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Abstract

We show how to optimize the search for a hidden object, terrorist, or simply Hider,
located at a pointH according to a known or unknown distribution ν on a rooted network
Q. We modify the traditional ‘pathwise search’approach to a more general notion of
‘expanding search’. When the Hider is restricted to the nodes of Q, an expanding search
S consists of an ordering (a1, a2, . . . ) of the arcs of a spanning subtree such that the
root node is in a1 and every arc ai is adjacent to a previous arc aj, j < i. If ak contains
H, the search time T is λ (a1) + · · · + λ (ak) , where λ is length measure on Q. For
more general distributions ν, an expanding search S is described by the nested family of
connected sets S (t) which specify the area of Q that has been covered by time t. S (0)
is the root, λ (S (t)) = t, and T = min {t : H ∈ S (t)} . For a known Hider distribution ν
on a tree Q, the expected time minimizing strategy S̄ begins with the rooted subtree Q′

maximizing the ‘density’ν (Q′) /λ (Q′) . (For arbitrary networks, we use this criterion on
all spanning subtrees.) The search S̄ can be interpreted as the optimal method of mining
known coal seams, when the time to move miners or machines is negligible compared
to digging time. When the Hider distribution is unknown, we consider the zero-sum
search game where the Hider picks H, the Searcher S and the payoff is T. For trees Q,
the value is V = (λ (Q) +D) /2, where D is a mean distance from root to leaf nodes. If
Q is 2−arc connected, V = λ (Q) /2. Applications and interpretations of the expanding
search paradigm are given, particularly to multiple agent search.
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1 Introduction

The usual search paradigm when seeking a stationary target on a network is what we now
call pathwise search, where the Searcher follows a continuous unit speed path until the
target is reached. This article introduces a new search paradigm, which we call expanding
search, where the Searcher may restart the search at any time from any previously
reached point. Such searches are routinely carried out in many contexts, sometimes by
a team of agents. Under such searches, the portion S (t) of the search region that has
been covered by time t expands in a continuous way until the first time T (the search
time) that it contains the target of the search. This is the first article to give a rigorous
definition and analysis of expanding search on a network that is comparable to the well
known theory developed for pathwise search by Gal (1979, 2000, 2011), Baston and
Bostock (1990), Anderson and Aramendia (1990), Kikuta and Ruckle (1994), Pavlovic
(1995), Reynierse and Potter (1993), Alpern and Gal (2003), Jotshi and Batta (2008),
Alpern (2010, 2011 a,b). The work of Alpern and Howard (2000) considered a related
problem of a single Searcher who alternates between looking for a single Hider at two
locations, which can now be seen as a special case (on a star network) of expanding
search. There is also a connection to the two-Searcher coordinated search problem of
Thomas (1992) and Reyniers (1995,1996) described in the next section. Megiddo et
al (1988) considered minimizing the number of searchers, rather than the search time.
Other interpretations of expanding search, such as the optimal mining of coal, will be
described later.

An immobile hidden object, target, terrorist, or simply Hider, is located at an un-
known point H of a known network Q. The network is endowed with an arc length
measure λ (linear Lebesgue measure) so that λ (a) denotes the length of an arc a and
d (x, y) is the metric given by the length of the shortest path between points x and
y in Q. We assume there are a finite number of arcs, each of finite length, so that
Q is compact. The distribution (probability measure on Q) ν of H may be known or
unknown. If it is known, we consider the Bayesian Search Problem of minimizing the
expected search, or capture, time. If it is unknown, we consider the zero-sum Expanding
Search Game where the Hider chooses H to maximize T. Starting at a given point of
Q, called the root, a search team consisting of successively dividing groups spreads out
over the network until the first (capture) time T that one of its members encounters the
Hider. The agents are constrained to move with combined speeds of 1. This means that
λ (S (t)) = t, where λ (S (t)) is the measure of the portion of Q covered by time t.When
the Hider distribution ν is given on any network, we solve the Bayesian Problem by an
algorithm and a heuristic that determine the expanding search S (t) that minimizes the
expected value of T. We solve the Search Game when Q is a tree and give bounds on
the value for arbitrary networks Q.
In the important case where the Hider distribution ν is concentrated on the nodes
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of Q, an expanding search is simply a sequence of arcs S = (a1, a2, . . . , aN), oriented so
that the tail of a1 is the root O of Q, the tail of every other arc ai is the tip of a previous
arc aj, j < i, and the N non-root nodes of Q coincide with the N tips of the arcs. If the
Hider location H is the tip of arc ak, the capture time T = T (S,H) is given by

T (S,H) = λ (a1) + · · ·+ λ (ak) . (1)

A simple but important concept used in the solution of both the Bayesian and Search
Game Problems is that of the search density, or simply density,

ρ (K) = ν (K) /λ (K) (2)

of a connected subset K of Q: the probability that H will be found in K divided by the
time required to search K (which for expanding search is simply its total length λ (K)).
We show (Theorem 3) that when Q is a rooted tree and K is a subtree of maximum
search density for some known Hider distribution ν, there is an optimal expanding search
S̄ (t) that begins by exhaustively searching K, that is, with S̄ (t) = K at time t = λ (K).
While this optimality condition does not also hold for arbitrary networks, we can however
use it to solve the Bayesian Search Problem on any network by considering its spanning
trees.
We are able to give a complete solution of the Expanding Search Game for any rooted

tree Q. We show (Theorem 18) that value of this game is given by

V =
µ+D (Q)

2
,

where µ = λ (Q) is the total length of the tree Q and D (Q) is the mean distance
from the root node O of Q to its leaf nodes, with respect to the Equal Branch Density
(EBD) distribution e on the leaf nodes. This is the unique distribution such that at every
branch node of the tree, the search density of each branch is the same. We determine the
optimal Searcher mixed strategy as a branching function which specifies the probability
that each branch at a node should be searched first when reaching that node, regardless
of how the search has proceeded up to that point.
If the network is 2-arc connected (removing an open arc never disconnects it) then

we show that the value of the expanding search game is µ/2. In this case the uniform
distribution is optimal for the Hider and an equiprobable mixture of a certain search
and its reverse time search is optimal for the Searcher. We also derive bounds on the
value V for arbitrary networks. Some of these apply as well to the pathwise version.
To illustrate these ideas, consider the tree Q with root O depicted in Figure 1. We

will use this network as an example at several points throughout this paper, not always
assigning the same lengths to the arcs.
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Figure 1. A rooted tree Q and its contraction S2(Q).

An example of an expanding search on Q is S = (b, d1, a, d2, c2, c1). Consider the
network Q0 given by the following choice of arc lengths that is symmetric in the ci and
the di:

λ(a) = 1, λ(b) = 2, λ(c1) = λ(c2) = 1, λ(d1) = λ(d2) = 5 (3)

For the search S, the time taken to reach, say C2 is given by T (S,C2) = 2+5+1+5+1 =
14, using the notation T for the search time introduced in (1). Note that the search S
arrives at nodes A,B,C1, C2, D1 and D2 in respective times 8, 2, 15, 7, 13 and 14. Hence
if, for example, the Hider distribution ν takes the value 2

7
on C1 and 1

7
on each of the

other non-root nodes, then the expected search time is T (S, ν) = 1
7
· 8 + 1

7
· 2 + 2

7
· 15 + 1

7
·

7 + 1
7
· 13 + 1

7
· 14 = 74

7
, using the notation T (S, ν) formally defined later in (7). In the

case of this Hider distribution, there is a unique rooted subtree M of maximum density,
M = ac1, which has density (1

7
+ 2

7
)/2 = 3

14
. As we will show later in Theorem 3, this

indicates that any optimal search must begin by searching M . After searching a and c1

it is clear that an optimal search must continue by optimally searching the tree depicted
on the right of Figure 1. This tree, which is obtained by contracting the first two arcs
of Q traversed by this particular search S, shall be referred to as S2(Q) in Section 3.
We can therefore apply Theorem 3 again by seeking the rooted subtree of maximum
density in this new network. This is simply c2, which has density (1

7
)/1 = 1

7
. The only

arc available to search next is b, after which by symmetry d1 and d2 can be searched in
either order. Hence an optimal search of Q0 is Sopt = (a, c1, c2, b, d1, d2), which searches
the nodes a, b, c1, c2, d1, and d2 in respective times 1, 5, 2, 3, 10, and 15, and hence has
expected search time T (Sopt, ν) = 1

7
· 1 + 1

7
· 5 + 2

7
· 2 + 1

7
· 3 + 1

7
· 10 + 1

7
· 15 = 51

7
.

