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Abstract

We consider the incidental parameters problem in this paper, i.e. the estimation for a small number
of parameters of interest in the presence of a large number of nuisance parameters. By assuming that the
observations are taken from a multiple strictly stationary process, the two estimation methods, namely the
maximum composite quasi-likelihood estimation (MCQLE) and the maximum plug-in quasi-likelihood
estimation (MPQLE) are considered. For the MCQLE, we profile out nuisance parameters based on
lower-dimensional marginal likelihoods, while the MPQLE is based on some initial estimators for nuisance
parameters. The asymptotic normality for both the MCQLE and the MPQLE is established under the
assumption that the number of nuisance parameters and the number of observations go to infinity together,
and both the estimators for the parameters of interest enjoy the standard root-n convergence rate. Simulation
with a spatial–temporal model illustrates the finite sample properties of the two estimation methods.
Crown Copyright c⃝ 2013 Published by Elsevier B.V. All rights reserved.

Keywords: Composite likelihood; Incidental parameters problem; Nuisance parameter; Panel data; Profile likelihood;
Quasi-likelihood; Root-n convergence; Spatial autoregressive model; Stationary process; Time series; U -statistic

1. Introduction

Rapid developments in technology in this information age have lead to data collection in an
unprecedently large scale. This brings new opportunities with challenges to statistics. The avail-
ability of large data sets enables statisticians to look into complex structures using sophisticated
models. In this paper we consider a class of models in which the number of parameters of interest
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is small while the number of nuisance parameters is large or excessively large in relation to the
sample size. Those models arise in various statistical applications. For example, in a longitudinal
or a panel data model with a large number of sites the primary interest lies in a small number
of parameters representing the common effects while the individual levels of different sites are
treated as nuisance parameters [1, Chapter 2]. For a large panel of time series data, one is often
interested in a few common factors which drive the dynamics of all the component series and
treat the parameters representing each idiosyncratic components as nuisance parameters. In the
attempt to model the volatilities of a large number of financial securities, it is often assumed that
the dynamic volatilities are controlled by a small number of parameters in the presence of a large
number of nuisance parameters for marginal covariance matrices [14]. For a spatio-temporal
study focusing on the spatial correlation, the parameters determining the temporal dynamics at
each location are treated as nuisance parameters (see, for example, the example in Section 4).

In this paper we consider two methods of estimating a small number of parameters of interest
in the presence of a large number of nuisance parameters, namely the maximum composite
quasi-likelihood estimation (MCQLE) and the maximum plug-in quasi-likelihood estimation
(MPQLE). The composite likelihood, the name coined by Lindsay [24], is a function derived by
multiplying a collection of, typically two- or three-dimensional, marginal density functions. Its
composition is often dictated by, among other things, the computational feasibility. See a recent
survey by Varin et al. [30]. In our context, each low dimensional density function only depends
on a small number of nuisance parameters, hence can be easily profiled. The resulting composite
profile likelihood function depends on those parameters of interest only, and can be solved to
obtain the estimator without running into a high-dimensional optimization problem. Because
the marginal densities are multiplied together, ignoring the original distribution structure, the
MCQLE can be viewed as derived from a (seriously) misspecified model. On the other hand,
the MPQLE maximizes a quasi-likelihood function with a plug-in estimator for the nuisance
parameter vector. Therefore we avoid a maximization problem with a large number of variables.
However it is intuitively clear that the quality of the initial estimator impacts on the ultimate
outcome of the procedure. When the number of nuisance parameters is large, the estimation for
all of them collectively is typically poor. A case in point is the estimation for large covariance
matrices; see, for example, Fig. 1 of Tao et al. [29].

The major contribution of this paper includes the asymptotic properties for both the MCQLE
and the MPQLE under the assumption which is relevant to the problem concerned. The
conventional asymptotic theory is typically under the assumption that the sample size goes to
infinity while everything else remains fixed. For our setting, the number of nuisance parameters
is of a comparable magnitude to the sample size. Hence it is more pertinent to consider the
asymptotics when both the sample size and the number of nuisance parameters go to infinity
together. We adopt the setting under which the observations are taken from a multiple strictly
stationary process and the dimension of the process may also go to infinity together with the
sample size. The setting is generic and the results are applicable to the relevant inference
problems in; for example, multiple time series, panel data and spatio-temporal models. Though
bearing a similar banner, our theory is different from the large body of literature on the so-
called ‘large p and small n’ regression problem; see, among others, Fan and Lv [15], Zhang and
Huang [32], and Bickel et al. [6].

The name of ‘composite likelihood’ was introduced by Lindsay [24], although the idea of
using ‘submodels’ or ‘marginal models’ had appeared before. As the full likelihood with complex
models are often computationally infeasible, the composite likelihood methods have been used
in different problems including, for example, regression with dependent errors [12], modeling
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for spatial processes [5], case control studies [23], inference for nonlinear dynamic models [17],
correlated binary data [18], grouped data [11], longitudinal studies [25], multivariate volatility
modeling [14], and bioinformatics [20]. The asymptotic theory under the assumption that only
sample size tends to infinity has been studied by, for example, Cox [8], Eicker [12], Gallant and
White [17], and Cox and Reid [9]. For more comprehensive survey on the composite likelihood
methodology, we refer the reader to the first issue of Statistica Sinica 2011, vol. 21 which
contains a collection of the papers on this topic.

The estimation problem concerned in this paper was initially termed as an incidental param-
eters problem by Neyman and Scott [26]. See also the survey by Lancaster [19]. Parameters of
interest are ‘structural’ and nuisance parameters are ‘incidental’ in Neyman and Scott’s terminol-
ogy. (The word ‘nuisance’ suggests that those parameters are burdensome or even annoying while
‘incidental’ is much milder. Barndorff-Nielsen [2, p.33], prefers incidental to nuisance, finding
the latter ‘somewhat emotional’.) One of the classical examples of the incidental parameters
problem concerns the estimation for the common variance parameter σ 2 of n×r independent and
normal observations with n different mean values µ1, . . . , µn . Then when n → ∞ but r fixed,
the maximum likelihood estimator for the ‘structural’ parameter σ 2 is not ever consistent due
to the inconsistent estimators for the incidental parameters µ1, . . . , µn , though a consistent and
efficient estimator for σ 2 exists. See Example 7.9 on p. 482 of Lehmann and Casella [21]. This is
because that the information on each incidental parameter µi does not increase when n increases.
Neyman and Scott [26] labels the data in such a scenario as ‘partially consistent observations’,
as one only can estimate structural parameters consistently but not the incidental parameters.
More traditional likelihood approaches for incidental parameter problems include, for example,
a conditional likelihood method based on a conditional distribution which is free from incidental
parameters [3,2], a partial likelihood method based on a statistic of which the density function is
free from the incidental parameters [7], and a profile likelihood obtained by replacing incidental
parameters by their maximum likelihood estimators [10]. On the other hand, a Bayesian treatment
may integrate the incidental parameters with respect to a prior distribution [4]. See also Reid [27].

