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A new approach to identifying generalized competing risks
models with application to second-price auctions

TaTiIANA KOMAROVA
London School of Economics and Political Science

This paper proposes an approach to proving nonparametric identification for dis-
tributions of bidders’ values in asymmetric second-price auctions. I consider the
case when bidders have independent private values and the only available data
pertain to the winner’s identity and the transaction price. My proof of identifi-
cation is constructive and is based on establishing the existence and uniqueness
of a solution to the system of nonlinear differential equations that describes rela-
tionships between unknown distribution functions and observable functions. The
proofis conducted in two logical steps. First, I prove the existence and uniqueness
of alocal solution. Then I describe a method that extends this local solution to the
whole support.

This paper delivers other interesting results. I demonstrate how this approach
can be applied to obtain identification in auctions with a stochastic number of
bidders. Furthermore, I show that my results can be extended to generalized com-
peting risks models.

Keyworbs. Second-price auctions, ascending auctions, asymmetric bidders, pri-
vate values, nonparametric identification, competing risks, coherent systems.
JEL crassiFicAaTION. C02, C14, C41, C65, D44.

1. INTRODUCTION

In auctions, researchers are often interested in learning models’ economic primitives,
particularly the joint distribution of bidders’ values. Because this underlying distribu-
tion is not known a priori, it must be learned from the data. To obtain credible esti-
mation results, a researcher must first study the identification question to determine
whether the distribution of interest is identified or whether there are many distributions
consistent with the data. The importance of this issue has generated many methodolog-
ical papers on identification in auction models. This paper contributes to that literature.

This paper examines the nonparametric identification of the distributions of bid-
ders’ values in asymmetric second-price auctions. The identification analysis cannot be
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conducted without (a) imposing conditions on the joint distribution of bidders’ signals
and (b) specifying what data are available from the auctions’ outcomes. This paper as-
sumes that bidders have private values and that the only available data pertain to the
winner’s identity and the transaction price. Identification in this framework was first
considered in Athey and Haile (2002).

It is well known that in second-price auctions within the private-values framework,
a weakly dominant strategy for bidders entails submitting their true value.! This paper
considers an equilibrium where bidders employ this strategy. In this case, even though
the submitted bids directly reveal bidders’ values, the joint distribution of these values
cannot be identified nonparametrically because not all the bids are observed. This result
is established in Athey and Haile (2002). The identification of the parameter of interest
requires strengthening the model’s assumptions. This paper shows that in our problem,
it suffices to assume that bidders’ values are independent. There are three main issues to
address in obtaining this result. First, the distribution functions must be identified non-
parametrically so as to avoid incorrect assumptions about their form. Second, there is
a challenge posed by the asymmetry of the bidders participating in the auction. Finally,
given that the transaction price is the value of the second-highest bid, the identification
proof must be based on the second-order statistic.

One of the main contributions of this paper is to provide conditions on the observ-
able data sufficient to guarantee point identification. Namely, I present conditions on
the observables that are sufficient to show that the model can have at most one solu-
tion and, therefore, to ensure the identification of distribution functions. The main suf-
ficient identification condition can be formulated in terms of the observables as well as
in terms of the unobservables. It is interpretable and is weaker than identification con-
ditions usually assumed in auctions.

This paper delivers another important result by presenting conditions on the ob-
servables that are necessary and sufficient for the existence of a solution to the model;
thus, it is always known with certainty whether the model has a solution. Interestingly,
these conditions for existence are a subset of the conditions sufficient to guarantee iden-
tification.

Another contribution of this paper is to prove that when there are only two types of
bidders, identification always holds. This result is generalized for the case when there
are only two types of bidders and the joint distribution of bidders’ values is given by an
Archimedean copula. I obtain a condition on the generating function of a copula that is
sufficient for identification. This condition is satisfied for many classes of Archimedean
copulas.

A methodological contribution of this paper is to suggest a new approach to proving
identification in analyzed auction models. The idea behind this method is to establish
the existence and uniqueness of a solution to a system of nonlinear differential equa-
tions that relate unknown underlying distribution functions to the observable data. This
strategy includes two major steps. First, I show that the system has a unique solution on
a subinterval of the support; this is what I call a local solution. Second, I demonstrate

1See, for example, Vickrey (1961) or Krishna (2002).
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that this local solution can be extended to the whole support. This two-step approach is
constructive and enables us to conduct a thorough qualitative analysis of the identifica-
tion problem.

Furthermore, the techniques developed in this paper allow for generalizations of the
auction setting. Using the case of three bidders, I outline the specifics of proving iden-
tification in second-price auctions in which the set of actual bidders is unknown and
varies exogenously. Komarova (2009) shows that one can relax the support conditions
and permit distributions to have different upper support points as well as holes in the
support.

Within the private-values framework, second-price auctions are equivalent to as-
cending auctions. For proofs of identification in these two types of auctions, when the
data indicate only the winner’s identity and the winning price, researchers have referred
to results in the statistical literature that examines identification in generalized compet-
ing risks models. Athey and Haile (2002) were first to observe that analyzed auctions can
be considered a special case of these models.

In generalized competing risks models, an object that consists of different compo-
nents fails as a result of the cumulative failure of several of its elements, and the only
observed data pertain to the lifetime of the object and the set of components that had
failed before the object’s failure. Though the main identification result for these cases
was obtained by Meilijson (1981), his proofs lack some essential details, most impor-
tantly, conditions on the observables or on the unknowns that guarantee identification.
I'show that my method, on the other hand, provides an exhaustive proof of identification
in generalized models. For any of these models, I provide conditions on the observables
and equivalent conditions on the unknowns that guarantee that the model cannot have
more than one solution. I also explain why the existence of a solution cannot be proved
in general and must be assumed. For a special class of generalized competing risks mod-
els, which encompasses our auction models, I present necessary and sufficient condi-
tions for existence.

For a thorough overview of nonparametric identification in auctions, see Athey and
Haile (2002, 2006, 2007) and references therein. These authors obtain numerous non-
parametric identification results for various auctions settings. For the auction frame-
work analyzed in this paper, Athey and Haile (2002) first explain why this framework is a
special case of generalized competing risks models considered in Meilijson (1981), and
then they refer to the Meilijson’s result to obtain identification. Brendstrup and Paarsch
(2006) deal specifically with asymmetric ascending auctions within the independent-
private-values framework, considering both single-unit and multiunit settings. Their
proof of identification repeats the proof by Athey and Haile, but provides a more de-
tailed technical explanation of why the analyzed auction framework is, in fact, a special
case of generalized competing risks models. Brendstrup and Paarsch also suggest some
estimation methods and apply them to analyze fish auctions in Denmark. Banerji and
Meenakshi (2004) and Meenakshi and Banerji (2005) also consider asymmetric ascend-
ing auctions within the independent-private-values framework by examining wheat
markets in India. Similar to Athey and Haile (2002) and Brendstrup and Paarsch (2006),
they cite Meilijson (1981) to obtain identification.



272 Tatiana Komarova Quantitative Economics 4 (2013)

Another thread of the literature related to this paper applies the techniques of the
theory of differential equations to identification problems. In auctions, examples of such
papers are Campo, Perrigne, and Vuong (2003), Guerre, Perrigne, and Vuong (2009), Le-
brun (1999), and Maskin and Riley (2003). Campo, Perrigne, and Vuong (2003) prove
nonparametric identification for asymmetric first-price auctions with affiliated private
values. Guerre, Perrigne, and Vuong (2009) address the nonparametric identification of
utility functions for bidders in first-price auctions, specifically when the bidders are risk
averse and have private values. Lebrun (1999) analyzes first-price auctions with inde-
pendent private values and characterizes a Bayesian equilibrium as a solution to a sys-
tem of nonlinear differential equations. He refers to standard results in the theory of
differential equations to show that an equilibrium exists and that it is unique when the
valuation distributions have a mass point at the lower support point. Maskin and Riley
(2003) also analyze the uniqueness of an equilibrium in first-price auctions and prove
it under a certain set of assumptions that includes an assumption about the positive
atoms of the valuation distributions at the lower support point.

The rest of this paper is organized as follows. Section 2 reviews second-price auc-
tions, outlines generalized competing risks models, and explains their connection to
auctions. Section 3 states identification results for second-price auctions and considers
identification in more general auction settings. Section 4 describes generalized compet-
ing risks models in detail and provides identification results for these models. Section 5
concludes. Proofs of propositions, lemmas, and theorems are collected in the Appen-
dices.

2. SECOND-PRICE AUCTIONS AND GENERALIZED COMPETING RISKS MODELS

In this section, I first review second-price auctions. Next, I describe generalized compet-
ing risks models and show their connection to these auctions.

2.1 Second-price auctions within the private-values framework

A single object is up for sale and d buyers are bidding on it. The set of all bidders is
known. Bids are submitted in sealed envelopes. The highest bidder wins and pays the
value of the second-highest bid; thus, in these auctions, the second-highest bid is the
winning price. Suppose that the bidders have private values and that they are aware of
their value. It is known that in this setting, a weakly dominant strategy for bidders is to
submit their true value—and this is an equilibrium that I consider later. In this paper,
only the winner’s identity and the winning price are observed in the auction outcomes.

It is worth mentioning that within the private-values framework, second-price auc-
tions are equivalent to open ascending auctions. One form of ascending auctions is a
“button auction,” in which bidders hold down a button as the auctioneer raises the price.
When the price gets too high for a bidder, she drops out by releasing the button. The auc-
tion ends when only one bidder remains. This person wins the object and pays the price
at which the auction stopped.
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2.2 Generalized competing risks models

Now I turn to a brief description of generalized competing risks models. Consider a ma-
chine that consists of several elements. A special case of these models is classical com-
peting risks models. The classical models correspond to a situation in which a machine
breaks down as soon as one of its components fails; the data available after the break-
down are the machine’s lifetime and the element that caused the failure. One example
of these models in economics is duration models. Also, the Roy model is isomorphic to
classical competing risks. In the Roy model, a person chooses from a finite set of occu-
pational alternatives to obtain the highest income and the outcomes of the choice (oc-
cupation and income) are observed. In biometrics, the death of an individual because of
a particular disease when that person also faced several other diseases presents a clas-
sical competing risks model, based on a fundamental assumption that a single cause is
behind every death.

Generalized competing risks models relax this assumption and consider cases in
which a machine fails because of the cumulative failure of some of its elements rather
than a single one. A fatal set for the machine is a subset of parts such that the failure of
all the parts in the subset causes the failure of the machine; in other words, it is a set
of the elements that failed before the machine broke down. In this paper, the machine’s
failure provides information only about the fatal set and the machine’s lifetime. More
details about generalized competing risks are given in Section 4.

2.3 Second-price auctions as a special case of generalized competing risks models

Athey and Haile (2002) were among the first investigators to notice the connection be-
tween second-price auctions and generalized competing risks models. To clarify the
connection, I use the equivalence of second-price and ascending auctions within the
private-values paradigm.

Consider a button auction, as described above, with d bidders. Notice that observing
the identity of the winner is equivalent to observing the identities of the bidders who
dropped out. Compare this auction framework to the following generalized competing
risks model. Assume that a machine consists of d elements and works as long as at least
two of its elements are functioning; in other words, the machine breaks once d — 1 of
its elements are dead. The set of these d — 1 elements is fatal. Clearly, the breakdown of
other d — 1 components would also be fatal. A fatal set in this model is an analog of the
set of bidders who dropped out, and the machine’s lifetime is an analog of the winning
price.

3. IDENTIFICATION IN SECOND-PRICE AUCTIONS

In this section, I formulate identification results and present a mathematical description
of the identification problem. Also, I discuss generalizations of the identification results.
The proofs of the theorems, propositions, and lemmas of this section are collected in
Appendix A.
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3.1 Statement of the identification problem

Denote bidders’ private values as X;, i =1,...,d. Assume that these values are inde-
pendent and their distributions have densities on a common support [y, 7]. This im-
plies that distribution functions of bidders’ values are absolutely continuous functions
and Fi(t) =0,i=1,...,d. Point ¢ is not permitted to be —oo, but it is allowed to have
T = +o00. Also assume that bidders’ values at each auction are independent draws from
the same joint distribution. We aim to learn this distribution from the available data.
Note that in equilibrium, the bids’ joint distribution coincides with the distribution of
the bidders’ private values. Therefore, if all the bids are observed, then the distribution of
values can be clearly identified. If some of the bids are not observed, however, then nei-
ther the joint nor the marginal value distributions can be identified, as shown in Athey
and Haile (2002). Given that our knowledge is often limited to the second-highest bid,
I show that when the only available data pertain to the bid and the winner’s identity, the
marginal distributions of bidders’ values can be identified if these values are indepen-
dent.

Notation Throughout this paper, I use the following notations. A bid submitted by
player i is denoted as b;. Symbol M represents the transpose of matrix M. The distribu-
tion function of X; is denoted as F;, i =1, ..., d. Function F; is called positive (negative)
if F;(t) > 0 (F;(¢) < 0) for ¢ > 1. A vector-valued function F = (Fy, ..., F;)" on [ty, T] is
called positive (negative) if each of its components F; is a positive (negative) function.
Function F is referred to as strictly increasing if each F; is strictly increasing on [#y, T].

For simplicity, I first consider the case of three bidders and then generalize the re-
sults to any number of bidders. Because the winner’s identity and the winning price are
observed in an auction’s outcome, then the probability of an event {price < ¢, i wins} is
known forany ¢ € [ty, T1and any i = 1, 2, 3. So, for each bidder i, we observe the following
subdistribution function G; on [#, T']:

Gi(t) =Pr(price <t,iwins), i=1,2,3.

The comma in the definition of G; stands for “and.”

The identification problem is to determine whether there is only one collection of
private-values distribution functions F1, F», and Fs that rationalize observable functions
Gl, Gz, and G3.

Identification results can be obtained under weaker support conditions. For in-
stance, the distributions can be allowed to have different upper support points. Also,
they can be allowed to have holes on (¢y, T'), which means that F; can have flat parts on
this interval. It is essential, however, that each F; is strictly increasing in a small neigh-
borhood of #. A more detailed discussion of these extensions is given in the remark in
the end of Section A.4.

I do not explicitly consider the case of observable heterogeneity, but all the results
in this paper carry over when analyzed distributions are conditional on auction-specific
observables.
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3.2 Necessary conditions on observables

I start by describing the properties of observable functions G; that follow from the
model.

I say that the model is not stated correctly if at least one of the following condi-
tions fails to hold: (i) bidders submit their true values; (ii) bidders have independent
private values; (iii) bidders’ values distributions have densities; (iv) bidders’ values are
distributed on [#, 7.

The next proposition indicates necessary conditions on observable functions G; im-
plied by the model.

ProrosiTiON 3.1. Ifthe model is stated correctly, then the following conditions hold.
Necessary conditions (I):

i) Gi(tp)=0,i=1,2,3.
(ii) Gj is absolutely continuouson [ty, T],i=1,2,3.

(i) G; is strictly increasingon (%, T],i=1,2,3.

Proor. Byassumption, the distributions of private values X; have densities on the com-
mon support [fy, T]. This implies, in particular, that players submit bids equal to # with
probability 0. Also, £ is the lower support point for all distributions. These two facts give
condition (i). Condition (ii) follows from the absolute continuity of the distributions of
X;. Condition (iii) is true because the support of each X; is the connected interval [¢, T,
without any holes in it. O

Even though these conditions are simple, it is worth indicating them because they
are useful in the proof of identification. As we can see, all the properties of the private-
values distributions, except for the assumption of independence and the boundary con-
ditions F;(T) =1, i = 1,2, 3, are used to establish Proposition 3.1. The independence
assumption, combined with necessary conditions (I), gives the following result.

