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Abstract 

There has been substantial interest in the social and health sciences in the reciprocal causal 

influences that people in close relationships have on one another. Most research has 

considered reciprocal processes involving only two units, although many social relationships 

of interest occur within a larger group (families, work groups, peer groups, classrooms etc.). 

This article presents a general longitudinal multilevel modelling framework for the 

simultaneous estimation of reciprocal relationships amongst individuals with unique roles 

operating in a social group. We use family data for illustrative purposes but the model is 

generalizable to any social group in which measurements of individuals in the social group 

occur over time, individuals have unique roles and clustering of the data is evident. We allow 

for the possibility that the outcomes of family members are influenced by a common set of 

unmeasured family characteristics. The multilevel model we propose allows for residual 

variation in the outcomes of parents and children at the occasion, individual and family 

levels, and residual correlation between parents and children due to the unmeasured shared 

environment, genetic factors and shared measurement.  Another advantage of this method 

over approaches used in previous family research is it can handle mixed family sizes. The 

method is illustrated in an analysis of maternal depression and child delinquency using data 

from the Avon Brothers and Sisters Study.  

Keywords: reciprocal influences; autoregressive cross-lagged model; multilevel structural 

equations model; family effects; parent-child effects; sibling effects
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A Multilevel Simultaneous Equations Model for Within-Cluster Dynamic Effects, with an 

Application to Reciprocal Parent-Child and Sibling Effects 

Social groups, made up of a set of individuals interacting together over time, represent 

complex phenomena to study. Individuals and groups influence one another through a range 

of social and biological mechanisms. Experimental designs allow one to isolate the 

mechanisms of influence unambiguously. Many social phenomena, however, are not 

amenable to experimental study, and as a consequence attempts have been made to 

investigate causal influences using longitudinal data. The extent to which individuals are 

influenced by other individuals or groups (as well as reciprocal relationships) has been 

examined across multiple domains of study. In the peer literature, adolescent peers have been 

shown to influence one another’s delinquency (Dishion & Owen, 2002) as well as their 

depressive symptomatology (Connell & Dishion, 2006). In work settings, characteristics of 

the group (Jolivet et al., 2010) and dyadic (Yakovleva, Reilly, & Werko, 2010) environments 

have been found to be associated with the functioning of individuals. In classrooms, peer 

linguistic skills influence the language development of the individual (Mashburn, Justice, 

Downer, & Pianta, 2009). In the health literature, the obesity of family members and friends 

has an effect on the obesity of the individual (Christakis & Fowler, 2007). When possible, 

given the phenomena under study, reciprocal influences are also investigated. Thus we can 

examine the extent to which a mother influences her child, as well as the way the child 

influences the mother’s behavior over time.  

One of the challenges in the interpretation of correlational data is the isolation of 

influences that help us draw conclusions about causal mechanisms. For instance, the 

correlation in behavior between parents and children may be due to genes, environmental 

experiences, or a mixture of the two (Kaffman & Meaney, 2007; Plomin & Davis, 2009). 

Clustering of individuals within a work setting on feelings of depression may be attributable 
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to time-invariant factors (the physical plant or the organizational structure) or time-varying 

factors (the mood of the boss). In the present paper we present a statistical model for the 

investigation of mutual influence within a social group. We chose the family for our social 

group as there is already a substantial literature on statistical models that test reciprocal 

influences in the family domain (Cui, Donnellan, & Conger, 2007; Elgar, Curtis, McGrath, 

Waschbusch, & Stewart, 2003; Gross, Shaw, & Moilanen, 2008). We use this literature to 

illustrate the difference between existing approaches and our own.  It is the case, however, 

that the models that we present are generalizable to any social group in which measurements 

of individuals in the social group occur over time, individuals have unique roles and 

clustering of the data is evident.  

 There are several goals to this article. First, we briefly outline the methods that have 

been used previously for examining reciprocal processes. Such methods are based on growth 

curve and autoregressive cross-lagged models. We discuss the limitations of these methods 

for conclusions about causal mechanisms. Second, we introduce an analytic framework that 

allows for a more comprehensive and flexible examination of reciprocal influences than has 

been presented to date. The model allows for the inclusion of social groups of different sizes  

(including groups with only one dyad). We differentiate between reciprocal influences 

between individuals in a power hierarchy (parents and their multiple children), as well as 

individuals at the same level of power (e.g. siblings). We allow effects to depend on 

characteristics of individuals with different roles (e.g. parent and child). Effects of 

unmeasured factors at the occasion, individual and group levels are included. Third, we 

illustrate our approach with an analysis of the reciprocal effects of maternal depression and 

children’s behavioral problems, using a dataset that includes up to three children per family. 

Our approach can be implemented in existing multilevel modelling software. 
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A Review of Methods for Estimation of Reciprocal Parent-Child and Sibling Effects 

Previous studies into how the behavior of one family member affects another have been 

restricted to dyadic (or pairwise) relationships involving a parent-child (e.g. Elgar, Curtis, 

McGrath, Waschbusch, & Stewart, 2003), or sibling pair (e.g. Slomkowski, Rende, Conger, 

Simons, & Conger, 2001). These studies have involved separate analyses for parent-child and 

sibling relationships using growth curve models, autoregressive cross-lagged models, or a 

combination of the two.  In the next section, we show how these approaches can be 

considered special cases within a more general framework that allows simultaneous 

modelling of parent and child outcomes for mixed family sizes.  This generalization has 

considerable benefits for the framing and testing of complex hypotheses about complex 

systems.  Before introducing our general framework in the next section, we first review the 

methods used in previous studies of parent-child and sibling relationships, highlighting the 

biases that may arise when these relationships are not considered simultaneously, and when 

the effects of unmeasured family characteristics are ignored. 

 

Bivariate Growth Curve Models 

 Growth curve models (GCM) are also known as latent trajectory models and are the 

standard approach for analysing changes in individuals’ outcomes over time (Singer & 

Willett, 2003).  In this approach, a curve is fitted to repeated measures of an outcome with 

individual variation in the level and rate of change in the outcome captured by individual-

specific random effects attached to the intercept and slope parameters. Two or more growth 

processes can be modelled simultaneously using a multivariate GCM in which the random 

intercepts and slopes for each process are allowed to be correlated (MacCallum, Kim, 

Malarkey, & Kielcolt-Glaser, 1997; McArdle, 1988).  The random effects covariance 

structure is of particular substantive interest in GCMs involving family data because a non-
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zero covariance indicates an association between the underlying trajectories of family 

members (Gross, Shaw, & Moilanen, 2008; Laird, Pettit, Bates, & Dodge, 2003).  

As described by Curran (2003), a GCM can be framed as a multilevel model (MLM) 

(Goldstein, 2003; Raudenbush & Bryk, 2002) or as a structural equation model (SEM) 

(Bollen & Curran, 2006), but one may be preferred over the other for certain types of 

application.  For example, it is more straightforward in a multilevel model to accommodate 

individual variation in the timing of measurements at a given occasion and to allow for 

further levels of clustering.  (Further discussion of the relative strengths of MLM and SEM 

approaches to growth curve modelling can be found in Ghisletta & Lindenberg (2004), 

MacCallum et al. (1997), Steele (2008) and Wu, West, & Taylor (2009).) 

 

Bivariate Autoregressive Cross-lagged Models 

While a bivariate GCM can be used to examine the association between the intercept 

and slopes of two family members’ trajectories, it does not allow for dynamic reciprocal 

effects between individuals’ outcomes.  Cross-lagged models have become the standard 

technique for examining whether an earlier outcome of one individual affects a subsequent 

outcome of another, and have been used in several studies of reciprocal influences between 

family members.  In this approach, the outcome at time t   1 for one individual in a family 

pair is included as an explanatory variable in the model for the other’s outcome at time t , and 

vice versa, with the coefficients of these cross-lags interpreted as reciprocal effects between 

individuals.  