The proposed methods in this paper are designed for complex applications with large and
high-dimensional data when incidental-parameter-free conditional or partial likelihoods do not
exist, profiling a likelihood directly leads to a high-dimensional optimization problem which
is computationally infeasible. On the other hand, the information on incidental parameters also
increases in our asymptotic framework in the sense that each of those incidental parameters can
be estimated consistently at least in principle. Hence our setting is different from the setting with
‘partially consistent observations’ in Neyman and Scott’s terminology.

The rest of the paper is organized as follows. Section 2 deals with the MCQLE and Section 3
is on MPQLE. We outline the estimation methods and state the asymptotic normality results.
In Section 4 the finite sample properties of both the methods are illustrated in a small scale
simulation with a simple spatio-temporal model. It reveals the advantages of using the MCQLE
when the number of nuisance parameters is large in relation to the sample size, the phenomenon
observed in Engle et al. [14] with a high-dimensional volatility model. All technical proofs are
given in Sections 5 and 6. An extension on the U -statistic, which plays a key role in establishing
the asymptotic normality, is presented in the Appendix.

2. Composite-likelihood estimation

Let {X1, . . . ,Xn} be p × 1 observations from a strictly stationary process with the underlying
distribution depending on parameter (θ ,ω) ∈ Θ × Ω ⊂ Rd+q , where θ is a d × 1 parameter
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of interest, and ω is a q × 1 nuisance parameter. Our goal is to estimate θ . We consider now
a maximum composite quasi-likelihood estimation method for θ . We will show that such an
estimator is asymptotically normal with the standard root-n convergence rate as n, q → ∞

together while d is fixed, and p may also diverge to infinity.
Let Xt1, . . . ,Xtr be r subvectors of Xt . The lengths of those r subvectors may be different

from each other, some of those subvectors may share common components of Xt . With the
observations Xt j , t = 1, . . . , n, the log marginal quasi-likelihood function is defined as

l j (θ ,ω j ) =

n
t=1

log f j (Xt j ; θ ,ω j ),

which depends on the parameter of interest θ , and a subset of nuisance parameters denoted by
ω j . Let

ω j (θ) = arg max
ω j

l j (θ ,ω j ). (2.1)

We define a composite quasi-likelihood function for θ as

l(θ) =

r
j=1

l j

θ ,ω j (θ)


. (2.2)

The maximum composite quasi-likelihood estimator (MCQLE) for θ is defined as

θ = arg max
θ

l(θ). (2.3)

We assume that r = r(q) → ∞ as q → ∞, while all the lengths of Xt j and ω j are fixed.
One implicit condition for the MCQLE defined in (2.3) being reasonable is that the nuisance

parameters ω1, . . . ,ωr are distinct from each other such that the maximization (2.1) may be
carried out independently for each j without confounding constraints from each other. This
is a strong requirement, and may only be facilitated by selecting subvectors Xt1, . . . ,Xtr in a
restrictive manner. It may make this approach infeasible or lead to a heavy loss of information.
One alternative is to adopt the so-called ‘variation-free’ condition imposed by Engle, Hendry
and Richard [13], which treats ω1, . . . ,ωr as different and unconnected nuisance parameters.
See also Engle, Shephard and Sheppard [14]. Of course there will be some efficiency loss in
estimation for θ resulted from neglecting the links among different ω j . The trade-off is that
we will be able to reduce a high-dimensional optimization problem to many low-dimensional
problems, which is the essential motivation of using the composite-likelihood approach. Note
that this variation-free condition also implies thatθ is the global maximizer in the sense that

(θ ,ω1, . . . ,ωr ) = arg max
θ ,ω1,...,ωr

r
j=1

l j (θ ,ω j ),

where we treat ω1, . . . ,ωr as different and independent parameters. In the rest of this section,
we always adopt this assumption.

Let β = (θ ′,ω′

1, . . . ,ω
′
r )

′, and l(β) =
r

j=1 l j (θ ,ω j ). We take β = (θ ′
,ω′

1, . . . ,ω′
r )

′ as a
solution of the likelihood equation

l̇(β) ≡
∂

∂β
l(β)


β=β = 0. (2.4)
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Let

βo ≡ (θ ′
o,ω

′

1o, . . . ,ω
′
ro)

′
= arg max

θ ,ω1,...,ωr
E


r

j=1

log f (Xt j ; θ ,ω j )


(2.5)

be the true value of the parameter, which is assumed to be an inner point of the (expanded)
parameter space. Put

at j (θ ,ω j ) =
∂

∂θ
log f j (Xt j ; θ ,ω j ), bt j (θ ,ω j ) =

∂

∂ω j
log f j (Xt j ; θ ,ω j ),

At j (θ ,ω j ) =
∂2

∂θ∂θ ′
log f j (Xt j ; θ ,ω j ), Bt j (θ ,ω j ) =

∂2

∂θ∂ω′

j
log f j (Xt j ; θ ,ω j ),

Ct j (θ ,ω j ) =
∂2

∂ω j∂ω
′

j
log f j (Xt j ; θ ,ω j ).

We simply write at j = at j (βo,ω jo), and bt j ,At j ,Bt j and Ct j in the same manner. Put

M1 = −



r
j=1

EAt j EBt1 · · · EBtr

EB′

t1 ECt1
...

. . .

EB′
tr ECtr

 , (2.6)

M2 = −



1
r

r
j=1

EAt j
1

√
r

EBt1 · · ·
1

√
r

EBtr

1
√

r
EB′

t1 ECt1

...
. . .

1
√

r
EB′

tr ECtr


, (2.7)

and the elements at the blank places in the above matrices are 0.
We introduce some regularity conditions first.

A1 {Xt } is α-mixing and satisfies the mixing condition in C3 in the Appendix.
A2 f j are smooth enough such that all the required derivatives exist and are continuous and

integrable whenever necessary.
A3 Denote by ξt j any component of at j , and ηt j any component of bt j . For ν > 2 given in A1

above, it holds that

lim
r→∞

E

1r
r

j=1

ξt j

ν

< ∞, (2.8)

lim
r→∞

1
r

r
j=1

[E(η2
t j )+ {E(|ηt j |

ν)}2/ν
] < ∞. (2.9)

A4 Denote by ηt j any element of At j − E(At j ),Bt j − E(Bt j ) or Ct j − E(Ct j ). Then (2.9) holds.
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A5 The matrix M1 is positive-definite. Furthermore all the eigenvalues of the matrix M2 are
bounded above from ∞ and below from 0, as r → ∞.

A6 There exist a constant c1 > 0 and positive functions λ j (·) such that |
∂3

∂βℓ∂βi ∂βk
log f j (x j ; θ ,

ω j )| ≤ λ j (x j ) for any ∥θ − θo∥ ≤ c1 and ∥ω j − ω jo∥ ≤ c1. Furthermore limr→∞

sup1≤ j≤r E{λ j (Xt j )} < ∞, and (2.9) holds with ηt j = λ j (Xt j )− E{λ j (Xt j )}.