ProprosITION 3.2. Suppose that the model is stated correctly. Let F be a solution to the
model. Then

F F F
lim— (=1, lim—2—()=1, lim———()=1. 3.1)
Hh |G,Gs Hh |GGs Hh |GG,

Gy G, G3

Conditions (3.1) are formulated in terms of both observable and unobservable func-
tions. They characterize a solution F to the model only in a neighborhood of #,. To be
more precise, they find the rate of convergence of unknown distribution functions F; at
fp in terms of observable functions G;. These conditions are essential for proving identi-
fication.

The properties of G; formulated in the next corollary also play an important role in
establishing identification.
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CoROLLARY 3.3. Suppose that the model s stated correctly. Then the following conditions
hold.
Necessary conditions (II):

. Ga2G3 . G1G3 . GG,
g, =0 m0=0 m=7,

(t) =0. (3.2)

The reasoning behind conditions (II) is that no matter how different the underlying
distributions are, bidders’ probabilities of winning do not have considerably different
rates of convergence at f.

Now that [ have presented necessary conditions on observables, I turn to describing
the mathematical model of identification, and explain how necessary conditions (I) and
(IT) are employed in the identification proof.

3.3 Mathematical model of the identification problem
Assuming the independence of bidders’ values, functions G; can be expressed through
F; as follows. Let b;, i = 1, 2, 3, indicate the submitted bids. Then

Gi(t) = Pr(max{bz, b3} < by, max{b,, b3} < l‘)

t
= Pr(maX{Xz,X3} < X1, max{X,, X3} < l) = (F2F3)/(1 — Fy)ds.

fo

Functions G, and G3 have similar expressions. Therefore, unknown distribution func-
tions F; are related to observable functions G; by means of the system of integral-
differential equations

t
Gy(t) = / (F2F3)' (1 - Fy) ds,
4]

t
Gy(t)= | (F1F3)(1— Fy)ds, 3.3)

fo
t

Ga(1) = f (FLF>) (1= F3) ds.
fo

Notice that the left-hand and right-hand sides of the equations in (3.3) are absolutely
continuous functions, allowing us to differentiate them and obtain the following system
of differential equations almost everywhere (a.e.) on [£y, T

g1 =(F2F3)(1-Fy),
Main system: &= (F1F3)'(1-Fy), (DE)
g3=(F1F) (1 -F3),

where g; stands for the a.e. derivative of G;. I refer to system (DE) as the main system.
Distribution functions F; in this system must satisfy the initial conditions

Initial conditions: Fi(tp)=0, i=1,2,3. (IC)
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I refer to problem (DE)-(IC) as the main problem. The definition below explains the
meaning of a solution to (DE)-(IC).

DEeFINITION 3.1. Function F = (Fy, F,, F3)' is a solution to problem (DE)-(IC) on an
interval [¢y, tp + al, ty +a < T, if F;, i = 1,2, 3, are absolutely continuous on [fj, fy + a],
satisfy equations (DE) a.e. on [f, fp + a], and satisfy (IC).

The system of differential equations (DE) is a convenient tool because identifying
functions F; is equivalent to proving that problem (DE)—-(IC) can have at most one posi-
tive solution F on [fy, T1.

While proving uniqueness, the solutions are not restricted to be monotone. There-
fore, if the unique solution recovered from the distributions of bids and winners’ iden-
tities turns out to be nonmonotone, then it could be interpreted as evidence that the
observed distributions of prices and winner’s identities cannot be rationalized by the
equilibrium in weakly dominant strategies in second-price or ascending auctions within
the asymmetric independent private values (IPV) framework.

3.4 Main results

Proving identification does not require establishing the existence of a solution to (DE)-
(IC) and only requires showing that (DE)—(IC) cannot have more than one solution.
However, I start by presenting an existence result, because it gives conditions for the
existence of a solution that are also used to obtain identification.

THEOREM 3.4 (Existence of a Solution). Let observable functions G; satisfy conditions (I)
and (I). Then problem (DE)—(IC) has a positive solution on [ty, T].

Remember that all conditions on G, required in this theorem are necessary condi-
tions implied by the model. Therefore, conditions (I) and (II) are both necessary and
sufficient conditions for the existence of a solution to the model. In particular, if even
one of the conditions in (I) and (II) fails to hold, we can immediately conclude that the
observable data cannot be rationalized by the equilibrium in weakly dominant strate-
gies in second-price or ascending auctions within the asymmetric IPV framework.

The next theorem describes conditions on G; that are sufficient to guarantee the
identification of F;.

THEOREM 3.5 (Uniqueness of a Solution). Let observable functions G; satisfy conditions
() and (1), and the following sufficient condition.
Sufficient condition (I11): The function

g & & G263 G1G3 GG,
ol 62 L &5 34
<G1+G2+G3><\/ G +\/ G VG o
has a finite Lebesgue integral—that is, belongs to the class L'—in a neighborhood of 1.
Then problem (DE)—(IC) has a unique positive solution on [ty, T1].
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The most important element in obtaining sufficient condition (III) is the result of
Proposition 3.2. To acquire a better understanding of this condition, I write it in terms of
distribution functions F;.

ReEMARK 3.1. Condition (I11) is equivalent to the following condition: The function

F, F/ F/ Fi+F+F (3.5)
F1+F_+ (F1+F+F) .

has a finite Lebesgue integral in a neighborhood of t.

A detailed explanation of this remark can be found in Section A.1 in Appendix A.
Condition (3.5) is satisfied, for instance, if the ratio of any two distribution functions of
values is bounded from above on (fy, T].? In particular, this is the case when the densities
of the distributions of values are bounded above and below from zero on [y, t) + ] for
asmallnp > 0.3

Now it is intuitive that the reasoning behind this condition is that the underlying
distribution functions Fi, F,, and F3 are not too different around £ in a certain sense.

For instance, if the underlying distribution functions are F; = ¢, F, = 2, and F; =
exp(l — tiz) on [0, 1], then the corresponding observable functions G; do not satisfy con-
dition (III). Figure 1 depicts such F;. As we can see, around the lower boundary ¢ = 0
the private value of bidder 3 first-order stochastically dominates the private values of
bidders 1 and 2. Also, the third bidder’s value distribution has a mass at 0 that is consid-
erably smaller than the mass put at 0 by the value distributions for bidders 1 and 2. This
means that bidders 1 and 2 win very rarely when the observed sale price is close to 0.

Flzt,FQth ngexp(l——

Tl=
N

Ficure 1. Underlying distribution functions.

2If for any i and j, F" < M on (ty, T], then the function in (3.5), which can be written as Z - Z; 1 F' F’

is bounded from above by M Z . F' j’ on (fy, T'1. This implies that the function in (3.5) has a finite Lebesgue
integral in a neighborhood of #j.

31f for anyi 0<M; <F <M <ocon[fy,t+ 77] then for any i and j, F] < MZF/. on [y, { + n] and,
hence, F; < F on [#y, tp + n], which implies that £ F < MZ on (f, ty + n]. Clearly, 1s also bounded from
above on (lo +17, T]since Fi(tp+7n) >0,i=1,2,3.
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F1GURE 2. Function in (3.5) has an infinite Lebesgue integral in a neighborhood of 0.

Figure 2 shows the function in (3.5). The Lebesgue integral of this function in any small
neighborhood of 0 is infinite due to the terms

sF/ €9
/0 Fz(FH-Fz):/O t—3(t+t2)=oo

for an arbitrary ¢ > 0. Thus, condition (III) is not satisfied. This sufficient condition cap-
tures the fact that the behavior of F3 at r = 0 is unlikely to be identified because the bids
from bidder 3 are almost never observed in a small neighborhood of 0. It also captures
the fact that F; and F, are unlikely to be identified around ¢ = 0 because the identities of
bidders 1 and 2 are almost never observed there.

Condition (3.5) is satisfied if all F; behave as power functions around #:

. Fi(1)
0<lim———— <
tlty (t—tg)%i
forsomea; >0,i=1,2,3.

In identification results for the first-price auctions, it is usually assumed that the
densities of all the distributions of the bidders’ values are bounded away from zero and
are finite on the support. For example, these conditions are imposed in Guerre, Perrigne,
and Vuong (2009). Condition (IIT) is much weaker than these restrictions.

Suppose 1 is not the lower support point of the distributions of private values, but
is a binding reserve price in the intersection of the supports of bidders’ private values.
This reserve price is known and the bidders submit bids only when their private value is
no less than #y. Then (3.3) and (DE) have to be written in terms of truncated distribution
functions

F;(t) — Fi(%)

Fi(5) = 1-Fi(p) ’

tztO’i=1’2’3;

and observable functions

Gi(t) = Pr(price <t,iwins|all bidders participate), ¢>1t,i=1,2,3,
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assuming that the econometrician observes whether or not the event {all bidders
participate} occurs, and observes the winning price and the winner’s identity when
this event takes place. Functions F; and G; satisfy conditions F;(fy) = 0 and G;(tp) = 0.
The identification task becomes the task of establishing the uniqueness of (Fy, F», F3),
t > 1y, and all the conditions indicated in this section have to be verified for F; and G,
i=1, 2, 3. For more details, see Section 3.5.3.

This paper’s identification proof comprises two major steps: establishing the local
identification result and establishing the global identification result.

Namely, I first prove that problem (DE)-(IC) has only one positive solution F in a
small neighborhood of fy; this solution is what I call a local solution. Establishing the
existence and uniqueness of a local solution is the most challenging part of the iden-
tification result because system (DE) has a singularity at #) due to Fi(#) =0,i=1,2, 3.
System (DE) can rewritten in a form that has the derivatives of F; only on the left-hand
side. In that form, the right-hand side is singular when functions F; take zero values.

The local existence and uniqueness proofs use auxiliary functions H; = F>F3, H, =

FF5, and H3 = F|F,. Because F| = ,/HI%I—?*, F, = ,/Hly—fl@, and F3 = 1/Hllj,—ljz, system (DE)

can be rewritten equivalently in terms of functions H;. The existence and uniqueness
of a local solution are first established for this new system because it has a convenient
form, even though it does not satisfy usual Cauchy-Lipschitz conditions, in particular,
because of the initial restrictions H;() = 0. More precisely, the existence of a local solu-
tion cannot be proven by using standard existence theorems in the theory of differential
equations because (a) functions H; must belong to a specific region defined by inequal-
ities 0 < H}i—ih <1,0< Hé—lf <1l,and 0 < H;i—ih < 1; (b) the vector (0, 0, 0) of the values of
(Hy, Hy, H3) at ty is not an interior point of this region. Instead, I use the so-called Tonelli
approximation method, which chops an interval around #j into very small intervals and
then exploits the form of the system for H; to build special functions on these intervals
step by step. These functions have an important property: when the lengths of the small
intervals go to zero, the sequence of these functions has a subsequence that converges
to a solution. Proving the uniqueness of a local solution is complicated by the fact that
the right-hand side of the system for H; does not satisfy a standard Lipschitz condition
in H; due to the initial conditions H;(f) =0, i = 1, 2, 3. I deal with this by establishing a
differential inequality for functions H; that implies uniqueness. The local existence and
uniqueness results for H; give the local existence and uniqueness results for F;.

After proving the existence and the uniqueness of a local solution to (DE)-(IC),
I show that it can be extended to a positive solution on the entire interval [#y, 7], and
that such an extension is unique.

To gain intuition, consider Figure 3. The picture on the left shows the local solution F
found on some interval [#, f) + c]. The idea of constructing a global solution is to extend
this solution F to the right at least to a small interval (# + ¢, o + c1], ¢1 > ¢, in such a
way that the extended solution solves (DE)—(IC) on [f, t + c1]. The picture on the right
in Figure 3 shows this extended solution. Then this solution is extended even further to
the right and so on. I show that if we continue this process in a certain way, then we will
reach the upper support point T and, thus, find the solution on the whole support. An
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' V3
to totcC T to togtc  totCq T
Fy, Fy, F5 on [to,to + (] Fy, Fy, F3 on [tg, to + 1]

F1GURE 3. Solution to the main problem on [#, ty + ¢] (left) and extended solution to the main
problem on [fy, ty + ¢1] (right).

analogous continuation argument for extending solutions to larger intervals is consid-
ered in Guerre, Perrigne, and Vuong (2009).

It is worth mentioning that in first-price auctions, Lebrun (1999) and Maskin and
Riley (2003) avoid singularities at the lower support point by considering a reserve price
and assuming that the values of underlying distributions at the reserve price are strictly
positive. In this case, their systems of differential equations obey standard Cauchy-
Lipschitz conditions and, thus, uniqueness is obtained in a straightforward way. In the
framework of this paper, singularities remains present even if #j is a reserve price and
Fi(ty) > 0 for all i. As explained above, this happens because the system of differen-
tial equations has to be written in terms of truncated distributions functions F’](?;im,
which take the value of 0 at .

3.5 Extensions

This section discusses identification in (a) auctions with any number of bidders, (b) auc-
tions with any number of bidders, but where there are only two types of bidders, and (c)
auctions with a stochastic number of bidders.

3.5.1 Anynumberofbidders HereIshow how the identification result for auctions with
three bidders can be generalized to auctions with any number of bidders. I state main
results and outline their proofs in Appendix A. The interpretations and intuitiveness of
these results are similar to those in the case of three bidders.

The observable functions are

Gi(t) = Pr(price <t,iwins) = Pr(r?ilxbj <t, %?txbj < bi), i=1,...,d.

Propositions 3.6 and 3.7 below are the analogs of Propositions 3.1 and 3.2. Corollary 3.8
is analogous to Corollary 3.3.
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ProposiTION 3.6. Ifthe model is stated correctly, then the following conditions hold.
Necessary conditions (I1d):

D) Gi(ty)=0,i=1,...,d.
(i) G; areabsolutely continuouson[ty,T],i=1,...,d.
(iii) G; are strictly increasingon [ty, T1,i=1,...,d.

ProprosITION 3.7. Suppose that the model is stated correctly. Let F be a solution to the
model. Then

F.
lim ’ Tam0=1 i=1...d
1o <G1G2"‘Gi—1Gi+1"‘Gd)
-2
Gi

COROLLARY 3.8. Suppose that the model is stated correctly. Then the following conditions
hold.
Necessary conditions (11d):

lim GGy GGy -+

Gy
H=0, i=1,...,d.
tly G?_z @

The mathematical model of the identification problem is obtained in the following
way. The definition of G; and the independence of private values yield the following sys-
tem of integral-differential equations that describes relationships between observable
functions G; and unknown distribution functions F;:

t
Gi(t) =/ (Fy - Fi 1 Fiyy - FgY (1= Fyds, i=1,....d.
fo

The differentiation of both sides of these equations gives us a system of differential equa-
tions

gi=(F - Fi_1Fiy1--F)(1—F), i=1,...,d. (3.6)
Functions F; in this system must satisfy initial conditions
Fi(tp)=0, i=1,...,d. 3.7)

Theorem 3.9 below gives necessary and sufficient conditions for the existence of a solu-
tion to the model. Theorem 3.10 presents an identification result.

THEOREM 3.9 (Existence of a Solution). Let observable functions G; satisfy conditions
(Id) and (11d). Then problem (3.6)—(3.7) has a positive solution on [ty, T].

THEOREM 3.10 (Uniqueness of a Solution). Let observable functions G; satisfy condi-
tions (Id) and (11d), and the following sufficient condition.



Quantitative Economics 4 (2013) Generalized competing risks models 283

Sufficient condition (111d): The function

d d—1
Z gi (G1G2 Gi_ 1Gi+1"'Gd)1/

Gl Gd 2

has a finite Lebesgue integrable in a neighborhood of ty. Then problem (3.6)—(3.7) has a
unique positive solution on [y, T1.

The main identification condition (IIId) has an equivalent form in terms of the prim-
itives of the model:
The function

zi-zm

1

has a finite Lebesgue integral in a neighborhood of t,.