We now consider the form of the cross-lagged model: first for estimating reciprocal 

parent-child effects; second for estimating reciprocal sibling effects; and discuss the biases 

that may arise as a result of their use in previous family research. This also introduces 

notation we will use when specifying our general framework in the next section. 
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Model for parent-child effects. We begin by outlining a simple model for a parent-

child dyad of the type already used in previous studies.  Denote by 
)(P

tjy  and 
)(C

tjy  the 

responses at time t  for the parent and child in family j  ( Tt ,,1  ; Jj ,,1 ). 

(Throughout the article, superscripts P  and C  are used to indicate variables, coefficients and 

residuals in the parent and child equations respectively.) Omitting covariates to simplify the 

exposition, a bivariate model for 
)(P

tjy  and 
)(C

tjy  (for t > 1) can be written  

)()(

,1

)(

2

)(

,1

)(

1

)(

0

)( P

tj

C

jt

PP

jt

PPP

tj yyy      (1a) 

)()(

,1

)(

2

)(

,1

)(

1

)(

0

)( C

tj

P

jt

CC

jt

CCC

tj yyy      (1b) 

where ( )(

0

P , )(

0

C ) are intercepts, ( )(

1

P , )(

1

C ) are the autoregressive or lagged effects,  

( )(

2

P , )(

2

C ) are the cross-lagged effects representing reciprocal parent-child effects, and  

(
)(P

tj , 
)(C

tj ) are occasion-specific, normally distributed residuals.   The inclusion of the 

lagged terms means that the cross-lagged effects are interpreted as the effect of one 

individual’s outcome at t – 1 on the change in the other individual’s outcome between t – 1 

and t. 

Most previous applications of cross-lagged models in analyses of parent-child 

reciprocal effects allow for a non-zero correlation between 
)(P

tj  and 
)(C

tj  at a given occasion 

t , which means that (1a) and (1b) should be estimated jointly  (Cui, Donnellan, & Conger, 

2007; Elgar, Curtis, McGrath, Waschbusch, & Stewart, 2003; Gross, Shaw, & Moilanen, 

2008).  A residual correlation will arise if there are unobserved characteristics that affect both 

parent and child outcomes; for example genetic effects, attributes of the family environment 

or bias in measurement related to single informant data.  The actor-partner interdependence 

model (APIM) for longitudinal designs (Cook & Kenny, 2005) is a special case of the model 

described by (1a) and (1b).  The APIM is usually applied in situations where the same 
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outcome is measured on both members of the dyad, for example mother and child attachment 

security in relation to each other, and is described by Cook and Kenny for two time points.  

Using APIM terminology, the lags are ‘actor’ effects and the cross-lags are ‘partner’ effects. 

Model for sibling effects. Turning to reciprocal sibling effects, previous research is 

based on analyses of two children per family.  These studies are typically restricted to two-

child families or, in larger families, the effects of other siblings are ignored.  Moreover, it is 

common to focus only on the effect of an older sibling on a younger child and to allow only 

for cross-sectional associations between sibling outcomes (Slomkowski, Rende, Conger, 

Simons, & Conger, 2001; Snyder, Bank, & Burraston, 2005).  Where reciprocal relationships 

are considered, some form of cross-lagged model is generally employed with the outcome of 

one child at time t (or the change in their outcome between t – 1 and t) depending on their 

sibling’s outcome at time t – 1 (e.g. Natsuaki, Ge, Reiss, & Neiderhiser, 2009). Denote by 

)(C

tijy  the outcome of child i (i = 1, 2) of family j at time t, and define the younger sibling as 

child 1 and the older sibling as child 2.  A simple autoregressive cross-lagged model for 
)(

1

C

jty  

and 
)(

2

C

jty  (for t > 1) can be written  

)(

1

)(

2,1

)(

2

)(

1,1

)(

1

)(

0

)(

1

C

jt

C

jt

CC

jt

CCC

jt yyy      (2a) 

)(

2

)(

1,1

)(

2

)(

2,1

)(

1

)(

0

)(

2

C

jt

C

jt

CC

jt

CCC

jt yyy      (2b) 

which has the same form as the parent-child reciprocal model of (1a) and (1b), and assumes 

common intercepts, autoregressive effects and cross-lagged effects across siblings .  As 

before, the occasion-specific residuals (
)(

1

C

jt , 
)(

2

C

jt ) will usually be assumed to follow a 

bivariate normal distribution, allowing for correlation between sibling outcomes at the same 

measurement occasion.  

Studies that consider only the effects of an older sibling on a younger child estimate 
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only (2a) using OLS regression, which is likely to lead to biased estimates of sibling effects.   

The problem with this approach is that the dependent variable 
)(

1

C

jty  and lagged sibling 

outcome 
)(

2,1

C

jty   will in general have shared unmeasured risk factors (for example genetic and 

environmental characteristics) leading to correlation between the predictor 
)(

2,1

C

jty   and 
)(

1

C

jt  

which will in turn result in a biased estimate of )(

2

C . It is therefore important to model (
)(

1

C

jty , 

)(

2

C

jty ) jointly, allowing for correlation between  
)(

1

C

jt  and 
)(

2

C

jt . 

Sibling effects models typically include a number of covariates including measures of 

sibling interaction or relationship quality (Rende, Slomkowski, Lloyd-Richardson, & Niaura, 

2005; Slomkowski, Rende, Conger, Simons, & Conger, 2001; Snyder, Stoolmiller, Wilson, & 

Yamamoto, 2003) and parenting (Natsuaki, Ge, Reiss, & Neiderhiser, 2009; Snyder, Bank, & 

Burraston, 2005).  Such analyses suffer from the same problem noted above when modelling 

only one side of the sibling relationship: some of the unmeasured family characteristics, both 

genetic and environmental, that affect child behavior may also influence sibling interactions 

and parent outcomes.  Inappropriately treating measures of sibling interaction and parental 

behavior as exogenous with respect to child outcomes may lead to biased estimates not only 

of the effects of these variables, but also of the cross-lagged sibling effects of interest.  A 

solution to the problem, and the approach taken in this article, is to model child and parent 

outcomes simultaneously allowing for residual correlation between outcomes.  

Cross-lagged models,  and bivariate growth curve models, are special cases of the 

bivariate latent difference score model and the more general bivariate dual change score 

model (DCSM) (Ghisletta & Lindenberger, 2003; McArdle, 2001).  The DCSM is specified 

in terms of the ‘true’ (latent) scores which underlie the observed scores 
)(P

tjy  and 
)(C

tjy . 

Coefficients in a DCSM thus represent effects on outcomes that are purged of measurement 
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error.  Another advantage of the DCSM is that it can straightforwardly handle incomplete 

data (under a missing at random assumption) and unequally spaced measurements; true 

scores can be defined for any time point regardless of whether an individual is observed at 

that time. As in the GCM and the multilevel model described in the next section, the model 

distinguishes between occasion-specific residuals (usually assumed to be measurement error) 

and time-invariant random effects. 

 

Motivation for a Joint Multilevel Model for Parent and Child Outcomes 

Previous studies of parent-child and sibling relationships have not allowed for 

dependency between outcomes for the same individual or between different family members 

that is due to unmeasured time-invariant factors. In the multilevel model described in the next 

section, the residual variation is partitioned into occasion and individual components with 

residual correlation at each level.  Where the same outcome is measured on more than one 

individual per family, as in sibling studies, it is also possible to distinguish individual and 

family effects. This variance partitioning allows us to identify whether an association 

between parent and child outcomes, or between sibling outcomes, is due mainly to time-

varying or time-invariant factors.  For instance, a larger correlation between the individual-

specific residuals for parent and child outcomes would suggest predominance of time-

invariant family characteristics that are shared by parent and child, including genetic 

influences or environmental factors that are fixed over the study period.   