A7 (2.9) holds with ηt j being any component of ζ t j ≡ at j − E(B1 j )(EC1 j )
−1bt j . Furthermore

the limits

Wk = lim
r→∞

1

r2


r

j=1

ζ 1 j ,

r
j=1

ζ k+1, j


, k = 0, 1, . . . , n

exist.

Remark 1. (i) Note that M1 = −E


∂2

∂β∂β ′

r
j=1 log f j (Xt j ; θ ,ω j )


. The condition that M1 >

0 in A5 implies that βo, defined in (2.5), is an isolated maximizer. It also implies M2 is positive-
definite as M2 = ΛM1Λ, where Λ is a full-ranked diagonal matrix.

(ii) If X1, . . . ,Xn are independent observations, conditions A3, A4 and A6 may be reduced
to those with ν = 2 only.

Theorem 1. Let conditions A1–A6 hold. Then there exists a solution of the likelihood
equation (2.4) for which

m


∥θ − θo∥

2
+

1
r

r
j=1

∥ω j − ω jo∥
2


P

−→ 0

for any m → ∞, r/m → 0 and r2m/n → 0.

Remark 2. The convergence rates in Theorem 1 are not optimal; see, for example, Theorem 2
which indicates that the convergence rate for θ is root-n. The important message here is the
difference in the convergence rates between θ and {ω j , j = 1, . . . , r}. As r → ∞ together
with n, the rate for the uniform convergence of ω1, . . . ,ωr is slower. It also imposes some
restriction on the number of (nuisance) parameters which can be consistently estimated, although
the implied rates such as r = o(n1/3) are presumably too restrictive.

Theorem 2. Let conditions A1–A7 hold, matrices E(C1 j ), j = 1, . . . , r , be invertible, and the
limit of M2, defined in (2.7), exist (as r → ∞). Furthermore, let r/n → 0. For any consistent
solution of the likelihood equation (2.4) in the sense that

∥θ − θo∥
2
+

r
j=1

∥ω j − ω jo∥
2 P

−→ 0, (2.10)

it holds that

√
n(θ − θo)

D
−→ N


0,L−1


W0 + 2

∞
k=1

Wk


L−1


,

where Wk are defined in A7, and L = limr→∞ r−1r
j=1{E(A1 j )− E(B1 j )(EC1 j )

−1 E(B′

1 j )}.
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Remark 3. (i) The consistency condition (2.10) is weaker than that identified in Theorem 1,
as m/r → ∞.

(ii) The limit which defines the matrix L exists. This is implied by the existence of the limit
of M2.

3. Plug-in quasi-likelihood estimation

We consider now the asymptotic properties of a plug-in qMLE for θ , obtained based on
a reasonable initial estimator for the nuisance parameter ω. We will show that the qMLE is
asymptotically normal with the standard root-n convergence rate in spite that the number of
nuisance parameters q goes to ∞.

We use a log quasi-likelihood function

l(θ ,ω) =

n
t=1

log f (Xt ; θ ,ω), (3.1)

where f is a density function defined on Rp. With an initial estimator ω for the nuisance
parameter ω, a plug-in quasi-likelihood function for θ is defined as

l(θ) =

n
t=1

log f (Xt ; θ ,ω),
and the maximum plug-in quasi-likelihood estimator (MPQLE) is defined as

θ = arg max
θ

l(θ) = arg max
θ

n
t=1

log f (Xt ; θ ,ω).
Let (θo,ωo) = arg maxθ ,ω E{log f (Xt ; θ ,ω)} be the true parameter values. Since l̇(θ) = 0, it
follows from a Taylor expansion that

√
n(θ − θo) = −


1

nm
l̈(θ⋆)

−1 1

m
√

n
l̇(θo), (3.2)

where θ⋆ is between θ and θo, l̇ and l̈ are defined in (3.3), and m is a normalized constant
depending on q and determined by conditions B3 and B4 below.

We introduce regularity conditions first. Let

l̇(θ) =
∂l(θ)

∂θ
, l̈(θ) =

∂2l(θ)

∂θ∂θ ′
, a(x; θ ,ω) =

∂

∂θ
log f (x; θ ,ω), (3.3)

B(x; θ ,ω) =
∂2

∂θ∂θ ′
log f (x; θ ,ω), C(x; θ ,ω) =

∂2

∂θ∂ω′
log f (x; θ ,ω),

and D(θ ,ω) = E{C(Xt ; θ ,ω)}.

B1 The initial estimator ω = (ω1, . . . ,ωq)
′ is asymptotically linear in the sense that for

each 1 ≤ j ≤ q, ω j − ω jo =
1
n

n
t=1 g j (Xt ) + oP (n−1/2), where E{g j (Xt )} = 0,

Var{g j (Xt )} ≤ c < ∞, and c > 0 is a constant independent of j . Furthermore
∥ω − ωo∥

2
= OP (τn,q), where τn,q → 0 and τn,q

√
n/m → 0.
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B2 f (x; θ ,ω) is smooth such that all the required partial derivatives exist and are continuous.
Denote by a j the j-th component of a. There exist a positive number c1 and a positive
function λ1(·) such thatu′

∂2a j (x; θo,ω)

∂ω∂ω′
u
 ≤ λ1(x)∥u∥

2 for any ∥ω − ωo∥ ≤ c1,u ∈ Rq and 1 ≤ j ≤ q,

and E{λ1(Xt )} is bounded as q → ∞.
B3 {Xt } is β-mixing and satisfies condition C1 in the Appendix, and

ψn(Xt ,Xs) = {C(Xt ; θo,ωo)g(Xs)+ C(Xs; θo,ωo)g(Xt )}/m

satisfies condition C2.
(B4) For some γ > 2 and γ > δ′ given in C1, limq→∞ E{∥a(Xt ; θo,ωo) + 2D(θo,ωo)

g(Xt )∥
γ
}/mγ < ∞. Furthermore

Σ j ≡ lim
q→∞

1

m2 Cov{a(X1; θo,ωo)+ 2D(θo,ωo)g(X1),

a(X1+ j ; θo,ωo)+ 2D(θo,ωo)g(X1+ j )}

exists for all j ≥ 0.
(B5) Let bi j (x; θ ,ω) be the (i, j)-th element of B(x; θ ,ω). There exist a positive number c2 and

a positive function λ2(·) such that ∥
∂
∂θ

bi j (x; θ ,ω)∥ + ∥
∂
∂ω

bi j (x; θ ,ω)∥ ≤ λ2(x) for any
∥θ − θo∥ ≤ c2, ∥ω − ωo∥ ≤ c2 and 1 ≤ i, j ≤ d , the limit of E{bi j (Xt ; θo,ωo)}/m exists,
and both E{λ2(Xt ; θo,ωo)

ν
}/mν and E{bi j (Xt ; θo,ωo)

ν
}/mν are bounded (as q → ∞),

where ν > 2 is given as in C3. Furthermore,θ P
−→ θ0.