3.5.2 Only two types of bidders: Independent values and special cases of dependent values
Suppose that there are only two types of bidders. An econometrician observes the type
of the winner but not the identity. Let d, the total number of bidders, and k, the number
of bidders of type I, be known. Introduce F; and Fyy as

Fi(t) = P(value of type I bidder < 1),

Fy1(¢) = P(value of type Il bidder < ¢).
Then foreachi,i=1,...,d,
t
/ (FI"_lFI‘f_k)/(l — Fy)ds, ifbidder iis of typel,
)

Pr(price <t,iwins) = p
/ (FFFA==1Y(1 — Fn)ds, if bidder i is of type IL
lo

The following functions él and GH are observed:

él(t) = Pr(price <t,abidder of type I wins),
~ (3.8)
G (t) = Pr(price <t, abidder of type Il wins).

Their relations to unobserved primitives Fi and Fy; are

d
él(t) = Z 1(i is of type I) Pr(price < ¢, iwins)

—k/ (FF1FERY (1 = ) ds,
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Gu(t) = Z 1(i is of type II) Pr( price < ¢,iwins)

=(d- k)/ (FFFA =1 (1 - Fn) ds.

Proving the identification of F1 and Fiy is equivalent to proving that the system of differ-
ential equations

Gl/k = (FfF) (= F,

Gy/(d— k) = (FEF 1) (1 = Fin,
together with the initial conditions

Fi(p) =0, Fi(t9) =0,

does not have more than one positive increasing solution (Fy, Fiy)".

The following theorem gives conditions on observable functions 51 and GH that are
both necessary and sufficient for the identification of F1 and Fy;. It shows that in a situ-
ation with only two types, there is no need to verify any conditions similar to condition
(IT11d).

THEOREM 3.11. Supposed and k are known, and the winner’s type and the winning price
are observed in the auction’s outcomes. The following conditions on G1 and Gy are neces-
sary and sufficient for the identification of F1 and Fir:

(i) Gitg) =0, Gu(tp) =0.
(ii) 51 and 511 are absolutely continuous on [ty, T1.

(iii) 51 and (~;H are strictly increasing on [ty, T].

The result in Theorem 3.11 can be extended to the case when bidders’ private values
are dependent and their joint distribution is described by an Archimedean copula,

Cluy, ug, ..y ug) =~ (@) + Pu2) + -+ P (ug)),
where function , the so-called generator, is defined on (0, 1] and

Y(1) =0, lin%] P(x) =00, ' (x) <0, ¥ (x) > 0.

In other words, the joint distribution of bidders’ values has the following representation
through the marginal distribution functions Fj:

F(ti,....t9) = ¢ (W(Fi(t) + ¥ (Fa(82)) + - + ¢(Fa(t))).

As above, suppose that there are only two types of bidders and an econometrician
knows the number of bidders of each type. The data pertain to the winning price and
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the winner’s type but not the identity. Then functions 51 and GH, defined as in (3.8), are
observable. The theorem below gives conditions on Gy, G11, and ¢ that are sufficient for
the identification of F1 and Fyj. I assume that the generator ¢ of the copula function is
known.

THEOREM 3.12. Supposed and k are known, and the winner’s type and the winning price
are observed in the auction’s outcomes. If G1 and G satisfy conditions (i)—(iii) in Theo-

rem 3.11 and the function (jp”,/;;x)))z is increasing, then Fy and Fyy are identified.

Archimedean copulas are often used in various applications due to their convenient
form. This theorem can be applied, for instance, to Clayton, Gumbel, Frank, Joe, and Ali-
Mikhail-Haq (AMH) copulas. Identification within the Archimedean family of copulas in
a different auction framework is considered in Brendstrup and Paarsch (2007).

3.5.3 Reserve price Suppose ¢ is a binding reserve price in the intersection of the sup-
ports of bidders’ private values.* A reserve price does not change bidders’ behavior be-
cause it is still a weakly dominant strategy to bid one’s value. Suppose that the reserve
price ty is known to the bidders, and that a bidder does not submit a bid if her value is
less than #j. I assume that the set of potential bidders is known by an econometrician
and does not change.® The econometrician observes whether or not the event {all bid-
ders participate} occurs, and observes the winning price and the winner’s identity when
this event takes place. In addition, suppose that in any right-hand side neighborhood of
ty, densities F] are positive on sets that have positive Lebesgue measure.

Since only the second-highest bid is known and information about lower bids is not
available, we have to consider the truncated distribution functions

F;(t) — Fi(%)

Fi(5) = 1-Fi(%)

, t>ty,i=1,...,d,

and observable functions
G;(t) =Pr(price <t,iwins|all bidders participate), ¢>1ty,i=1,...,d.

The identification task is to prove the uniqueness of (Fy, ..., Fy).

4Now bidders can have different lower support points.

SHere are two examples of how the sets of potential bidders were determined in ascending auctions
considered within the IPV framework. Athey, Levin, and Seira (2011) study federal auctions of timberland
in California, in which the United States Forest Service sells logging contracts. They classify the bidders into
two types: small firms that lack manufacturing capacity (“loggers”) and larger firms with manufacturing
capability (“mills”). To construct the number of potential logger bidders, Athey, Levin, and Seira count the
number of distinct logging companies that entered an auction in the same geographic area in the prior
year. They also do a similar count for mills. In fish auctions considered in Brendstrup and Paarsch (2006),
the bidders are resale trade firms. After consulting with the auctioneer and after examining the raw data, the
authors found that a total of seven potential bidders—two major and five minor—existed. Moreover, each
of these bidders attended virtually every auction, so despite the presence of a reserve price, Brendstrup and
Paarsch decided to ignore the issue of endogenous participation.
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Unknown primitives F; are related to observable functions G; by means of the sys-
tem of integral-differential equations

Ei(t)=/ (Fi--Fi_tFip1--F)'(1—Fpds, i=1,....d,
fo

for ¢ > ty. The identification of F; can be proven by applying the methods of Section 3.5.1
to the system of differential equations

Gi(t)y=(F---FiiFiy1--Fg) A=Fp), i=1,...,d,

considered together with the initial conditions

All the conditions indicated in Section 3 have to be verified for F; and G;, i =1, 2, 3.
If, in addition, an econometrician always observes the set of actual bidders, then the
values of F;(ty) are identified from the data because

Fi(ty) = P(i does not participate in auction), i=1,...,d.

The identification of F;(¢) for ¢ > t; and the identification of F;(#) imply that distribu-
tions functions F; are identified for ¢ > ¢,.

The main identification condition (III) in Section 3 did not allow the lower tails of
value distributions to behave very differently. When ¢, is the reserve price, the behavior
of the distributions in the lower tails does not matter because only the behavior in a
right-hand side neighborhood of #j is important. In the example in Section 3.4, the value
distributions are Fy(¢) = ¢, F»(t) = ¢, and F3(t) = exp(l — tlz), t € [0, 1]. As was shown,
condition (III) is violated when ¢y = 0. Suppose f, is areserve price thatliesin (0, 1). Then

2 2 2 2
— exp(1-1/t%)—exp(1-1/1;
Fio) = =, Fa(n = =3, and Fy(1) = =020

of the truncated dlstnbutlons are equal tozeroift € [0, ty). For t € (1, 1], the densities are

2/13 1-1/¢2 e
equal to Fl(t) =1 t , Fz(t) = S’ and F 3(t) = %.Any of these densities is

bounded from above and is bounded away from zero in a right-hand side neighborhood
of #y. Therefore, as follows from the result in footnote 3, condition (III) is satisfied for
Fi(t), i=1,2,3. To give an example of value distributions with different lower support
points, for each i = 1, 2, 3, consider F;(t) = (t — tg;)“, a; > 0, with the support [#;, fp; + 1].
Suppose that max{fy;, f2, fo3} < min{tyy, f2, fp3} + 1 and that the reserve price ¢ lies in
(max{fy1, 102, to3}, min{ty1, to2, to3} + 1). Then condition (ITI) is satisfied for F;(¢),i =1, 2, 3,
because F OE a,%, i=1,2,3, is bounded from above and is bounded away
from zero in a right-hand side neighborhood of ;.

) for ¢ ¢ [to, 1]. The densities

3.5.4 Auctions with exogenous variation in the number of bidders In this section, even
though the set of potential buyers is observable to an econometrician and does not
change, the set of actual participants is unobserved and varies exogenously. Denote the
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set of potential buyers as {1, ..., d}. Formally, the participation is said to be exogenous if
forall A C{1,...,d}andforall 4’ C A4,

Pr( X< A) = Pr( (X< m),

icA’ iceA’

where Pr(-|4) stands for the probability conditional on when A is the set of actual par-
ticipants.

Athey and Haile (2002) note that such exogenous variation could arise when poten-
tial bidders face random shocks to the entry cost and these shocks are independent of
bidders’ private values, and bidders make decisions about entry before their values are
realized. In this setting, bidders with favorable shocks enter the auction and then learn
their values. If the seller does not set a reserve price, then all bidders who entered sub-
mit bids equal to their values. This creates exogenous variation in the set of actual par-
ticipants. Another possible cause of exogenous variation is the bidders’ use of mixed
strategies in Bayesian Nash equilibrium in nonselective entry models, in which all the
bidders observe the same constant entry cost and no bidder has private signals at the
entry stage. Exogenous variation can also be created by a seller’s restrictions on partic-
ipation. McAfee and McMillan (1987) discuss the case of government-contract bidding
where bidders are selected from a list of qualified bidders on a rotating basis.

Here I do not aim to present a complete general analysis of identification. Rather,
I want to illustrate how the methods developed in this paper allow us to approach the
identification problem.

Suppose that the number of bidders and their identities are determined by chance
and the process through which bidders are selected is taken to be exogenous, embodied
in the known to the econometrician probabilities p 4, 4 C {1, ..., d}, where A is the set of
actual bidders. The distributions of bidders’ private values are assumed to have densities
on a common support [fy, T]. The observed data are the identity of the winner and the
winning price.

To gain some insight while keeping the problem simple, I consider the case of three
buyers.

The analysis below permits situations when some or all probabilities p;, p», p3 are
strictly positive; that is, auctions with only one bidder as the actual participant may have
positive probability. I suppose that the auction rule for such cases requires that the ob-
jectis sold to the only participant at the price equal to 1) and that the bidders are aware of
this rule. In this case, if a bidder knows that she is the only actual participant, then she
is indifferent about which amount from [#y, 7] to bid. I do not make any assumptions
about bidders’ strategies in such situations. This does not affect the identification analy-
sis because auctions with only one bidder are not helpful in identifying the distributions
of bidders’ values.

The only assumption imposed on probabilities p 4 is the following:

If p123 =0, then all three values p1», p13, p23 are strictly positive. (3.9

This means that each bidder competes against any other bidder with a positive proba-
bility.
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As before, the observed functions are G;(¢) = Pr(price <¢,iwins), i=1,2,3. Using
the law of total probability, for ¢ > £,

G1(t) = Pr(price <1, 1wins|{1}) p + Pr(price <¢,1wins|{1,2})pi2
+ Pr(price <t¢,1wins|{1,3})p13 + Pr(price <1, 1winsl|{1,2,3})pi23

t
=p1+ / (p12F + p13Fy + pio3(FoF3) ) (1 — Fy) ds,
b1

0

because
Pr(price < ¢, 1 wins|{1}) = Pr(price = fy, 1 wins|{1}) = 1.

Similarly,
t
Gy(t)=pr+ / (p12F| + p2sFi+ pio3(Fi1F3) ) (1 — Fy) ds,
fo
t
G3(t)=p3+ / (p13F] + p23Fy + p1o3(F1Fy)) (1 — F3) ds.

fo

The differentiation of these equations a.e. on [#y, 7] yields

g1 = (p12F5 + p13F3 + p123(F2F3)') (1 — Fy),
g = (p12Fi + p3F3 + p123(F1F3)' ) (1 — Fy), (3.10)
g3 = (p13F] + pnF; + p1o3(F1F2))(1 — F3).

To prove identification, it has to be shown that system (3.10) with initial conditions
F(p)=0, i=1,2,3, (3.11)

does not have more than one positive solution on [#j, T7].
My approach is to construct an auxiliary system by introducing new functions
Hy = ppoF + p13Fs + pisFa ks,
Hy = p12F1 + pa3Fs + piosFiFs,
H3 = p13F1 + pp3Fy + piosFi Fa.

As shown in Section A.7 in Appendix A, assumption (3.9) guarantees that each function
F;,i=1,2,3, has aunique representation in terms of H. Let g;(H) denote this represen-
tation. Then (3.10) can be written as the system of differential equations

8i

i 1_qL(H)’ L » &

The initial conditions on H; are

limH;(t)=0, i=1,2,3.
tlty
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The existence of a local solution to the auxiliary problem can be proven by applying
techniques from Section A.3. First, I find necessary conditions on G;. Assuming these
conditions, I use the Tonelli approximations method to prove the local existence of a
solution H to the auxiliary problem. Then I find a solution F to (3.10)-(3.11) from H by
using formulas F; = g;(H), i =1, 2, 3. The extension techniques in Section A.4 would be
used to show global identification.

A more detailed identification analysis of these auctions is given in Section A.7 in
Appendix A.

4. IDENTIFICATION IN GENERALIZED COMPETING RISKS MODELS

The main purpose of this section is to present conditions on observables sufficient to
guarantee identification in generalized competing risks models.

In Section 2, I gave two examples of these models. First, I explained why we can
consider second-price auctions to be a special case of these models. In the other exam-
ple, I considered widely used classical competing risks models. I now proceed to a more
detailed description of generalized competing risks models. For convenience, I use the
terminology of reliability theory, which refers to these generalized models as coherent
systems.® Essentially, a coherent system is a system that collapses because several of its
elements fail.

Suppose that a machine with a coherent structure consists of d elements. Denote the
elements’ lifetimes as X1, ..., X; and denote the machine’s lifetime as Z; the lifetime Z
isafunction of X1, ..., X;. Conveniently, Z can be characterized by fatal sets. As defined
in Section 2, a fatal set is a subset of parts such that the failure of all the parts in the
subset causes the failure of the machine. Even more conveniently, Z can be described by
the collection I, ..., I, of minimal fatal sets, which are fatal sets that do not encompass
other fatal sets. A machine is “alive” as long as in every I;, j =1, ..., m, there is at least
one part that is alive. The lifetime of the machine then can be expressed as

Z = min maxJX;.
j=1,...,m i€l

The examples below clarify the structure of a coherent system. To guarantee that the
probability of the simultaneous failure of several elements is 0, I suppose that the joint
distribution of X1, ..., X; has a density. Also, X; have the same support [y, T].

ExamPLE 4.1. In a classical competing risks model with d risks, the collection of mini-
mal fatal setsis Iy = {1}, ..., I; = {d}, and the machine’s lifetime is

Z =min{Xq, ..., X4}.

Clearly, the number of minimal fatal sets coincides with the number of elements. Fur-
thermore, there are no fatal sets other than sets /,. Take, for instance, set {1, 2}. Although
it is a superset of fatal sets {1} and {2}, it is not fatal itself. Indeed, the death of these
two elements could not cause the machine’s failure, because the death of either of them
would have led to failure earlier.

6The concept of a coherent system was introduced in Barlow and Proschan (1975).
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ExamMPLE 4.2. Consider a button auction with d bidders who have private values. In this
case, the fatal sets are the sets of bidders who dropped out before the auction ended. The
collection of minimal fatal sets is

Li={1,....i—1,i+1,....,d}), i=1,...,d.

Here, element lifetimes X; are bidders’ private values and the lifetime Z is the winning
price. Notice that the number of minimal fatal sets is the same as the number of bidders
and there are no fatal sets besides I;.

ExamMPLE 4.3. Consider a machine with five parts. Let the collection of minimal fa-
tal sets be I1 ={1,2,3}, I, ={1,2,4}, Is ={1,3,4}, I, = {2,3,4}, Is={1,3,5}, and I =
{2, 3, 5}. An example of a fatal set that is not a minimal fatal set is {1, 2, 3, 5}: It causes the
failure of the machine when, for instance, the machine’s elements break in the order of
5,1, 2,and 3. Set {1, 2, 3, 4}, on the other hand, is not fatal, because all its three-element
subsets are minimal fatal sets.

