also a signi…cant tendency for subjects to attribute a lower
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degree of response precision to their opponent than they have themselves. However,

one can argue that much of the evidence supporting this observation relies on the

manner in which type heterogeneity was introduced. Perhaps, the assumed parameter

distributions bias the estimations. To answer this question, the two models were also

estimated separately for each subject, i.e., the expression (1) was maximized using

each individuals’s data only. The results support the observation of belief distortions

made above: Under the ALE strategy model, the ML estimate of ¸i exceeds the

estimate for ȩj for 115 out of 160 subjects. In 50 cases was this discrepancy signi…cant

on the p = 5% level. (At p = 1%, it was signi…cant in 14 cases, and at p = 10% in 58

cases.) The reverse relationship, ¸i · ȩj, was estimated to hold for 45 subjects, and

for none of them does ¸i < ȩj hold signi…cantly at p = 5%. (For 3 subjects it holds at

p = 10%.) The ANNE estimations reproduce these numbers almost exactly: ²i < e²j

holds at the estimated maximum of (1) in 115 cases, and signi…cantly at p = 5% in

37 cases (at p = 1% in 18 cases, at p = 10% in 59 cases). ²i ¸ e²j holds in 45 cases,

and again none of these show the subjects’ actual error rate ²i to be signi…cantly

larger than the perceived error rate e²j (not even at p = 10%). Hence, the apparent

tendency to ignore the other player’s response rationality is con…rmed by the separate

estimations for each subject.

Before moving on to results concerning subsets of data, the statistical analysis

of the pooled data set is concluded by reporting goodness-of-…t tests, as well as
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a test of model selection between the two competing models. As a measure of the

models’ goodness of …t, exact chi-square tests were performed, comparing the models’

predictions and the observed decisions. These tests were done for each of the 5+ 4+

28 = 37 di¤erent player decisions in the games. (For the 14 asymmetric games by

Costa-Gomes et al., 2001, row players and column players need to be considered

separately.) On the level of p = 5%, the predictions of the ALE strategy model (with

the parameter values given in Table II) were rejected for 13 out of the 37 decision

situations, and for the ANNE model in 11 out of 37 cases. Hence, while both models’

predictions are accepted for the majority of the decision situations, the rejection

rates are too high to lie within the limits of chance, as only 5% of the predictions

should be rejected in expectation if the models were literally true. This may point at

misspeci…cations of the models, or at systematic di¤erences in behavior for di¤erent

subsets of games, which will be addressed below.

The fact that the ALE strategy model is rejected more often than the ANNE

strategy model contrasts with the fact that the former yields a higher likelihood than

the latter (see Table II). The question arises whether one model outperforms the

competing model in a statistically signi…cant way. Since neither is a special case of

the other, a model-selection technique for non-nested models is needed. Vuong (1989)

showed that for pairs of non-nested models a surprisingly simple test can be applied,

in analogy to standard likelihood-ratio tests: Let liALE and liANNE be the two models’
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likelihoods for the decision vector of subject i, evaluated at the ML parameter values

reported in Table II. Then, clauses (i) and (iv) of Theorem 5.1 in Vuong (1989)

immediately imply that the statistic

PN
i=1 ln liALE ¡ ln liANNE

1p
N

PN
i=1(ln liALE ¡ ln liANNE)2

asymptotically follows a standard normal distribution, under the null hypothesis that

both models perform equally well.19

For the pooled data used here, the test shows that the ALE strategy model outper-

forms the ANNE strategy model signi…cantly, on a level of p = 4:553% (two-tailed).

The next subsection will demonstrate, however, that this result does not hold for all

subsets of the data.