The most important reason for separating out family effects is that an apparent causal 

effect from one individual to another, as measured by the cross-lagged terms in (1a) and (1b) 

and in (2a) and (2b), could be explained by a dependency of both individuals’ outcomes on a 

common set of family-level unobservables. A multilevel model that allows for different 

sources of variation is also a closer representation of family structures and allows us to 
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identify the strength of family effects (which includes both unmeasured genetic and 

environmental influences) on child and parent outcomes relative to individual and time-

varying effects.  

 

A General Multilevel Model for Sibling and Parent-child Reciprocal Effects 

In this section, we describe a general modelling framework that allows simultaneous 

estimation of reciprocal parent-child effects and sibling effects, allowing for the possibility 

that parent and child outcomes may be influenced by a common or correlated set of 

unmeasured family characteristics.  The multilevel model we propose also distinguishes 

between unmeasured risk factors that are time-varying and those that are operating at the 

individual or family level.  A further advantage of our approach is that it accommodates 

families of different sizes, including one-child families who contribute information for the 

estimation of reciprocal parent-child effects, but not sibling effects. For simplicity, we 

consider the case where we have a single response for one parent and a single response for 

each child, but the proposed model can be extended to handle mixtures of single and dual-

parent families and responses on more than one variable.  We also present models without 

covariates, although these can be included straightforwardly and are considered in the 

application that follows.  

As before we denote by 
)(P

tjy  the response at occasion t  of the parent in family j , but 

we now allow for multiple children per family where 
)(C

tijy  is the response at occasion t  of 

child i  in family j  ( jni ,,1 ).  We begin by describing a basic multilevel simultaneous 

equations cross-lagged model for the parent and child responses.  We then show how the 

model can be extended to allow child effects on parent responses – or parent effects on child 

responses – to depend on child or parent characteristics.  Next, we consider a further 
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generalisation to include sibling effects that may depend on characteristics of the target child, 

his or her siblings or the sibling dyad.  At each stage, we demonstrate how mixed family sizes 

can be handled.  Finally we discuss approaches for addressing the ‘initial conditions problem’ 

which arises when measurement starts when the processes under study are already underway. 

 

Bivariate Autoregressive Cross-lagged Model for Reciprocal Parent-Child Effects 

 A simultaneous equations model that allows for autoregressive effects and cross-

lagged effects between parent and child can be written (for t > 1) 

)()()(

,1

)(

2

)(

,1

)(

1

)(

0

)( P

tj

P

j

C

jt

PP

jt

PPP

tj evyyy       (3a) 

)()()()(

,1

)(

2

)(

,1

)(

1

)(

0

)( C

tij

C

ij

C

j

P

ijt

CC

ijt

CCC

tij euvyyy      (3b) 

The model defined by (3a) and (3b) differs from that of (1a) and (1b) in two key respects.  

First, the extension to multiple children per family leads to a three-level structure for the child 

responses, with repeated measures (level 1) nested within children (level 2) within families 

(level 3).  Equation (3b) therefore contains three residual terms or random effects: a family 

effect 
)(C

jv  representing unmeasured time-invariant characteristics shared by siblings in 

family j , a child effect 
)(C

iju  capturing unmeasured time-invariant characteristics specific to 

child i  in family j , and an occasion-specific residual 
)(C

tije .  The parent equation (3a) contains 

only two residuals – a parent or family effect 
)(P

jv  and an occasion-specific residual 
)(P

tje  - 

because we observe only one parent per family.  The family effects on the child and parent 

responses, 
)(C

jv  and 
)(P

jv , are assumed to follow a bivariate normal distribution to allow for 

residual correlation at the family level between child and parent responses owing to 
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unobserved time-invariant family-specific factors.
1
 The occasion-specific residuals may also 

be correlated across parent and child and between siblings due to time-varying ‘shocks’ to the 

family system. Equations (3a) and (3b) should be estimated jointly to allow for non-zero 

residual correlations among family members. All other residuals are assumed to follow 

independent normal distributions.    

 

Child-Parent Effects for Mixed Family Sizes 

The second difference between the model of (3a) and (3b) and the models used in 

previous family research also arises from allowing for the possibility that a family may have 

more than one sample child.  The parent equation (3a) now includes as a predictor the total of 

the lagged responses of all sampled children in the family, 




 
jn

i

C

ijt

C

jt yy
1

)(

,1

)(

,1  

which implies that the effect of a child’s lagged response on their parent’s response is the 

same for all children in a family.  To see this, consider a two-child family and write the 

contribution of the children’s lags as  

)(

2,1

)(

2,2

)(

1,1

)(

1,2

C

jt

PC

jt

P yy     

which equals 
)(

,1

)(

2

C

jt

P y   if 
)(

2

)(

2,2

)(

1,2

PPP   .  Under this assumption, child effects can be 

estimated by including the total of the lagged child responses for families of any size.    

                                                 
1
 When only one parent is considered, parent and family effects are confounded in 

)(P

jv .  

Nevertheless, the correlation between 
)(C

jv  and 
)(P

jv  arises from unmeasured characteristics 

shared by the parent and all children, and may therefore be interpreted as a consequence of 

family effects. 
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While the above specification is a useful starting point for considering child-to-parent 

effects, it will usually be unrealistic to assume that in multiple-child families each child 

makes equal, and additive, contributions to their parent’s outcome.  The parent-child 

relationship is likely to vary across children, for example according to the child’s age or 

gender, which may lead to differential child-to-parent (and indeed parent-to-child) effects.  

We therefore consider two ways of relaxing this assumption: (i) including interaction effects 

between the cross-lags and parent or child characteristics, and (ii) specifying random 

coefficients for the cross-lags. In the following, we describe how (3a) can be extended to 

allow the cross-lagged effect from child to parent to vary across children.  We can extend 

(3b) in a similar way to allow cross-lagged parent-to-child effects to depend on child or 

parent characteristics, and this is demonstrated in our application. 

We begin by specifying the cross-lagged effect of a child outcome on a parent outcome 

in (3a) as a function of measured characteristics of the child and perhaps of the parent, family 

or the parent-child dyad.  Consider first the subset of families with one child, and denote by 

)(

1,1

C

jtz   a characteristic measured at time t-1 (e.g. the age) of the child from family j.  We can 

replace the cross-lagged child-to-parent effect )(

1,2

P
 
by an effect that depends linearly on 

)(

1,1

C

jtz  :  

)(

1,1

)(

1,1

)(

1

)(

1,2 )( C

jt

C

jt

PP yz    (4) 

A more flexible nonlinear dependency can be fitted by including dummy variables for 

categories formed from 
)(

1,1

C

jtz  . 

Next consider a mixture of one and two-child families. Denote by jn  the size of family 

j  and define an indicator variable for two children, )2( jnI .  An extension of (4) that 

allows the cross-lagged effect of child i from family j to depend on lagged characteristic 
)(

,1

C

ijtz   
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is 

)(
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)(
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)(

1,1
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1,1
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1
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2 )2( C
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The expression in (5) follows from the earlier assumption that 
)(

2

)(

2,2

)(

1,2

PPP   .  In addition 

we typically assume )()(

2

)(

1

PPP   .  These assumptions together imply that, conditional 

on 
)(

,1

C

ijtz  , children are exchangeable in terms of their effects on the mother’s response.  Larger 

families can be included by replacing )2( jnI  by an indicator for whether family j has two 

or more children, )2( jnI , and defining further family size indicators which are also 

interacted with 
)(

,1

)(

,1

C

ijt

C

ijt yz  .  For example, we would add the term 
)(

3,1

)(

3,1

)( )3( C

jt

C

jtj

P yznI   to 

(5) to accommodate three-child families.  The effect of the lagged child response is 

then
)(

,1

)()(

2

C

ijt

PP z   for any family size.  