For coherent systems, the goal is to learn the marginal distributions of element life-
times X; from the joint distribution of observed “autopsy” data, which comprise the
machine’s lifetime Z and a diagnostic set D, which is the set of parts that have failed by
time Z and which is revealed during the autopsy. This identification question is raised in
Meilijson (1981). Meilijson claims that under certain restrictions on a coherent system’s
structure, the distributions of the components’ lifetimes are identified if the lifetimes are
independent. To formulate the identification result, he introduces an incidence matrix
constructed in the following way. Given a collection of minimal fatal sets, the coherent
system’s incidence matrix is a matrix M such that M(i,j) =1if je I; and M(i,j) =0
otherwise, i=1,...,m,j=1,...,d.

For example, in the three-bidder auctions considered in Example 4.2, the incidence
matrix is

0 1 1
M=|1 01
1 10

In classical competing risks models, on the other hand, the incidence matrix is the d x d
identity matrix.

The main result of Meilijson (1981) says that if X1, X», ..., X; are nonatomic, inde-
pendent, and possess the same essential infimum and supremum, and if the rank of M
is d, then the joint distribution of Z and D uniquely determines the distribution of each
X j=1,...,d.

The idea behind Meilijson’s proof is (a) to use data only from those cases where
set D is a minimal fatal set and (b) to obtain integral equations that relate the distri-
bution functions of components’ lifetimes to observable functions, and then apply to
them a fixed point theorem for multidimensional functional spaces. Though Meilijson
(1981) made important contributions, including the observation that only the data cor-
responding to minimal fatal sets can be considered and observation of the rank con-
dition on the incidence matrix, the proofs lack some essential details. First, the author
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does not discuss necessary conditions on observable data besides mentioning them as
a prospect for future research. As we have seen in the auction model, such conditions
are crucial for obtaining the existence and uniqueness results. Second, he does not ex-
plore the existence of underlying distributions that rationalize the observables. A pos-
sible reason for this omission is the fact that in the majority of generalized competing
risks models, existence cannot be proved and must be assumed, as I explain below. Nev-
ertheless, I show that existence can be established for a special class of competing risks
models and present conditions on observables that are necessary and sufficient for exis-
tence. Third, Meilijson’s proof does not give conditions on observables that are sufficient
to guarantee the uniqueness of underlying distributions consistent with the data. I pro-
vide these conditions for any generalized competing risks model. Finally, although the
author mentions that the locally identified distribution functions can be extended to the
whole support, he does not present a proof of this result. As in the auction, such a proof
would require the identification result for the case in which all distribution functions
have positive values at the initial point.

I suggest a new approach to identification in generalized competing risks models
that offers a complete transparent proof of the identification result. I assume that the
distributions of the components’ lifetimes have densities, even though Meilijson (1981)
obtains his result under the weaker assumption that the lifetimes’ distributions func-
tions are merely continuous. The idea behind my method is similar to the case of the
auction; namely, I derive a system of nonlinear differential equations that relates the
underlying distribution functions to observable functions, and then examine the exis-
tence and uniqueness issues for this system. I use the incidence matrix and assume the
rank condition as in Meilijson (1981).

Now I turn to stating the main results for generalized competing risks models. An
outline of Meilijson’s method is given in Appendix B.

For every diagnostic set D, there is a corresponding observable function Gp:

Gp(t) = P(Z < t, D—diagnostic set).

Any diagnostic set is a fatal set. For any fatal set, all the minimal fatal sets it contains as
subsets have a nonempty intersection. Because lifetimes X; are independent,

t /
GD(t)=/ (]‘[ Fj(s)) [TO-Fi) [[ Fias, 4.1)
Iy

jGCD jEDC jED\CD

where Fj is the distribution function of X, Cp is the intersection of all minimal fatal sets
contained in D, and D¢ ={1, ..., d}\D.

Let G; be an observable function that corresponds to the minimal fatal set [;, i =
1,...,m:

t /
G,-(t):/ <l_[Fj(s)> [[0-Fis)ds, i=1,....m. 4.2)
fo

Jel; JjeIf
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System (4.2) of integral-differential equations is an analog of system (3.3). The differen-
tiation of the equations in (4.2) yields the system of nonlinear differential equations

F; /ZL, i=1,...,m. 43
(LI ’) [Ta-Fp l " (49

jelf
I analyze this system together with initial conditions
Fi(tp) =0, i=1,...,d. (4.4)

First, I consider the case in which the number of minimal fatal sets coincides with
the number of the machine’s components, that is, m = d. In this instance, M is a square
matrix. Let k;; stand for the (i, j) element of the inverse matrix M -1

In Theorem 4.1 below I formulate the existence result for problem (4.3)—(4.4) and de-
scribe conditions on G; that guarantee it. Theorems 4.1 and 4.2 assume that lifetimes X,
i=1,...,d, of the components are independent and their distributions have densities
on a common support [#, T].

THEOREM 4.1.7 Let m = d. Let functions G; satisfy the following conditions:
D) Gi(tg)=0,i=1,...,d.
(i) G, are absolutely continuouson [ty, T],i=1,...,d.
(iii) G; are strictly increasingon [ty, T1,i=1,...,d.
. . kij .
(V) lim, [T, G, () =0,i=1,....d.
Then problem (4.3)—(4.4) has a solution F on [ty, T).8

Notice that, from the model, conditions (i)—(iv) in this proposition are necessary on
G;. Indeed, (i)-(iii) follow directly from the definition of functions G;. Given that condi-
tions (i)—(iii) hold, condition (iv) can be obtained from (4.3). The interpretation of these
conditions is similar to that of conditions (I) and (II) in the auction model.

An important difference between this case and the auction, however, is that even if
problem (4.3)—(4.4) possesses a solution F and all F; in this solution have the properties
of distribution functions, the existence of a solution to the model is not guaranteed. In-
deed, to satisfy the model, F must solve equation (4.1) for any diagnostic set D. System
(4.3), however, accounts only for the minimal fatal sets. Therefore, after finding a solu-
tion to (4.3)-(4.4), we have to substitute it into (4.1) to verify that it solves this equation
for any D. Because it is difficult (and perhaps impossible) to find conditions on func-
tions Gp under which the model has a solution, it is common in reliability theory to
assume existence. The only situation in which the conditions in Theorem 4.1 guarantee
existence of a solution to the model is when m = d and the only fatal sets in the model
are minimal fatal sets. Notice that this is the case in the auction model analyzed in this

paper.

"The proof of this theorem is available on request.
81 consider only positive solutions.
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The next theorem provides conditions on G; that are sufficient for the uniqueness of
a solution to (4.3)—(4.4). The proof of this theorem is given in Appendix B.

THEOREM 4.2. Let m = d. Suppose that all conditions on G; in Theorem 4.1 are satisfied.
Denote

d .
=gy Y |k1h|(1"[ Gj!)cﬁfh—l.

lelf h=1 j#h
Ifforanyi=1,...,d, function
I'; has a finite Lebesgue integral in a small neighborhood of 1y, (4.5)

then problem (4.3)—(4.4) has a unique solution on [ty, T].

Because problem (4.3)-(4.4) has a unique solution, the model cannot have more
than one solution. Therefore, the following corollary holds.

CoROLLARY 4.3. Let m = d. Suppose that all conditions in Theorem 4.2 are satisfied. Then
a solution to the model, if it exists, is unique.

When the number of minimal fatal sets exceeds d, that is, m > d, the existence of a
solution to the model is always assumed. It is easy, however, to indicate conditions on
observable functions that guarantee the uniqueness of a solution to the model when
one exists. Consider any d x d full-rank submatrix of M. Without a loss of generality,
suppose that this submatrix is formed by the first d rows in M. The subsystem of (4.3)
that comprises the differential equations corresponding to the first d rows in M has only
one solution if G; satisfy the conditions in Theorem 4.2. Consequently, the model has at
most one solution. We can find other sufficient conditions by choosing different subma-
trices of M.

The proofs of Theorems 4.1 and 4.2 use the same methods as those of Theorems 3.4
and 3.5. First, the existence and uniqueness of a solution are established locally and then
globally.

5. CONCLUSION

This paper has provided methodological contributions by presenting a new way to prove
identification in analyzed auction models. This approach, which employs the tech-
niques of the theory of differential equations, is based on establishing the existence and
uniqueness of a solution to the system of nonlinear differential equations that relates
the underlying unknown distribution functions to the observable data. This method is
constructive and provides new insight by looking at identification from a fresh perspec-
tive. Though it allows us to explore identification in more general auction settings, this
approach is not limited to auctions only. As the paper has demonstrated, it can be ap-
plied to prove identification in a wide class of generalized competing risks models.
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There are some issues that are worth exploring in future research. One of them would
be to develop procedures for the estimation of the distribution functions of private val-
ues. One possible approach, which is discussed in Komarova (2009), is to use a sieve
method based on the minimization of a certain sample objective function over a cho-
sen sieve space. The identification result guarantees that the uniform probability limit
of the sequence of such objective function has the unique argmin that coincides with
the collection of true underlying value distributions. Such a uniqueness condition is
usually required when proving consistency of extremum estimators. Alternatively, the
Tonelli approach described in this paper can be used to construct the estimates of the
auxiliary functions first and then use them to construct the estimates of the distribution
functions of values. The identification result would guarantee that a sequence of Tonelli
approximations constructed using consistent estimators of observable functions would
converge to the unique solution to (DE)-(IC), that is, converge to the true value distri-
butions. The sieve approach involves an optimization procedure and the choice of sieve
spaces, whereas the Tonelli construction of an estimator involves integration and the
choice of the length of intervals in the step-by-step procedure. Both methods rely on
nonparametric estimators of the subdistribution functions of price that would be ob-
tained from the observed data in a straightforward way. There are other methods that
can be exploited. One method of interesting estimation issues that would come to light
is the effect of irregularities near the boundary of the support on the rates of conver-
gence of estimators in various norms.

APPENDIX A: PROOFS OF THE RESULTS IN SECTION 3

In the Appendix, I use the following notation. The notation L![r, £] stands for the class
of functions that have finite Lebesgue integrals on [, £]. The Euclidean norm of vector
x =(x1,...,xy) is denoted as ||x| and ||x|; stands for the norm of x, ||x|; = 2?21 |x;].
The right derivative of function v at point ¢ is

v(t+h) —v()

Dgrv(t) =lim
hi0 h

A.1 Proofs of Proposition 3.2, Remark 3.1, and Corollary 3.3

ProOF oF ProposiTION 3.2. It suffices to show that lim,,, ﬁ(r) =1.Lety > &
203 1

be very close to #y and let 0 < L < 1 be such that F;(¢t) < L for any ¢ € (¢, t1), i = 1,2, 3.
Consider the first equation in system (3.3) and use it to obtain that

i
Gi)= [ (a3 (1= Lyds= (1= DFs)Fs(a),
o
Gi(t) = Fo(1)F3(1).
Similarly, using the other two equations in (3.3), obtain that

(1= L)F(t1)F3(t1) < Ga(ty) < Fi(t1)F3(1),
(1 - LYFi(t1)F2(t1) < G3(t) < Fi(1)Fa ().
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Because F| =,/ %, then

1 G2G3 G2G3
Fi(t — Fi(t 1-L .
) =y—7 G 1(t1) =2V Gy

Because F;(ty) =0 and # can be chosen arbitrarily close to #j, then L can be arbitrarily

. . . . Fy _
close to 0. This implies that lim;,, 7m(t) =1. O
ProoFr orF CoroLLARY 3.3. Conditions (3.2) follow from Proposition 3.2 and the fact that
lim; 4, Fi(t)=0,i=1,2,3. O
ProoF oF REMARK 3.1. From (DE),
) 83
lim = lim = lim H)y=1.
im Gy @=L MGy 0=l Img i

From (3.1),

G G G;
lim—Y (=1, lm—2()=1, lim——(t)=1.
tlity F2F3 tity F1F3 tity F1F,

This implies, for instance, that

i 81(0/Gi(0) _
by Fy(0)/Fa(6) + Fi(0)/F3(1)

To summarize, from (DE) and (3.1), one obtains that there are constants L; > 0 and
L, > 0 such that

F’ F’ F/
—= Fi+F+F
<F1+F2+F3>( 1)

81, & , 8 G,G3 G1G3 G1G;
>[40 2= 4+ 2= 4 2=
= 1<G +G2+G3><\/ G +/ G, "\ G )

ﬂ F, F}
+ 24+ 2 ) (F +F,+F3)

Fi F, F
g1, 8 | & G2G3 G1G3 G162
<L)l =+ =+ =
(G1+G2+G3><\/ G +\/ G, * Gy )’
which implies the statement of this remark. O

A.2 Strategy for proving identification

Theorems 3.4 and 3.5 follow from the proofs in Sections A.3 and A.A.

As mentioned in Section 3.4, my strategy for proving identification consists of two
logical steps: first establishing local identification and then establishing global identifi-
cation.
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It can be shown that (DE)-(IC) always has a negative local solution as well as a posi-
tive local solution.? Conditions for uniqueness in the theory of differential equations do
not let us control the sign of solutions. Therefore, even though I am interested only in
a positive solution and can neglect a negative one, sufficient conditions that guarantee
uniqueness of a positive local solution cannot be derived from system (DE). To tackle
this problem, I use auxiliary tools.

Auxiliary tools 1 transform (DE) into a new system by introducing auxiliary functions
Hy = F)F3, Hy =FF3, H3=FF,.

Clearly, these functions are the distribution functions of max{X,, X3}, max{X1, X3}, and

max{X1, X»}, respectively. Functions F; are expressed through H; as F12 — HH; F22 =

Hy
H)LIH3 ,and F32 = % Taking into account that F; must be positive, I obtain
2 3

H,H; |H{H3 H H,
F = = F3= . A.l
! H, ~’ 2 H, ~’ 3 H; (A-1)

Thus, for any point ¢ > ¢y, system (DE) can be written as

H/= gl
! 1 Hy ;5
Hy
H. = 82
P [HHs
H,
83
Hé: Tz
1 1H>
Hj

Note that initial conditions H;(#y) = 0 cannot be imposed because the right-hand sides
of the equations in this system are undefined when H; takes value 0. Instead, I can set
conditions on the upper limit of H; at #,:

limH;(t)=0, i=1,2,3. (ICr)
tlty

The right-hand side of the last system is a vector-valued function that depends on ¢, H1,
H,, and H;. Denote it as

tr
J(t, H) = g1(t) ’ g2(1) ’ g3(1) A2)
\_ [ [AH [
VvV H, V H, V  H;
and rewrite the last system as
H'(t)=1J(t, H(1)). (DEg)

9See Remark A.4 for further explanation.
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I refer to (DEp) as an auxiliary system and refer to problem (DEg)—(ICy) as an auxiliary
problem.

DEeFINITION A.1. Function H = (H;, H», H3)" is a solution to (DEy)-(ICy) on an in-
terval (fy, {y + a] if H; are absolutely continuous on (fy, f) + a], satisfty (DEg) a.e. on
(to, tp + a], and also satisfy (ICq).

Proof road map Because formulas (A.1) account for the sign of F;, we automatically
consider positive solutions to (DE)-(IC). Thereafter, by a solution to (DE)-(IC), I will
always mean a positive solution.

The local identification result is proved in steps. In the first step, I show that con-
ditions (I) and (I) are sufficient to guarantee that problem (DEz)-(ICf), which is the
auxiliary problem, has alocal solution. In the second step, I use formulas (A.1) to find F;
from H; and show that these F; constitute a local solution to the main problem. Last, for
the auxiliary problem, I establish that its local solution that was found in the first step is
unique. This implies that for the main problem, its local solution that was found in the
second step is the unique solution.

The global identification result is obtained from the local identification result by
showing how the unique local solution to (DE)—(IC) can be extended to the unique so-
lution on the whole support. The idea is to extend this local solution to small intervals
progressively farther to the right until the upper support point 7 is reached.