3.3 Robustness: Estimation results using subsets of data

To give an impression of the robustness of the results, the data are separated following

two criteria. First, the models are estimated for each of the three experiments, in

order to control for possible treatment e¤ects. Second, the data are divided according

to systematic di¤erences between the games played.
19For this result to apply it is essential (as it is for the other likelihood-ratio tests used in this

paper) that the subjects’ types are drawn independently. The numerator of the test statistic is simply

the likelihood ratio of the two competing models, and the denominator is a consistent estimator of

this ratio’s variance, under the unknown true distribution of the data generating process.
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Tables III and IV, in Appendix C, contain the estimation results of the two models

if the data from the three experiments are used separately. Also, the tables contain:

The signi…cance levels of rejecting four hypotheses analogous to those that were tested

in the previous subsection; the number of di¤erent decision situations for which the

models’ predictions are rejected by exact chi-square tests on the level of p = 5%; and

– in the lower panels of the tables – the number of subjects for which the individual

estimations yield each of the two possible parameter asymmetries (with cases signi…-

cant at p = 5% in parentheses). As the tables show, the results are qualitatively very

similar to the results of the pooled data reported above, at least for two of the three

data sets. In both the Stahl and Wilson (1994) data and the data by Costa-Gomes

et al. (2001), the estimated actual response functions of both models are on average

closer to the best response function than the estimated perceived response funtions

are. I.e., the subjects tend to ignore their opponents’ rationality, according to these

estimation results (see the estimates of E[¸i], E[ȩ
j
], E[²i], and E[e²j], reported in

the tables). These di¤erences are, as indicated in the …rst rows of the tables’ sec-

ond sections, highly signi…cant in both of these data sets and in both models, all

corresponding levels of signi…cance being below p = 10¡6. Furthermore, as in the

analysis of the pooled data, all restrictions of type heterogeneity among the subjects

are rejected on even higher levels of signi…cance.

For the remaining data set by Stahl and Wilson (1995), the results of the previous
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subsection are only partly reproduced. While any assumption of type homogeneity

is again strongly rejected, the result of underestimated precision levels shows up

only in the ANNE strategy model, with a signi…cance of p = 0:026. In the ALE

strategy model, the subjects’ perceived response precision is, on average, estimated

to be higher than the actual response precision, on a level of signi…cance of p =

0:062. Apparently, the assumptions concerning the error structure make a signi…cant

di¤erence here. However, a possible reason for this deviation from the general result

pattern is that the ALE strategy model is poorly identi…ed in the Stahl and Wilson

(1995) data set (which is the smallest data set used). This is indicated by the model

selection test by Vuong (1989): In the Stahl and Wilson (1995) data, ANNE strongly

outperforms ALE according to this test, on a signi…cance level of p = 0:001. In the

Stahl and Wilson (1994) data, ANNE insigni…cantly outperforms ALE, at p = 0:219.

In the data by Costa-Gomes et al. (2001), ALE outperforms ANNE at p = 0:009.20

Another question is whether distinctive properties of some of the games lead sub-

jects to exhibit a choice behavior of the speci…c kind described above. In particular,

it is possible that subjects simply fail to identify dominance relations among the op-

ponent’s strategies, but never play a dominated strategy themselves.21 Since most of
20A comparison of the two sets of experimental instructions by Stahl and Wilson (1994, 1995)

does not reveal strong di¤erences which could account for large variation in behavior.
21This pattern, which can be seen as re‡ecting the ignorance concerning the opponent’s rationality

in cases of games with dominated strategies, is suggested almost immediately by an inspection of
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the games used contain dominated strategies, such a failure may drive the results of

the analysis using the pooled data. To investigate this possibility, the data analysis

is repeated for two partitions of the set of games: For the …rst partition, de…ne the

set DT as the set containing all games in which at least one player has a dominant

strategy. (All of these 10 games are from Costa-Gomes et al., 2001.) This set is

compared with NDT, the set of games without dominant strategies. Subsequently,

a similar comparison is made between the set DD, containing all games with domi-

nated strategies (for either player), and NDD, the set of games without dominated

strategies.22

Tables V and VI show the results of the estimations for the DT and the NDT

data, organized as in the preceeding tables. In both data sets, the estimated average

the aggregate choice data in Appendix B.
22More precisely, the set NDD contains all games in which no strategy is dominated by a pure

strategy, and DD contains the remaining games. Unfortunately, the set of games in which no

strategy is dominated by any (pure or mixed) strategy contains only the three games with mixed

strategy Nash Equilibria, so I decided to include the four games with strategies that are solely

dominated by mixed strategies into NDD, for two reasons: First, it increases the amount of data in

the NDD analysis. Second, it mitigates the problem that the results are subject to any systematic

di¤erences in behavior appearing only in games without pure Nash Equilibria that are not captured

by the models. While the estimations from the NDD data will certainly have to be interpreted with

caution, it also turned out in a separate analysis, using the set containing only the three games with

mixed Nash Equilibria, that the results are qualitatively similar (see below, Footnote 24).
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response precisions are, once again, di¤erent between the actual and the perceived

response functions of both models, with a tendency to underestimate the opponents’

response precision (though on lower levels of signi…cance than in the pooled data).