Theorem 3. Under condition B1–B5,
√

n(θ − θo) is asymptotically normal with mean 0 and
covariance matrix M−1(Σ 0+2


∞

j=1 Σ j )M−1, where M = limq→∞ E{B(Xt ; θo,ωo)}/m > 0,
and Σ j is defined in B4.

Remark 4. The collective quality of the estimation for all nuisance parameters is reflected by the
condition ∥ω−ωo∥

2
= OP (τn,q) in B1. With n observations and q (nuisance) parameters in total,

the average number of observations available for estimating each parameter may be regarded as
in the order of n/q. This suggests |ω j − ω jo|

2
= OP (q/n) for all 1 ≤ j ≤ q and, consequently,

q/n ≤ τn,q ≤ q2/n. In the case m = q, B1 implies q = o(
√

n) if τn,q = q2/n, and q = o(n) if
τn,q = q/n. Hence the maximum number of nuisance parameters allowed in Theorem 3 depends
on the quality of the initial plug-in estimatorω: the faster τn,q → 0, the larger q can be.

4. Numerical properties

We consider a simple spatio-temporal model

Yt = AYt−1 + Zt , Zt = ρHZt + εt , (4.1)

where Yt is a p × 1 vector, representing the values at time t over p locations, A =

diag(ω1, . . . , ωp) is a diagonal coefficient matrix, the innovation Zt in the AR equation is
unobservable and its components are correlated with each other. The correlation structure is
defined by the second equation above, in which H is a known p × p matrix with the main
diagonal elements equal to 0 and all the other elements equal to 1, ρ is an unknown parameter,
and εt are independent N (0, σ 2Ip) random vectors, where Ip denotes the p × p identity matrix.
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The second equation in (4.1) is a simple example of spatial autoregressive models in the spatial
econometrics literature; see, e.g. LeSage and Pace [22].

Under the above setting, each component of Yt follows an AR(1) model. However those
components are correlated due to the spatial dependence in Zt . Based on observations
Y1, . . . ,Yn , we are interested in estimating the parameter θ = (ρ, σ 2)′ which determines the
spatial correlations among different locations, treating the temporal autoregressive parameters
ω1, . . . , ωp as nuisance parameters. We conduct a simulation to compare the performance of the
MPQLE and MCQLE for θ . Note for this example that there are q = p nuisance parameters
ω = (ω1, . . . , ωp)

′.

For the MPQLE, we estimate nuisance parameter ω j by the ordinary least squares estimation
using the j-th component series of Yt = (Yt1, . . . , Ytp)

′ only, i.e.

ω j =

n
t=2

Yt j Yt−1, j

 n
t=2

Y 2
t−1, j , j = 1, . . . , p. (4.2)

Let A = diag(ω1, . . . ,ωp). This leads to the residuals Zt = Yt − AYt−1. It follows from the
second equation in (4.1) that

Zt ∼ N


0, σ 2(Ip − ρH)−2

. (4.3)

Hence the MPQLE is defined as

(ρ,σ 2) = arg min
ρ,σ 2


p log(σ 2)− log(|Ip − ρH|

2)

+
1

σ 2(n − 1)

n
t=2

Z′
t (Ip − ρH)2Zt


. (4.4)

Note that the determinant |Ip − ρH| admits an explicit formula:

|Ip − ρH| = (1 + ρ)p−1
{1 − (p − 1)ρ}, p = 1, 2, . . . .

To construct an MCQLE, we first calculate the profile likelihood for (ρ, σ 2) by maximizing
the likelihood based on the component observations {(Yt, j−1, Yt j )} over (ω j−1, ω j ), for j =

2, . . . , p. This leads to

{ω j−1(ρ), ω j (ρ)} = arg min
ωi ,ω j

n
t=2


τ(Yt, j−1 − ω j−1Yt−1, j−1)

2
+ τ(Yt j − ω j Yt−1, j )

2

− 2ν(Yt, j−1 − ω j−1Yt−1, j−1)(Yt j − ω j Yt−1, j )

, (4.5)

where τ ≡ τ(ρ) = Var(Z t j )/σ
2 and ν = ν(ρ) = Cov(Z t j , Z t, j−1)/σ

2. Note that ω j (ρ)

obtained from the pairing with ω j−1(ρ) above differs from that obtained from the pairing with
ω j+1(ρ), as we adhere the ‘variation-free’ condition discussed in Section 2. Now let

Z t, j−1 ≡ Z t, j−1(ρ) = Yt, j−1 − ω j−1(ρ)Yt−1, j−1,Z t, j ≡ Z t, j (ρ) = Yt, j − ω j (ρ)Yt−1, j .



2886 B. Wu et al. / Stochastic Processes and their Applications 123 (2013) 2877–2898

Our MCQLE is defined as

(ρ,σ 2) = arg min
ρ,σ 2


log(σ 2)+

1
2

log(τ 2
− ν2)+

1

2(n − 1)(p − 1)(τ 2 − ν2)

×

p
j=2

n
t=2

(τZ2
t, j + τZ2

t, j−1 − 2νZ t, jZ t, j−1)


. (4.6)

Note that both τ and ν in (4.5) and (4.6) can be explicitly expressed as functions of ρ. To this
end, let G ≡ (gi j ) = (Ip − ρH)−1. Then

gi i =
1 − (p − 2)ρ

{1 − (p − 1)ρ}(1 + ρ)
, gi j =

ρ

{1 − (p − 1)ρ}(1 + ρ)
(i ≠ j).

It follows from (4.3) that τ is the main-diagonal element of G2, and ν is the off-main-diagonal
element of G2. Hence

τ =
{1 − (p − 2)ρ}

2
+ (p − 1)ρ2

{1 − (p − 1)ρ}2(1 + ρ)2
, ν =

2ρ{1 − (p − 2)ρ} + (p − 2)ρ2

{1 − (p − 1)ρ}2(1 + ρ)2
.

We conducted a simulation to compare the performance of the MPQLE (4.4) and the MCQLE
(4.6). We set the sample size n = 100 or 300, the parameter ρ = 0.1, 0.5 or 0.9 and σ 2

= 1. For
n = 100, we set the number of locations p = 10, 50 or 100. For n = 300, we set p = 30, 150
or 300. For each setting, we drew 200 samples. For each sample, nuisance parameters ω j were
drawn independent from the uniform distribution on the interval [−0.9, 0.9]. Table 1 lists the
mean absolute estimation errors (i.e. in the form 0.5(|ρ − ρ| + |σ 2

− σ 2
|)) over the 200 samples

for all different settings.
Since the composite likelihood is a wrong likelihood, it is not surprising to see that the

MPQLE, which was calculated based on the correct likelihood or marginal likelihood functions,
outperforms the MCQLE under the ‘normal’ circumstances (i.e. when p is relatively small with
respect to n). However when p is large in relation to n, the MPQLE suffers from too many initial
estimates ω j defined in (4.2); some of them are bound to be poor or very poor. In contrast, the
MCQLE profiles out the nuisance parameters ω j in (4.5), which makes the use of the pairwise
correlations. Although the form of the likelihood function in (4.6) is wrong, it does not involve
any initial estimates. Table 1 indicates that the MCQLE provides more accurate estimates than
the MPQLE when, for example, p = n = 300, and also p = n = 100 and ρ ≥ 0.5. This is also
the case when the spatial correlation is strong (e.g. ρ = 0.9 or 0.5) and p is moderately large
(e.g. p = 150 and n = 300). Note that for the MPQLE the spatial correlations were completely
ignored in estimating nuisance parameters ω j (see (4.2)). In contrast the pairwise correlation
structure was utilized in (4.5) in deriving the MCQLE.