The identification proof below employs techniques of the theory of differential
equations. Descriptions of similar or related techniques can be found, for instance, in
Tonelli (1928), Sansone (1948), Hartman (1964), Szarski (1965), Coddington and Levin-
son (1972), and Filippov (1988).

A.3 Local identification

Proving local identification is the most difficult part of the identification proof. I show
that to establish the existence of a local solution, I only need conditions (I) and (II). To
obtain local uniqueness, I use condition (III) as well as (I) and (I).

A.3.1 Existence of a local solution 1 start by finding an interval on which a local so-
lution to the auxiliary problem (DEf)-(ICy) and a local solution to the main problem
(DE)—(IC) exist. Then I prove local existence for (DEp)-(ICy) and use this result to es-
tablish local existence for (DE)-(IC).

Before moving on, I must introduce some notation and carry out preliminary techni-
cal work. First of all, I have to indicate the domain of function J(¢, H). Take into account
formulas (A.1), which express F through H, and note that for the auxiliary problem, we
want to prove not only that there is a local solution, but also that this solution is such
that functions HI%I—?% H;I—T, and HI‘{—?Z take values less than 1 and the following conditions
hold:

H.H, (1) =0.

HyH H H
lim —223() =0, lim—2()=0, lim
tlty Hjp tlty Hp tity Hj
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This accords with the fact that for function J (¢, H) to be well defined, the denominators
in J (¢, H) must be separated from 0. To do this, choose any 6 € (0, 1) and allow H to take
values only in the sets

Hy(8) = (0,00)* N {(h1, ha, h3)" : hahs < 8hy, hihs < 8ho, hohs < 8hy ).

Let D(8) = [y, T] x Hy(8) be the domain of J (¢, H) (a.e. with respect to ¢). As we can see,

6 guarantees that the denominators in J (¢, H) are separated from 0 by the value 1 — NEY
To determine an interval of existence for a local solution, I use conditions (II).

Choose y > 0 such that y/(1 — v/8)2 < 6. Let ty+a, a > 0, be a point from [fy, T] such

that

G1G3 GG

G263 1) < (1) <
G = G, =% G,

¥(t € lto, to + al) 2=y A3
Conditions (II) guarantee that such ¢y +a exists. Interval [#y, fy+ a] is an interval on which
a solution to problem (DEx)—(ICx) exists.

Auxiliary system with ¢ The right-hand side J(¢, H) of the auxiliary system (DEy) has
singularities in H when Hy =0 or H, =0 or H3 = 0. These singularities can be handled
by using a very small ¢ > 0 and considering an auxiliary system with & > 0,

Hiz+ ¢

together with initial conditions
Hi(tp)=0, i=1,2,3. (ICq,e)

Denote

tr
g1(1) 82(1) 83(1)
- [HyH3 ’1_ [H H; ’1_ [H H,

Hi+e¢ Hy+ e H;+¢

and rewrite the system with ¢ as

Je(t, H) = (

H'(t)=7J%(t, H(1)). (DEg, )

The definition of a solution to (DEgy, .)-(ICq ) is analogous to Definition A.1 and defines
a solution on [#y, fy + a] instead of (1, fy + al.
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Introduce
H(8)=1[0,00)> N {(h1, ha, h3)" : hahz < 8hy, hihs < 8ha, hyhy < 8hy)

and let D(8) = [ty, T x H(8) be the domain of J¢(¢, H) (a.e. with respect to ¢). The dif-
ference between H (8) and Hy(9) is that H(8) allows H; to take value 0.

LemMA A.1. Let observable functions G; satisfy conditions (I) and (11). Let J°(t, H) be
defined on D(5). Then (DEg,.)—(ICH,¢) has a solution on [ty, ty + a].

Prookr. To prove this result, I use a Tonelli approximation approach, which builds spe-
cial approximations of a solution on very small intervals. These approximations have an
important property; when the lengths of the intervals go to zero, the sequence of ap-
proximations has a subsequence converging to a solution to (DEy .)-(ICH, ).

Tonelli approximations are constructed in the following way. Consider, for example,
intervals [to, to + 11, [to + . to + %1, ..., [fo + % to + al, where a < “F and k is very large.
First, an approximation is built on [#, #) + %], then it is extended to interval (¢) + %, to+
%]. Next, it is extended to () + %, to + %] and so on. This process is continued until the
approximation is constructed on the whole interval [#, ) + a].

Now I turn to a description of the rule of constructing approximations. The integra-
tion of both sides in (DEg, ) yields H(t) = ftf) Jé(s, H)ds. For a given k, denote a corre-

sponding Tonelli approximation as H k = (HF, Hé‘, H é‘ ). Function H* is defined accord-
ing to the rule

t
H"(t):/ 18<s,Hk<s—%>> ds, telty,ty+al (A.4)
fo

Choose a k that is large enough. To carry out the first step of constructing an approxi-
mation on [f, & + %], let

HE() =0, telty—1,4),i=1,2,3.

Let me show that formula (A.4) is meaningful. In the first step, it defines H k(t) fort e
[to, o + min{7, a}]. Because J*(s, HX(s — 1)) = (g1(5), 82(5), g3(s)) for any s € [to, to +
min{%, a}] and g; € L'[ty, ty + a), then the integral on the right-hand side exists. For the
next step to be well defined, I have to check that for ¢ € [, fp + min{%, a}], the values of
the constructed function H* (1) = (H¥, Hé‘, Hé‘)tr belong to H(8).Indeed, H{‘ (1) =G(1).
HF(HY (¢ Hk(HY (¢ H* (o HE (¢
o =0 g =0 S
that y < 8. Therefore, H* () € H(5).
In the second step, formula (A.4) defines H* on [#) + 1, fo + min{£, a}]. For ¢ € [t +
%, to + min{ %, a}], the Lebesgue integral on the right-hand side is finite because function
Je(s, H (s — %)) ds is evidently measurable and bounded by a function that has a finite
Lebesgue integral:

Jf(s, H* <s — %)) ds

Properties < é follow from (A.3) and the fact

gi(s)
1-3

=<

2
eLl[tO, to+al, se [to, I +min{E, a”.



300 Tatiana Komarova Quantitative Economics 4 (2013)

Clearly, H¥ (1) > 0. Because Hj (1) < 1G_2£/%, HY (1) < 1(;_3%, and HX (1) = G1(1), then

HyOHY(1) _ GG v
HE(@)  — (1=V82Gi(n ~ (1-V8)2 ™

Likewise,
H{OHY(D) _ Gi)Gs() vy _
HY(y 7 (1-V8)2Gy(t) ~ (1-+6)2

H{OHy (1) _ GG v
Hi(@)  ~ (1=V82G3() ~ (1-V82 ™

>

Therefore, HX(¢) € H(8) for t € [ty + %, to + min{%, a}l.

All subsequent steps are similar to the second step. By continuing to construct ap-
proximations in this manner, I can eventually define function H* on the whole interval
[to, to + a].

I take progressively smaller intervals and obtain a sequence of approximations {H*}.
Because for any £,

G1(1) + Ga(t) + G3(1)

1-s
- Gi(tg+ a) + Gy(tg + a) + G3(ty + a)
= -5 >

functions H* in this sequence are uniformly bounded. Moreover, sequence {H} is
equicontinuous, a property that is implied by inequality (A.6) and the absolute conti-
nuity of G; on [f, tp + al:

|H )], <
(A.5)

IG(t) — G(T)lh
1-v8

According to the Arzela—Ascoli theorem, sequence {H ky is relatively compact in C([#,
to + al, H), so it contains a subsequence {H km} such that for some function H¢,

|H* (1) - H* (1), < t, 7 €1y, fo+ al. (A.6)

sup  |HE(t) — H*(1)], — 0

telty,tp+al

as m — oo. Because

m

J‘9<t, Hkm (t - ki)) — Js(t, Hg(t)) a.e. [y, tp + a]

as m — oo, and a.e. on [f, {y + al,
J‘9<t,Hk’"<t— i)) < g1(2) + 82(1) +g3(2)
Km 1 1—4/8

e L'y, to + al,
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then according to the Lebesgue dominated convergence theorem, H solves

t
Hé(t) = / Jo(s, H®(8))ds, te€lty, 1o+ al.
Iy
The last equation implies that H? is absolutely continuous and solves (DEy_.)-(ICq, )
a.e.on [f, ty + al. O

Local existence for the auxiliary problem The next proposition formulates the local ex-
istence result for the auxiliary problem.

PRrROPOSITION A.2. Let observable functions G; satisfy conditions (1) and (11). Let J (¢, H)
be defined on Dy (8). Then (DExy)-(ICg) has a solution on (1, ty + al.

Proor. Choose a sequence ¢, such that &, — 0 as m — oco. For every ¢,,, denote a

solution constructed under Proposition A.1 for this ¢, as H». As I proved, for every ¢,

function H*m is absolutely continuous on [fy, f) + a] and Hf’” (t) >0, te(ty, ty+al.
Notice that the bounds in (A.5) and (A.6) do not depend on the value of ¢; therefore,

Gt + )l

Hen
|Eem 0], < -

t €[y, tp + al,

and

1G() = G(D)lh
1-6

The last two inequalities and the Arzela-Ascoli theorem imply that sequence {H*"} is

relatively compact in C([¢, tp + a], H). Hence, it has a subsequence H*®" such that for
some function H,

|Hem (1) — Ho™ ()|, < . tTelly, to+al

sup  |H(t) —H®"i(t)|, - 0

telty,to+al
as | — oo. Because

JE(t, H™ (1)) — J (¢, H(1)) a.e.[ty, o+ a]
as !/ — oo, and a.e. on [1y, ty + al,

g1(0) + g2(2) + g3(1)
1-+/6

the Lebesgue dominated convergence theorem yields

|7om (¢, Hom (1)) ]|, < € L't o + al,
t

H(t):/ J(s,H(s))ds, te€lty, 1o+ al
Iy

From the last equation, it can be concluded that H; are absolutely continuous on [f,
to + a] and constitute a solution to (DEg)-(ICy) on (&, ty + al. O
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It is remarkable that this existence result does not require any assumptions on ob-
servable G; besides necessary conditions, which are satisfied in the model.

The proof of this proposition implies that if we take a solution H to (DEg)-(ICy) on
(%, to + a] and define the function for ¢y as H (#) = (0, 0, 0), then this extended function
is absolutely continuous on [y, #) + @] and clearly satisfies (DEy)-(ICy) a.e. on [y, ty + a].
In other words, a solution H can be extended from (#y, ty + a] to [#, ty + a].

The following explanation shows why I cannot use standard existence theorems to
prove Proposition A.2. A general form of a system of differential equations is

X' (1) =v(t, x(1)),

where x and v are vector-valued functions. Let the initial condition be
x(tp) = xo.

In our problem, x is function H and v(t, x) is J (¢, H).'? Existence theorems are usually
proved for the situation in which the domain of v is [¢y — &, fy + h] x B(xg) or [fy, ty +
h] x B(xg), where B(xy) is an open ball with the center in x.!' This property implies,
for example, that x is an interior point in the domain of v with respect to x. Existence
theorems are also proven for some more general cases, but all require, at the very least,
X to be an interior point in the domain of v with respect to x, and this domain must
satisfy certain properties. Because of the specificity of sets H(8) and H(8), and the fact
that the point of the initial conditions (0, 0, 0)" is on the border of these sets, I cannot
apply any of those results. The method of Tonelli approximation allows me to take into
account the specificity of Hy(8) and H(8) by verifying at each step that the values of the
constructed Tonelli function belong to the domain H(9).

Local existence for the main problem Now that I have established the local existence
result for the auxiliary problem (DEpy)-(ICq), I can turn to proving that the main prob-
lem (DE)—(IC) has alocal solution. This result is easy to obtain if we recall how H and F
are related in formulas (A.1).

THEOREM A.3. Let observable functions G; satisfy conditions (1) and (I1). Then (DE)—(IC)
has a solution on [ty, ty + a].

ProoF. Let H be a solution to (DEr)—(ICx) on (fy, ty + a]. For ¢ > ¢y, define F; according
to formulas (A.1), and let F;(#y) =0, i =1, 2, 3. It follows from (DEg) that 1 < % < ﬁ
for t € (1, ty + a]. Then

H>H; 1 GrG3
Fi(t)= t t t o, ¢
1) =,/ H ()51_«/5 e (1), te(ty,to+al,

10Even though initial conditions (ICy) characterize the limit at ¢y rather than the value at £y, this does not
matter because, as | mentioned above, solution H can be extended from (ty, #) + a] to [fy, ty + a].
U For systems with discontinuous right-hand sides, this result is illustrated in Filippov (1988).
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which implies that F; is continuous at ) because

0<limFy(t) < lim. | 9293

(1) =0.
tliy 1—4/6 Gy )

Continuity of F> and Fj at ¢ is established in a similar way. Because functions F; are
absolutely continuous on [# + 4, fy + a] for any A € (0, a) and are continuous at point %y,
they are absolutely continuous on [#, fy + a]. It is evident that F; solve equations (DE)
a.e.on [fy, ty + al. O

Observe that because J (¢, H) is defined on Dy(8) and, therefore, a solution H to
(DER)-(ICq) takes values only in Hy(8), the values of the corresponding functions F;
belong to [0, NE)! only. The goal, however, is to identify F; for all values in [0, 1]. This will
be possible because 6 can be arbitrarily close to 1.

REMARK A.4. The last thing about the local existence that is worth mentioning con-
cerns the comment made in Section A.2 about the existence of a negative function F
that satisfies (DE) a.e. in a neighborhood of #, and also satisfies (IC). Note that functions
F; are expressed through H; as F12 = Hgf , F22 = H}g3 , and F32 = H{]{_ilz, as follows from the
definition of functions H;. Taking into account that F; are positive, I obtained (A.1) and
substituted these formulas into (DE) to obtain the auxiliary system (DEx). However, if

I were looking for negative solutions, I would substitute formulas

_ [HyH;3 _ [HiHj3 _ [HiH;
Fi=— 70 F=- 0 F3= s

into (DE) and obtain a different form of the auxiliary system:

M =—rra
21413
1
+ H,
Hyj=—252 (A7)
1+
Hj =

T

81
8

T
T

[H\H3’
H;
83

1H>
H3

<

1+

Using the techniques of this section, it can be shown that (A.7) with initial conditions
(ICq) has alocal solution H. This implies there is a negative function F that solves (DE)
a.e. in a neighborhood of .

A.3.2 Uniqueness of a local solution The next step in the proof of local identification is
to show that (DE)—(IC) has only one local solution. Local existence was proved without
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imposing any assumptions on G; besides necessary conditions (I) and (II). To establish
local uniqueness, [ will assume that condition (III) is also satisfied. In fact, condition (I1I)
is the most important condition for proving uniqueness.

I start by stating the local uniqueness result. It relies mostly on conditions (3.1),
which find the rate of convergence of F; at ) in terms of observable functions G;.

THEOREM A.5. Let observable functions G; satisfy conditions (I), (I), and (I11). Then
(DE)—(IC) has only one solution in a neighborhood of t,.

The idea of the proof of this theorem is to take two local solutions to problem (DE)-
(IC) and show that they coincide on their common interval of existence.

Suppose that F and F are two local solutions to (DE)-(IC) with a common in-
terval of existence [fy, ty + ¢], ¢ > 0. Let H; and H; be corresponding auxiliary func-
tions:

Hy = F)F3, Hy =FF3, Hz =FiF,
Hi=FF,  H=FF,  H=FF.
Clearly, if functions H and H are identical, then F and F coincide.
The lemma below is key to proving that functions H and A are identical.

LEMMA A.6. Functions H and H satisfy the inequality, a.e. on [ty, ty + c],

|H () —H 1], < o) |[H(t) — H(1)

. (A.8)

where

_~( 8 & 83 G263 Gi1G; GG
Fo(f)—C(Gl(t)—i-Gz(t)—FG3(t)>(\/ G (t)+\/ G, (t)+\/ s (t))

and C > 0 is some constant.