Also, both models’ special cases with the restriction to type homogeneity are strongly

rejected, in both data sets. Hence, it appears that the distinction between games

with and without dominant strategies leaves the main results of the previous analysis

essentially untouched.

For the sets of games with and without dominated strategies, DD and NDD, the

results are summarized in Tables VII and VIII. Here, the two data sets yield somewhat

di¤erent results concerning the absolute and relative estimated levels of the average

response parameters: While the games with dominated strategies induce the familiar

pattern of subjects underestimating their opponents’ response precision, the tables

show that for the NDD data set this behavior appears only under the assumptions

of the ANNE strategy model, whereas the ALE estimations result in insigni…cant

di¤erences between the mean levels of ¸i and ȩj. Therefore, the evidence for the

behavioral pattern described above is weaker for these games.

However, the test by Vuong (1989) indicates that ANNE outperforms ALE in the

NDD data, at a level of p = 6:914 ¢ 10¡17. In the other data subsets, the model

selection test does not yield strong rejections of either model. In the DT and DD

data, ALE outperforms ANNE at signi…cance levels of p = 0:102 and p = 0:126,
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respectively. In the NDT data, ANNE outperforms ALE at p = 0:109. Also, note

that under both models, the estimated actual response precisions are much lower in

the NDD data than in the DD data (so fewer decisions are estimated to be made

randomly in the DD data), pointing at a behavior more consistent with the model

predictions in the ”simpler” games contained in DD.23 24

This discrepancy is con…rmed by the results of the goodness-of-…t tests, reported

in the third section of each of the tables, as the model rejection rate is smaller for the

DD data than it is for the NDD data. An analogous di¤erence appears between the

DT data and the NDT data. The goodness-of-…t tests also show that the rejection

rates are only slightly reduced when subsets of data are considered separately, as

compared to the pooled-data analysis of the previous subsection.

In sum, the separation of the data into subsets mostly con…rms the observed

tendency to ignore or underestimate the opponent’s response rationality. The corre-

sponding e¤ects are statistically signi…cant in all but two cases of (model, data set)
23The lower response precision in NDD may partly explain the apparent identi…cation problem of

the ALE strategy model in these data: With a high error rate (low ¸i) little can be inferred about

the subjects’ beliefs. It is not clear, however, why such problems should matter less in estimations

of the ANNE strategy model.
24The estimated mean values of the models’ parameters using only the set of games with mixed

equilibria (which contains three of the seven games in NDD, cf. Footnote 22) are E[¸i] = 5:39;

E[ȩj
] = 7:23, E[²i] = 0:62; and E[e²j ] = 0:90. The signi…cance levels of rejecting the hypotheses

E[¸i] = E[ȩj
] and E[²i] = E[e²j ] are p = 0:661 and p = 0:035, respectively.
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combinations. In these two cases, the model used is strongly rejected in favor of the

competing model, which reproces the above observation in both cases, using the same

data.

4 Conclusions

In this paper, two behavioral model of beliefs and responses are presented and esti-

mated from experimental data. The estimation results show that while there is a large

type variation among the subjects in each of the experiments, the subjects on aver-

age are prone to make a systematic prediction error: Under the assumptions of the

models, subjects act as if underestimating the response precision of their opponents.

A rather conservative interpretation of this result is to view it as a critique of an

assumption which is typically made in game-theoretic models of quantal response: In

these models, one usually supposes that experimental subjects are aware of the level

of randomness in their opponents’ motivations (although the experimenter herself is

not). This assumption is relaxed in the above estimations, and the corresponding

statistical tests indicate that it is consistently rejected in the data.