5. Proofs of Theorems 1 and 2

We use the same notation as in Section 2.

5.1. Proof of Theorem 1

The basic idea in the proof of Theorem 1 is the same as that of Theorem 6.5.1 of Lehmann
and Casella [21], although it becomes technically more involved in order to handle the increasing
number of parameters as n → ∞.
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Table 1
The mean absolute errors of the MCQLE and the MPQLE over 200 replications.

n p ρ = 0.1 ρ = 0.5 ρ = 0.9
MCQLE MPQLE MCQLE MPQLE MCQLE MPQLE

100 10 0.031 0.029 0.412 0.082 0.482 0.106
50 0.355 0.017 0.485 0.370 0.532 0.596

100 0.372 0.18 7 0.442 0.449 0.599 0.729

300 30 0.226 0.038 0.398 0.081 0.399 0.641
150 0.408 0.219 0.407 0.902 0.436 0.703
300 0.442 0.880 0.479 0.960 0.596 0.981

Let

Qδ =


(θ ,ω1, . . . ,ωr )

∥θ − θo∥
2
+

1
r

r
j=1

∥ω j − ω jo∥
2

= δ2/m


.

We will show that for any δ > 0 fixed, l(β) < l(βo), for all β ∈ Qδ , with probability converging
to 1. Therefore with probability arbitrarily close to 1 l(β) attains a local maximum in the interior
of Qδ for all sufficiently large n. Let β be the local maximum closest to β0. By the above
argument,β must lie in the interior of Qδ for any δ > 0. This entails the required assertion.

To establish the required fact concerning the behavior of l(β) on Qδ , we evoke a Taylor
expansion:

1
nr


l(β)− l(βo)


=

1
nr
(β − βo)

′l̇(βo)+
1

2nr
(β − βo)

′l̈(βo)(β − βo)

+
1

6nr


ℓ,i,k

(βℓ − βℓo)(βi − βio)(βk − βko)
∂3

∂βℓ∂βi∂βk
l(β⋆) ≡ S1 + S2 + S3, (5.1)

where β⋆ lies between β and βo.

For β ∈ Qδ , write θ − θo =
δ

√
m

γ and ω j − ω jo = δ


r
m γ j . Then all the elements of γ and

γ j are between −1 and 1. Furthermore,

S1 =
δγ ′

n
√

m

n
t=1

1
r

r
j=1

at j +
δ
√

r

n
√

m

n
t=1

1
r

r
j=1

γ ′

j bt j . (5.2)

Let ξt j denote any component of at j . Since E(


j at j ) = 0, it holds for any ϵ > 0 that

P

√
m

n

n
t=1

1r
r

j=1

ξt j

 > ϵ


≤

m

nϵ2


Var(ζtr )+ 2

n−1
t=1


1 −

t

n


Cov(ζ1r , ζ1+t,r )



≤
m

nϵ2


Var(ζtr )+ 2E(|ζtr |

ν)2/ν
∞

t=1

α(t)1−2/ν


→ 0. (5.3)

where ζtr = r−1
1≤ j≤r ξt j . The last inequality follows from Proposition 2.5 of Fan and

Yao [16]; see also conditions A1 and A3. Hence the first sum on the RHS of (5.2) is of the
order oP (m−1), and the convergence is uniform for γ in any compact subset of Rd .
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To estimate the second term on the RHS of (5.2), let d j denotes the length of bt j ≡

(bt j1, . . . , bt jd j )
′. Then max1≤ j≤r d j are bounded (as r → ∞). Note

sup
{γ j }

 n
t=1

r
j=1

γ ′

j bt j

 = sup
{γ j }

 r
j=1

γ ′

j

n
t=1

bt j

 ≤

r
j=1

d j
i=1

 n
t=1

bt j i

.
Hence

P


sup
{γ j }

√
rm

n

 n
t=1

1
r

r
j=1

γ ′

j bt j

 > ϵ


≤ P


√

rm

n

r
j=1

d j
i=1

 n
t=1

bt j i

 > ϵr


≤

r
j=1

P


√

rm

n

d j
i=1

 n
t=1

bt j i

 > ϵ

 ≤

r
j=1

d j
i=1

P

√
rm

n

 n
t=1

bt j i

 > ϵ/d j



≤

rm


max

j
d j

2

nϵ2

r
j=1

d j
i=1


Var(bt j i )+ 2(E |bt j i |

ν)2/ν
∞

t=1

α(t)1−2/ν


→ 0, (5.4)

as r2m/n → 0 and condition A3. The last inequality in the above expression follows the same
argument as for (5.3). This shows that the second sum on the RHS of (5.2) is also oP (m−1).
Therefore S1 = oP (m−1), and the convergence is uniform for β ∈ Qδ .

To calculate S2, we first note that similar to (5.4), condition A4 implies that

1
nr

n
t=1

r
j=1

(θ − θo)
′At j (θ − θo)−

1
r

r
j=1

(θ − θo)
′E(A1 j )(θ − θo)

=
1
n

n
t=1

1
r

r
j=1

(θ − θo)
′(At j − EAt j )(θ − θo) = oP (m

−1),

1
nr

n
t=1

r
j=1

(θ − θo)
′Bt j (ω j − ωt j )−

1
r

r
j=1

(θ − θo)
′E(B1 j )(ω j − ωt j ) = oP (m

−1),

1
nr

n
t=1

r
j=1

(ω j − ωt j )
′Ct j (ω j − ωt j )−

1
r

r
j=1

(ω j − ωt j )
′E(C1 j )(ω j − ωt j )

= oP (m
−1).

Furthermore, all the convergences above are uniform for β ∈ Qδ , as the sizes of all the matrices
on the LHS in the above expressions are fixed, and the uniform convergence may be established
in the same manner as in (5.4). Now

S2 =
1

2nr

n
t=1

r
j=1

{(θ − θo)
′At j (θ − θo)+ 2(θ − θo)

′Bt j (ω j − ω jo)

+ (ω j − ω jo)
′Ct j (ω j − ω jo)}

=
1 + oP (1)

2r

r
j=1

{(θ − θo)
′EAt j (θ − θo)+ 2(θ − θo)

′EBt j (ω j − ω jo)

+ (ω j − ω jo)
′ECt j (ω j − ω jo)}

= −
1
2r
(β − βo)

′M1(β − βo){1 + oP (1)} = −
1
2
β ′

r M2βr {1 + oP (1)},
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where M1,M2 are defined in (2.6) and (2.7), and

βr = ((θ − θo)
′, (ω1 − ω1o)

′/
√

r , . . . , (ωr − ωro)
′/

√
r)′.