Proor. From (DEg), we obtain

N R )

H-H=—2"— """ i=1,23. (A.9)
(1-F)1-F)

4 4
From equalities

Hy — Hy = Fy(F; — F3) + F3(F, - Fy),
Hy — Hy = F(F3 — F3) + F3(F) — Fy),
H3 — Hy = F|(F, — Fy) + Fp(F) — Fy),
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we find that on (¢, #) + ],
. Fi ~ F ~
FL-Fil=————H—H)+ ————(Hy — H»)
F3(F, + F2) F3(F, + F2)
+ —(Hs — H3),
F2 +F2
. 2 . FF .
Fr-fy=—a—2 (H-H)-——2 2  (H,— )
F3(Fy+ F2) FiF3(Fy + F)
F (A.10)
2 ~
+————=—(H3—H3),
Fi(F2 + F2)
. - P N
F;—F3= —(H|—H))+ —————(H,— H>)
P+ F (F,+F)F
F3 -
————(H3z— H3).
(F2 + F2)Fy
According to (3.1), there exist constants C; > 0, C; > 0 such that on (¢, tp + ],
F F F
Cl<—— <0, Cl<—2—<0C, Cl<—— <G,
G,G;y G1G3 G1G,
Gy Gy G3
F F F
Cl<—— <0, Cl<—2—<0C, Cl<——<G
G,Gs G1G3 GG
G Gy Gs
(to + ¢ can be taken close enough to #). Then on (%, #y + ],
- 1 [G,G3 ~ G; ~
F—F|<K— H —H K |—|H,— H
|[F1— F1| < G1‘/ G |H{ i+ ‘/G1G2| 2 2|
G, ~
K H;— H
+K, G1G3| 3 3l
~ G3 ~ 1 G1G3 ~
F,—F)| <K H{—H K— H,— H
|[F2 — F>| < ‘/G1G2| 1 1+ Gz‘, Gy |H> 2|
(A.11)

Gy
G,G3

+K |H3 — Hjl,

~ G2 ~ Gl ~
Fs—F; <K H{—H K H, — H
|[F3 — F3| < ‘/G1G3| 1 1+ \,G2G3| 2 2l

1
G3

GG

K
+ Ga

5 .
|H3 — H3l,
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where K > 0 is a constant expressed in terms of C; and C,. Let L > 0 be a constant that
bounds F; and F; from above on [#, ty + ¢]. Denote C = ﬁ Inequalities (A.11) and

equations (A.9) imply that, a.e. on [#, fp + c],

o 81 , & , 8 G,G3 G1G3 GG, ~
H -H|, <Cl&+2=2 422 H—-H]|;.
il so(B e 2 ) (00 (90 [00 i,

0

Establishing inequality (A.8) is the most challenging part of proving local unique-
ness.

Notice that because H and H solve the auxiliary problem (DEp)-(ICp), then, a.e. on
(to, to +cl,

H' ) =J(t,HD),
H'(t)=J(t, H®)).
Therefore, inequality (A.8) can be rewritten as
| 7(t, H@®) =T (t, H®) |, < To(O|H(t) — H(D) | ;.

This last inequality is a generalized local Lipschitz condition for function J(¢, H) with
respect to variable H. It holds only for the values of functions H and H at the same
point ¢, but not for any two arbitrary values of variable H.

The following two lemmas prove that inequality (A.8) together with condition (III)
yield that H and H are identical functions and, therefore, prove Theorem A.5.

LEMMA A.7. Let z: [T, £] = N" be an absolutely continuous function. Then ||z||; has the
right derivative DR| z||; a.e. on [T, £] and

Dr|z()|, < |7, aeonlr &l

Proor. Hartman (1964) proves a similar lemma for smooth functions for the maxnorm
and the Euclidean norm. First, for any fixed i, consider function |z;|. Since z; is absolutely
continuous, |z;| is absolutely continuous too. Then Dg|z;(¢)| exists a.e. on [7, &].

Let t € [, £] be a point in which z; has a derivative. Use the definition of the right
derivative,

lzi(t + )| — |zi(D)]
h b

Dg|zi(0)] Zhl—iﬁo

to conclude that Dg|z;(t)| = z;(¢) if z;(¢) > 0 and DR|z;(t)| = —z(t) if z;(t) < 0. Indeed, if
zi(t) > 0, then z;(¢ + h) > 0 for small enough &, and Dg|z;(¢)| = z;(¢). In a similar way, we
consider the case z;(¢) < 0.If z;(¢) =0, then

(t+h

~ |0
h—0+

zi(t+ h)
h
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In all three cases, Dr|z;(t)| < |z;(1)|.
Function | z||; is the sum of absolutely continuous functions and, hence, is abso-
lutely continuous. Then, a.e. on [, £],

Dulstol =De(Vlaeo]) = Y- palsol <Yl =l
i=1 i=1

i=1

LEMMA A.8. Let function v:[1, £] — R be absolutely continuous. Suppose that v(7) =0
and, a.e. on [1, ],

Dgrv(t) < I'(H)v(t), wherel e L'[r, &).
Then
v(t) <0, telr, €l

ProoOF. Results similar to the one in this lemma have been obtained by researchers on
amore general level. However, it is easier to prove this lemma directly than to show how
it follows from more general results.

Function ¢ (t) = v(t)e™ [ T(sds jg absolutely continuous as the product of two abso-
lutely continuous function and

Dré (1) = Dr(v(t))e™ T4 _ P(pyp(t)e= 7045 <0 ae.[r, &].

Szarski (1965) uses Zygmund’s lemma to show that if ¢ is absolutely continuous and
Dgreé(t) <0a.e.on[r, £], then ¢ is nonincreasing on [7, £]. Since ¢ (7) =0, then ¢ (¢) <0
on [, £] and, hence, v(¢) <0on[7, £]. O

Let me explain in more detail how these two lemmas imply that functions H and
H coincide on [f, fy + c]. Consider [, £&] = [fy, ty + c]. In the first lemma, take z(7) =
H(t) — H(t) and use inequality (A.8) to obtain

DR|H(t) —H®)|, <TyO|H®) — H®)|,.

In the second lemma, let v(¢) = |H(¢) — H(¢)|l; and I'(¢) = I}(¢). Because condition
(II) holds, then according to this lemma, ||H (¢) — H()|l; <0, t € [y, o + c]. This means
that |H(t) — H(t)|l; =0, t € [to, to + c], or, in other words, functions H and H coincide
on [fy, ty + c]. In turn, this implies that functions F and F coincide on [, fy + ] too.

To summarize, I have shown that, given conditions (I), (II), and (III) on observable
functions G;, problem (DE)-(IC) has the unique solution F in a neighborhood of #. As
mentioned in Section 3, this solution is assumed to be monotone.

A.4 Global identification

Now I establish that the local solution to (DE)—(IC) can be extended to a solution on the
entire interval [#, 7] and that such an extension is unique.
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Consider Figure 3 and the local solution F on [, fy + c] depicted on the left in this fig-
ure. Notice that all functions F; take positive values at ¢, + ¢ and these values are known.
Denote them as v; = Fi(ty + ¢), v; > 0. To extend the local solution to the right, I need to
solve system (DE) in a right-hand side neighborhood of ¢y + ¢ given that functions F; in
a solution to this system take values v; at £y + c. Clearly, results of Theorems A.3 and A.5
cannot be used for this problem because the methods in these theorems were developed
for the situation when all initial values of F; are 0. Therefore, to carry out the extension
process, I first need to prove the local existence and uniqueness result for the case when
all the initial values of F; are positive.

A.4.1 Positiveinitial values Lett € (ty, T) and let functions F; satisfy initial conditions
Fi(tp)=v;, i=1,2,3, (A.12)

where v; are known, 0 < v; < 1. Notice that the values of G;(#;) are known.
I first consider the auxiliary system (DEp). The initial conditions on functions H; are
obviously

Hy(t1) = vovs3, Hy(t1) = vyvs, H;(t) = viv;. (A.13)

ProprosSITION A.9. Let observable functions G; satisfy conditions (I). Then (DEg)—(A.13)
has a solution in a right-hand neighborhood of t,.

Proor. The proofuses the Tonelli approximations approach. It is similar to the proof of
Lemma A.1 and differs from it in technical details.

Let me first specify the domain of the right-hand side J (¢, H) of the auxiliary system
(DEg) and find a solution’s interval of existence. Let A > 0 be any number such that
A <min{l —v;, 1 — v, 1 — v3}. Define set

H(A) = [0,00)* N {(h1, ha, h3)" 1 hohs < (v1 + 4)*hy,
hihs < (v + A)?hy, hohs < (v3 + A)*hy .

Let the domain of J(¢, H) be D(A) =[t;, T] x H. For a given A, I can always choose a
v > 0 small enough so that

I+phi<i+4)72 A+ <m+4)7>, (+9h3 < (i3+4)>%
Because lim;|;, G;(t) = G;(t1), there exists a point #; 4+ ay, a; > 0, from [¢{, T such that

Gi(t1 +a1) — G1(t) < yvu3(1 —vp — A),

Go(t1 +a1) — Ga(t) < yvivz(1 —vp — 4A),

G3(t1 + ar1) — G3(t) <yvivo(1 —v3 — 4A).

Interval [#1, t; + a1] is an interval on which a local solution exists.
Now I construct Tonelli approximations. For any natural number £, let

H (1) = vpu3, H5 (1) = vyvs, H§(1)=U1U2
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for t € [t; — 1, #1]. Denote vy = (vpv3, v1v3, V1) and let vé be i’s coordinate of vy, i =
1,2, 3. Define function

t
Hk(t)=v0+/ J<s,Hk(s—%>>ds, telt, t +ayl. (A.14)

141

This formula is meaningful. In the first step it defines H on [#, #; + min{ % , a1}]. For t from
this interval, the Lebesgue integral on the right-hand side is finite because the integrand
is bounded from above by functions from Lt t1 + a1):

1 .
Ji<s,Hk<s— E))’ < %, s € |:tl,t1 +min{%,a1}i|.
— U

Evidently, for r € [11, 11 + min{%, ai}l,

H{{(t) =v2v3+ M’

1—‘()1
Go(t) — Gy(t
Hé‘(t):vlvﬁ- 2(8) 2(t)
1—v2
G3(t) — G3(t
Hé‘(t):vlvz—i— 3() 3(1)‘
1—wv;

k rrk

- . . . HYH
Let me show that H*(¢) € H for t € [t, t; + mln{%, a1}]. Consider, for instance, ;1{‘3 .

Because

Galita) —Gatt) _ o yows=m=d)
1—v - I—v B

HY (1) <vivs +
HY (1) < (1 + y)vgvy,
Hf(t) > V3,

then

HX(H)HE (1)
zHlki(:) <1+ ')’)ZU% <(v+ A)2.

Likewise,

HY(OHE (1) _
Hy)  ~

HK()HE (1) -

A).
Hé‘(t) <(v3+4)

(vy + A)%,

In the second step, formula (A.14) defines H on [t; + 1, #; + min{#, a}]. For ¢ from
this interval, the Lebesgue integral on the right-hand side is finite because

1 gi(s) . [2
. k(o _ — ! 1 z
Jl<s,H (s k))’gl_vi_AeL[tl,t1+a1], se|:tl,t1+m1n{k,a1}:|.
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Note that H* (1) € H for t € [t; + %, H+ min{%, ai}]. Indeed,

Gyr(t1 +a1) — Ga(ty)

HK() <
5 (1) <vivz + TR—

< vz +yvv3 = 1+ y)vyvs,
HY () < (1 +y)vgvy,
H{{(I) > vyvs3.

Therefore,

HX(HHE (1)

—2 "3 < (14 9% < (v + A)?
= 1=\ .

Hf (1)

In a similar way, I can show that for ¢ € [#; + %, H+ min{%, ai}l,

HN () HE (1) -
Hy(1)  ~

HK()HE (1)

A)2.
ch(f) <(v3+4)

(vy + A)%,

This process continues and defines function H* on the whole interval [#;, t; + a1].
Now let me obtain the properties of sequence {H*}. Inequality

[H )], < (1 + v)(v2v3 + v1v3 + viv2)

forall 7 € [t1, t; + a1] implies that sequence {H*} is uniformly bounded.
Because for any ¢, 7 € [#1, 1 + a1],

1G1() = Gi(D| | 1G2(t) = Ga(7)] | 1G3(1) — G3(7)]
1—v1—A 1—v2—A 1—v3—A
IG(1) =GNl
_1—max{v1+A,v2+A,v3+A}’

|H* (1) — H* (1)), <

and G; are absolutely continuous on [#, #; + a1], then sequence {H ky is equicontinuous.
According to the Arzela—Ascoli theorem, {H kyis relatively compactin C([f1, #; + a1], H).
Hence, it contains a subsequence H*» such that for some function H,

sup ||H(t)—Hk”'(t)Hl—>O as m — oo.
[t1,11+a1]

Because

J(t, HFm (t - %)) — J(t,H(1)) ae.on[t,t +ail

m

and a.e.on [t1, ] +a1],

1 g1(t) + g2(t) + g3(1) 1
t, Hkm (- — LY, t
‘J<’ ( km>)’§1—max{v1—i—A,v2+A,v3—i-A}e o, fy +al,
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then by the Lebesgue dominated convergence theorem, H (¢) solves

t
H(t) = vy +/ J(s, H(s))ds, teln,t+ail,

i

which implies that H; are absolutely continuous and solve (DEg)—(A.13) on [#1, t; +a1]. O

The existence result of Proposition A.2 also required G; to satisfy conditions (II).
Note that because the values of the underlying distribution functions F; at #; are sep-
arated from 0, then the result of Proposition A.9 does not require any conditions on the
behavior of G; around #;.

The next theorem establishes the local existence and uniqueness result for problem
(DE)-(A.12). It is noteworthy that conditions F;(#;) > 0 guarantee the uniqueness result
without any additional conditions on functions G;.

THEOREM A.10. Let observable functions G; satisfy conditions (1). Then (DE)—(A.12) has
only one solution in a right-hand neighborhood of t,.

ProOF. According to Proposition A.9, problem (DEf;)—(A.13) has a solution H on [#, t; +
a1], a1 > 0. Use this solution to find functions

H>H3 HHj3 H1H,
F = F = F = .
1=,/ H 2= 0 3= A

Clearly, F = (Fy, F,, F3)" is absolutely continuous and solves (DE)—-(A.12) on [t{, t; + a1].

The uniqueness proof is based on obtaining a generalized local Lipschitz condition
(A.8). Let F and F be two local solutions of (DE)-(A.12). Without a loss of generality,
assume that [t1, f; + a1] is their common interval of existence. Let H and H be their
corresponding auxiliary functions:

Hy = FF;, Hy =FF3, H3=FiF3,
Hi=FF,  Hy=FF,  Hy=FF.
Functions H and H solve the auxiliary system (DEg) a.e. on [t, 1 + a1].
The proof of the uniqueness part of this theorem is much easier than the proof for
problem (DE)—(IC). Indeed, for (DE)—-(IC), the difficulty of proving uniqueness stemmed
from the fact that all F; had values 0 at #,. Now all F;(#;) are positive. Use (A.10) and the

fact that F; are separated from 0 in a neighborhood of #; (without a loss of generality, a;
is small enough) to obtain

|Fi— Fil <KI|H - HIl\
on [#, t1 + a1] for some constant K. Exploit (A.9) and establish that for some constant C,
|H' (1) = H' ()], < C(g1(0) + g2(t) + g3 (D)) |H(1) — H(®) |,

a.e. on [t, t; + a1]. Because g; € L'[t;, | + a1], then Lemmas A.7 and A.8 imply that H
and H coincide on [#, #; + a1]. Hence, F and F coincide on this interval too. O
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A.4.2 Extension of the local solution to the whole support Now I turn to the final ele-
ment of the identification proof. I demonstrate how the unique local solution to (DE)-
(IC) can be uniquely extended to a solution on the whole support. Throughout this sec-
tion, I assume that functions F; obtained from H; are strictly monotone, that is, the ratios
Hﬁffﬂ H}gﬁ and H}{I:Z are strictly increasing.

