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Abstract

In the U.K., every year during the second and third quarters (the “hot season”), regional

housing markets experience sharp above-trend increases in (quality-adjusted) prices and in

the number of transactions. During the fourth and first quarters (the “cold season”), housing

prices and the number of transactions fall below trend. A similar seasonal cycle for transac-

tions is observed in other developed countries. Housing prices, however, do not necessarily

follow a seasonal pattern in all of them; in particular, in the U.S., while transactions are

highly seasonal, prices display no seasonality. We discuss why the traditional asset-pricing

approach to the housing market fails at explaining seasonal booms and busts and present

a search model that can quantitatively mimic the seasonal fluctuations in transactions and

prices in both the U.K. and the U.S. The model features a “thick-market” externality that

can generate substantial differences in the number of transactions across seasons. The exis-

tence and extent of seasonality in prices depend on the distribution of market power between

buyers and sellers. As a by-product, the model sheds new light on the mechanisms governing

fluctuations in housing markets and it can be adapted to study lower-frequency movements.
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1 Introduction

A rich empirical and theoretical literature has been motivated by dramatic boom-to-bust episodes

in regional and national housing markets.1 Booms are typically defined as times when prices rise

and there is intense trading activity, whereas busts are times when prices and trading activity fall

below trend.

While the boom-to-bust episodes motivating the extant work are relatively infrequent and of

unpredictable timing, this paper shows that in several housing markets, booms and busts are just

as frequent and predictable as the seasons. In particular, in all regions of the U.K., as well as other

continental European countries, every year a housing boom of considerable magnitude takes place

in the second and third quarters of the calendar year (the “hot season”), followed by a bust in the

fourth and first quarters (the “cold season”). In other countries, including the U.S., transactions

display a strong seasonal pattern, while prices display no seasonality. The first contribution of this

paper is to document the existence, quantitative importance, and cross-country variation of these

seasonal booms and busts.

The surprising size and predictability of seasonal fluctuations in housing prices in some countries

poses a challenge to standard models of durable-good markets. In those models, anticipated

changes in prices cannot be large: If prices are expected to be much higher in May than in

December, then buyers will shift their purchases to the end of the year, narrowing down the

seasonal price differential. More formally, in the absence of risk, the asset-market equilibrium

condition states that the one-period rental value of a house plus its appreciation should equal the

one-period gross cost of housing services.2 Calling pt and dt the real price of housing and rental

services, respectively, and assuming that the gross real service cost is a (potentially changing)

proportion ct of the property price, the equilibrium asset-market condition is:

dt+1 + (pt+1 − pt) = ct · pt (1)

where ct is the sum of the (potentially time-varying) depreciation rate, maintenance and repair

expenditure rate, property tax rate, and the tax-adjusted interest rate.3 The arbitrage condition

1See for example Stein (1995), Krainer (2001), Ortalo-Magne and Rady (2005) and the contributions cited

therein.
2For an early asset-market approach to the housing market, see Poterba (1984).
3The effective interest rate is a weighted average between mortgage interest rate plus the opportunity cost of

housing equity, where the weights are given by the loan-to-value ratio.
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thus states that the seasonals in real prices must be accompanied by seasonals in the cost of

housing services ct or in the rental service flow dt. Rents, however, display no seasonality, implying

a substantial and, as we shall argue, unrealistic degree of seasonality in service costs ct. For

example, the price seasonality observed in the U.K. implies that service costs should be roughly

300 percent higher in the cold season than in the hot season. This seems unlikely, particularly

because interest rates and tax rates, two major components of ct, display no seasonality.4

We investigate a number of possible explanations for the seasonal booms and busts. The

seasonal in housing markets does not seem to be driven by seasonal differences in liquidity related

to overall income. Income is typically high in the last quarter, a period in which housing prices

and the volume of transactions tend to fall below trend.5 At any rate, all these variables are

predictable, and in an informationally efficient market, their effect should be incorporated in

prices so that future price changes are unforecastable. Indeed, the predictable nature of housing

prices fluctuations is confirmed by U.K. estate agents, who in conversations with the authors

observed that during winter months there is less activity and owners tend to sell at a discount.