Taking a broader view, one may read the estimation results as an indication of a

more general ”anomaly”: Subjects tend to ignore their opponents’ incentives. One

can then ask whether this evidence is an artifact of the experimental environments

in the laboratories, and in particular of the fact that only normal-form games with
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abstract matrix presentations were used in the analysis. Perhaps, adding a context

to the experiments would help the subjects to see their opponent’s decision problems

more vividly and clearer.
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Appendix

A A random-utility interpretation of ANNE strategies

In the following, for any given normal-form game a corresponding game with incom-

plete information is constructed, which has a Bayesian Nash Equilibrium strategy

that is observationally equivalent to an ANNE strategy of the original game. Thereby,

existence of ANNE strategies is established.

Summarized in words, the original game is modi…ed in order to make uniform

”trembles” an optimal strategy in the modi…ed game. From the view of an outside

observer, player a will put probability weight ²a on the uniform distribution, and

will put the remaining mass on her best response to player b’s strategy. Also, the

information structure is chosen such that, from player a’s perspective, player b adopts

an analogous behavior (with weight e²b on the uniform distribution) regardless of player

a’s private information. The realization of nature’s initial draw in the modi…ed game

corresponds to the random choices of the players.

For a given game ¡ and any pair (²a;e²b) 2 [0; 1] £ [0; 1], let the information

structure of the corresponding game of incomplete information be given by

I¡
²a;e²b

= f;Pa;Pb; ¹g, (3)

where

 = fA;B1; :::; Bmb ; C1; :::; Cma ; D1;1; D1;2; :::; Dma;mbg (4)
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is the set of possible states of nature of the game, and

Pa = ffA;B1; :::; Bmbg; fC1;D1;1; :::;D1;mbg; :::; fCma ;Dma;1; :::;Dma;mbgg;

Pb = ffA;C1; :::; Cmag; fB1;D1;1; :::;Dma;1g; :::; fBmb ; D1;mb ; :::;Dma;mbgg

(5)

are the partitions of  of the two players. For example, if the true state is ! = B1, a

knows that ! 2 fA;B1; :::; Bmbg, and b knows that ! 2 fB1; D1;1; :::; Dma;1g. Using

the payo¤ manipulations introduced below, this corresponds to the case that player

a views the game as the original game (has the same payo¤ as in state A), but b’s

payo¤s are modi…ed such that he optimally chooses his …rst strategy. He is, however,

unsure whether a also has modi…ed payo¤s (D1;1; :::; Dma;1) or not. Denote by P i(!)

player i’s information set if ! is drawn. Furthermore, let

¹ = ((1 ¡ ²a)(1 ¡ e²b);
e²b(1 ¡ ²a)
mb

; :::;
e²b(1 ¡ ²a)
mb

;
²a(1 ¡ e²b)
ma

; :::;
²a(1 ¡ e²b)
ma

;

²ae²b

mamb
; :::;

²ae²b

mamb
) (6)

be the common prior over , where all elements Bl; l = 1; :::;mb, occur with prob-

ability e²b(1¡²a)
mb , all Ck; k = 1; :::;ma, with probability ²a(1¡e²b)

ma , and all Dk;l; k =

1; :::;ma; l = 1; :::;mb, with probability ²ae²b
mamb .

Given this information structure, a strategy for player i is a mapping f i :  ¡! Qi

where f i(¢) satis…es the condition that P i(!0) = P i(!) implies f i(!0) = f i(!). Let

Si be the set of all f i satisfying this condition, i.e., Si is player i’s strategy set.
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(Importantly, the sets of both players’ mixed action pro…les, Qa and Qb, remain

unchanged between the original and the modi…ed game.)

Now consider the following manipulations of the players’ utility functions: The

state-dependent utility function of player a, ua
²a;e²b(a

a; ab; !), remains unchanged as

compared to a’s utility in the original game if ! lies in fA;B1; :::; Bmbg, i.e., 8l =

1; :::;mb : ua
²a;e²b(a

a; ab; A) = ua
²a;e²b(a

a; ab; Bl) = ua(aa; ab). In the case ! 2 fCk; Dk;1; :::;