To begin, recall that in the proof of the existence result in Section A.3.1, function
J(t, H) was defined on D((8) and the values of function H were restricted to set H(8)

forachosen0 < d < 1:

Ho(8) = (0,00)> N {(h1, hy, h3)™ : hahs < 8hy, hyhs < 8hy, hohs < 8hy ).

Because the local solution to the auxiliary problem takes values only in this set, the func-
tions F; in the corresponding local solution to the main problem (DEy)-(ICy) take val-
uesin [0, V8] only. However, we also want to identify F; when these functions take values
above /8. Notice that 8 < 1 could be chosen arbitrarily close to 1 and this will allow the
extension of the local solution to the whole support.

Fix 8, 0 < 8 < 1, and let the domain of J(¢, H) be Dy(8) = [ty, T] x Hy(8) (a.e. with
respect to ¢). Theorem A.5 proved that given conditions (I), (II), and (III), system (DEx)
with initial conditions (ICy) has the unique solution H = (H;, H,, H3) on some interval
[to, to + c]. Denote t; = ty + ¢ and calculate

xip=H(t;), i=1,2,3.

Because H; are strictly increasing functions, then x;; > 0. Note that H(#) € Hy(5). If
H (#) is an interior point in Hy(d), that is, if
X)X XX XX
X1 _ s, 1X31 s, 21X31
X31 X21 X11

<4,

then (1, H(#1)) is an interior point of Dy(8) and, therefore, J (¢, H) is defined in a neigh-
borhood of this point. This means that the auxiliary system (DEf), considered for ¢ > 7,
with initial conditions

Hi(t)=x;1, i=1,2,3,

is awell defined problem. In light of the results of Proposition A.9 and Theorem A.10, this
problem has a unique solution H on some interval [#, t; +u], w0 > 0. Thus, I can uniquely
extend the local solution found on [#), #{] to a solution on the interval [#, #; + «]. Note
that the value of H(#; + n) belongs to H(5). If this value is in the interior of set Hy(9),
I can extend the solution even farther to the right and continue this process until  reach
a point in which the value of function H becomes located on the border of set H(5).
This point determines the solution’s right maximal interval of existence for the given
value of 6.

DEFINITION A.2. An interval [fy, £] is the maximal interval of existence of solution H to
(DEm)-(Cy) if there does not exist an extension of H over an interval [#,, ¢ + 7] such
that n > 0 and H remains a solution to (DEg)-(ICy).
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In the case that I am currently considering, the solution’s maximal interval of exis-
tence is determined by the value of 6 that was chosen to define set H((§). The proposi-
tion below yields an explicit formula for this interval.

ProrosITION A.11. Let function J(t, H) be defined on Dy(8). Assume that all conditions
on G; that guarantee existence and uniqueness of a local solution to (DEr)-(ICx) are
satisfied. The maximal interval of existence of solution H to (DEr)-(ICq) is [ty, Ts], where
Ts is such that

X{Hz(Ts)H3(T5) H(Ts)H3(Ts) Hl(Ta)Hz(Ta)} _5
H(Ts) Hy(Ts) H3(Ts) '

This proposition follows from the discussion above and, therefore, it is left without a
proof.

Proposition A.11 implies that for the given §, [#, Ts] is the maximal interval of exis-
tence of a corresponding solution F to problem (DE)-(IC). Also, the values of functions
F; on [ty, Ts] belong to [0, V8] and, for point T,

max|Fy(Ts), F2(T5), F3(Ts)} = /6.

Figure 4 depicts maximal intervals of existence of a solution F for values §; and &,
where 8, > 1. Maximal interval [#, Ts, ] corresponds to §; and maximal interval [#, T5,]
corresponds to &,. Because functions F; are strictly increasing, then Ts, > T5,. Intu-
itively, if 6 approaches 1, then the maximal interval of existence approaches support
[t0, T]. The theorem below establishes this fact.

THEOREM A.12. Consider a strictly increasing sequence 8,, n > 1, such that 5, < 1 and
8, — 1 as n — oco. Assume that all conditions on G; that guarantee the existence and
uniqueness of a local solution to problem (DEy)—(ICy) are satisfied. Let [ty, Ts,] be the

tg T, T tg T, T
F17F27 F3 on [t07T51] F15F27 F3 on [t07T52]

FIGURE 4. Maximal intervals of existence of a solution to the main problem: [#, T5,] corre-
sponds to 8; (left) and [#, T5,] corresponds to 8, where 8, > §; (right).
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maximal interval of existence for the solution to (DEy)—(ICy) when J(t, H) is defined on
Dy(8,). Then Ts, is determined from

{Hz(Ta,,)H3(T5n), H1(T6,1)H3(T5,1), Hy(T5,)Hy(Ts,) } _s, (A15)
H\(Ts,) Hy(Ts,) H3(Ts5,)
and Ts, is a strictly increasing sequence. If
F(T)=1, i=1,2,3, (A.16)
then Ts, — T as n — oo.
Proor. Proposition A.11 clearly implies (A.15). Because functions H,?IIF, H;,I?, and

H}sz, and sequence 6, are strictly increasing, (A.15) implies that sequence T3, is strictly

increasing. Because T, increases and is bounded from above by 7, it converges to some
point T<T.IfT < T, thenwe get a contradiction with the condition §, — 1 and condi-
tions (A.16). Thus, 7 =T. O

Taking into account that F? = Hgf% F?= H;II?, and F? = Hflsz , we can see that The-
orem A.12 guarantees that by choosing & arbitrarily close to 1, we will identify F; on the

whole support [#y, T]. This completes the proof of identification.

Remark Here I briefly discuss what happens when distributions have different upper
support points or holes in the support.

Let 7; denote the upper support point of the distribution of values for bidder i,
i=1,2,3. Without a loss of generality, 7y < 7, < 3. The identification of F;, i =1,2, 3, on
[#9, 71] can be shown by using techniques from Sections A.2-A.4. It holds that F; (1) = 1.
If 1 =7 < 73, then F>(71) =1 and F53(71) < 1, and Fj is not identified on (7, 73] since
there are no prices observed in this interval. If 71 < 7, then F,(71) < 1 and F3(71) < 1.
The values of F,(71) and F3(71) are known and strictly positive, and they are initial con-
ditions for the system

g 81-F) o 8 -F)
27 1-G, -Gy’ 37 1-G, - G

considered for ¢ € [, 7;]. This system relates observables and unobservables for bid-
ders 2 and 3 on [71, 73]. The identification of F, and F5 on [, T2] can be shown by using
techniques from Section A.4. Then F,(1;) = 1. If ) = 73, then F3(7) = 1 and, thus, all
distribution functions are fully identified. If 7, < 73, then F3(7;) < 1, and F3 is not iden-
tified on (7, 73] since there are no prices observed in this interval. To summarize, F;,
i=1,2,3, are identified from #, and up to the second-highest upper support point. For
more details, see Komarova (2009).

As for the holes in the support, suppose that each F; is strictly increasing in a small
neighborhood of ¢y, but can have flat parts on (#, 7). Because observable functions G;
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are strictly increasing in a neighborhood of #y, the local identification result can be estab-
lished as in Theorems A.3 and A.5. The proof of Theorem A.10 for positive initial values
and the rest of the global extension techniques require F; to be increasing, but not nec-
essarily strictly increasing, outside of a small neighborhood of #. Thus, F; can have flat
partson (ty, T).

A.5 Auctions with any number of bidders

Proofs of Propositions 3.6 and 3.7 and Corollary 3.8 are similar to those of Propositions
3.1 and 3.2 and Corollary 3.3.

Proor oF THEOREM 3.9. I can use the same approach as in the case of three bidders.
System (3.6) can be rewritten in a convenient form by introducing d auxiliary func-
tions Hy, H», ..., H; that stand for the distribution functions of max{X,, X3, ..., X4},
max{X1, X3, ..., X4}, ..., max{Xy, Xo,..., X4_1}, respectively:

Hy=FF3---Fy, Hy=F\F3---Fy, e Hy=FF---Fy_q.

For t > 1y, functions F; can be expressed through H; as

1/(d—1 1/(d—1

Fo HoHs- - Hg /Y o HiHy - Hy_ /7Y (A17)

1= —deZ 5 ceey d — —deZ B .
1 d

Therefore, (3.6) can be rewritten as

H = &i e =l (A.18)
1 (Hl"'Hi—lHi—i-l"'Hd)

d-2
Hi

This system, together with initial conditions

limH;(t)=0, i=1,...,d (A.19)
tlty
constitutes an auxiliary problem. To deal with discontinuities in H on the right-hand
side in (A.18), I introduce a very small number ¢ > 0 and obtain an auxiliary system
with &:

8i ;
H = i=1,...,d.
1 d_l b b b
1_(H1~~H,»_1H,~+1-~Hd> /(=D
H 7 ¢

As in the case of three bidders, first I can establish local existence for the auxiliary
system with ¢. Then I can show the existence of a local solution to the auxiliary prob-
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lem (A.18)—(A.19) by letting ¢ — 0. After that, I can use formulas (A.17), which express F
through H, to prove that the main problem (3.6)-(3.7) has a local solution.'? O

Proor or THEOREM 3.10. The existence part of this theorem follows from Theorem 3.9.
To prove the uniqueness part, let F and F be two solutions to (3.6)—(3.7) with a common
interval of existence [fy, o + c], ¢ > 0. Let

Hi=F,---Fi 1Fiy---Fyg, Hi=F - Fi1Fy1--Fy, i=1,....d.

The idea is to derive an inequality similar to (A.8). Use (A.17) and (A.18) to obtain that,
a.e.on [fy, g+ c],

- (F: — ﬁ
H g = 8 (A.20)
(1-F)(1-Fp
The definitions of H and H allow me to express H — H through F — F as
H—H=B(F,F)(F —F),

where a d x d matrix B(F, F) depends on F and F in the manner

0 F3Fy---Fy  FFy---Fy

BRFy— | F3Fe Fa 0 F\Fy---Fy

F2F3 Fdl FiF3---Fy_1 FiF>Fy---Fy

F2F3F5-~-Fd }2*21?3...@_1
F1F3F5-~-Fd e FF3--Fyy
F1F2F3---Fd 0

The result of Proposition 3.7 implies that lim;, iy 7 4 ‘(t) = 1. Therefore, for a ¢ close enough
to 7y (without a loss of generality, I can assume that fo + ¢ is close enough to #y), matrix
B(F, F) can be written as

B(F, F) = (I + Moy (F, ) Bo(F),
where [ is the d x d identity matrix, M,)(F, F) is a d x d matrix such that each of its
elementsis o(1) as t — ty, and By(F) = B(F, F):

0 F3Fy---F;  FoFy---Fy

FsFy---F 0 F\Fy---F
Bo(F)Z 344 d 1474 d

F2F3 Fd 1 FiF3---Fg FiF)Fy---Fy

FyF3Fs---F; -+ FyFs...Fy 4
F\F3Fs---F; - FiF3---F;_
F\F>2Fs---Fy - 0

127 detailed proof of Theorem 3.9 is available on request.
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Matrix By (F) is symmetric and invertible at any point ¢ # #. The inverse matrix is

1
B-L(F) =
o () (d—1F\F,---Fq
—(d—2)F} FiF, FiFs FiFy - FiF,;
FiF, —(d- 2)F2 FoFs FoFy - F>F,;
Fle Fde F3Fd F4Fy -+ —(d—2)F?

Thus, F — F can be expressed through H — H as
F—F =By (F)(I + Moo (F, F)) ™ (H — ). (A.21)

The next step is to bound on [#, # + c] the absolute values of the elements in B LR
by observable functions. This is achieved by using the result of Proposition 3.7. Take, for
instance, the element B, L(F)y; in the first row and the first column:

1By (Fyn| = ‘—(d (dl)Fzz)fl, i
(GZ...Gd)l/(dl) 1 1
ke G{? — :%<GGT?) (-1
1—[<G1~~Gt—1C_;i+1“'Gd> 1 1
G2

i=2

for some constant Ky;. Consider another cell in B L(F), for example, the element
By 1(F)1, in the first row and the second column:

_ 1
|BOI(F)12| = d-DF I,
d -1/(d-1)
G1---Gi1Giy1---Gy
< Klzl_[( G2
1

i=3
_Kui G1Gs---Gg )"V
en G‘zi 2

for some constant Ky;. For the other elements, bounds are found in a similar way. Then
equations (A.20) and (A.21) yield that, a.e. on [#y, fy + c],

1/(d-1) d
Gi1G2---Gin1Git1---Gy 8i
!/ /
|5~ HH1<CZ( i 2 IH = Al
i=1 i i=1
for some constant C. The last inequality and Lemmas A.7 and A.8 imply that # and A
coincide on [#y, fy + ¢] and, hence, F and F coincide on [fy, fy -+ c]. O
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A.6 Auctions with two types of bidders

Proor or THEOREM 3.11. Note that for each i, G;(t) = él(t)/k if bidder i is of type I
and G;(1) = Gu(1)/(d — k) if bidder i is of type I To establish necessity, use Proposi-
tion 3.6, which implies that conditions (i)—(iii) of this theorem are satisfied for G1/k and
(~711 /(d — k). Clearly, then conditions (i)—(iii) hold for 51 and (~}H too. Sufficiency follows
from Theorem 3.12 by considering (x) = —Inx, x € (0, 1]. O

Proor or THEOREM 3.12. Without a loss of generality, suppose that bidders 1, ..., k are
of type I and bidders £ + 1, ..., d are of type II. Introduce functions
31 =C(1, A, ..., Fi(t), Fu(1), ..., Fi(t))
k-1 d—k
— ¢ (k= D (Fi(D) + (d — kv (Fu(D)),
() = C(Fi(t), ..., Fi(0), Fu(t), ..., Fu(1),1)
k d—k—1

=~ (kyp(Fi(0)) + (d — k — D (Fu(D))).

Function 3 is the distribution function of max{X>, ..., X, Xx41,..., X4}. As can be
seen, this maximum does not contain the private value of the first bidder of type I. Due
to the exchangeability property of the joint distribution of private values, 3 is also the

distribution function of max{X7, ..., X;_1, Xj41,..., Xg41,..., X4} forany j=2,... k.
Thus, we can consider any such maximum that excludes the private value of one of the
bidders of type I.