For β ∈ Qδ , ∥βr∥
2

= δ2/m. Since all the eigenvalues of M2 are bounded between 0 and
∞ (see condition A5), β ′

r M2βr = 2c∥βr∥
2

= 2cδ2/m, where c > 0 is a constant. Hence
S2 = −cδ2/m{1 + oP (1)} uniformly for all β ∈ Qδ .

Finally we deal with S3. Note that ∂2

∂ωi ∂ω
′
j
l(β) = 0 for any i ≠ j . Similar to the above, it may

be proved using condition A6 that

|S3| ≤
1 + oP (1)

6r


ℓ,i,k

(θℓ − θℓo)(θi − θio)(θk − θko)

 r
j=1

E{λ j (Xt j )}

+


i,k

(θi − θio)(θk − θko)

 r
j=1


ℓ

(ω jℓ − ω jℓo)

E{λ j (Xt j )}

+


k

(θk − θko)

 r
j=1


ℓ,i

(ω jℓ − ω jℓo)(ω j i − ω j io)

E{λ j (Xt j )}

+

r
j=1


ℓ,i,k

(ω jℓ − ω jℓo)(ω j i − ω j io)(ω jk − ω jko)

E{λ j (Xt j )}


≡ (S31 + S32 + S33 + S34){1 + oP (1)}.

Note that E{λ j (Xt j )} is bounded by a constant for 1 ≤ j ≤ r , |θi − θio| ≤ δ/
√

m and
|ω jk − ω jko| ≤ δ

√
r/m for all β ∈ Qδ , and all the lengths of ω j are bounded. It is easy to

see that S31 = O(m−3/2) = o(m−1) and S32 = O(m−3/2r1/2) = o(m−1). On the other hand,

S33 ≤
c2

r
√

m

r
j=1


ℓ,i

(ω jℓ − ω jℓo)(ω j i − ω j io)

 =
c2

r
√

m

r
j=1


i

(ω j i − ω j io)

2
≤

c3

r
√

m

r
j=1

∥ω j − ω jo∥
2

≤
c3

m3/2 = o(m−1),

S34 ≤
c4

√
mr

r
j=1


i

(ω j i − ω j io)

2≤ c5r1/2

m3/2 = o(m−1).

This concludes that S3 = oP (m−1).
Combining the above asymptotic approximations for S1, S2 and S3 together, we have shown

that uniformly for β ∈ Qδ

1
nr


l(β)− l(βo)


= −cδ2/m + oP (m

−1),

where c > 0 is a constant. This completes the proof. �

5.2. Proof of Theorem 2

Since l̇(β) = 0, it follows a simple Taylor expansion that

β − βo = −{l̈(β⋆)}−1l̇(βo), (5.5)
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where l̈ =
∂2l
∂β∂β ′ , and β⋆ lies on the line betweenβ and βo. Note that

l̈(β) =

n
t=1



r
j=1

At j (θ ,ω j ) Bt j (θ ,ω1) · · · Btr (θ ,ωr )

Bt1(θ ,ω1)
′ Ct1(θ ,ω1)

...
. . .

Btr (θ ,ωr )
′ Ctr (θ ,ωr )

 ,

where the entries at the blank places are all 0. We partition the above matrix into 2 × 2 blocks
with


t


j At j (θ ,ω j ) as the (1, 1)-th block. By taking the inverse of this partitioned matrix,
the first d components of (5.5) may now be expressed as

√
n(θ − θo) = −

 1
nr

r
j=1


n

t=1

At j (θ
⋆,ω⋆j )

−

n
t=1

Bt j (θ
⋆,ω⋆j )


n

t=1

Ct j (θ
⋆,ω⋆j )

−1 n
t=1

Bt j (θ
⋆,ω⋆j )

′


−1

×
1

√
nr

r
j=1

 n
t=1

at j −

n
t=1

Bt j (θ
⋆,ω⋆j )


n

t=1

Ct j (θ
⋆,ω⋆j )

−1 n
t=1

bt j

 . (5.6)

For any matrix B, denote by |B|a the sum of the absolute values of all the elements of B. Note
that all the sizes of the matrices At j ,Bt j and Ct j are bounded. It follows from condition A6 that

max
1≤ j≤r

1n
n

t=1

At j (θ
⋆,ω⋆j )− E(A1 j )


a

≤ max
1≤ j≤r

1
n

 n
t=1


At j (θ

⋆,ω⋆j )− At j


a

+ max
1≤ j≤r

1n
n

t=1

At j − E(A1 j )


a

≤


|θ⋆ − θo|a + max

1≤ j≤r
|ω⋆j − ω jo|a


max

1≤ j≤r

1
n

n
t=1

λ j (Xt j )

+ max
1≤ j≤r

1n
n

t=1

At j − E(A1 j )


a
. (5.7)

For any ϵ > 0,

P


max

1≤ j≤r

1n
n

t=1

At j − E(A1 j )


a
> ϵ


≤

r
j=1

P

1n
n

t=1

At j − E(A1 j )


a
> ϵ



≤
c

n


ηt j

r
j=1


Var(ηt j )+ 2{E(|ηt j |

ν)}2/ν
∞

k=1

α(k)1−2/ν


→ 0. (5.8)

The limit above is guaranteed by condition A4 and the fact that r/n → 0. In the above expression,
ηt j denotes a generic element of At j , and the sum


ηt j

is taken over all the elements of At j .
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The last inequality follows the same argument as in (5.3). In the same way we may show that

max j |
1
n

n
t=1[λ j (Xt j )− E{λ j (Xt j )}]|

P
−→ 0, and therefore

max
1≤ j≤r

1
n

n
t=1

λ j (Xt j ) = OP (1). (5.9)

Now we show that

max
1≤ j≤r

|ω⋆j − ω jo|a
P

−→ 0. (5.10)

It follows from (2.10) that for any ϵ > 0, it holds for all sufficiently large n that

P


r

j=1

∥ω j − ω jo∥
2

≤ ϵ2/k2
0 j


> 1 − ϵ,

where k0 is the maximum length of the vectors ω1, . . . ,ωr , which is fixed. Since ω⋆j lies betweenω j and ω jo, |ω⋆j − ω jo|a ≤ |ω j − ω jo|a . Hence

P


max

1≤ j≤r
|ω⋆j − ω jo|a ≤ ϵ


≥ P


max

1≤ j≤r
|ω j − ω jo|a ≤ ϵ


≥ P


r

j=1

∥ω j − ω jo∥
2

≤ ϵ2/k2
0


> 1 − ϵ.