And, perhaps more compelling, publishers of house price indexes go to great lengths to produce

seasonally adjusted versions of their indexes, usually the index that is published in the media. As

stated by the publishers:

“House prices are higher at certain times of the year irrespective of the overall trend. This

tends to be in spring and summer, when more buyers are in the market and hence sellers do not

need to discount prices so heavily, in order to achieve a sale.” and “...we seasonally adjust our

prices because the time of year has some influence. Winter months tend to see weaker price rises

and spring/summer see higher increases all other things being equal.” (From Nationwide House

Price Index Methodology.)

“Houses prices are seasonal with prices varying during the course of the year irrespective of

the underlying trend in price movements. For example, prices tend to be higher in the spring and

summer months when more people are looking to buy.” (From Halifax Price Index Methodology.)

The seasonal behavior of housing markets and the failure of a priori appealing explanations,

4The implied seasonality of service costs is even higher, and hence even more implausible in other countries.
5Beaulieu and Miron (1992) and Beaulieu, Miron, and MacKie-Mason (1992) show that in most countries,

including the U.K., income peaks in the fourth quarter of the calendar year. There is also a seasonal peak in output

in the second quarter, and seasonal recessions in the first and third quarters. Housing price seasonality is not in

line with income seasonality: prices are above trend in the second and third quarters.
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thus poses a new puzzle to the standard asset-pricing approach. This paper tries to resolve the

puzzle by resorting to a search-theoretic approach.

Specifically, we develop a search model in which housing prices and the volume of transactions

in each season (or semester) are derived from the maximizing behavior of both buyers and sellers.

At the beginning of each season a house can be in one of two states: “matched,” when it delivers

a positive housing service flow to its owner, or “on sale,” when it does no longer yield housing

services to its owner. Each match has a probability of breaking, in which case the house goes “on

sale.” Agents who own houses where the match is broken seek to sell (“sellers”) and agents who

are not matched to a house seek to buy (“buyers”). Buyers and sellers are randomly matched.

Upon visiting a house, the buyer draws an idiosyncratic matching quality reflecting the utility

services the house will yield while matched; this match quality is only observed by the buyer. The

potential buyer searches until she finds a house whose utility services, net of price, are above the

option value of keeping searching.

In the model, a slightly lower ex-ante probability of moving houses in a given season (e.g.,

because of changes in school, household size, jobs, etc.) can trigger a “thick-market” externality

that makes it appealing for a larger number of agents to buy and sell during that season. This

is because in the model, buyers are more likely to find a better-quality match (and hence their

willingness to pay increases) when there are more houses on sale. Hence, in a thick market (the

hot season), the volume of transactions goes up. Whether or not prices also go up depends on the

distribution of market power between buyers and sellers. Because the quality of matches and hence

buyers’ willingness to pay increase in a thick market, when sellers “set prices” (that is, sellers have

monopoly power in the transaction) they can extract all the surplus of the transaction (buyers’

higher willingness to pay) by charging higher prices in hot seasons. When instead buyers set prices,

they get all the surplus of the transaction and prices are therefore insensitive to the season. The

extent of price seasonality hence depends on the degree of market power of sellers and buyers.

We show that the calibrated model can account for most of the seasonal fluctuations in trans-

actions in the U.K. and the U.S., and at the same time match the seasonality in prices in the U.K.

together with the lack of seasonality in prices in the U.S.6 The crucial distinction between the two

economies in the calibrated model is that in the U.K. sellers have more power to set prices than

6Our focus on these two countries is largely driven by the reliability and quality of the data.
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in the U.S. We argue that this distinction can be justified on the grounds that land per capita is

substantially scarcer and building regulations more stringent in the U.K., two features that are in

turn reflected in relatively higher housing price-to-income ratios in the U.K.