Dk;mbg, a’s utility is modi…ed such that a chooses optimally the kth action from her

action set: 8k = 1; :::;ma; l = 1; :::;mb;

ua
²a;e²b(a

a; ab; Ck) = ua²a;e²b(a
a; ab;Dk;l) =

(
ua(aa; ab) if aa = aak

¡F otherwise

)
; (7)

where F satis…es ¡F < mini;aa;ab ui(aa; ab). Analogously for player b, 8k = 1; :::;ma;

l = 1; :::;mb : ub
²a;e²b(a

a; ab; A) = ub
²a;e²b(a

a; ab; Ck) = ub(aa; ab), and

ub
²a;e²b(a

a; ab; Bl) = ub²a;e²b(a
a; ab; Dk;l) =

(
ub(aa; ab) if ab = abl

¡F otherwise

)
: (8)

De…nition 4 ¡²a;e²b is the (²a;e²b)-perturbed version of ¡ if ¡²a;e²b = fa; b; I¡
²a;e²b

;Aa; Ab;

ua
²a;e²b ; u

b
²a;e²bg; where Aa and Ab are de…ned as in ¡ and I¡

²a;e²b
; ua
²a;e²b ; and ub

²a;e²b are given

by expressions (3) to (8).

Proposition 5 The following are equivalent: (i) The player-a strategy ¼a is an

ANNE strategy with parameters (²a;e²b) of game ¡. (ii) ¼a is player a’s probabil-

ity distribution vector resulting from a Bayesian Nash Equilibrium strategy of game

¡²a;e²b.
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Proof. In any Bayesian Nash Equilibrium of ¡²a;e²b , the optimality condition for

player a implies that if it holds for some k (k = 1; :::;ma) that ! 2 fCk; Dk;1; :::; Dk;mbg

– which occurs with probability ²a
ma –, then player a chooses action aak. Analogously

for player b, if ! 2 fBl;D1;l; :::; Dma;lg, then abl is chosen, 8l = 1; :::;mb. Adding up

the corresponding probability weights and using the uniform functions P i0 de…ned in

Section 2, one can hence write any Bayesian Nash Equilibrium distribution (¼a; ¼b)

as ¼a = (1¡ ²a)e¼a+ ²aP a0 and ¼b = (1¡ e²b)e¼b+ e²bP b0 , for some strategy pair (e¼a; e¼b).

More speci…cally, e¼a is a’s optimal probability distribution over Aa in the case ! 2

fA;B1; :::; Bmbg, and e¼b is optimal for b in the case ! 2 fA;C1; :::; Cmag. Notice

that for any information set of a it holds that a’s updated probability of the event

! 2 fBl; D1;l; :::; Dma;lg is equal to e²b
mb , 8l = 1; :::;mb, and that a’s updated probability

of the event ! 2 fA;C1; :::; Cmag is (1¡e²b), so in equilibrium player a does not update

her expectation about b’s information set (equivalently, about b’s behavior) after

receiving her private information. In particular, if ! 2 fA;B1; :::; Bmbg, a expects b

to play according to the distribution ¼b = (1 ¡ e²b)e¼b + e²bP b0 – as stated above – and

hence chooses e¼a so as to solve

max
¼2Aa

(1 ¡ e²b)ua(¼; e¼b) + e²bua(¼; P b0 ),

which is exactly a’s maximization problem in calculating an ANNE strategy for pa-

rameters (²a;e²b) in game ¡. This last statement is true because if ! 2 fA;B1; :::; Bmbg

then a’s utility is the same as in ¡. An analogous observation applies to player b, so
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the two …xed-point problems are equivalent.

Using this reinterpretation of an ANNE strategy as a Bayesian Nash Equilibrium

strategy, existence of ANNE strategies for any (²a;e²b) 2 [0; 1] £ [0; 1] follows from

Nash’s Theorem. Also, it holds by the de…nition of trembling-hand perfection that

any Nash Equilibrium of a game which is the limit of a sequence of ANNE strategies

with parameters (²i;e²j) approaching (0; 0) is necessarily trembling-hand perfect.

B Games

Figures 5, 6, and 7 depict the 23 games used in the analysis of Section 3, taken

from Stahl and Wilson (1994, 1995) and Costa-Gomes et al. (2001). The …gures

show the games using the point numbers that were presented to the subjects. Stahl

and Wilson (1994) determined a subject’s earnings for a given game by calculating

the subject’s expected outcome from playing against the distribution generated by

pooling the choices of all her possible opponents. The resulting number of points was

then used as the subject’s number of winning chips (out of 100) in a binary-lottery for

winning a …xed prize of $2.50. In Stahl and Wilson (1995), an analogous procedure

was applied using a prize of $2.00 for each game. Costa-Gomes et al. (2001) paid

o¤ one of the 18 games, paying 40 cents for each point as given in the tables. 36 of

the 72 subjects were assigned the role of the column player. In the experiment, the

games were presented to them as if they were row players in the ”transposed” games,
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to guarantee equal conditions between the two groups.