Turning now to the game played on Q0, we first note that any optimal Hider strategy
must be restricted to the leaf nodes, Ci andDi ofQ0, since all other points are dominated.
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Hence each player has a finite set of undominated pure strategies, and the game can be
reduced to a matrix game. We note further that because of the symmetry in the network
between the Ci and the Di, it is clear that in the Hider’s optimal mixed strategy he
must choose equiprobably between the two nodes in each pair Ci and Di, and in the
Searcher’s optimal strategy he must choose equiprobably which order to search the arcs
c1 and c2 and the arcs d1 and d2. Hence we can simplify the matrix game by taking
averages: for example in the matrix below, the entry for (H,S) = (C, (b, d, a, c, c, d))
corresponds to the average time taken to reach C1 and C2 by all four Searcher strategies
(b, d1, a, c1, c2, d2), (b, d1, a, c2, c1, d2), (b, d2, a, c1, c2, d1), and (b, d2, a, c2, c1, d1), that is
1
2
((2 + 5 + 1 + 1) + (2 + 5 + 1 + 1 + 1)) = 9.5.

accbdd acbdcd acbddc bdaccd bdacdc bddacc
C 2.5 6 8.5 9.5 12 14.5
D 12.5 12 11.5 11 10.5 9.5

(4)

Solving this matrix game numerically, we find that the Hider’s optimal mixed strategy
is to choose C with probability 1

5
and D with probability 4

5
: that is C1 and C2 each

with probability 1
10
and D1 and D2 each with probability 2

5
. This is an example of

the EBD distribution, as formally defined in Definition 5. Notice that the branch
{a, c1, c2} has density ( 1

10
+ 1

10
)/3 = 1

15
, and the branch {b, d1, d2} has equal density

(2
5

+ 2
5
)/12 = 1

15
. The Searcher’s optimal strategy is to use the search (a, c, c, b, d, d) with

probability 1
3
and (b, d, d, a, c, c) with probability 2

3
. The game has value V (Q0) = 10.5.

As we shall see later in Theorem 18, this value is equal to half the sum of the total
measure of the network, µ = 1 + 2 + 1 + 1 + 5 + 5 = 15 and the quantity D = D(Q0) =
1
10
· 2 + 1

10
· 2 + 2

5
· 7 + 2

5
· 7 = 6, the mean distance of the root node to the leaf nodes with

respect to the EBD distribution. That is, V (Q0) = 1
2
(µ+D) = 1

2
(15 + 6) = 10.5.

2 Interpretation and Applications of Expanding Search

The interpretation of an expanding search strategy in terms of a team of pathwise
search agents is as follows. In the case where H is a node of Q, assume a group of
m search agents starts at the root node. Then a large enough (for later branching)
subgroup takes initial arc a1, while the rest remain at the root. Whenever a new arc
ak is chosen, some Searchers move along it, while some stay at its tail. An interesting
problem which involves this group interpretation is to determine the number of agents
that are required; either for a particular search strategy or for an optimal one. For trees,
clearly the number of leaf nodes is a suffi cient number of searchers. For example, the
expanding search (a, c1, b, d1, c2, d2) mentioned in the matrix (4) can be carried out by
m = 4 agents, each adopting a pathwise search which includes waiting, as indicated
by the left table in (5), where for example the fourth search agent follows the pathwise
search a, w,w, w, c2 (where w indicates waiting time). If onlym = 3 agents are available,
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at least one of these must go backwards on an arc (indicated by the * in c∗1) as in the
table on the right.

a c1 b d1 c2 d
1, 4 1 2, 3 2 4 3

a c1 b d1 c∗1 c2 d2

1 1 2, 3 2 1 1 3
(5)

If a bound were put on the number of searchers, the expected time would be decreasing
in the bound. When the bound is 1 (single agent), we get the usual pathwise search
value, where a single Searcher moves at unit speed along the network. For suffi ciently
large bounds, we get the value obtained here for expanding search. For example, if the
network is a line, with the root in the interior, then m = 2 searchers are enough for
expanding search, whereas a single Searcher is faced with the well known linear search
problem. A variation on the two-agent problem on the line, known as coordinated search,
has been studied by Thomas (1992) and Reyniers (1995,1996), under the interpretation
of ‘how to find your children when they are lost’. Here the quantity to be minimized is
the time when the two agents (parents) are back at the root (their car) after one of them
has found the Hider (child). If the Hider is mobile, the question of how many searchers
are needed to guarantee finding him is considered in the classic paper of Megiddo et al
(1988).
Another interpretation, involving a single ‘Searcher’(actually researcher) is that of

tackling, say a mathematical problem for which one can map out in advance which
facts need to be checked (calculated) before going onto the next step, perhaps seeking
a proof or counterexample to a finite conjecture. Some steps of this process must be
completed before other steps should be carried out, perhaps first checking the ‘obvious’
counterexample or proof. We assume here that after one branch of the research tree
ends in failure, the researcher can go without time loss back to a previous method of
attack. In some contexts the researcher here could be replaced by a computer program,
so that we are in fact seeking a program which minimizes the expected time to resolve
some question.
The Bayesian problem for a tree, with a known distribution ν, has an interpretation

in terms of optimal mining of coal. Suppose that by seismic analysis the density of coal
along the tree network of its veins is known. We assume that time or effort involved
in moving mining equipment (or miners) along the dug out regions (corresponding to
what we called S (t)) of the mine is negligible with respect to the digging effort. So
expanding search consists of digging in an area for a while, then moving the effort (miners
or digging machines) to another area, starting from the last bit dug. The probability
density function of the capture time T when ν is the Hider distribution is the same as the
extraction rate of coal at time T. So an optimal expanding search strategy corresponds to
an extraction policy which minimizes the mean time that the coal is ready for sale. This
would make sense in an environment where the discount rate, used in calculating the
net present value of coal mined over time, is linear. This is a reasonable approximation
in certain economic conditions. Our optimality condition is to mine veins leading to the
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highest coal density, a semi-greedy policy. If there are enough excavators, it would be
possible to always leave one at the last place mined along any vein. Our restriction on
the rate of increase of the covered portion might relate to the number of miners or a
constraint on the maximum electrical power available.

2.1 Relation to path-planning problems

Our expanding search model shares some elements with problems of path planning (e.g.
Lavalle, 2006) in that we construct nodes sets, beginning with a starting node s (called
O) and always take as our next node one which is adjacent to some previous node.
As explained above, this differs from previous Searcher strategies in the field of search
games, where (in the discrete formulation) each successive node must be adjacent to the
previous one, so that repetition of nodes is generally required. However path planning
differs from our searcher strategies in certain significant aspects. For comparison, a
useful description of path planning problem is given in Dechter and Pearl (1985):

"Given a weighted directional graph G with a distinguished start node s
and a set of goal nodes r, the optimal path problem is to find a least-cost path
from s to any member of r where the cost of the path may, in general, be an
arbitrary function of the weights assigned to the nodes and branches along
that path. A general bestfirst (GBF) strategy will pursue this problem by
constructing a tree T of selected paths of G using the elementary operation
of node expansion, that is, generating all successors of a given node. Starting
with s, GBF will select for expansion that leaf node of T that features the
highest ‘merit,’and will maintain in T all previously encountered paths that
still appear as viable candidates for sprouting an optimal solution path. The
search terminates when no such candidate is available for further expansion,
in which case the best solution path found so far is issued as a solution; if
none has been found, a failure is proclaimed."

Our game theoretic formulation (the main part of the paper) is of course very different
from the above, but even our Bayesian model, with a known Hider distribution, is
significantly different, in the following ways.

• Our expanding set must reach all of the goal nodes r (in our case the support of
the Hider distribution, which is not even necessarily a discrete set). The solution
to our problem is not a path in G (though it can be interpreted as a walk in G).

• We do not present a local algorithm at all, the next node chosen depends in general
on distant effects. We do not even give a global algorithm - our approach is not
algorithmic (though this is a possible area for future work).
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• Our problem is a stochastic problem, where the value to be minimized is an ex-
pected value.

To put the different approaches in the starkest terms, consider the case where there is
a unique goal node r in the quoted problem and this node is the unique Hider location in
our problem. The solution to the path planning problem is a shortest path algorithm for
a single goal whereas we would simply say that the Hider should take the shortest path
to the Hider node, without providing or considering the process of finding that path.
Also note that in the above quoted problem, the ‘search’is for an optimal path while
in our problem the ‘search’is for the unknown node (or point in an arc) containing the
Hider. Another main difference is that our Hider may hide in a continuum of locations
(any point on any arc), not just at nodes, so our problem is not a finite problem.