The inclusion of interactions 
)(

,1

)(

,1

C

ijt

C

ijt yz   in (3a) permits the lagged child-to-parent effect 

to vary according to a child characteristic, and the model can be extended to include 

additional characteristics of children, their parents or the parent-child dyad (e.g. measures of 

relationship quality). Nevertheless, it is possible that variation in child-to-parent effects 

across children may not be fully captured by observed variables. We can allow for between-

child variation in the child-to-parent effect due to unobserved characteristics by specifying a 

random coefficient for 
)(

,1

C

ijty  .  The effect of the lagged child response for child i in family j 

can then be expressed as 
)(

2

)(

2

C

ij

P u  where 
)(

2

C

iju  is a child-level random effect.  Identification 

of the variance of 
)(

2

C

iju  requires at least three waves of measurement and, in practice, more 

will usually be needed especially if there is little within-person variation in either parent or 

child outcomes.  

Introducing Sibling Effects on Child Outcomes 
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We now consider an extension of the child equation (3b) to include sibling effects.  We 

begin by including in (3b) the effect of the lagged response of child 2 on the response of child 

1 

)(

2,1

)(

3

C

jt

C y    (6) 

where, as before, children are labelled arbitrarily within families.  An extension of (6) that 

allows the effect of child 2 on child 1 to depend linearly on a characteristic of the dyad (12), 

)(

)12(1

C

jtz  , for example their age difference, is 

)(

2,1

)(

)12(1

)()(

3 )( C

jt

C

jt

CC yz  .  (7) 

 

For a three-child family, under the assumption of equality of effects across siblings, the 

contributions of children 2 and 3 to the response of child 1 can be written 
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where 
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jt yyy   , i.e. the total lagged response for all of child 1’s siblings.  

Moreover, (7) can be extended to allow for interactions between 
)(

,1

C

ljty   and dyad 

characteristics 
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C

jltz   ( 3,2l ) to give 
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with the constraint )(

3

)(

2

CC   . 

In samples with a mixture of two- and three-child families, the contribution from child 

3 can be “switched on or off” according to family size by interacting the third term in (8) with 

an indicator  )3( jnI  of whether the family has three or more children, i.e. 
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A Bivariate Autoregressive Cross-lagged Growth Curve Model for Reciprocal Parent-
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Child Effects 

Equations (3a) and (3b) can both be extended to include a growth component as in 

Bollen & Curran’s (2004) bivariate autoregressive latent trajectory (ALT) model.  In an ALT 

model, the current value of y  for an individual is determined both by their lagged y  value 

and the individual-specific intercept and slope of their latent trajectory.  For example, the 

child equation in a three-level bivariate ALT model, a generalisation of (3b), can be written 

)()()(

1

)(

0

)()()()(

,1

)(

2

)(

,1

)(

1

)(

0

)( C

tij

C

tij
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ij

C

ij

C

j

C

tij

CP

ijt

CC

ijt

CCC

tij eauuvayyy     (9)  

where 
)()(

1

)(

0

)()()(

0

C

tij

C

ij

C

ij

C

tij

CC auua   defines a growth trajectory for child i  in family j  as a 

linear function of atij, the child’s age at occasion t .  While age is usually the most appropriate 

time metric for child developmental trajectories, other metrics may be used such as calendar 

time or simply wave of measurement (see Bollen & Curran, 2006, Section 3.2). In a 

multilevel model, growth curves are fitted by including some functions of time as explanatory 

variables and allowing the coefficients of these functions to vary randomly across 

individuals.  In the linear specification (9), for example, age is treated as an explanatory 

variable with a random coefficient at the child level 
)(

1

)( C

ij

C u .  Particular advantages of the 

multilevel approach to growth curve modelling are that it is straightforward to allow for 

nonlinear trajectories (e.g. polynomials or splines) and for between-individual variation in the 

timing of measurement at a particular occasion t (Singer & Willett, 2003; Steele, 2008). 

 

Initial Conditions 

The ‘initial conditions’ problem comes about because the start of measurement does not 

usually coincide with the start of the process under study.  Conditioning on the outcome at 

t=1 (y1) is not generally sufficient in itself to control for what happened prior to the first 

measurement occasion.  Generally, this means it is likely that unmeasured time-invariant 
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characteristics influencing y2, . . ., yT will also influence y1, i.e. y1 is endogenous.  In an 

autoregressive model, yt-1 is included as a predictor of yt and, by repeated substitution for yt-1, 

it can be shown that the dependence of yt on previous y operates entirely through y1.  Hence, 

endogeneity of y1 implies correlation between y1 and the random effects that represent 

unmeasured family and child family characteristics, which invalidates the standard 

assumption that the random effects are uncorrelated with the predictors.  Failure to properly 

account for the initial conditions will lead to biased estimates of the lag effects and, in 

bivariate models, cross-lag effects.  It is especially important to take account of endogeneity 

in short panels because, while the influence of y1 on yt diminishes with t, all subsequent 

measures will be strongly associated with y1 if t is small (Bhargava & Sargan, 1983). 

Methods for handling the initial conditions problem have received a great deal of 

attention in the econometrics literature, although mainly for the univariate case; Kazemi and 

Crouchley (2006) review and compare approaches for univariate autoregressive models with 

random effects.  A discussion of the treatment of initial conditions in bivariate autoregressive 

models and the generalisation to autoregressive latent trajectory (ALT) models can be found 

in Bollen and Curran (2004).  Approaches to the problem generally involve specifying a 

model for y1 which is estimated jointly with the model for y2, . . ., yT.  A general model for the 

initial outcome for individual j is 

jjj ewy 101  ,  (10) 

where 0 is the intercept, jw
 
is a random term representing time-invariant individual 

characteristics, and je1  
is a residual specific to the first measurement. Estimation of (10) 

requires some constraint to be placed on )var( jw
 
or

 
)var( 1 je , which involves some 

assumption about the distribution of y1j. One approach is to assume the same process that 

generated the observed y was also functioning before the first measurement at t=1.  In the 
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case of a first-order autoregressive process, this leads to  

jjvj evy 101      (11) 

where jv
 
is the individual-specific random effect in the model for y2j, . . ., yTj, and the 

loading v  and )var( 1 je  are nonlinear functions of the coefficient of yt-1,j in the model for 

y2j,,  yTj and )var( jv ; see Bhargava and Sargan (1983) for full details and Bollen and 

Curran (2004) for the extension to the bivariate ALT model. The main advantage of this 

approach is that only one additional parameter, the intercept 0 , is required to handle the 

initial condition because all other parameters are functions of parameters in the model for ytj 

(t >1).  It is therefore an attractive option for identification of random coefficient models 

fitted to short panels. (See Bollen and Curran (2004) for a derivation of the exact form of the 

nonlinear constraints required for identification of the bivariate ALT model for three waves.) 

However, the caveat is that in some applications it may be unrealistic to assume that an 

AR(1) process was at work prior to the start of measurement (sometimes referred to as the 

stationarity assumption).   

In a more general form of (11), referred to as a one-factor decomposition model, v  is 

freely estimated (Crouchley, Stott, & Pritchard, 2009).  Thus a common set of unmeasured 

individual characteristics are assumed to influence y1j and ytj given yt-1,j (t > 1), but v  
allows 

their effects to differ for y at t = 1 and for the change in y between t-1 and t (for t > 1).  A 

constraint must be imposed on )var( 1 je  because only one variance parameter can be 

estimated, i.e. vλ  
and )var( 1 je

 
cannot both be free to vary.  Possible identification constraints 

are )var( 1 je =1 or )var()var( 21 jj ee  .   