To summarize, the contribution of this paper is twofold. First, it documents seasonal booms

and busts in housing markets and shows that the predictability and high extent of seasonality in

prices observed in some of them cannot be quantitatively reconciled with the standard asset-pricing

equilibrium condition embedded in most models of housing markets (or consumer durables, more

generally). Second, it develops a search model that can quantitatively account for the empirical

puzzle and shed new light on the mechanisms governing fluctuations in housing markets. As a

by-product, the model can potentially be adapted to study lower frequency fluctuations.

The paper is organized as follows. Section 2 presents the empirical evidence and discusses

different potential (though ultimately unsuccessful) explanations. Section 3 argues why, given the

evidence, we need to deviate from the standard asset-pricing approach to housing markets. Section

4 presents the new model. Section 5 presents a quantitative analysis of the model and confronts

it with the empirical evidence. Section 6 presents extensions of the baseline model; in particular,

it studies the quantitative potential of transaction costs as alternative drivers of seasonality in

housing markets. Section 7 presents concluding remarks.

2 Hot and Cold Seasons

This section documents the behavior of housing prices across what we refer to as the two main

seasonal terms: the summer term (second and third quarters of the calendar year) and the winter

term (first and fourth quarters) in different countries and regions within a country.

2.1 Data

In the analysis we shall pay particular attention to the housing-market records of the U.K. and

the U.S., the countries for which the data are of highest quality. Below is a brief description of the

data on prices and transactions in these two countries. A description of the data sets and sources

for other countries studied in this Section is available in the Data Appendix.
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U.K.

In the U.K. there are two main data sets providing quality-adjusted non-seasonally adjusted

prices: the Halifax House Price Index, derived from the data collected by Halifax, one of the

country’s largest mortgage lenders, and the price index produced by the Office of the Deputy

Prime Minister (ODPM).7

Halifax reports regional indexes on a quarterly basis for the 12 standard planning regions of the

U.K., as well as for the U.K. as a whole. The indexes calculated are ‘standardized’ and represent

the price of a typically transacted house. The standardization is based on hedonic regressions that

control for a number of characteristics, including location, type of property (house, sub-classified

according to whether it is detached, semi-detached or terraced, bungalow, flat), age of the property,

tenure (freehold, leasehold, feudal), number of rooms (habitable rooms, bedrooms, living-rooms,

bathrooms), number of separate toilets, central heating (none, full, partial), number of garages and

garage spaces, garden, land area, and road charge liability. Accounting for these characteristics

allows to control for the possibility of seasonal changes in the composition of the set of properties

(for example, shifts in the location or sizes of properties). The index reports transaction prices

based on mortgages to finance house purchase at the time the mortgage is approved; re-mortgages

and further advances are excluded.

The ODPM index is based on the same method as is the Halifax index, and differs only in two

respects. First, it collects information from a large sample of all mortgage lenders in the country.8

And second, it reports the price at the time of completion, rather than approval. Completion

might take on average three to four weeks after the agreement, due generally to paper-work delays.

The ODPM index goes back to 1963, though only after 1993 does it include all mortgage lenders

(before that time, prices are based on Building Societies reports).

To compute real price indexes, we later deflate the housing price indexes using the non-

seasonally adjusted retail price index (RPI) including “All items except housing” provided by

the U.K. Office for National Statistics.

As an indicator of the number of transactions, we use the number of mortgages advanced for

home purchases; the data are collected by the ODPM through the Survey of Mortgage Lenders

and are disaggregated by region.

7Other price indices, like Nationwide, report quality adjusted data but they are already seasonally adjusted.

The Land Registry data reports average prices, without adjusting for quality.
8The Halifax index uses all the data from Halifax mortgages.
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U.S.