Therefore (5.10) holds. Combining (5.7)–(5.10), we conclude that

max
1≤ j≤r

1n
n

t=1

At j (θ
⋆,ω⋆j )− E(A1 j )


a

P
−→ 0. (5.11)

It may be established in the same manner that

max
1≤ j≤r

1n
n

t=1

Bt j (θ
⋆,ω⋆j )− E(B1 j )


a

P
−→ 0,

max
1≤ j≤r

1n
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t=1

Ct j (θ
⋆,ω⋆j )− E(C1 j )


a

P
−→ 0,

which implies that

max
1≤ j≤r

1n
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t=1

Bt j (θ
⋆,ω⋆j )
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′
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−1 E(B′
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a

P
−→ 0.

Combining this with (5.11), we obtain that

1
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n
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+ oP (1) → L.
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Using the similar arguments, we may show that

1
√

nr
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n
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Bt j (θ
⋆,ω⋆j )


n
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Ct j (θ
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−1 n
t=1

bt j

−
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Now it follows from (5.6) that

√
n
θ − θo


= L−1 1

√
n

n
t=1

1
r

y
j=1


at j − E(B1 j )(EC1 j )

−1bt j


1 + oP (1)

.

The required asymptotic normality follows from Proposition 2 in the Appendix now; see
condition A7. This concludes the proof. �

6. Proof of Theorem 3

Due to the plug-in of the nuisance parameter estimatorω in the likelihood function, the proof
of Theorem 3 relies on the asymptotic properties of a generalized U -statistic presented in the
Appendix.

Using the notation in Section 3, we have

1

m
√

n
l̇(θo)−

1

m
√

n

n
t=1

a(Xt ; θo,ωo) =
1

m
√
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{a(Xt ; θo,ω)− a(Xt ; θo,ωo)}

=
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+
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∂ω∂ω′
(ω − ωo)

...
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′
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=
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n3/2m
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C(Xt ; θo,ωo)g(Xs)+ OP


τn,q

√
n

m


, (6.1)

where ω⋆ is betweenω and ωo, and g = (g1, . . . , gq)
′. The last equality in the above expression

follows from conditions B1 and B2. Note that
n

t,s=1

C(Xt ; θo,ωo)g(Xs) = 2


1≤t<s≤n

{C(Xt ; θo,ωo)g(Xs)

+ C(Xs; θo,ωo)g(Xt )} +

n
t=1

C(Xt ; θo,ωo)g(Xt ). (6.2)
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By applying the Hoeffding decomposition (A.1) (with m = 2) to the first sum on the RHS of
(6.2), it follows from (6.1) and (6.2) that

1

m
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n
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√
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where
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.

By Proposition 1 in the Appendix, E{(n−1/2Ln)
2
} = O(n−1−γ ). Hence it holds for any

constant c,

P(|Ln| ≥ c) = P

n(n−1/2Ln)

2 > c


= n · O(n−1−γ ) = O(n−γ ) → 0;

see condition B3. We may also show in the similar (but simpler) manner that
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Therefore it follows from (6.3) that

1

m
√

n
l̇(θo) =

1

m
√

n

n
t=1

{a(Xt ; θo,ωo)+ 2D(θo,ωo)g(Xt )} + oP (1).

Note conditions B4 and B3 imply conditions C3 and C4. By Proposition 2,

1

m
√

n
l̇(θo)

D
−→ N


0,Σ 0 + 2

∞
j=1

Σ j


. (6.4)

Furthermore, the convergence of the sum


j≥1 Σ j is guaranteed by condition B4.

On the other hand,

1
nm

l̈(θ⋆) =
1

nm

n
t=1

B(Xt ; θo,ωo)+
1

nm

n
t=1

G(Xt ; θ⋆⋆,ω⋆, θ⋆ − θo,ω − ωo), (6.5)

where (θ⋆⋆,ω⋆) lies between (θ⋆,ω) and (θo,ωo), and G is a d × d matrix with the (i, j)-th
element

(θ⋆ − θo)
′
∂

∂θ
bi j (Xt ; θ⋆⋆,ω⋆)+ (ω − ωo)

′
∂

∂ω
bi j (Xt ; θ⋆⋆,ω⋆), (6.6)
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and bi j denotes the (i, j)-th element of B. Write µi j,m = E{bi j (Xt ; θo,ωo)}/m. Then for any
ϵ > 0,

P

 1
nm

n
t=1

bi j (Xt ; θo,ωo)− µi j,m(θo,ωo)

 > ϵ



≤
1

ϵ2n2 Var


1
m

n
t=1

bi j (Xt ; θo,ωo)


→ 0.

The limit is guaranteed by B5 and the mixing condition on Xt ; see Proposition 2.5 of Fan and
Yao [16]. Hence

1
nm

n
t=1

B(Xt ; θo,ωo)
P

−→ M,

where M is a d × d matrix with the limit of µi j,m as its (i, j)-th element. Note that the absolute
value of the expression in (6.6) is bounded from the above by

λ2(Xt ; θo,ωo){∥θ
⋆
− θo∥ + ∥ω − ωo∥}.

Condition B5 implies that there exists a positive and finite constant c for which

P


1

nm

n
t=1

λ2(Xt ; θo,ωo) ≤ c


→ 1.

Since ∥θ⋆ − θo∥ + ∥ω − ωo∥
P

−→ 0, the second term on the RHS of (6.5) converges to 0 in

probability. Therefore 1
nm l̈(θ⋆)

P
−→ M. This, together with (6.4), concludes the theorem. �

7. Conclusion

In this paper we have established the asymptotic normality for the two estimation methods,
namely the MCQLE and the MPQLE, for the parameter of interest in the presence of q nuisance
parameters, under the assumption that q goes to infinity together with the sample size n.
When q is small in relation to n, the MPQLE performs well and is typically better than the
MCQLE. However when q and n are about the same (hence condition B1 no longer holds),
the MPQLE suffers from the collectively poor estimation for too many nuisance parameters.
Then the MCQLE provides a better alternative as it is still root-n consistent. An interesting and
practical relevant question is when to use what for a given n and q. The asymptotic results
provided in this paper are too complicated to give any clear indication. How to develop an
effective inference method to choose between the two methods in practice remains as an unsolved
challenge.
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Appendix. U-statistics

Let ξ t be a p × 1 strictly stationary process, ξ t be Ft -measurable, and F1 ⊂ F2 ⊂ · · · be a
sequence of σ -algebra. Let ψn(x1, · · · , xm) be a real-valued function defined on (Rp)m , and it is
symmetric in its m(≥ 2) arguments. A U -statistic based on n observations ξ1, . . . , ξn is defined
as

Un =
m!(n − m)!

n!


1≤i1<···<im≤n

ψn(ξ i1
, . . . , ξ im

).