In the model for parent and child outcomes, the initial condition equation (11) is 

replaced by 
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which are jointly estimated with (3a) and (3b) for t > 1.  This is achieved by specifying 

indicator variables for whether an observation is measured at t = 1 or t > 1 and interacting 

these with explanatory variables and (for t > 1) the lags and cross-lags.  Further details can be 

found in the Supplementary Appendix; see also Alfò and Aitkin (2006).  In the application 

that follows, we also consider simplified forms of (12a) and (12b) where one or more of the 

three random effects loadings are constrained to equal 1. 

 

Estimation and Identification 

The multilevel simultaneous equations model defined by (3a) and (3b), and the various 

extensions described above, can be estimated by maximum likelihood in any statistical 

software package that can handle multivariate response data where different responses have a 

different hierarchical structure (i.e. single-level for the parent’s initial conditions, two-level 

for parent responses for t > 1 and children’s initial conditions, and three-level for child 

responses for t > 1).   Software packages that can handle such general multivariate structures 

include PROC NLMIXED in SAS (SAS Institute Inc., 2008), MLwiN (Rasbash, Charlton, 

Browne, Healy, & Cameron, 2009) and aML (Lillard & Panis, 1998-2003).  Options for 

estimating the one-factor decomposition model for initial conditions (with random effect 

loadings) are more limited, but include PROC NLMIXED and aML.   All analyses presented 

in this article were carried out in aML. Further details, with examples of the required data 

structure, are given in the Supplementary Appendix. 

Bollen and Curran (2004) discuss conditions for identification of the closely related 

ALT model, and consider in detail the special cases of three and four waves of measurement. 
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For example, identification with fewer than five waves requires the assumption that the 

coefficients of the lags and cross-lags are constant over time.  The complexity of the growth 

component in (9) that can be fitted will also be limited in short panels; for example, at least 

three waves are required to estimate quadratic curves. The decomposition of the residual 

variance in the multilevel extension to the ALT model proposed here does not introduce any 

major new considerations.  However, random coefficient models – for example to allow for 

between-sibling variation in child-to-parent effects, as discussed earlier – will generally be 

weakly identified in short panels. Furthermore, child and family effects may be confounded if 

there are few families with more than one child or in cases where there is little within-family 

variation in child outcomes.  

 

Missing Data 

Multiple imputation is now a commonly used method for handling the problem of non-

response bias resulting from data which are 'missing at random' (MAR) (Little & Rubin, 

2002).  While multiple imputation methods suitable for multilevel data structures have 

recently been developed (Browne, 2009; Goldstein, Carpenter, Kenward, & Levin, 2009), we 

use an alternative method closely related to full information maximum likelihood (Arbuckle, 

1996; Rubin, 1976). Each family member must have responses for at least two consecutive 

occasions to contribute to estimation of lagged and cross-lagged effects.  Individuals who are 

observed only at t = 1 may also be included as they contribute information for estimation of 

the initial conditions equations.  Provided that, at occasion t, the probability of 

),,,( )()(

1

)( C

jtn

C

jt

P

tjtj j
yyy y  being missing does not depend on tjy  itself (or future jt ,1y , jt ,2y , 

etc.) given the covariates, then our estimator is consistent. A minor drawback, however, is 

that our estimator is not fully efficient because it excludes information from individual 
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contributions at waves where there are missing lags. 

 

Application to Maternal Depression and Child Delinquency 

Sample 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a longitudinal, 

prospective study of women, their partners, and a target child. The study design included all 

pregnant women living in the health district of Avon, England, who were to deliver their 

baby between April 1991 and December 1992 (Golding, 1996). It was estimated that 85% to 

90% of the eligible population took part (n = 14,000). The current study, the Avon Brothers 

and Sisters Study (ABSS), is a sub-study of 235 families, within ALSPAC, that capitalized 

on the community nature of the ALSPAC sample and used it as a sampling frame to select a 

representative group of non-stepfamilies, single-parent families, and stepfamilies (Dunn, 

Davies, O'Connor, & Sturgess, 2000) that included multiple children per family, under the 

age of 17 years old. The average age at t = 1 of the youngest child (the ALSPAC target child) 

was 4.8 years (SD = .38) and the age range of the siblings was 6 to 17 years (M = 10.2, SD = 

2.9).  Three waves of data were collected with families being visited at intervals of 

approximately two years.  

The following analysis is based on families with a mother and two or three children.  

The analysis sample contains families with information available on each family member for 

at least two consecutive waves as well as individuals who were observed only at t = 1.  The 

final sample contains 177 families and 418 children who together contribute 1389 

observations over the course of the study.  Table 1 shows the number of families, mothers 

and children observed at each wave.  The declining proportion of three-child families 

suggests that mothers with more children were more likely to drop out of the study.  

The following analyses are used to illustrate the application of the proposed 
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simultaneous equations approach and its advantages over methods used in previous research 

rather than for detailed substantive consideration.  A limitation of the data source is that child 

behavior is reported by the mother. It is well known that single informant data are subject to 

measurement error, inflating associations between predictor and outcome variables.   

 

Measures 

Maternal depression. Mothers’ ratings of their own depressive and anxious 

symptomatology were obtained using the Malaise Inventory (Rutter, Tizard, & Whitmore, 

1970) at t = 1.  The Malaise Inventory is a 24-item questionnaire that assesses both emotional 

(e.g. ‘do you often feel miserable or depressed?’) and physical (e.g. ‘do you suffer from an 

upset stomach?’) stress.  Mothers responded to items by indicating whether or not a symptom 

was present (1) or absent (0) and a mean depression/anxiety score was calculated by dividing 

the number of items endorsed by the total number of items.  Given that this scale was utilized 

to assess mothers’ present levels of depressive/anxious symptomatology, the item ‘have you 

ever had a nervous breakdown?’ was dropped.  The full Malaise Inventory has been shown to 

have good reliability and validity (McGee, Williams, & Silva, 1986). In the present study, the 

internal consistency for the scale at all waves was above α = .79. We refer to this scale as 

maternal depression for brevity.  The mean depression score is similar for waves 1 and 2 but 

lower for wave 3 (see Table 1), which may be due to mothers with a higher score being more 

likely to drop out of the study.  

Child delinquency. At each wave, mothers completed the Child Behavior Checklist 

(Achenbach, 1991) on each of their children. The delinquency scale used for analysis was 

made up of 11 items. Mothers were asked to say how frequently the behavior occurred in the 

last 6 months using a 3 point scale: not at all true (0), somewhat true (1), or very true (2). 

Sample items from the delinquency subscale included lack of guilt, lying or cheating, truancy 
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and stealing.  The mean delinquency score is similar for each wave (Table 1) and internal 

consistency was above  α = .75 for all waves. 

Demographics.  Mothers reported on children’s age in years and their gender.  The 

mean age and proportion of girls at each wave are shown in Table 1.   

 

Analytic Plan 

Figure 1 shows the lagged and cross-lagged effects in the simplest model for reciprocal 

parent-child and sibling effects, as given by (3a) and (3b).  We considered various extensions 

to this model to allow for interactions between the cross-lags and child characteristics.  

Specifically, we tested whether the effect of lagged child’s delinquency on maternal 

depression – and the reciprocal effect of lagged depression on delinquency – depended on the 

child’s age and gender.  In the model for child delinquency, we additionally tested for an 

interaction between lagged sibling delinquency and both the gender of each child and the age 

difference between children.  We considered the age difference in years, centred around 3 

years so that the main effect of lagged sibling delinquency is interpreted as the sibling effect 

at a 3-year difference.  Furthermore, we allowed the sibling effect to depend linearly on both 

the direction and the magnitude of the age difference in years by fitting separate terms for the 

main effects of lagged sibling delinquency and interaction with age difference effects 

according to whether the sibling is older or younger.  Previous research on sibling effects has 

considered only the effect of an older child on their younger sibling.   