3 Known Hider Distribution on Nodes

We begin our analysis of expanding search in the simplest case where the Hider dis-
tribution ν is concentrated on the nodes of a network Q. In this case we will consider
expanding arc sequences, sequences of arcs ordered and oriented so that the tail of each
arc is the tip of a previous one. In this section an expanding search S, sometimes re-
ferred to as just a search, is simply an expanding arc sequence (a1, . . . , aN) where the
tail of a1 is the root node and tips of the arcs are the N non-root nodes of Q. We will
refer to a search which is an expanding arc sequence as a combinatorial search. If S
is an expanding search of Q and k = 0, . . . , N, we denote by Sk = Sk(Q) the rooted
subnetwork (it is a tree) of Q formed by the first k arcs searched by S. In particular,
every search S of Q is associated with a spanning tree SN . Note that in the tree Sk, the
ordering of the arcs in S has been lost. We also let Sk = Sk(Q) be the rooted network
formed by shrinking Sk to O in Q. In Section 1 we saw S2(Q) depicted in Figure 1.
After the Searcher has chosen the first k arcs to search, the problem that remains is how
to search the remaining network Sk, so using dynamic programming we observe that an
optimal expanding search S must be optimal for all of the subproblems (subnetworks)
Sk. Given any expanding search S = (a1, . . . , aN) and any Hider location at the tip Ak
of arc ak, the search time T = T (S,H) is given, as in (1), by

T (S,H) = λ (a1) + · · ·+ λ (ak) , (6)

and the expected time for S to find a Hider hidden according to distribution (measure)
ν is denoted by

T (S, ν) =

N∑
k=1

ν (Ak) · T (S,Ak) . (7)

For a given Hider distribution ν, we say that S̄ is optimal (against ν) if it minimizes
the expected search time T (S, ν) over all expanding searches S. (In the context of this
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section, there are only finitely many expanding searches, so the existence of optimal ones
is not in question.)

3.1 Properties of the search density ρ

As mentioned in the Introduction, if we have a fixed Hider distribution (measure) ν on a
network Q, we can define the search density, or simply density ρ = ρ (A) for any subset
A of Q by ρ (A) = ν (A) /λ (A) . When disjoint regions can be searched in either order,
it is well known that it is better to search the region of higher density first. A simple
form of this idea is given in the following.

Lemma 1 Let ν be any Hider distribution on the nodes of a rooted network Q. Let
A = (a1, . . . , am) and B = (b1, . . . , bn) be disjoint expanding arc sequences starting at a
common node X. Let SAB and SBA be two expanding searches of Q which are the same
except that, on reaching X, SAB follows the sequence AB while SBA follows BA. Then

T (SBA, ν)− T (SAB, ν) = (λ (A) · λ (B)) (ρ (A)− ρ (B)) . (8)

So if ρ (A) > ρ (B) it is better (lower search time) to search A before B.

Proof. Note that the times spent searching the trees A and B are respectively
λ (A) = Σiλ (ai) and λ (B) = Σjλ (bj) . So compared with SAB, a Hider in A will be
found in time λ (B) later by SBA, a Hider in B will be found λ (A) sooner by SBA,
and a Hider at any other location will be found at the same time. Since the respective
probabilities of the Hider being located in A and B are ν (A) and ν (B) , we have

T (SBA, ν)− T (SAB, ν) = ν (A) · λ (B)− ν (B) · λ (A)

= λ (A) · λ (B)
ν (A) · λ (B)− ν (B) · λ (A)

λ (A) · λ (B)

= (λ (A) · λ (B))

(
ν (A)

λ (A)
− ν (B)

λ (B)

)
.

In applying this result, it is useful to observe that for disjoint subsets A and B, the
density of A ∪B is a weighted average of that of A and B, that is

ρ (A ∪B) =
ν (A) + ν (B)

λ (A) + λ (B)
=

λ (A)

λ (A) + λ (B)

ν (A)

λ (A)
+

λ (B)

λ (A) + λ (B)

ν (B)

λ (B)

= λ(A)
λ(A)+λ(B)

ρ (A) + λ(B)
λ(A)+λ(B)

ρ (B) .

Consequently if ρ (B) ≤ ρ (A) then

ρ (B) ≤ ρ (A ∪B) ≤ ρ (A) ,with strict inequalities if and only if ρ (B) < ρ (A) . (9)
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3.2 Known Hider distribution on nodes of a tree

When Q is a tree, we naturally orient all the arcs away from its root O and for a node
or arc z we will write Qz to denote the subtree of Q starting at z, containing z and all
arcs above z in Q. If x is a branch node of Q adjacent to arcs a and b going away from
the root of Q, we call the subtrees Qa and Qb branches at x. We fix a Hider distribution
ν and consider the densities of all subtrees of Q rooted at O. We will be particularly
concerned with those subtrees which have maximum density r = r(Q). Generically,
there will be a unique subtree of maximum density r, and the main result of this section
is that any optimal search must begin with the arcs of this subtree (in some order). The
complicating factor is that it is possible there are multiple subtrees of maximum density,
which is why Theorem 3 has a more complicated statement.
The set of subtreesM of maximum density r inQmay be ordered under set inclusion,

in which case we call its minimal elements (those without any proper subtree of density
r) min-max subtrees. The structure ofM is described in the following straightforward
lemma, whose proof is left to the reader.

Lemma 2 Let ν be a measure on the nodes of a rooted tree Q,O. The collection M
of rooted subtrees of Q which have the maximum density r = r (Q) is closed under
union and intersection (if we include the subtree with no arcs). These subtrees have the
following properties:

(i) Distinct min-max subtrees are disjoint.

(ii) Every branch at O of a maximum density subtree A has density r.

(iii) Every min-max subtree A of Q has only one branch at O.

Since M is closed under unions, it has a unique maximal element (the union of
all its elements), which we call the max-max subtree and denote by M = M (Q, ν) .
Generically, there is a unique subtree of maximum density (namely M). We say that
a search S begins with the subtree B if some initial block of arcs of S is some ordering
of the arcs of B. Generically, there will be a unique subtree of maximum density, and
every optimal expanding search must begin with its arcs. In the more general case, the
result is as follows.

Theorem 3 Let ν be any Hider distribution on the nodes of a rooted tree Q. Then

(i) Every optimal expanding search of Q begins with some min-max subtree of Q.

(ii) Every optimal expanding search of Q begins with the max-max subtree M = M(Q);

(iii) For any subtree A of maximum density r, there is an optimal expanding search of
Q that begins with the arcs of A.
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Proof. (i) We prove the first part of the theorem by induction on the number of
arcs: it is trivially true for a network consisting of one arc. So assume that (i) is true
for all trees with at most N − 1 arcs, and let S = (a1, a2, ..., aN) be an optimal search
of the tree Q having N arcs. Let k be the smallest integer for which tree Sk (consisting
of the first k arcs of S) contains some min-max subtree A. Let aj be the first arc of S
contained in A, so that it must be a root arc of A.
We first assume that j > 1, that S begins with arcs not in A. After searching

Sj−1 = (a1, . . . , aj−1), the induction hypothesis says S must continue by searching some
min-max subtree B of the remaining tree Sj−1. Since B contains the root arc aj of Q,
it must also be a min-max subtree of Q. But as both A and B are min-max subtrees of
Q starting with the same root arc aj, Lemma 2 (i) says that B = A. Hence S can be
written as S = Sj−1, A,X. If we had ρ (Sj−1) ≥ r, then Sj−1 would be a tree of maximum
density, contradicting the minimality of k, so we must have that ρ (Sj−1) < r = ρ (A) .
But this would contradict the optimality of the expanding search S, as Lemma 1 shows
that the alternative expanding search S ′ = A, Sj−1, X has a strictly lower expected
search time. It follows that our assumption j > 1 is false, and this case is impossible.
So the search S begins with a sequence of arcs Sl = (a1, . . . , al) belonging to A.

Suppose l is the largest integer for which Sl ⊂ A. If Sl = A, the proof is complete. If
not, by the induction hypothesis applied to the tree Sl, S must continue by searching
some min-max subtree B of Sl. Note that B must be disjoint from A, by Lemma 2
(iii). By the maximality of r(Sl), we must have ρ(B) = r(Sl) ≥ ρ(A− Sl), and by the
minimality of A, ρ(A) > ρ(Sl) so that ρ(A − Sl) > ρ(Sl), by 9. Hence ρ(B) > ρ(A),
and ρ(B ∪ A) > ρ(A) = r, contradicting the maximality of r.
(ii) By part (i), the first arc of S is certainly in M since S begins by searching a

min-max subtree, which must be contained in M . Suppose k is the largest integer
for which Sk ⊂ M. If Sk = M , the proof is complete, so suppose not. Note that by
definition of r, we must have r(Sk) ≥ ρ(M − Sk), since M − Sk is a rooted subtree of
Sk. Also, since ρ(M) = r and ρ(Sk) ≤ r, by 9, ρ(M − Sk) ≥ r. Putting these together
gives r(Sk) ≥ r. By part (i), after searching Sk, S must search a min-max subtree, A
of Sk with ρ(A) = r(Sk) ≥ r. The tree A must begin with an arc not in M , and hence
be disjoint from M by Lemma 2 (iii), so that ρ(A ∪M) ≥ r, by (9), contradicting the
maximality of M .
(iii) Let εn be a positive sequence tending to 0. For each n, define the measure

νn on the nodes of Q such that vn (x) = (1 + εn) ν (x) for all nodes x in M and
vn (y) = (1− ωn) ν (y) for all nodes y not in M, where ωn is chosen to make νn a
probability measure. For each n, let Sn be an optimal expanding search on Q with the
Hider distribution νn. Since there are only a finite number of expanding searches, one of
them, call it S ′, must appear infinitely often in the sequence (Sn)∞n=1 , and hence also be
optimal for the limiting distribution ν. But for any of the measures νn, the tree A is the
unique, and hence maximal, subtree of maximum density, so by part (ii), any optimal
expanding search must start with A. Hence in particular the optimal expanding search
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S ′ starts with A.
We now have a simple algorithm for constructing an optimal expanding search (in-

deed all such searches) on a tree when the Hider has a known distribution on the nodes.
It is suffi cient, after the first k arcs of an optimal expanding search S have been cho-
sen, to determine which initial arcs of the remaining tree Sk lead to optimal expanding
searches. The answer is that any arc of the max-max subtree of Sk can be chosen, or
equivalently the unique root arc of any min-max subtree of Sk. Summarizing, we have
the following.