Insert Figure 5 about here.

Insert Figure 6 about here.

Insert Figure 7 about here.

C Tables

Insert Table III about here.

Insert Table IV about here.

Insert Table V about here.

Insert Table VI about here.

Insert Table VII about here.

Insert Table VIII about here.
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Table I: Game ¡1

L R

U 75; 51 42; 27

D 48; 80 89; 68
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Table II: ML estimates of distribution parameters, using pooled experimental data.

ALE parameters ANNE parameters

½ : 0:35

K : 2:49

e½ : 0:15

fK : 0:58

l¤ ¡907:154

a : 2:28

b : 5:28

ea : 0:77

eb : 0:55

l¤ ¡930:039
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Table III: Separate estimations of the ALE strategy model for the data from

Stahl and Wilson (1994, 1995) and Costa-Gomes et al. (2001).

Data set: SW 1994 SW 1995 CGCB 2001

½ 6:55 7:21 0:23

K 171:24 53:06 1:79

e½ 0:43 0:07 2:08

fK 0:75 0:82 4:60

l¤ ¡140:468 ¡151:128 ¡571:853

E[¸i] 26:13 7:36 7:74

E[ȩ
j
] 1:75 11:33 2:21

sig(E[¸i] = E[ȩ
j
]) 3:322 ¢ 10¡10 0:062 2:078 ¢ 10¡7

sig(½ = e½;K = fK) 8:623 ¢ 10¡13 0:019 8:620 ¢ 10¡8

sig((¸i; ȩ
j
) …x over i) 4:706 ¢ 10¡11 3:443 ¢ 10¡6 2:258 ¢ 10¡25

sig(¸i = ȩj = ¸, …x over i) 4:720 ¢ 10¡19 1:159 ¢ 10¡5 7:509 ¢ 10¡31

# of model rejections at p = 5% 0 (out of 5) 1 (out of 4) 8 (out of 28)

# of subjects with ¸i > ȩj 29 (16 sig.) 25 (9 sig.) 61 (26 sig.)

# of subjects with ¸i · ȩj 11 (0 sig.) 23 (0 sig.) 11 (0 sig.)

Note: Signi…cance level for the signi…cant cases in the last two rows is 5%.
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Table IV: Separate estimations of the ANNE strategy model for the data from

Stahl and Wilson (1994, 1995) and Costa-Gomes et al. (2001).

Data set: SW 1994 SW 1995 CGCB 2001

a 10:53 11:20 2:43

b 160:51 36:19 4:38

ea 0:91 0:21 3:99

eb 0:57 0:36 2:40

l¤ ¡134:444 ¡142:432 ¡622:046

E[²i] 0:06 0:24 0:36

E[e²j] 0:61 0:37 0:62

sig(E[²i] = E[e²j ]) 2:936 ¢ 10¡8 0:026 2:473 ¢ 10¡7

sig(a = ea; b = eb) 9:590 ¢ 10¡8 0:006 1:658 ¢ 10¡6

sig((²i;e²j) …x over i) 2:356 ¢ 10¡23 3:379 ¢ 10¡11 5:409 ¢ 10¡34

sig(²i = e²j = ²; …x over i) 2:532 ¢ 10¡24 1:910 ¢ 10¡10 5:376 ¢ 10¡33

# of model rejections at p = 5% 0 (out of 5) 0 (out of 4) 10 (out of 28)

# of subjects with ²i < e²j 28 (14 sig.) 25 (9 sig.) 61 (11 sig.)

# of subjects with ²i ¸ e²j 12 (0 sig.) 23 (0 sig.) 11 (0 sig.)

Note: See Table III.
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Table V: Separate estimations of the ALE strategy model for the data from

games with and without dominant strategies, DT and NDT, respectively.