While the effects of the cross-lags and their interactions with child sex and age and 

sibling age difference were the major focus of our analysis, we adjusted for the effects of 

family size (three versus two children) and the wave of data collection. We allowed for a 

dependency of child delinquency on age using a linear growth curve component (9).  A linear 

model with a random slope for age was considered initially, but a simpler random intercept 
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model was selected after finding little evidence of between-child variation in slopes (possibly 

due to the small number of measurements and the inclusion of lags).  Temporal changes in 

maternal depression were captured by dummy variables for wave of measurement. 

Four broad model specifications were considered which differ with respect to the 

assumptions made about the residual structure.  The first, simplest model includes 

uncorrelated occasion-specific residuals for mother and children and no child or family-level 

residuals.  This model assumes that the association between the outcomes of different family 

members is fully explained by the cross-lags.  It also assumes that the parent and child cross-

lags are uncorrelated with the residuals, i.e. the cross-lags are exogenous.  The equations for 

mother and child outcomes can be estimated in two separate steps as in recent studies of 

reciprocal parent-child effects (Hipwell et al., 2008; Pardini, Fite, & Burke, 2008) or, 

equivalently, estimated jointly with zero constraints imposed on all residual correlations.  

This approach will lead to biased estimates of reciprocal parent-child and sibling effects if 

there are omitted variables influencing both maternal depression and siblings’ behaviour, i.e. 

the cross-lags are endogenous. In the second model specification, residual correlations are 

introduced between pairs of family members at a given occasion.  This approach is closest to 

previous studies of parent-child reciprocal influences using SEM, but with the addition of 

between-sibling correlations. We refer to both models as single-level because all unobserved 

influences on parent and child outcomes are represented by a single residual term: no 

distinction is made between occasion, child and family-level unmeasured variables.  The third 

specification is a multilevel extension of the second model with residuals at the occasion, 

child and family levels with the correlation at the family level fixed at zero.  Finally, the 

fourth model allows for shared dependency of mother and child outcomes on unmeasured 

time-invariant family characteristics by explicitly modelling a non-zero correlation between 

the mother and child family-level random effects. 
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 With up to four family members observed on three occasions, it was necessary to 

impose some restrictions on the 12 × 12 covariance matrix for the occasion-level residuals 

),( )()( C

tij

P

tj ee .  This was achieved by assuming exchangeability between children within a 

family, conditional on covariates.  Thus we assumed equal residual correlation for any 

mother-child pair and for any sibling pair within a family at a given occasion t, leading to six 

correlation parameters.  Occasion-specific residual variances were estimated for both mother 

and children, resulting in a further six parameters.  Based on significance tests of each 

variance and correlation, the following further simplifications were made in subsequent 

analysis: sibling correlations at occasions 1 and 3 were fixed at zero, and equality constraints 

were imposed on the mother-child correlations and mother and child variances at occasions 2 

and 3.  When child and family random effects were added, the between-child (within-family) 

variance was estimated as zero, possibly due to the small sample size and few measurement 

occasions.  We therefore restricted our attention to two-level models with family effects for 

mother and child, 
)(P

jv and 
)(C

jv . 

As described earlier, we considered two alternative specifications for the initial 

conditions, i.e. equations (12a) and (12b) for maternal depression and child delinquency at t = 

1 (but without the child-level residual 
)(C

iju ).  The first specification included a common 

random effect for all occasion t (i.e. 1)()(  C

v

P

v  ), while in the second the loadings were 

freely estimated. As neither loading differed significantly from 1, the simpler model with a 

common random effect was selected.   

 

Results 

Table 2 shows the parameter estimates for the four models described above, with 

increasingly complex residual structure.  All models include the same set of explanatory 
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variables. M1 and M2 are single-level models with occasion-level residuals, uncorrelated in 

M1 and correlated (with restrictions) in M2; M3 is an extension of M2 with uncorrelated 

family-level random effects; and M4 extends M3 to allow for a non-zero residual correlation 

at the family level.  Estimates of the residual standard deviations and correlations for M2 and 

M4 are presented in Table 3. Based on a comparison of M1 and M2, there is strong evidence 

of correlation between the outcomes of pairs of family members that is not explained by the 

cross-lagged effects (-2 Δ log-likelihood = 43.78, 3 df, p < .001). The addition of uncorrelated 

family-level random effects further improves model fit (M3 vs M2: -2 Δ log-likelihood = 

4.64, 2 df, p = .049).
2
  However, there is also evidence of a family-level residual correlation 

(M4 vs M3: -2 Δ log-likelihood = 5.48, 1 df, p = .019).  This strong, positive correlation 

between unmeasured time-invariant family influences on maternal depression and child 

delinquency is likely to be due in part to shared informant measurement.  After accounting 

for this family-level correlation, the occasion-level mother-child correlations become non-

significant (Table 3).  

As there was evidence of correlated family effects for maternal depression and child 

behaviour we focus on the interpretation of the full multilevel model (M4), but we note where 

assuming a simpler residual structure (M1 to M3) would have led to misleading conclusions.  

The estimated coefficients for M1 and M2 (Table 2) were very similar; differences only 

emerged after accounting for family effects (M3 and M4). We also considered a sequence of 

models including only one of the three types of cross-lagged effects at a time, for example a 

parent-to-child effect in the absence of child-to-parent or sibling effects, but the substantive 

                                                 
2
 The null hypothesis that the standard deviations of the family-level random effects are both 

zero was tested against a one-sided alternative because a standard deviation must be non-

negative (see Snijders & Bosker, 1999). 
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conclusions were identical to those obtained from considering all reciprocal effects 

simultaneously as in M1-M4 (results not shown).  

 

Mother-Child Effects 

There was no evidence in any model of an association between child delinquency at 

occasion t – 1 and change in maternal depression between t – 1 and t. There was evidence of 

a cross-lagged effect in the opposite direction, but the effect depended on the child’s gender.  

While lagged maternal depression did not affect boys’ delinquency (the main effect of the lag 

is estimated as 0.022 in M4 and is non-significant), a higher maternal depression score was 

associated with a lower delinquency score among girls two years later, controlling for the 

child’s prior level of delinquency (0.022 – 0.256 = -0.234). In preliminary analysis (not 

shown) we also tested whether mother-to-child and child-to-mother effects varied by child’s 

age, but neither were found to be significant. Estimates of reciprocal mother-child effects 

were markedly different according to whether correlated family residuals for mother and 

child outcomes were included.  Most importantly, failure to account for correlated family 

effects (M1 – M3) led us to conclude that higher levels of maternal depression at one 

occasion were positively and significantly associated with higher levels of subsequent 

delinquency among boys (controlling for prior delinquency), but not associated with girls’ 

delinquency.  This change in the main effect of lagged maternal depression was due to a large 

positive residual correlation ( v̂  = 0.869) between the parent and child outcomes (Table 3).  

The apparent causal effect of maternal depression on boys’ delinquency found when we did 

not account for correlated family effects was in fact due to the presence of unobserved family 

circumstances that were positively associated with both maternal depression and child 

delinquency: the higher mean delinquency observed among children of depressed mothers 

was explained by a dependency of both outcomes on unobserved time-invariant family 
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characteristics.   

With respect to the directionality of the final cross-lagged coefficients (negative rather 

than positive as expected intuitively) it is important to note two issues that may explain this. 