Corollary 4 Let ν be a Hider distribution on the nodes of a tree Q and let M be the
max-max subtree of Q. Then any arc a at the root of Q which belongs to M can be taken
as the first arc a1 of an optimal expanding search. Repeating this for the subtree Q1

obtained by deleting a1 from Q and identifying its tip with the root, gives all possibilities
for a2, and so on.

We saw in Section 1 how this algorithm can be used to find the optimal search of the
network Q0 of Figure 1 with arc lengths given by (3). We now illustrate how the algo-
rithm can be applied to a network whose maximum density subtree is not unique. Con-
sider the network Q depicted in Figure 1, but this time suppose all the arcs have length
1 and the nodes A,B,C1, C2, D1, and D2 have respective measures 0.1, 0.2, 0.3, 0.1, 0.2,
and 0.1. The first step of the algorithm is to identify the max-max subtree,M(Q), which
can easily be found to be abc1d1. The next step is to choose one of the root arcs of
M(Q) as the first arc of the search. Depending on whether we choose a or b, we obtain
a different new network, Q1 in which we have shrunk a to the root, or Q′1, in which we
have shrunk b to the root, as depicted below.

A

C1
C2

D2

D1

O

c1

d1
c2

d2
a

C1

C2

D2

B

D1

O

c1

d1
c2

b

d2

Q1
Q1’

Figure 2. The contracted networks Q1 and Q′1.
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Suppose we choose to begin with b. Then we find the max-max subtree of Q′1 is
ac1d1, so that we can choose either a or d1. Suppose we choose d1 and shrink this arc
to the root. The max-max subtree of the resulting network is ac1, and we continue by
searching these two arcs next. Finally, shrinking these arcs to the root we are left with
the network consisting of only the arcs c2 and d2. These arcs have equal density so the
max-max subtree is the whole network, and c2 and d2 can be searched in either order.
The result is an optimal search (b, d1, a, c1, c2, d2) with expected search time equal to
0.2(1) + 0.2(2) + 0.1(3) + 0.3(4) + 0.1(5) + 0.1(6) = 3.2. Had we made different choices
when applying the algorithm we may have produced any one of the alternative optimal
strategies: (b, d1, a, c1, d2, c2), (b, a, c1, d1, c2, d2), (b, a, c1, d1, d2, c2), (a, c1, b, d1, c2, d2) , or
(a, c1, b, d1, d2, c2).
It is worth noting that the principle of searching the subtree of highest density first

does not hold in the analogous pathwise search problem, where a Searcher must take a
continuous path in a rooted network to minimize the time taken to find a Hider located on
the network according to some distribution. For example, consider the network consisting
of the closed interval [−2, 2] rooted at 0, where the Hider is located at −2,+1,+2 with
respective probabilities 7

13
, 4

13
and 2

13
. The unique maximum density subtree is [0, 1], but

if a search begins with a path from 0 to 1, the minimum possible expected search time is
given by the path which continues to −2 before going to +2. This has expected search
time 48

13
, whereas a search which begins by going to −2 before going to 1 and then 2 has

a smaller expected search time of 46
13
.

3.3 Hider distribution with greatest search time on a tree

Fix a tree Q and define, for any Hider distribution, the minimum search time

T (ν) = min
S
T (S, ν) , where S varies over expanding searches. (10)

We seek the distribution ν which maximizes T (ν) . Clearly, by domination, we need
only consider those distributions ν concentrated on the leaf nodes of Q, and these form
a compact set (a simplex in fact). For any fixed S, the expected search time T (S, ν) is
continuous in ν, and hence the minimum function T (ν) over all such S is continuous.
So a maximizing distribution ν exists. Here we show that it is unique and that it is the
EBD distribution, well known in the theory of pathwise search.

Definition 5 On any rooted tree Q, the Equal Branch Density (EBD) distribution is
the measure e on the leaf nodes of Q such that at every branch node x all the branches
have the same density with respect to e. (A formula for this unique measure is given in
Alpern (2011a) and a recursive method of calculating it is given in Gal (1979)).

For example, suppose we wish to assign the EBD distribution to the tree Q0 of Figure
1 with arc lengths given in (3). To ensure that the subtrees ac1c2 and bd1d2 have the

12



same density we put e(ac1c2) = 1
5
, and e(bd1d2) = 4

5
, giving ρ(ac1c2) = ρ(bd1d2) = 1

15
.

Since c1 = c2 and d1 = d2, the measure on each of these subtrees is divided equally
between their two nodes, so that e(C1) = e(C2) = 1

10
and e(D1) = e(D2) = 2

5
. As we

noted at the end of Section 1, the EBD measure is the optimal Hider distribution in the
expanding search game (4) played on Q0.
We begin by characterizing the EBD measure in terms of our new notion of the

max-max tree.

Lemma 6 The EBD distribution e on a rooted tree Q is the unique Hider distribution
v such that for each node x, the max-max subtree of Qx is Qx itself.

Proof. If for any branch node x, the max-max subtree of Qx is Qx itself, then by
Lemma 2 (ii) all the branches ofQx must have the same density r(Qx), so the distribution
must be e.
To show that e does indeed have this property, suppose the Hider measure on the leaf

nodes is e and there exists a node x for which the max-max subtree of Qx is some proper
subtree A ⊂ Qx. Then we can find some node y in Qx with outward arcs a and b such
that Qa ⊂ A and Qb is disjoint from A. But ρ(Qa) ≥ r(Qx), since otherwise A would
not be of maximum density, and by the definition of e, Qa and Qb have equal density,
so that ρ(A ∪ Qb) ≥ r(Qx), contradicting the maximality of A. Hence the max-max
subtree of every subtree Qx is Qx.

Lemma 7 If ν is a measure on a tree Q with maximum search time T (ν) , as defined
in (10), then the max-max subtree with respect to ν, M(Qx, ν) of each subtree Qx is Qx

itself.

Proof. Suppose ν has maximum search time but there is some x0 with M(Qx0) 6=
Qx0 . Clearly ν must be supported on the leaf nodes of Q. Suppose y and z are leaf nodes
with y ∈ M(Qx0) and z /∈ M(Qx0). Suppose S = (a1, a2, ..., aN) is an optimal search,
and the k is the smallest integer for which Sk is disjoint from Qx0 . Then by Theorem
3 (ii), Qx0 contains a branch, A0 of the max-max subtree M(Sk), with ρ(A0) = r(Sk).
By definition of r, r(Qx0) ≤ r(Sk), so by the maximality of M(Sk) we must have
A0 = M(Qx0), so that y ∈ M(Sk) and z /∈ M(Sk). Hence every optimal expanding
search S on Q, ν must search y before z. Let εn be a positive sequence bounded above
by ν (y) and tending to 0. For every n, define νn to be the measure onQ which agrees with
ν except that νn (y) = ν (y)−εn and νn (z) = ν (z)+εn. Let Sn be an optimal expanding
search on Q, νn, and let S ′ be one which appears infinitely often in the sequence (Sn)∞n=1.
Thus S ′ is optimal for a subsequence of the measures νn and hence by continuity S ′ is
optimal for the limit sequence ν. Let vm be one of the measures for which S ′ is optimal.
Clearly T (S ′, νm) − T (S ′, ν) = εm (T (S ′, z)− T (S ′, y)) > 0. But as S ′ is optimal for
both measures this implies that T (νm) = T (S ′, vm) > T (S ′, ν) = T (ν) , contradicting
the assumed maximality of the search time of ν.
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Theorem 8 On any tree Q, the EBD distribution e is the unique Hider distribution
which maximizes the minimum search time T (ν) over all distributions ν.