Data set: DT NDT

½ 0:09 0:52

K 1:17 2:93

e½ 0:53 0:17

fK 1:69 0:59

l¤ ¡338:142 ¡562:328

E[¸i] 12:73 5:63

E[ȩ
j
] 3:19 3:42

sig(E[¸i] = E[ȩ
j
]) 0:013 0:072

sig(½ = e½;K = fK) 0:001 1:003 ¢ 10¡4

sig((¸i; ȩ
j
) …x over i) 1:852 ¢ 10¡28 2:277 ¢ 10¡7

sig(¸i = ȩj = ¸; …x over i) 8:037 ¢ 10¡33 1:742 ¢ 10¡8

# of model rejections at p = 5% 5 (out of 20) 10 (out of 17)

# of cases with ¸i > ȩj 62 (15 sig.) 96 (39 sig.)

# of cases with ¸i · ȩj 10 (0 sig.) 64 (0 sig.)

Note: See Table III.
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Table VI: Separate estimations of the ANNE strategy model for the data from

games with and without dominant strategies, DT and NDT, respectively.

Data set: DT NDT

a 0:86 6:63

b 2:56 12:22

ea 0:37 0:93

eb 0:45 0:58

l¤ ¡347:113 ¡555:608

E[²i] 0:25 0:35

E[e²j ] 0:45 0:62

sig(E[²i] = E[e²j]) 0:023 9:917 ¢ 10¡4

sig(a = ea; b = eb) 0:008 0:004

sig((²i;e²j) …x over i) 4:203 ¢ 10¡34 1:423 ¢ 10¡22

sig(²i = e²j = ²; …x over i) 4:185 ¢ 10¡33 5:237 ¢ 10¡27

# of model rejections at p = 5% 3 (out of 20) 6 (out of 17)

# of cases with ²i < e²j 30 (15 sig.) 96 (39 sig.)

# of cases with ²i ¸ e²j 42 (0 sig.) 64 (0 sig.)

Note: See Table III.
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Table VII: Separate estimations of the ALE strategy model for the data from

games with and without dominated strategies, DD and NDD, respectively.

Data set: DD NDD

½ 0:09 38:70

K 1:27 171:03

e½ 1:43 8:04

fK 3:03 35:94

l¤ ¡583:582 ¡326:213

E[¸i] 13:14 4:42

E[ȩ
j
] 2:12 4:47

sig(E[¸i] = E[ȩ
j
]) 5:045 ¢ 10¡9 0:942

sig(½ = e½;K = fK) 4:647 ¢ 10¡12 0:976

sig((¸i; ȩ
j
) …x over i) 2:924 ¢ 10¡29 0:976

sig(¸i = ȩj = ¸; …x over i) 2:073 ¢ 10¡36 0:997

# of model rejections at p = 5% 7 (out of 28) 4 (out of 9)

# of cases with ¸i > ȩj 106 (29 sig.) 79 (9 sig.)

# of cases with ¸i · ȩj 54 (0 sig.) 81 (0 sig.)

Note: See Table III.
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Table VIII: Separate estimations of the ANNE strategy model for the data from

games with and without dominated strategies, DD and NDD, respectively.

Data set: DD NDD

a 0:86 9:71

b 2:64 14:71

ea 1:35 57:62

eb 1:18 20:72

l¤ ¡596:819 ¡316:254

E[²i] 0:25 0:40

E[e²j] 0:53 0:73

sig(E[²i] = E[e²j ]) 5:997 ¢ 10¡9 3:778 ¢ 10¡7

sig(a = ea; b = eb) 4:495 ¢ 10¡8 2:578 ¢ 10¡6

sig((²i;e²j) …x over i) 1:712 ¢ 10¡40 0:001

sig(²i = e²j = ²; …x over i) 1:312 ¢ 10¡39 1:592 ¢ 10¡7

# of model rejections at p = 5% 6 (out of 28) 3 (out of 9)

# of cases with ²i < e²j 104 (32 sig.) 108 (9 sig.)

# of cases with ²i ¸ e²j 56 (0 sig.) 52 (0 sig.)

Note: See Table III.
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Figure 1: ALE strategies for game ¡1. Figure 1a depicts the values of Pr(U) and

Pr(L) for ¸row = 16 (or ȩrow = 16, from the perspective of the column player), Figure