First, aggregation on the psychopathology of family members is well established. Children 

show higher levels of psychopathology when their parents show higher levels of 

psychopathology, resulting in positively valenced coefficients. This is true when both parents 

and children are measured on the same outcome (Bolton et al., 2006) and also true when they 

are assessed on different outcomes (O'Connor, Neiderhiser, Reiss, Hetherington, & Plomin, 

1998). Utilizing genetically sensitive designs, however, this aggregation is found to be 

attributable mainly to genetic factors.  Second, previous investigations of cross-lagged 

influences between parent and child have often included the contemporaneous residual 

correlation between mother and child behavior in the model (Elgar, Curtis, McGrath, 

Waschbusch, & Stewart, 2003), but have not separated the effects of unmeasured time-

varying and time-invariant family characteristics. The implication of both of these issues is 

that once we account for the unobserved family circumstances that are positively associated 

with both maternal depression and child delinquency, we have no basis for a prediction about 

the directionality of cross-lagged effects between mothers and children. 

Although such findings need replication within other family studies there is a 

perspective within the family systems literature that can explain the negative coefficients on 

the parent-child lags (Nichols, 2007). It has been suggested that families operate as a 

homeostatic system, with complementary roles of individuals keeping overall functioning of 

the family within acceptable limits (i.e. as one person becomes worse the other become 

better). A child’s delinquency may activate a mother towards better functioning as she works 

to reduce her child’s problems. Similarly, children may help their parents. Empathy has been 

found to be stronger in girls than in boys and girls exposed to maternal depression show the 
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highest levels of empathy (Radke-Yarrow, Zahn-Waxler, Richardson, & Susman, 1994) 

 

Sibling Effects 

We tested for effects of sibling delinquency on a child’s delinquency, allowing for 

sibling effects to vary according to whether he or she was older or younger than the child i 

and their age difference.  We found that the results for the single-level models (M1 and M2) 

supported a sibling training effect with a significant, positive effect of an older child’s 

behavior at t – 1 on their younger sibling’s behavior at t.  In M1 there was also weak evidence 

that the training effect diminishes as the age difference increases.  This is in line with 

previous research showing a training effect of older siblings’ delinquency on the delinquency 

of younger siblings’ (Slomkowski, Rende, Conger, Simons, & Conger, 2001).  Earlier work 

considered only younger child outcomes, rather than jointly modelling sibling outcomes, and 

is therefore based on assumptions similar to those of M1. We found this training effect 

weakened and became non-significant when we accounted for unmeasured time-invariant 

family influences in the multilevel models (M3 and M4).  Thus we found that the apparent 

training effect from older to younger children was explained by a shared dependency of both 

siblings’ behavior on unobserved family characteristics (M3).  Estimates of sibling effects 

are, however, unaffected by allowing for residual correlation between parent and child 

outcomes at the family level (M4).  This might be expected because, in both multilevel 

models, the inclusion of a family-level random effect allows for dependency among children 

in the same family.  The family-level residual correlation between parent and child outcomes 

is only important for estimation of parent-child reciprocal effects. 

 

Effects of Lagged Outcomes and Covariates    

The significant lagged effects suggest that mothers with higher (lower) depression 
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scores at a given occasion t – 1 tended to have higher (lower) scores two years later at t, and 

similar lagged effects were also found for child delinquency.  However, the magnitude of the 

estimates for the lags is substantially reduced after accounting for time-invariant mother 

effects (M3 and M4).   

After conditioning on lagged depression and delinquency, the estimated coefficients of 

the covariates can be interpreted as effects on the change in each outcome between occasions 

t - 1 and t (for t = 2, 3).  Covariate effects on the baseline outcome (at t = 1) are also shown in 

Table 2.  We found weak evidence of higher maternal depression at t = 1 in families with 

three rather than two children, but no effect of family size or of measurement occasion on the 

change in depression across subsequent time points.  There was no effect of family size on 

either baseline child delinquency or change in delinquency.  However, there was evidence 

that delinquency scores were higher among older children and boys at t = 1, but with girls 

showing a greater change in delinquency over time.  

 

Discussion 

In the present study we present a statistical model that allows for the differentiation of 

group and individual-specific influences in group settings as well as the differentiation 

between time-varying and time-invariant unmeasured influences on outcomes. Although we 

focussed primarily on the family, as we discuss the value of the statistical model that we 

present, we consider the way in which the model can be generalized to other social groups. 

The statistical model is flexible enough to allow for reciprocal relationships between all 

members of a social group simultaneously, accommodating different sizes of groups in the 

analysis and allowing for unmeasured factors that reflect the similarity between members of 

the group, that might either be genetic (when the group is genetically related) or 

environmental. This enables the testing of complex hypotheses regarding the ways in which 
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individuals influence one another, and allows some spurious effects that would otherwise 

confound causal inferences to be put aside.  

Many social groups are hierarchically structured with different roles for individuals. 

In the illustration of our model we discussed mothers and children but the same structure is 

applicable to boss/employee, gang leader/gang members, teacher/students. One of the 

strengths of our model was the simultaneous estimation of equations for individuals in the 

group with different roles (e.g. parents and children in our illustration). Although this has 

been done by most investigators examining reciprocal influences (Cui, Donnellan, & Conger, 

2007; Elgar, Curtis, McGrath, Waschbusch, & Stewart, 2003; Gross, Shaw, & Moilanen, 

2008), it has not been utilized by all (Hipwell et al., 2008; Pardini, Fite, & Burke, 2008).   

Because of the simultaneous estimation of equations for individuals, and the fact that 

our model can include more than two individuals potentially affecting one another over time, 

we were able to estimate the group-level random effects, including the correlation of the 

residuals for the people with different roles (mother and children in our illustration) as well as 

the correlation of occasion-level residuals. The group-level random effect is important in 

several ways. This quantifies the similarities between members of the group, that are not 

accounted for by measured predictors. In families, such similarity may be related to genetic 

influence, an aspect of the unmeasured environment that influences all family members (e.g. 

living in damp housing) or measurement bias because the same person has provided 

information about all members of the group. In groups in which there is no biological 

relatedness among members, similarity can either be explained by unmeasured influences 

held in common by the group (for instance an unstable economic climate) or shared 

informant bias contributing to measurement error (different consultants observe all the 

members of a work setting). Allowing for correlated occasion-specific residuals is also 

important because it may be that an unmeasured event at a specific time point affected 
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everyone in the group. The estimation of these group and occasion-level random effects 

results in cleaner and more precise estimates for the cross-lags. As the cross-lags provide an 

indication of the degree to which one person’s earlier behaviour has an influence on another 

person’s subsequent behavior this ‘cleaning’ is vital to our conclusions about causal 

influence. This was seen in the illustration. On the basis of previous studies we expected 

older siblings to influence the delinquency of their younger siblings. A significant effect of 

older siblings’ delinquency on younger siblings’ delinquency was found before we included a 

random effect at the family level in the model. Thus if we just fit a reciprocal effects model, 

ignoring the multilevel structure of the data, it appears that the lag of older siblings’ 

delinquency predicts a change in younger siblings’ delinquency over time, i.e. older siblings 

are training younger siblings. This approach, however, fails to take account of the fact that 

the behavior of siblings (and their mother) is likely to be influenced by a common set of 

unmeasured family-specific characteristics. When this clustering was accounted for, the 

‘environmental’ sibling effect disappeared. This suggests, using the present data, that 

whatever the influences are that make siblings more similar to one another on delinquency, 

they do not involve a lagged effect of the older sibling training the younger. Several 

unmeasured family processes, either genetic or environmental may be operating. As most 

longitudinal datasets are not based on genetically-sensitive designs (that allow for a 

differentiation of genetic and environmental influence through the comparison of sibling 

similarity in siblings that share different degrees of genetic relatedness) it is important in 

‘environmental’ studies to control for unmeasured risk factors that may indicate genetic 

influence.  