Proof. The distribution ν varies over a compact k-simplex, where k is the number
of leaf nodes. The function T (ν) = minS T (S, ν) over the finite number of expanding
searches is continuous in ν, so a maximizing distribution ν̄ exists. By Lemma 7 we must
have M (Qx, ν̄) = Qx for every node x and then by Lemma 6 we have ν̄ = e.

Corollary 9 On any tree Q, the maximum search time T (e) is given by T (e) = 1
2

(µ+D) ,
where D = D(Q) is the mean distance from the root to the leaf nodes, with respect to
the EBD measure e on those nodes. That is,

D =
∑

leaf nodes x

e (x) · d (O, x) .

Proof. If Q has a single arc then T (e) = µ and D = µ, so the result is true for such
trees. So assume result is true for all trees with fewer arcs than Q, and assume there
are two arcs a and b at the root, leading to subtrees Qa and Qb. First note that if µx
denotes the length of the subtree Qx, by the definition of e we have that

µa
µ
D (Qa) +

µb
µ
D (Qb) = D. (11)

Since Qa is a maximum density subtree, by Theorem 3 (iii) there is an optimal search
Sab which begins with a search of Qa and continues with a search Sb of Qb, and so

T (Sab, Q) =
µa
µ
T (Sa, Qa) +

µa
µ

(µa + T (Sb, Qb)) . (12)

Since all searches of Qa have maximum time µa and Sab is optimal, it must also be true
that Sa and Sb are optimal on their respective subtrees. So by the induction hypothesis

T (Sx, Qx) =
µx +D (Qx)

2
, x = a, b, (13)

where D is taken with respect to the normalized EBD distribution ex on Qx, ex =
(µ/µx) e. Combining (12),(11), and (13), we have

T (S,Q) =
µa
µ
· µa +D (Qa)

2
+
µb
µ
·
(
µa +

µb +D (Qb)

2

)
=

µ2
a + 2µaµb + µ2

b

2µ
+
µaD (Qa) + µbD (Qb)

2µ
=
µ+D

2
.
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If the root has more than two arcs, the same proof works with Qb denoting the subtree
Q−Qa. If the root has one arc a then let Q′ be the tree Q− a with root at the end of
a, and observe that

T (e) = µa + TQ′ (e
′) = µa +

µ (Q′) +D (Q′)

2

= µa +
(µ− λ (a)) + (D (Q)− λ (a))

2
=
µ+D

2
.

For an example of the calculation of D, see the end of Section 1, where we determine
D(Q0), for the network Q0 depicted in Figure 1 with arc lengths given by (3).

3.4 A solution method for Hider on nodes of arbitrary network

We noted above that every search S = (a1, . . . , aN) on a network Q determines a span-
ning subtree SN of Q. If S is optimal against Q, ν, it must also be optimal (the optimal
ordering of the arcs) on that spanning subtree. So a method to solve the Bayesian search
problem on any network Q is to identify all spanning trees, use Corollary 4 to find the
minimum search time in each case, and take the minimum of these.
We illustrate this method by considering the cycle network shown below in Fig-

ure 3, where the numbers on the nodes represent the Hider probability ν, in 1/20’ths.
Suppose λ (a) = 2, but the other arcs have unit length. We will determine the min-
imum search time T (ν) for the Hider distribution ν, using the algorithm described
above. There are four spanning subtrees, each specified by which of the four arcs of Q
is avoided. If a is avoided, we get the unique search (d, c, b), with expected search time
(1 · 1 + 2 · 7 + 3 · 12) /12 = 51/20. If b is avoided, the max-max tree is a, so the unique
optimal search of Q−b is (a, d, c), with expected search time (2 · 12 + 3 · 1 + 4 · 7) /20 =
55/20. If c or d are avoided, the max-max tree is ab, and the respective optimal searches
are (a, b, d) and (a, b, c) with common expected search time of (2 · 12 + 3 · 7 + 4 · 1) /20 =
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49/20, which is the global optimum.

a

b

c

dO

12 7

1

Figure 3. A cycle
network W .

3.5 A counterexample to max-max subtree M first

We showed in part (ii) of Theorem 3 that the max-max subtree of a tree network Q
must be searched first by any optimal expanding search. The concept of the max-max
subtree, as a maximal subtree of maximum density, can be defined on any network. A
natural conjecture is that an optimal expanding search on any network must begin with
the (generically unique) max-max tree. However it turns out that this conjecture can
fail even for the simplest non-tree network, the cycle network.
Consider the particular cycle network of the previous subsection. It is easy to calcu-

late that the max-max tree is dcb, with density 20/3 ≈ 6. 666 7. If the conjecture were
true, the optimal expanding search would have to be (d, c, b), but we have seen that this
search gives a suboptimal expected search time of 51/20.

4 Known Continuous Hider Distribution

In the previous section we analyzed the Bayesian search problem of minimizing the
expected time to find a Hider hidden according to a known distribution ν on the nodes
of a network Q. The assumption that the Hider is at a node greatly simplified the
analysis - in particular the finiteness of the set of expanding searches made the existence
of optimal searches obvious. We now relax the assumption that the Hider must be at a
node ofQ and allow him any distribution ν on the whole networkQ. This in turn requires
searches that might go a certain distance along one arc and then switch to searching
another one before the end of the first arc is reached. In some rare (non-generic) cases,
the Searcher might even have to go along two arcs at the same time (but with speeds
summing to 1).
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4.1 General expanding searches

The idea behind our general definition of an expanding search S concerns the closed
region S (t) of Q that it has searched by time t. As t increases, its size (total length)
cannot grow too fast and it cannot jump to new points detached from those it has
already searched. A Hider at H is captured when H first belongs to the searched set
S (t) . These ideas are captured in the following definition.

Definition 10 An expanding search S on a network Q is a nested family of connected
closed sets S (t) , 0 ≤ t ≤ µ, which satisfy

(i) S (0) = O (starts at the root of Q), S (µ) = Q (exhaustive search),

(ii) S (t′) ⊂ S (t) for t′ < t, and

(iii) λ (S (t)) = t.

The set of all expanding searches is denoted by S.

It follows from (ii) and (iii) that λ (S (t)− S (t′)) = t − t′ and consequently by
connectedness that dHaus (S (t) , S (t′)) ≤ t− t′, where dHaus is the Hausdorff metric on
Q. The set S is compact in the uniform Hausdorff metric

d∗ (S, S ′) = max
0≤t≤µ

dHaus (S (t) , S ′ (t)) . (14)

For S ∈ S and H ∈ Q let T ∗ = inf {t : H ∈ S (t)} . Suppose H /∈ S (T ∗) . Then
for T ∗ < t < T ∗ + dHaus (S (t) , S (T ∗)) we also have that H /∈ S (t) , contradicting the
definition of T ∗. Consequently H ∈ S (T ∗) . This shows that the infimum is a minimum,
and leads to the definition

T (S,H) = min {t : H ∈ S (t)} .

Next we show that for any fixed H ∈ Q, T (S,H) is lower semicontinuous for S ∈ S
with respect to the uniform Hausdorff metric d∗. Suppose T (S,H) > t0. Then H /∈
S (t0) and furthermore if d∗ (S, S ′) < d (H,S (t0)) it follows that H ∈ S ′ (t0) and so
T (S ′, H) > t0. Thus T (S,H) is lower semicontinuous in S for fixed H and hence also
T (S, h) =

∫
Q
T (S,H) dν (H) is lower semicontinuous for any fixed Hider distribution

ν on Q. It follows that for any fixed ν there is always an expanding search S which is
optimal in that it minimizes the expected capture time T (S, h) . The optimal strategy
need not be unique. Similar arguments will show that the zero sum game where the
Searcher picks S ∈ S and the Hider picks H ∈ Q has a value V. To summarize, we have
shown the following.

Theorem 11 Given any Hider distribution ν on a network Q, there exists an expanding
search S ∈ S which minimizes the expected capture time T (S, ν) .
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4.2 Pointwise search

For an expanding search it is not in general possible to say where the Searcher is located
at a particular time t, unlike for example in the pathwise paradigm in Gal’s analysis of
search games, where the Searcher simply follows a continuous path in Q. Of course if
S ([0, t]) − S ([0, t)) is a single point P (t), this is where the Searcher would be located
at time t. In fact we can characterize functions P (t) which arise in this manner as
pointwise searches.

Definition 12 A pointwise search of a network (Q,A) , is a surjective map P : [0, µ]→ Q
with P (0) = O (root), such that for all t ∈ (0, µ] we have

d (P (t′) , P (t)) ≤ t− t′ for some t′ < t. (15)

The set of all pointwise searches is denoted by Sp.