For k = 1, . . . ,m − 1, let

ψn,k(x1, . . . , xk) =


ψn(x1, . . . , xk, xk+1, . . . , xm)

n
j=k+1

F(dx j ),

where F(·) denotes the marginal distribution of ξ t . For the simplicity in presentation, we assume
that E{ψn,1(ξ t )} = 0. (Otherwise we replace ψn by ψn − E{ψn,1(ξ t )}.) Put

hn,1(x1) = ψn,1(x1),

hn,2(x1, x2) = ψn,2(x1, x2)− hn,1(x1)− hn,1(x2),

hn,3(x1, x2, x3) = ψn,3(x1, x2, x3)−

3
j=1

hn,1(x j )−


1≤i< j≤3

hn,2(xi , x j ),

· · · · · ·

hn,m(x1, . . . , xk) = ψn(x1, . . . , xk)−

m
j=1

hn,1(x j )−


1≤i< j≤m

hn,2(xi , x j )− · · ·

−


1≤i1<···im−1≤m

hn,m−1(xi1 , . . . , xik ).

The Hoeffding decomposition (Lemma A, pp. 178 in [28]) is of the form

Un =
m

n

n
j=1

ψn,1(ξ j )+

m
k=2

m!

(m − k)!
Sn,k, (A.1)

where

Sn,k =
(n − k)!

n!


1≤i1<···<ik≤n

hn,k(ξ i1
, . . . , ξ ik

). (A.2)

As long as the variance of ψn,1(ξ j ) does not diminish to 0, the asymptotic property of Un is
determined by that of the first sum on the RHS of (A.1). The lemma below shows indeed that
the remainder term (i.e. the other sum) is asymptotically negligible. Different from conventional
setting, we allow the kernel function ψn to vary with respect to the sample size n. Furthermore,
we allow the dimension p of ξ j to diverge to ∞ together with n. We first introduce some
regularity conditions.

C1 {ξ t } is a strictly stationary and β-mixing (i.e. absolutely regular) process with the β-mixing
coefficients satisfying the condition β(n) = O(n−(2+δ′)/δ′), where δ′ ∈ (0, δ) is a constant.
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C2 It holds for all n, p and 1 ≤ i1 < · · · < im ≤ n that E{|ψn(ξ i1
, . . . , ξ im

)|2+δ
} ≤ M , and ψn(x1, . . . , xm)

2+δ
m

j=1

F(dx j ) ≤ M,

where δ > 0,M > 0 are fixed constants.

Proposition 1. Under conditions C1 and C2, it holds that E(S2
n,k) = O(n−1−γ ) for k =

2, . . . ,m, where Sn,k is defined as in (A.2) and γ = min

1, 2(δ−δ′)

δ′(2+δ)


.

Proposition 1 is essentially Lemma 2 of Yoshihara [31]. Only difference here is to allow ψn
to vary with n and the dimension p to grow. Nevertheless the original proof is still applicable.
However it was an error to define γ =

2(δ−δ′)
δ′(2+δ)

in Yoshihara [31], as the optimal rate for E(S2
n,k)

is n−2. Therefore it must hold that γ ≤ 1. Note that this optimal rate is attainable when,
for example, {ξ t } is a sequence of independent r.v.s, or the rate of the mixing coefficients is
strengthened to satisfy the condition

∞
k=1

kβ(k)δ/(2+δ) < ∞.

Now we turn to the asymptotic normality of the first term on the RHS of (A.1). We state the
required regularity conditions separately below, as only the α-mixing is required now, which is
weaker than the β-mixing. See Section 2.6 of Fan and Yao [16].

C3 {ξ t } is a strictly stationary and α-mixing (i.e. strong mixing) process with α-mixing
coefficients satisfying the condition


k≥1 α(k)

1−2/ν < ∞, where ν > 2 is a constant.
C4 For ν > 2 given in C3 above, limn→∞ E{|ψn,1(ξ1)|

ν
} < ∞. Furthermore, the limit of

Cov{ψn,1(ξ1), ψn,1(ξ j )} exists for any 1 ≤ j ≤ n.

Put

B2
n =

1
n

Var


n

t=1

ψn,1(ξ t )



= Var{ψn,1(ξ1)} + 2
n−1
j=1


1 −

j

n


Cov


ψn,1(ξ1), ψn,1(ξ1+ j )


.

Proposition 2. Under conditions C3 and C4, it holds that

1
√

nBn

n
t=1

ψn,1(ξ t )
D

−→ N (0, 1).

Proof. By Proposition 2.5 of Fan and Yao [16] with p = q = ν,

|Cov{ψn,1(ξ1), ψn,1(ξ1+ j )}| ≤ 8α( j)1−
2
ν {E |ψn,1(ξ1)|

ν
}
2/ν

;

see condition C4. Hence it follows from condition C3 that

lim
n→∞

n−1
j=1

|Cov{ψn,1(ξ1), ψn,1(ξ1+ j )}| ≤ 8 lim
n→∞

{E |ψn,1(ξ1)|
ν
}
2/ν

∞
j=1

α( j)1−2/ν < ∞.
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Now by the Lebesgue dominated convergence theorem, it holds that

lim
n→∞

B2
n = lim

n→∞

1
n

Var


n

t=1

ψn,1(ξ t )


= σ 2

∈ (0,∞), (A.3)

where σ 2 is a constant.
Now we partition the set {1, . . . , n} into 2kn + 1 subsets with large blocks of size ln , small

blocks of size sn and the last remaining set of size n − kn(ln + sn), where ln and sn are selected
such that

sn → ∞, sn/ ln → 0, ln/n → 0, and kn = [n/(ln + sn)] = O(sn).

For example, we may choose ln = O(n
a−1

a ) and sn = O(n1/a) for any a > 2. Then kn =

O(n1/a) too. For j = 1, . . . , kn , define

η j =

jln+( j−1)sn
i=( j−1)(ln+sn)+1

ψn,1(ξ i ), ζ j =

j (ln+sn)
i= jln+( j−1)sn+1

ψn,1(ξ i ),

χ =

n
i=kn(ln+sn)+1

ψn,1(ξ i ).

Similar to (A.3), it may be proved that

lim
n→∞

1
n

Var


kn

j=1

ζ j


= lim

n→∞

knsn

n

1
knsn

Var


kn

j=1

ζ j


= 0,

and n−1Var(χ) → 0. Hence

1
√

nBn

n
t=1

ψn,1(ξ t ) =
1

√
nBn


kn

j=1

η j +

kn
j=1

ζ j + χ


=

1
√

nBn

kn
j=1

η j + oP (1). (A.4)

By Proposition 2.6 of Fan and Yao [16],E


exp


i t

√
nBn

kn
j=1

η j


−

kn
j=1

E


exp


i tη j

√
nBn

 ≤ 16(kn − 1)α(sn) → 0; (A.5)

see condition C3. Again similar to (A.3), it holds that Var(


1≤ j≤kn
η j )/Bn → 1. It follows from

condition C4 that

lim sup
n

E

|ψn,1(ξ1)|

2 I {|ψn,1(ξ1)| ≥ ε
√

n}


≤
1

εν−2nν/2−1 lim
n

E{|ψn,1(ξ1)|
ν
} → 0,

for any ε > 0. Noticing (A.3), it follows from the theorem on p. 31 of Serfling [28] that

kn
j=1

E


exp


i tη j

√
nBn


→ e−t2/2.

This together with (A.4) and (A.5) entail the required result. �
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