Finally, consider an extension of this model to another social group.  In the work 

setting we might be interested in the effect of the boss’s expressed anger at t-1 on the 

depression of employees at t. We need to fit the group-level random effect to rule out the 
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possibility that the workplace climate has influenced both the boss and the employees, 

without the anger of the boss having any causal effect on employees.  

Allowing the residual effects of the group members to correlate is also essential to 

improving the estimation of the cross-lags. In some types of psychological data shared 

informant bias is inevitable. This happens when the measurement for a group relies on one 

person (e.g. if only one coder can go into a work setting or only one adult is acquainted with 

all the children in a group). In our illustration, in which single informant methodology was 

used, if we had not allowed the residual effects of the group members to correlate, we would 

have drawn an erroneous conclusion about the causal effect of mothers’ depression on boys’ 

delinquency. After allowing the residual effects of mothers and children to correlate, earlier 

maternal depression was found to predict a decrease in the delinquency of girls.  

  Although our analysis was presented for illustrative rather than substantive purposes 

it is worth considering several limitations of our dataset. First, the dataset is small which may 

have limited our ability to identify cross-lag influences that operate in families. Second, 

single informant methodology was used. Third, measurement occasions were few. More 

occasions of measurement would have enabled us to better differentiate between unobserved 

heterogeneity between individuals and state-dependence (lagged effects), and between 

residual correlation between outcomes for different family members and cross-lagged effects. 

The data presented, however, are valuable for demonstrating that exclusions to the model, 

evident in previous analyses of reciprocal processes in families, may result in unwarranted 

conclusions about environmental influences in families.  
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Table 1  

 

Descriptive Statistics for the Analysis Sample, Avon Brothers and Sisters Study  

 

 

 Measurement occasion (2 years apart) 

 1 2 3 

Number of families 172 143 108 

Percent with 3 (rather than 2) 

children 

41.3 37.8 34.3 

    

Number of mothers 172 141 104 

Mean depression score (SD) 0.185 (0.152) 0.189 (0.165) 0.173 (0.149) 

    

Number of children 402 328 242 

Mean delinquency score (SD) 0.101 (0.180) 0.116 (0.184) 0.110 (0.194) 

Mean age in years (SD) 8.18 (3.33) 10.15 (3.28) 12.46 (3.21) 

Percent girls 46.0 43.6 45.0 
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Table 2  

Estimated Coefficients from Alternative Models of Maternal Depression and Child Delinquency 

 M1 M2 M3 M4 

Maternal depression  equation (
)(P

ty )          

t = 1         

   Constant 0.166*** (0.015)  0.166*** (0.015) 0.167*** (0.015) 0.166*** (0.015) 

   3-child family (versus 2-child) 0.045* (0.023)  0.045* (0.023) 0.045* (0.023) 0.045* (0.023) 

t = 2, 3         

   Constant 0.057*** (0.014)  0.056*** (0.014) 0.124*** (0.028)  0.150*** (0.023) 

   Occasion t = 3 (versus t = 2) -0.008 (0.014) -0.006 (0.014) -0.005 (0.012) -0.001 (0.012) 

   3-child family (versus 2-child) -0.005 (0.016) -0.005 (0.016) -0.004 (0.020)  0.019 (0.023) 

   Lag maternal depression  0.724*** (0.048)  0.723*** (0.048) 0.310** (0.144)  0.257** (0.126) 

   Child-to-mother effects         

   Lag child delinquency  0.001 (0.024)  0.001 (0.024) 0.029 (0.028) -0.072 (0.056) 

         

Child delinquency equation (
)(C

ty )          

t = 1         

   Constant 0.006 (0.025)  0.003 (0.025) 0.0002 (0.025)  0.010 (0.025) 

   3-child family (versus 2-child) 0.025 (0.018)  0.024 (0.018) 0.025 (0.018)  0.026 (0.019) 

   Age in years at t = 1 0.012*** (0.003)  0.012*** (0.003) 0.012*** (0.003)  0.012*** (0.003) 

   Girl -0.036** (0.017) -0.034** (0.017) -0.032* (0.017) -0.038** (0.017) 

t = 2, 3         

   Constant -0.022 (0.025) -0.025 (0.025) -0.021 (0.025)  0.015 (0.030) 

   3-child family (versus 2-child) -0.020 (0.013) -0.019 (0.014) -0.008 (0.017) -0.006 (0.017) 

  Age in years at t 0.004* (0.002)  0.003* (0.002) 0.004* (0.002)  0.004* (0.002) 

  Girl 0.029 (0.018)  0.038** (0.017) 0.036** (0.018)  0.036** (0.018) 

  Lag child delinquency  0.663*** (0.040)  0.670*** (0.038) 0.610*** (0.051)  0.620*** (0.051) 

  Mother-to-child effects         

  Lag maternal depression 0.176*** (0.054)  0.204*** (0.057) 0.232*** (0.061)  0.022 (0.110) 

  Lag maternal depression × girl -0.202** (0.078) -0.253*** (0.074) -0.256*** (0.075) -0.256*** (0.074) 

  Sibling effects         

  Lag younger sib delinquency (age difference=3 yrs)  0.094 (0.062)  0.113* (0.059) 0.036 (0.071)  0.049 (0.073) 

  Lag younger sib × | age difference | 0.003 (0.022)  0.001 (0.021) 0.002 (0.021)  0.002 (0.021) 

  Lag older sib delinquency (age difference=3 yrs) 0.108** (0.043)  0.097** (0.040) 0.034 (0.052)  0.046 (0.052) 

  Lag older sib × | age difference | -0.017* (0.009) -0.014 (0.008) -0.013 (0.008) -0.013 (0.008) 
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- log likelihood 714.11 736.00 738.32 741.06 

 
Note. Standard errors are in parentheses. M1 includes uncorrelated occasion-level residuals, M2 extends M1 to include residual correlations, M3 extends M2 

to include family effects, M4 includes a family-level residual correlation.  

*  p < .1. ** p < .05.  *** p < .001. 
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Table 3 

Residual Standard Deviations and Correlations from Selected Joint Models of Maternal 

Depression and Child Delinquency, with and without Family-level Random Effects 

 
 M2 (without family)  M4 (with family)  

Maternal depression equation (
)(P

ty )     

Occasion level     

   SD of 
)(P

tje at t = 1 0.150*** (0.008) 0.104*** (0.012) 

   SD of 
)(P

tje at t = 2, 3 0.111*** (0.005) 0.090*** (0.007) 

     

Family level     

   SD of 
)(P

jv  0
†
  0.106*** (0.015) 

     

Child delinquency equation (
)(C

ty )     

Occasion level     

   SD of 
)(C

tije at t = 1 0.171*** (0.006) 0.163*** (0.007) 

   SD of 
)(C

tije at t = 2, 3 0.141*** (0.004) 0.138*** (0.005) 

   Between-sibling correlation at t = 1 0
†
  0

†
  

   Between-sibling correlation at t = 2 0.340*** (0.066) 0.296*** (0.079) 

   Between-sibling correlation at t = 3 0
†
  0

†
  

     

Family level     

   SD of 
)(C

jv  0
†
  0.052*** (0.012) 

     

Mother-child correlations      

Occasion level     

   
),corr( )()( C

tij

P

tj ee at t = 1 0.160*** (0.042) -0.014 (0.116) 

   
),corr( )()( C

tij

P

tj ee at t = 2, 3 0.131*** (0.044) 0.042 (0.089) 

     

Family level     

   
),corr( )()( C

j

P

j vv  0
†
  0.869** (0.345) 

-log likelihood 736.00 741.06 

 
Note. Standard errors are in parentheses. 

† 
Parameter constrained to zero.  

*  p < .1. ** p < .05.  *** p < .001. 
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Figure 1.  Lags and cross-lags in multilevel simultaneous equations model for parent-child 

reciprocal effects and sibling effects on responses at time t-1 and t in a two-child family j  
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