In other words for P ∈ Sp, the Searcher position P (t) at any time t is connected to
some previously visited point P (t′) by a continuous path. Note that the usual paradigm
of pathwise search in search games has the same definition as (15) except that the
quantifier some is replaced by all. That is, P (t) is connected by a path to the root
P (0) in pathwise search. Unlike pathwise searches, pointwise searches are not in general
continuous. (This is also true in discrete path planning algorithms, where successive
nodes need not be adjacent, but each node is ajacent to a previous node.) There are
certain restart times TS = {t : P (t) = P (t′) , some t′ < t} when the search returns to
restart points P (TP ) which it has visited earlier. In the special case of combinatorial
searches (expanding arc sequences) considered in Section 3, the restart points are those
nodes which are tails of two or more arcs involved in the search. The fact that intervals
(arc interiors) of zero density are searched without interruption (that is, full arcs are
searched) is obvious. This result also applies to arcs where the distribution is uniform.
This is a version of Lemma 1 - see Corollary 8 of Alpern and Howard (2000).
Given a pointwise search P ∈ Sp and a hiding point H ∈ Q, the capture time

T = T (P,H) is given by

T (P,H) = min {t : P (t) = H} .

Furthermore the set Sp of pointwise searches is dense in S in the uniform Hausdorff
topology given by (14). To see this, fix any search S ∈ S and for a positive integer n
let ti = iµ/n for i = 0, . . . , n. Let P ∈ Sp be a search such that P ([0, ti]) = S (ti) ,
i = 0, . . . , n. Such a P is easily constructed, as the subarcs in S (ti) − S (ti−1) can be
traversed one at a time by P in the interval [ti−1, ti] . A similar argument in a slightly
simpler setting is worked out in detail in Lemma 2 of Alpern and Howard (2000). The
significance of the fact that pointwise searches are dense is that we can obtain ε−optimal
expected search strategies using them against any Hider distribution.
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An example of a Q, ν where the minimum search time requires a general expanding
search rather than any pointwise search is the following.

Example 13 Let Q be the interval [−1, 1] with its root O at the center 0. Let ν be given
by the density function h (x) = 1 − |x| . The unique optimal expanding search S (t) is
given by S (t) = [−t/2, t/2] for 0 ≤ t ≤ 2 = µ. (A derivation of this fact is given in the
next subsection.) Clearly the expanding search S is not induced by any pointwise search
P, as S ([0, t])− S ([0, t)) = {−t/2, t/2} is not a singleton set.

4.3 Search on a tree again

We now return to the problem of searching against a known Hider distribution on a tree,
which we solved in Section 3.2 for the case where the distribution was concentrated on
nodes. Here we consider the general case. In that section we were able to restrict our
attention to combinatorial subtrees (e.g. connected sets of arcs including an arc at the
root). Here we use the term subtree to denote any closed connected subset of the tree Q
which contains the root O. As before, we will be concerned with subtrees of maximum
density, but now such a subtree may not exist. For instance for Q, ν of Example 13.
However when such a subtree exists, we can prove the continuous analog of Theorem 3.

Theorem 14 Let the Hider H be hidden according to a known distribution ν on a rooted
tree Q and suppose there is a unique rooted subtree A of maximum density. Then there
is an optimal expanding search S which begins by searching A. That is, S (λ (A)) = A.

It turns out that this result may be reduced to the very simple case where Q is a star
with just two arcs a1 and a2, after which we may apply the solution of the alternating
search problem given in Alpern and Howard (2000). On arc i the probability with
respect to ν that the Hider is within distance t of the root is denoted by Fi. It is clear
that an expanding search in this context is determined by a nondecreasing continuous
alternation function α (t) , 0 ≤ t ≤ λ (a1) + λ (a2) , with α (t)− α (t′) ≤ t− t′ for t′ < t,
where Sα (t) is the subtree going distance α (t) on a1 and t−α (t) on arc a2. The expected
capture time associated with Sα is

T (α) =

∫ λ1+λ2

0

t dFα (t) , where

Fα (t) = F1 (α (t)) + F2 (t− α (t)) .

The α minimizing T (α) for given functions Fi, is called the optimal interleaving of the
two distributions F1 and F2. Often simple alternation strategies, those where α′ is always
0 or 1, are optimal. The theory of optimal interleaving of two distributions is given in
Section 5 of Alpern and Howard (2000), where the following is proved (a special case of
Corollary 6 of that paper).
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Proposition 15 Suppose that each ratio Fi (t) /t has a maximum of ri at ti, and that
r1 > r2. Then any optimal alternation strategy satisfies α (t1) = t1, that is, it begins by
a search on a1.

We now use the ideas of optimal interleaving to prove Theorem 14.
Proof. Let S be an optimal expanding search strategy, which must exist by Theorem

11. Let t0 be the smallest t for which A ⊂ S (t) and define B = S (t0) − A. For t ≤ t0,
let f (t) be the earliest time that the tree A has been searched to length t, that is,
f (t) = min {y : λ (S (y) ∩ A) = t} . It follows that t − f (t) = λ (S (t) ∩B) . Similarly
let g (t) = min {y : λ (S (y) ∩B) = t} . Let S∗ be the expanding search which searches
A and then B, each in the same relative order as in S, that is,

S∗ (t) =

{
S (f (t)) ∩ A for 0 ≤ t ≤ λ (A) ,

A ∪ (S (g (t− λ (A))) ∩B) for λ (A) ≤ t ≤ λ (A) + λ (B) = t0.

According to Proposition 15, S∗ (t) is an optimal interleaving of the distributions S (t)∩A
and S (t)∩B, for t ≤ t0, so the expected capture time for S∗ is not larger than that for
S. Consequently, as S∗ (t) is also an expanding search, it must also be optimal.
Unlike the problem in which ν is concentrated on nodes, there now may be no tree

of maximum density, since {ρ(A) : A 6= φ is a rooted subtree of Q} may not have
a supremum. For instance in Example 13 the subtrees [0, x] or [−x, x] have density
1− x/2, with limiting density 1. But clearly no subtree has density as high as 1. So we
cannot apply (at the moment) Theorem 14. However there is a simple trick we can use,
based on the simple observation that on any network that begins with a single arc a at
the root, we must begin by searching a. So we reverse engineer this idea by considering
the network Q + L in which a new arc of length L > 0 is added at the root of Q, and
its other end O′ is taken as the root of Q+L. We draw Q and Q+L below in Figure 4
for the interval network Q of Example 13.

1                         1 1                         1

L

O

O’Q                                               Q+L

Figure 4. The network Q+ L.

It is easy to calculate that the unique maximum density subtree of Q+ L intersects
Q in some subtree M (L) = [−x (L) , x (L)] for which the density

ν ([−x, x])

2x+ L
=
x (2− x)

2x+ L
is maximized,
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giving x = x (L) =
(√

L (L+ 4)− L
)
/2. Thus Theorem 14 says that an optimal ex-

panding search of Q + L must begin with the new arc and then the subtree M (L) of
Q, and hence any optimal expanding search of Q must begin with the subtree M (L) .
Thus by increasing L, we generate an increasing family of initial subtrees of an optimal
search.
In general, note that by adding an arc a of length L to a rooted tree Q to obtain

Q+L, we remove the problem that there may not be a maximum density subtree, since
the set {ρ(A) : A 6= φ is a rooted subtree of Q+L} is equal to {ρ(B ∪ a) : B is a rooted
subtree of Q}, which is the upper-semicontinous image of a compact set with respect to
the Hausdorffmetric, so it must have a maximum. In the generic case, there is a unique
maximum density subtree, M(L) ∪ a of Q + L. It can be easily established that the
subtrees M (L) are nested, so that if L1 < L2 we have M (L1) ⊂M (L2).
This approach can also be applied to find the optimal search (arc sequence) for a

Hider distributed on the nodes of a tree. In this case, M(L) will ‘skip’a finite number
of times as L increases from 0 to ∞. We illustrate these ideas using the example of the
network Q drawn in Figure 1, with arc lengths and Hider distribution as depicted in
Figure 5 below.

0.3

0.1 0.2
0.1

0.2

0.1

O

4 22

1

3

1

Figure 5. The network Q.

It is easy to see from Corollary 4 that the optimal search strategy is (a, b, c2, d1, d2, c1).
To illustrate the Q + L solution method, we plot the graphs of the density functions
of the five rooted subtrees of Q which have maximum density in Q + L for some L.
For example, the function plotted for tree a is 0.3/ (1 + L) . As L increases from 0, the
highest densities in Q + L are the subtrees determined by a, ab, abc2, abc2d1, abc2d1d2

and finally Q itself (not shown in the figure).
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Figure 6. Densities of some rooted subtrees of Q in the tree Q (L)

The Q+L method does not always work so smoothly as it is possible that the subtree
sequence M (L) may increase by more than a single arc at the time, in which case the
order of those arcs would have to be obtained by the method given in Section 3.2. An
example of this behaviour can be seen in the following network, all of whose arcs have
length 1.

O

1/17

8/17

3/17

5/17

a

e

d

cb

Figure 7. A network where M(L) skips by more than one arc.