Function 3y is the distribution function of max{Xy,..., Xg, Xxi1,..-, Xg_1}-
Due to exchangeability, it is also the distribution function of max{X7, ..., Xy, ..., X;_1,

Xjg1,...,Xg}forany j=k+1,...,d - 1.
Suppose bidder i is of type I. Then

Gi(t) = Pr(price <t,iwins)

= P(maij < X;,maxX; < t)
J# J#i

- P(maxxj <t,X;> t) + P(maxX,- < X1, X< z)
J#i J#

=P Xi<t)—-P Xi<t,X;<t P Xi<X;, X<t
(mas X 1) = Pmax Xy 1. X 21) + P Xy < X X 1)

= 31(1) — ¢~ (ki (Fi(0) + (d = kg (Fu (D)) +P(r§_1;l_xX,- <X, X; < t).
Let Q;(s1, s2) denote the value of the distribution function of (max;; X;, X;) at (s, 52):

Qi(s1,52) ZP(milXXj <s1, X; 552)
JFL

= (k= Dy (Fi(sp) + (d — k) (Fulsp) + ¢ (Fi(s)).
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It can be shown that the joint density of (max;.; X;, X;) is as &Sz (51,8) = 0.,;%1 (51, 82).
Then
t a .
P(mﬁij <X, X; < t) _ [
JFL

(s,s)ds
1 52

! ' (Fi(s))F(s) ds
o W' @R FI(s) + (d — )y (Fu(s)))

Now use the fact that (NJI(t) = kG;(t) to obtain

G
‘k(t) = 31() — (kg (Fi(0) + (d — )y (Fu(D)))
t ' (F1(s))F{(s)

+
o P @R FI(s) + (d — k) (Fu(s)))) @

Similarly, considering G;(¢) when bidder i is of type II, obtain that

G
dn(f) = 3n() — ¢~ (kg (F (D) + (d — K)y(Fu(D)))
t (p (FH(S))FH(S)

TG TRBEE) + @ — 0w Fnmn)

+

Denote Gi(t) = CN;I(t)/k and Gy (¢) = 511(t)/(d — k). Differentiate the equation for
Gj to obtain

k' (Fi())F{(0) + (d — k)’ (Fu () Fy (1)
P (L kg (Fi(1) + (d = k) (Fu(1)))
' (F1(0)F{(1)
l!f(llf Yk (F1(1) + (d — k) (Fu(1)))
(k = D' (Fi@)F{ (1) + (d — k)¢ (Fu () Fy (1)

Gi(t) = 3(1) —

=3(t) —

1@ W' (Y=L (Fi(0)) + (d — k) (Fu(1))))
. (k = D)/ (Fi(1) () + (d — k)i’ (Fuu(6)Fly (1)
=10 - k d—k

/ -1 -
W (l/f <d_1¢/f(21(t))+ d_lt//(zu(t)))>
s - W (31(0)) 2 (1)

k d—k ’
/ -1 _
U (lﬁ <d_1¢(21(f))+ d_llﬁ(zll(f))))
In a similar way, obtain

' (2n(t)) 2y (1)
k d—k )
W(lﬂ_l(ﬂlﬁ(zl(f)) + mlﬂ(zll([))))

Gry(1) = 3p(1) —
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Thus, the system of differential equations for identifying 31 and 3y is

G/
3= I ,
o AN
k d—k
/ -1 -
W (l/f <d— 1(//(21)4— T 1 l/’(EII)))
(A.22)
v Gy
. 1 ¥’ (Zu)
(v (G gven))
d—1 d-1
This system is analyzed together with initial conditions
31(ty) = Zu(t) = 0. (A.23)

It is enough to show that problem (A.22)-(A.23) cannot have more than one solution
in a neighborhood of 7, and, thus, cannot have more than one solution on the whole
support. This will also imply that Fj and Fyy are identified because Fi and Fjj are uniquely
determined by 37 and 3y as

d—k —k—-1
Fi= lp—l(mwzm - ﬁtp(zn),

k—
Fi= w(—w(zo df(zn))
System (A.22) implies that for any point from the support,

k314 (d—k)3n—(d— 1y~ (—¢(§I)+—¢/(2H)>
=kGi+ (d — k)Gi.

Suppose that problem (A.22)—(A.23) has two solutions (31, 311) and (2~1, SII) with a com-
mon interval of existence [y, f + c]. Let us show that for any 7 € [#, 1) + c], 1(t) > 31(0)
if and only if 37;(¢) < 3y1(7). Fix f € (1, to + ¢]. From the equation

k31+(d—k)Sn—(d— 1)4/_1(—1//(21) +— ‘//(ZH)>

d—k ¢
= k31 +(d— k)3~ (d— 1)y~ <—l/f(21)+d_1¢(211)),

obtain that

k(l — VD) )(21
k ’ d—k
l/f/<‘!f_l<m¢’(21)+ ‘lf(EII)))

d—1
d—k
mlﬂ(zfl)))

— 3D

(A.24)
P (3

)(SH -3,

=(d—k)<1—
v (v1(;
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where Zj — a3+ (1 — )3 for some a = a(31(1), 31(1), 3u(t)) € [0, 1] and 3 =B3n+
(1 — B)3y for some B = B(31(1), 3u(1), (1)) € [0, 1]. Note that for ¢ < T,

¥ (3D
k d—k
lﬁ/(lﬁ_l(—d — G+ —lﬁ(ZH)))

<1,
d—1
(3

K - d—k -
lP/(lﬁ_l(ml/f(EI)‘i‘mlﬁ(ZH)))

<1.

Because 2—1 -1, E—g — las ¢t fy, then for ¢ close enough to #y (c is chosen to be small
enough),

P'(2]) -1

(ko d—k ’
W(lﬂ (m¢(zl)+m¢(2m>)

d (Eikl) < 1.

k ~ d—k
lﬂ’(‘#l(mlﬂ(zl) + mlﬂ(zfl)))

Therefore, (A.24) gives that 3y(¢) > 2~1(t) if and only if 371(¢) < SH(I‘). The next step is to

show that this fact and the fact that the function (lZ’/ ((xx)))z is increasing imply that

(3 =3)1-30<0, (-3 Cu—-3m <0 ae.lt,n+cl.

Suppose that for a given point ¢ € (#y, f) + c], at which the derivatives 3} and ii exist, it
holds that 37 > 3;. Let us prove that 37 — 3} < 0. From (A.22), obtain that

Gy

7 ~ /(2)
EI—EIZWI( (21

k d—k
l/f’<¢f_1 (ﬁ Y1) + —¢(211))>

d—1
¥ (1)

K - d—k - )
W(df—l(d_l#’f(zl)—i- —lb(ZII)))

d—1

where

P'(21)

1_
k d—k )
( lﬂ/(lﬂ_l( (21 + —l#(ZH)))

W=

d—1 d—1
¥'(31)

x|1-— .
K = d—k - )
( lﬁ/(lﬂ_l( (21 + —‘//(ZH)))

d—1 d—1
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Because 3y < 3y, then

p S 81 lV(EI)

1= 21 =
WI</ Tk d—k <
P (l!/ 1<—d_1l!f(21)+—d_1ll/(211)>>

W' (31)

B k - d—k - )
W(llfl (ﬁlﬁ(zl) + md/(zll)>)

Now we want to show that the difference in the parentheses is nonpositive.

Because ¢'(31)/(¥' (4~ (593D + K w(Zm)))) < 1, then 3p > ¢~ (93D +
Z_Tlfdf(jll)) and, therefore, 3| > 4,[1*1(%41(51) + Z_Tlfl,li(jﬂ)). Thus, if we show that the
function

' (y1)
[k d—k
w/(t/f (—d_1w<y1)+—d_lw<yz)>)

is decreasing in y; when y; and y, are close to 0 and y; > lﬂ_l(%l/!(_)ﬁ) + Z_Tllﬂ(yz)),

then we will establish that Ei — 2~i < 0. The derivative of this function with respect to y;
is

¥ (y1)
o K d—k
w(w <d_1¢(y1)+ —d_lw(yz)»

k d—k
k(W(m))W(W (—wm + mwm))
_ -

d—1

k d—k
(d— 1)<¢/<¢‘1(m¢()’1) + md/()’z))))

For this derivative to be nonpositive, it is sufficient that

(0 (g ron+ = T0n)
l,b//())l) l:l’ d/ d—ldl n d—ldj »2

WON? x d_k 2
(l/’/(‘/f_l <m¢’()’1) + m#ﬂ)@))))

The last inequality holds because of the assumption that UMEINEN increasing and the

W' (x))?
condition y; > ¢~ (5w (y) + Ky ().
To summarize, we have established that (3] — 3}, 31 — 37) <0 a.e. on [#y, #y + ], that
is,

d .
E(EI - 3)?<0 ae[f,fH+cl
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This inequality and (A.23) imply that 3} and 31 coincide in a neighborhood of #. In a
similar way, it can be shown that

d .
E(EH —31)?<0 ae. [ty to+cl,

and, therefore, 31 and 511 coincide in a neighborhood of #. O

A.7 Auctions with exogenous variation in the number of bidders

Similar to the main case, identification follows from several conditionson G;,i=1, 2, 3.
The conditions implied by the model are the following: (i) G;(f%) = p;, i = 1, 2, 3; (ii) G;
is absolutely continuous on [fy, T1, i = 1, 2, 3; (iii) G; is strictly increasing on [#y, T], i =
1,2, 3. Depending on the values of p 4, 4 € {1, 2, 3}, some additional restrictions on G;

may be required.

An important part of proving identification is to demonstrate that under assumption
(3.9), each F;, i =1, 2,3, has a unique representation through H. I consider two cases:
one with pip3 > 0 and the other with p13 =0.

Case p1y3 > 0 Rewrite functions H;, i =1, 2,3, as

13 1 12P13
Hy = P123(F2 + p_) (F3 + p_) - M,

P123 D123 P123
23 12 12P23
Hy = P123<F1 + p_) (F3 + p_) - &,
P123 P123 P123
23 13 13P23
H3 = pin <F1 + p_) (Fz + p_) _ PiPs
P123 P123 P123

Taking into account that F; are positive for ¢ > #j, derive the formulas

Fl=_PB L [(p12sHy + p12p23)(p123H3 + p13p23)
P13 P13 pi3Hi + prapis ’

=B L [(p12sH1 + p12p13)(p123H3 + p13p23)
P13 P13 P123H2 + piapas ’

Foo_P2 L [ (p12sH1 + p1ap13)(p123fa + p12p23)
P13 P13 p123H3 + p13pas

The expressions on the right-hand sides of these equations are g1 (H), g2 (H), and ¢g3(H),
respectively. If all three values p1;, p13, and p,3 are strictly positive, it can shown that
conditions (i)—(iii) above are the only conditions required for identification. Otherwise,
the proof of uniqueness requires stronger conditions in the spirit of condition (III) in
Theorem 3.5. Notice that the situation of pi; = p13 = py3 = 0 is almost identical to the
paper’s main case.
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Case p13 =0 Assumption 3.9 implies that pj, > 0, p13 > 0, py3 > 0. Because

Hi = ppoF+ pi13kFs,
Hy = p1oF1 + pks,
H3 = pi3F1 + pxhs,

F; are expressed through H; as

P23 1 1
F=- H{+—H,+—H;,
2p13p12 2p12 2p13
1 1
F,= Hy — P13 Hy + Hs,
2p12 2p12p23 2p23
1 1
F H P12

— —Hj+-—H - H;
2p13 2p23 2p13pn3

The expressions on the right-hand sides of these equations are g1 (H), ¢2(H), and g3(H),
respectively. It is easy to show that conditions (i)-(iii) above are sufficient to guarantee
identification. As we can see, in both cases F; are uniquely expressed in terms of H;.

APPENDIX B: IDENTIFICATION IN GENERALIZED COMPETING RISKS MODELS

First, I outline Meilijson’s approach. From (4.3), Meilijson obtains a system of integral
equations that do not contain the derivatives of F;,

t
F(1) =exp{T10g/ exp{—M log(1 — F(s)) dG(s)}},
fo

where matrix M is such that M (i, j) =1 — M (i, j) and T = (M M)~ M™. He suggests ap-
plying to these equations a fixed point theorem for multidimensional functional spaces.
As I mentioned, however, his proofs miss important parts.

I now turn to describing my method. The rank condition implies that m > d, that is,
there are at least as many minimal fatal sets as the number of the elements in a coherent
system. First, I consider the case of m = d and assume that the rank condition for the
incidence matrix M holds, that is, M is invertible. Introduce auxiliary functions

Hizl_[F-, i=1,...,d,
Jeli

and denote H = (Hy,..., Hy)". The rank condition guarantees that functions F;, i =
1,...,d, taking into account that they are positive, are uniquely expressed through func-
tions H;, i =1, ..., d, via multiplication, division, and taking a rational root. Indeed,

logH; =Y logFj, i=1,...,d.
Jeli
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These equations can be rewritten as log H = M log F; therefore, F = exp{M ~!log H}, that
is,

d
F=[]H", i=1....d. (B.1)
j=1

Similar to the auction problem, I obtain an auxiliary system of differential equations by
rewriting (4.3) in terms of H:

8i

(i)

jelf

H|= i=1,...,d. (B.2)

Functions H; satisfy initial conditions

imH;(1)=0, i=1,...,d. (B.3)
tty

As with the auction, the existence and uniqueness theorems, Theorems 4.1 and 4.2,
can be proved in steps. First, the results are obtained locally and then globally.

The existence of a local solution to (4.3)-(4.4) can be proved in the following way.
First, to avoid discontinuities in H, I can modify the auxiliary system (B.2) by intro-
ducing a very small number ¢ when necessary. Using Tonelli approximations, I can
establish the existence of a local solution for the auxiliary system with e. After that,
I can take the limit as ¢ — 0 and show the existence of a local solution for (B.2)-(B.3).
Then I can use formulas (B.1) to obtain the existence of a local solution to problem
(4.3)-(4.4). To establish local uniqueness, I obtain a generalized local Lipschitz condi-
tion on H;.

Finally, I can show that the unique local solution can be extended to the whole sup-
port and that such an extension is unique. Again, the monotonicity of F; in this solution
has to be assumed.

Below I prove the local uniqueness part of Theorem 4.2.

PROOF OF THEOREM 4.2. Let F and F be two local solutions to (4.3)—(4.4) with a com-
mon interval of existence [fy, fy + c]. Let H and H be the corresponding auxiliary func-
tions. Then H and H solve auxiliary system (B.2) a.e. on (fy, fy+c]. Denote the right-hand
side of (B.2) as

St =( g1(0) R 10!

(S I o

Jjel{ =1 Jjerg =1

)

The plan is to derive a generalized local Lipschitz condition on H; and then use Lemmas
A.7 and A.8 to establish that H and H coincide. This will imply that F and F coincide.
Consider H; — H; for any i and let |I{| be the number of elements in /7. Then, a.e. on
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[to, to +cl,

H{_H{ — 8i _ 8i _
‘ i l‘ l—[(l—Fj) l_[(l—Fj)

jelf jelf

(1-F)) - 1—F-+(F-—F-))
l—[(l—F)l_[(l F)(}E_[]L jl;[f( ] ] /)

jelf jelf
< L 2|1,~C|—1Z|F._ﬁ.|<C4g.Z|F._ﬁ.|
= ~ J JI =151 J Y
H(l_FJ’)H(l_FJ’) jelf jeIt
jeIf jeIf

for some constant C;. Differences |F; — F ;| can be bounded from above by expressions
of |[H; — Hj|. According to (B.1), for ¢ > 1,

d d
~ ki ~ ki
Fi—F=T]H"-T]H":
=1 =1

therefore,

d
—F =S TTH T] 5 (5" = 7).

h=1I<h m=>h

For x1, x > 0, by the mean value theorem,

xf —x§=a(0x1+ (1 - H)xz)a_l(xl —x2),
where 6 = 0(x1, xp) €[0,1]. If a > 1, then

| — x5 | < a(max{xy, xz})a_1|x1 — x7].
Ifa <1, then

. -1

|x — x5 | < lal(minfxy, x2})* [x1 — x2].

Because Hy(t), Hy(t) > 0 for ¢ > ty, then for ¢ > 1,

[H," () = B, (0] = W0 | Hi0) — A

where
Win(6) = (1(kj, > 1y max{Hy (1), Hy (D)} + 10k < 1y min{Hy (1), Hy (0}) ",

) W
=1, then lim, 4, kj]hh_(lt) =1. Hence, for ¢ > 1,
G

S

d
- k: \
|Fj—F,-|§Lj§:(HG,”) e Hy — H
h=

=1 “#h

h()
()

Because hm,u0 =1and lim,,, G

G (t)
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for some constants L; > 0. Thus, a.e. on [, # + c],

d
|Hj(H) — Bi0)| < Digi 3 Z(]‘[ Gﬁ‘”(r))G’;"h1(t>|k,-h||Hh(t> — Hy ()|

jelf h=1 Mg#h
for some constants D; > 0 and, consequently,
|H (1) —H' )], < C(L(@) + -+ Tu(0) [H() — H(®D)|

for some constant C > 0. This inequality and Lemmas A.7 and A.8 imply that H(¢) =
H(1), t €1, g + cl. O
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