1b depicts Pr(U) and Pr(L) for ~̧col = 16 (or ¸col = 16).
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Pr(L)

Pr(L)

Pr(U)

Pr(U)

Figure 2: ANNE strategies of game ¡1. Figure 2a depicts the values of Pr(U) and

Pr(L) for ²row = 0:2 (or e²row = 0:2, from the perspective of the column player), Figure

2b depicts Pr(U) and Pr(L) for e²col = 0:2 (or ²col = 0:2).
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Figure 3: Estimated densities of ALE parameters using pooloed data. Figure 3a

depicts the estimated density f°(¸ij½;K), Figure 3b the estimated density f°(ȩ
jje½; fK).
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Figure 4: Estimated densities of ANNE parameters using pooloed data. Figure 4a

depicts the estimated density f¯(²ija; b), Figure 4b the estimated density f¯(e²jjea; eb).

61



  40;40    10;20   70;30

 

 

 

 

20;10

30;70

 

 

 

 

 

 

 

 

 

 

80;80

100;0

 

 

 

 

 

 

 

 

 

 

0;100

60;60

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

60;0

0;100 0;100

40;30

20;20

10;10 10;10

20;20

0;100

20;20 78;0

30;100

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

20;20

70;70 60;60

40;40

0;60

100;0 100;0

30;40

60;0

50;30 40;70

 0;60

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

0;60

70;40

60;0

100;0

20;20 0;78

100;30

40;40

40;40 20;20

40;40

11   T

 0   M

29   B

Game 1: 'T'         'M'       'B'

26   T

 7   M

7   B
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.

Figure 5: Games from Stahl and Wilson (1994).
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10;6065;0 50;50

100;35100;31

70;30

40;20

 0;040;40

55;55

60;60

 7    T

 40   M

1    B

Game 1: 'T'         'M'       'B'

26   T

 15   M

7   B

Game 4: 'T'         'M'       'B'

14   T

3    M

 31    B

Game 5: 'T'         'M'       'B'

26   T

 3   M

19   B

Gam  12: 'T'         'M'       'B'

.

Figure 6: Games from Stahl and Wilson (1995).
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. 33  U

 3   D

Game 2B:

 70;52    38;29   37;23

 46;83   59;58   85;61

 

25   T

11   B

Game 4A:

  68;46   31;32   

  47;61   72;43    

  43;84   91;65   

14   T

 2   M

19   B

Game 4B:

  26        10
   L         R

  38;57   94;23

  14:18   45;89

. 27  U

 9   D

Game 2A:   21        15
   L         R

  55;79    84;52

  31;46   72;93

. 25  U

11   D

Game 3A:   33        3
   L         R

  75;51    42;27

  48;80   89;68

. 26  U

10    D

Game 3B:   34        2
   L         R

 55;36   16;12  

 21;92   87;43

   31         0          5
   L          M         R 

  32        4
   L         R

  51;69   82;45   

  28;37   57;58    

  22;36   60;84   

33   T

 0   M

 3   B

Game 4C:
  20       16
   L         R

 42;64   57;43   80;39   

 28,27   39;68   61;87

 

32   T

 4   B

Game 4D:
   28        1           7
   L          M         R 

  74;62   43;40

  25;12   76;93    

  59;37   94;16   

 4   T

 5   M

27   B

Game 5B:
  25       11
   L         R

 

 64;76   14;27   39;61   

 42;45   95;78   18;96

 

22   T

14   B

Game 6B:
   6           4         26
   L          M         R 

 

 56;78   23;53   89;49   

 31;35   95;64   67;91

 

20   T

16   B

Game 7B:
   7          2          27
   L          M         R 

  71;49   28;24

  46;16   57;88    

  42;82   84;60   

 8   T

 3   M

25   B

Game 8B:
  17       19
   L         R

  45;66   82;31   

  22;14   57;55    

  30;42   28;37

  15:60   61;88   

33   T

 0  TM

 0  BM

 3   B

Game 9A:
  23       13
   L         R

 67;46   15;23   43;31    61;16   

 32;86   56;58   38;29    89;62

 

30   T

 6    B

Game 9B:
   31         0          0           5
   L         LM      RM        R

Figure 7: Games from Costa-Gomes et al. (2001).
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