When L < 2, M(L) = b, indicating that the first arc searched should be b. But
for 2 ≤ L < 12, M(L) = bcde, so although the method determines that c should be
searched next, followed by d and e, it does not indicate in which order d and e should be
searched. We therefore need to use Theorem 3 which says that since e is the maximum
density subtree of de, this arc must be searched next. When L ≥ 12, M(L) is the whole
network abcde, and a should be searched last, which is clear as it is the only remaining
arc.
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5 Unknown Hider Distribution - Search Games

We now assume that the Hider distribution ν is not known to the Searcher. In this case
we consider the problem of finding the mixed Searcher strategy (probability measure over
expanding searches) which minimizes the expected search time in the worst case. An
equivalent problem, which we prefer to adopt, is the zero-sum Expanding Search Game
Γ (Q) . Here the maximizing Hider picks a location H in Q, the minimizing Searcher
picks an expanding search S in S, and the payoff is the search (capture) time T (S,H) .
We will see that all the searches used in this section will be combinatorial, in the sense
defined at the beginning of Section 3, so that they consist of expanding arc sequences.
In Section 4.1 we showed that S is compact in the uniform Hausdorff metric (14) and
that T is lower semicontinuous in S for fixed H. So the Minimax Theorem of Alpern
and Gal (1988) gives the following.

Theorem 16 For any network the expanding search game Γ (Q) has a value V = V (Q) ,
the Searcher has an optimal mixed strategy and the Hider has ε-optimal mixed strategies.

For comparison with a much studied class of games, let Γp (Q) and V p denote the
pathwise search game and its value, where the Searcher is restricted to pathwise searches.
Clearly V ≤ V p.
Two simple cases are when Q is a ray from the root and when Q is a circle. In the

former case the Hider hides at the leaf node, the Searcher goes there, and the value is
the length µ of this ray. In the latter case, the Hider can either hide at the antipodal
point to the root or uniformly, the Searcher goes around the circle in a random direction,
and the value is µ/2, where µ is the circumference. As in pathwise search, the analysis
for the circle goes over to Eulerian networks. However we will show that, unlike the
situation for pathwise search, the result for the single ray does not go over to general
trees.
A Hider distribution which is available on any network is the uniform distribution

u which is simply the normalized version of the length, that is, u (Z) = λ (Z) /λ (Q) =
λ (Z) /µ for any measurable set Z. We observed in the previous paragraph that u is an
optimal Hider strategy on a circle. Since the definition of expanding search includes the
condition λ (S (t)) = t, the cumulative distribution, F of search times against u satisfies
F (t) = u (S (t)) = λ (S (t)) /µ = t/µ, and hence we have:

Lemma 17 The uniform distribution u on any network Q satisfies T (S, u) =
∫ µ

0
(t/µ) dt =

µ/2, for any S ∈ S, and hence V (Q) ≥ µ/2.

5.1 Search game on a tree

For rooted trees Q, we showed earlier (Theorem 8 and Corollary 9) that the EBD
distribution had the maximum search time of (µ+D) /2. Since the minimax theorem
holds for expanding search games (Theorem 16), this give the following.

23



Theorem 18 For the expanding search game on a rooted tree Q, the EBD distribution
is the optimal strategy for the Hider and the value is given by V = (µ+D) /2.

Except for the trivial case where Q is a single arc from the root to the leaf node, we
have D < µ, and hence the value V is strictly less than the value V p = µ for pathwise
search games on trees established by Gal (1979). While the optimal Hider distribution
is the same, the optimal pathwise strategy of following a Chinese Postman Tour in a
random direction is no longer optimal in general.
For ease of presentation, in the section we restrict our attention to binary trees, that

is to say trees which have two out-arcs (away from the root) from every non-leaf node.
An optimal Searcher strategy for binary trees can be given in terms of a branching
function and corresponding branching strategy. A branching function β assigns to every
branch (non leaf) node a probability distribution (β (a) , β (b)) over its two out-arcs.
After reaching any node x, the branching strategy σβ chooses the next arc as follows.
Let y be the most recently reached node (possibly x) at which there is an untraversed
arc. If there is only one untraversed arc at y, take it. Otherwise, choose each arc with its
β probability. Recall from Section 3.2 the definition of Qz, the subtree of Q containing
the node or arc, z and all arcs above z. Let β̄ be the branching function given by 16.

β̄ (a) =
1

2
+

1

2µx
(Da −Db), (16)

where µx = λ(Qx), and Da = D(Qa), Db = D(Qb). Note that β(a) is indeed a probabil-
ity, since |Da −Db| ≤ Da +Db ≤ µa + µb = µx.

Theorem 19 The branching strategy σβ̄ reaches every leaf node i of the rooted tree Q
in expected time T (σβ̄, i) = (µ + D)/2. Hence by Theorem 18 it is an optimal strategy
for the Searcher.

Proof. We prove the theorem by induction on the number of arcs. If the tree Q has
a single arc of length l with leaf node i, then clearly T (σβ̄, i) = l. But 1

2
(µ + D(Q)) =

1
2
(l + l) = l. Assume the result is true for all proper subtrees of Q and let a and b be
the two out-arcs of O. Then by the induction hypothesis, twice the expected search
time, 2T (σβ̄, i) to reach a leaf node i in, for example Qa, is given by

β̄(a)(µa +Da) + β̄(b)(2µa + (µb +Db))

By definition of β̄ this is equal to(
1

2
+

1

2µ
(Da −Db)

)
(µa +Da) +

(
1

2
+

1

2µ
(Da −Db)

)
(2µa + (µb +Db))

= µ+

(
µaDa + µbDb

µ

)
= µ+D (by (11)).
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For example, in the game played on the tree Q0 depicted in Figure 1, with arc lengths
given by (3), we have Da = 2 and Db = 7, so that β̄(a) = 1

2
+ 1

2.15
(2− 7) = 2

3
. Clearly

β̄(c1) = β̄(c2) = 1
2
and β̄(d1) = β̄(d2) = 1

2
, so the Searcher has an optimal strategy which

begins with a with probability 2
3
, then searches c1 or c2 equiprobably, followed by b and

then d1 or d2 equiprobably; and with probability 1
3
begins with b then searches d1 or d2

equiprobably, followed by a and then c1 or c2 equiprobably. This is equivalent to the
strategy we found to be optimal by numerical methods in Section 1.
For trees, the expanding search game can be viewed as a pathwise game on a tree

with asymmetric arc travel times which are zero going towards the root, as long as the
Searcher is restricted to depth-first searches. So another way of obtaining the results of
this section is via the theory of search games on variable speed networks, as developed
in Alpern (2010) and Alpern and Lidbetter (2010). Such methods will not however work
for networks with cycles, as there is no similar orientation of the arcs.
Under this interpretation one might expect that, as with the pathwise search game

on trees with symmetric travel times, a Random Chinese Postman Tour strategy may
be optimal for the Searcher. However, this is not the case. Suppose we take a Chi-
nese Postman Tour S = (a, c1, c

∗
1, c2, c

∗
2, a
∗, b, d1, d

∗
1, d2, d

∗
2, b
∗) on the tree Q0 in Figure

1, with arc lengths given by 3, writing a∗, for example as the arc a traversed in its
backwards direction in time 0. In the notation of expanding search, S would be written
(a, c1, c2, b, d1, d2). The reverse of S is S∗ = (b, d2, d

∗
2, d1, d

∗
1, b
∗, a, c2, c

∗
2, c1, c

∗
1, a
∗). If

we take a weighted average, αS + (1 − α)S∗ (0 ≤ α ≤ 1) of these two searches we
obtain a Random Chinese Postman Tour. We then have T (αS + (1 − α)S∗, D1) =
α · 10 + (1−α) · 12 = 12− 2α and T (αS + (1−α)S∗, D2) = α · 15 + (1−α) · 7 = 8α+ 7.
Hence if α ≤ 1

2
, T (αS + (1− α)S∗, D1) ≥ 11 and if α ≥ 1

2
, T (αS + (1− α)S∗, D2) ≥ 11,

so there is no Random Chinese Postman Tour strategy which ensures that the Searcher
will reach both D1 and D2 in expected time less than V (Q0) = 10.5. It is easy to show
that no other Random Chinese Postman Tour on Q0 is optimal either.

5.2 Searching in boxes as expanding search on a star network

We may apply Theorem 19 to a special case of the following well-known problem of
searching for an object hidden in one of n boxes i = 1, ..., n. The Hider picks a box to
hide in and the Searcher searches the boxes in any order. Each box i has search cost
ci and if the Hider has chosen that box, then when the Searcher examines it the search
ends with probability qi. The Searcher seeks to minimize, and the Hider to maximize,
the total cost of the search. In Roberts and Gittins (1978) and Gittins and Roberts
(1979), this game is analyzed in the case where for each i, ci = 1 and 0 < qi < 1. A
summary of this analysis is also presented in Gittins (1989). We consider the case where
there is no overlook probability, so that all the qi = 1, and where the ci can take any
positive value. It is easy to see that this game is equivalent to the expanding search
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game on the n−star tree Q in which the length λ(ai) of arc ai is ci. So its total length
µ is given by C = Σn

i=1ci. In the EBD distribution e, the Hider chooses the leaf nodes
of ai with probability e(ai) = λ(ai)/µ = ci/C, which is the optimal hiding distribution.
Furthermore we have

D = Σn
i=1e(ai)λ(ai) = Σn

i=1

c2
i

C
, and so by Theorem 18,

V =
1

2
(D + µ) =

1

2

(
C +

Σn
i=1c

2
i

C

)
.

There are many optimal search strategies. They may be obtained by converting the star
into an equivalent binary tree by adding arcs of length zero. For example, suppose the
binary tree begins with the arc a1 and a new arc of length zero leading to the rest of the
tree. Then by Theorem 20 the Search branching strategy takes a1 first with probability

1

2
+

1

2C

(
c1 − Σn

i=2

c2
i

C − c1

)
Otherwise he searches a1 last and the rest of the tree in some order determined by
successive branching.

5.3 2-arc connected networks

We showed in the introduction how the expanding search game was easy to solve on
the single arc network (with root at one end) and on the circle network. The previous
section generalized the first observation to a solution for all trees. Here we generalize
the second observation to all networks which remain connected on removal of any (open)
arc, the so called 2-arc connected networks. We will need the following characterization
of such networks due to Robbins (1939) in terms of orientable networks, those for which
the arcs can be oriented in such a way so that there is a directed path from any point x
to any other point y in Q.

Theorem 20 The following are equivalent for a network Q :

(i) Q is 2-arc connected.

(ii) Q is orientable.

(iii) There is an increasing sequence of subnetworks Q0, Q1, . . . , Qk = Q, such that Q0

is a cycle and each Qi, i > 0, is obtained from Qi−1 by adding a path between some
two points xi and yi of Qi−1. (This sequence is called an ear decomposition.)
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In his elegant paper, Robbins explained his result in terms of one-way streets and
robustness in terms of repairs on a given street. It follows from his proof that (iii) can
be extended to say that Q0 can be chosen to contain any given point, in our case the
root of Q.
Our motivation for what follows is the proof of Gal (1979) that V p = µ/2 for Eulerian

networks. He simply takes any Eulerian tour of Q, equiprobably with its reverse tour,
as the Searcher mixed strategy. For expanding pointwise searches P (t), unlike pathwise
searches, the reverse function P (µ− t) may not be a pointwise (expanding) search. In
order to adapt Gal’s idea to the expanding search context we need to assume that the
pointwise search P : [0, µ]→ Q is reversible, by which we mean that P−1 (t) = P (µ− t)
is a pointwise expanding search (see Definition 12). Note in particular that a reversible
pointwise search must end at P (µ) = P−1 (0) = O, the root.

Theorem 21 A network Q is 2-arc connected if and only if it has a reversible combi-
natorial search.

Proof. First suppose Q has a reversible combinatorial search. Suppose an arc
a is traversed between times t1 and t2, that is, a = P ({t : t1 < t < t2}) . Then Q −
a = P ([0, t1)) ∪ P−1 ([0, µ− t2)) is the union of connected sets with a common point
O = P (0) = P−1 (0) so it must be connected. Hence Q is 2-arc connected.
Now suppose Q is 2-arc connected. Then by Theorem 21 it has an ear decomposition

starting with a cycle, Q0, Q1, ..., Qk. We can assume that the cycle, Q0 includes O.
We construct reversible combinatorial searches Pi on Qi inductively, where the Pi are
sequences of arcs, with no arcs repeated. Let S0 be the cycle on Q0 starting at O. This
is clearly a reversible combinatorial search on Q0. Assume we have constructed Pi, a
reversible pointwise search on Qi, for 1 ≤ i < k. We have Qi+1 = Qi ∪Ai, where Ai is a
path from a node x ∈ Qi to a node y ∈ Qi. We can assume that x occurs before y in Pi,
otherwise we can relabel the nodes. Let Pi+1 be the combinatorial search on Qi+1 which
follows Pi until reaching x, then follows the path Ai from x to y, and finally follows the
remainder of Pi from x to O. Then P−1

i+1 consists of the following three expanding arc
sequences: firstly the path along P−1

i from O to x, next the path along A−1
i from y to

x, and finally the path along P−1 from x to O. Each of these expanding arc sequences
starts from a point that has already been reached by P−1

i+1, so P
−1
i+1 is a combinatorial

expanding search, and Pi+1 is reversible, as required.
We can now solve the expanding search game for any 2-arc connected network.

Corollary 22 If Q is 2-arc connected then V = µ/2. An optimal Hider strategy is the
uniform distribution and an optimal Searcher strategy is an equiprobable mixture σ of
the pointwise searches P and P−1, where P is any reversible pointwise search.
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Proof. Note that if T (P,H) = t then P (t) = H and hence also P−1 (µ− t) = H.
Consequently T (P−1, H) = µ− t, and hence

1

2
T (P,H) +

1

2
T
(
P−1, H

)
=
t

2
+

(µ− t)
2

=
µ

2
. (17)

This shows that V ≤ µ/2 and the reverse inequality is given in Lemma 17.
It may be worth noting that in the pathwise search game context, the so called three-

arc network, consisting of three unit length arcs between two nodes, was notoriously
diffi cult to solve. See Pavlovic (1995). In the expanding search context however, it is
easy because it is 2−arc connected, and so has value 3/2.

5.4 Network decomposition

In the previous two sections we have found formulae for the value of the expanding
search game Γ (Q) when Q is a tree and when it is 2-arc connected. In fact these results
give bounds on the vale V (Q) of an arbitrary network.

Corollary 23 For any rooted network Q, of total length µ, we have

µ/2 ≤ V (Q) ≤ µ. (18)

The left side is an equality iff Q is 2−arc connected; the right side holds with equality iff
Q is the single arc, interval network Iµ with the root at one end.

Proof. The left inequality is Lemma 17. The right side is obvious because in fact
every expanding search has maximum search time µ. If Q is not 2−arc connected it has
a disconnecting arc a, and we may modify the uniform measure u to ua by moving all
the measure of a onto its end away from the root. The same arguments used in the
proof of Lemma 17 show that for any search S, T (S, ua) ≥ µ/2 + u (a) · λ (a) /2. That
is, in the case the Hider was originally on a, it will be found at a time λ (a) /2 later, on
average. If Q is a tree other than Iµ, then D < µ, so Theorem 18 implies V (Q) < µ.
If Q is not a tree, it has a cycle, and as in the pathwise search theory we consider the
Eulerian network Q′ in which all arcs not in the cycle are doubled. The Eulerian tour
S of Q′ starting at the root is a reversible pointwise expanding search of Q of length
µ′ = µ (Q′) < 2µ, so the inequality (17) holds with µ′ replacing µ, so V (Q) ≤ µ′/2 < µ.

Since V ≤ V p, it is not surprising that, although the bounds in (18) are the same as
those for the pathwise search value, the set of networks where it holds with equality are
larger in expanding search for the lower bound (all 2-arc connected networks; not just
Eulerian networks) and smaller for the upper bound (only the interval network; not for
all trees).
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6 Conclusions

This paper has introduced a new type of network search, in which the searched area
expands continuously at a unit rate. We show how to optimize such searches to minimize
the expected time to find a Hider of known distribution and to minimize the worst case
expected search time for a Hider of unknown distribution. The latter essentially extends
the theory of network search games to the context of expanding search.
A similar expanding search approach could be taken to the problem of rendezvous

search (see Anderson and Essegaier (1995), Lim (1997), Gal (1999), Alpern (2002), Gal
and Howard (2005), Chester and Tütüncü (2004)). Two rendezvousers (each perhaps
representing a tribe or animal colony) expand their searches until one of them reaches
a point previously searched by the other. We may assume that information (tracks or
scent markers, for animals or ant colonies) has been left in the original search which
solves the meeting problem. This is only one of many possible extensions of the theory.
Other extensions include (i) Searcher picks the starting point of the search, (ii) time
to traverse an arc depends on the direction, (iii) there is a cost involved in searching a
node.
Another interesting area for further research has been suggested by an anonymous

referee. Our approach, even to the Bayesian problem, does not consider algorithms or
complexity. For example on tree we simply say for the Searcher to ‘start on the arc
leading to the subtree of maximal hider density’, but we don’t provide any algorithm
for determine such a subtree. Perhaps algorithms analogous to path-planning could be
of use in this respect. An alternative game suggested by this referee involves the Hider
choosing an arc and the Searcher applying group-testing (see for example Du and Hwang
(2000)) using vertex sets to recursively find him.
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