The non-seasonally adjusted price index for the U.S. comes from the Office of Federal Housing

Enterprise Oversight (OFHEO), which in turn builds its index from data provided by Fannie Mae

and Freddie Mac, the biggest mortgage lenders; this is a repeat-sale index (and hence, barring

depreciation, quality is kept constant). The index is calculated for the whole of the U.S. and also

disaggregated by state (the 50 states and the District of Columbia) and by the 379 metropolitan

statistical areas defined by OFHEO.

To compute real price indexes, we use the non-seasonally adjusted consumer price index (CPI)

including “All items less shelter” provided by the U.S. Bureau of Labor Statistics.9

Data on the number of transactions come from the National Association of Realtors, and

correspond to the number of sales of existing single-family homes. The data are disaggregated into

the four major Census regions.

2.2 The Cross-Country Evidence

This Section briefly summarizes the cross-country evidence on seasonal fluctuations in housing

prices and transactions. The extent of seasonality is summarized by means of country-by-country

OLS regressions of the type:

gτ t = ατ + βτSt + εt and (2)

gpt = αp + βpSt + εt, (3)

where gτ t is the annualized growth rate of the quarterly number of transactions, gpt is the annualized

growth rate of the quarterly (quality-adjusted) house price index (expressed both in nominal and

real terms), and St is a dummy variable that takes the value 1 if t corresponds to the second

or third quarter of the calendar year, and 0 otherwise. The constant term ατ (αp) measures the

average growth rate in the number of transactions (housing prices) during the period and βτ (βp)

measures the average difference in growth rates between summers and winters. A statistically

significant value for the β’s rejects the null of no difference in growth rates across seasons. Table

1 and Table 2 report the slope coefficients and standard errors of the regressions for transactions

(Table 1) and both nominal and real prices (Table 2).

9As it turns out, there is little seasonality in the U.S. CPI index, a finding first documented by Barsky and

Miron (1989), and hence the seasonal patterns (or lack thereof) in nominal and real housing prices coincide.
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Table 1 suggests a strong and positive “summer” effect in all countries for which non-seasonally

adjusted data on housing transactions are available. Table 2 displays a uniform pattern of signs

for housing prices, with countries in the northern hemisphere displaying a positive second-and-

third quarter effect and countries in the southern hemisphere displaying a negative effect (note

that the austral summer takes place in the fourth and first quarters and hence the negative signs

in the southern hemisphere). However, the statistical and economic significance varies across

countries. Belgium, France, and the U.K. display strongly significant summer effects in housing

prices; Ireland, Sweden, and South Africa exhibit a less marked, though still significant summer

effect; and finally, Denmark, Norway, the U.S., Australia, and New Zealand show no statistically

significant summer effect.10

Table 1: Average Difference in the Annualized Growth Rate of the Number of

Transactions between Second-Third Quarters and Fourth-First Quarters, by Country

Country Coef. Std. Error Observations
Belgium 61.675** (15.008) 51
Ireland 47.834** (17.936) 120
Sweden 194.489** (35.106) 75
United Kingdom 130.277** (20.738) 124
United States 162.354** (19.369) 149

Note: The Table shows the coefficients (and standard deviations) on the 
dummy variable St (second-third quarters) in the regressions gt=a+b×St+et, 
where gt is the annualized growth rate of the number of transactions; a is a 
constant, omitted. The equations use quarterly data (see Appendix). Robust 
standard errors in parentheses. +Significant at the 10%; *significant at the 
5%; **significant at 1%.

10While the time span differs across countries, a sensitivity analysis performed by the authors shows that the

period covered does not significantly affect the extent of seasonality. Still, results should be read with the caveat

that not all countries perform quality adjustments, as discussed in the data Appendix. This is why the paper

focuses attention on the U.S. and the U.K., for which the data are quality-adjusted.
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Table 2: Average Difference in Annualized Housing Price Growth (nominal and real) between

Second-Third Quarters and Fourth-First Quarters, by Country

Nominal price inflation Real price inflation
Northern Hemisphere Coef. Std. Error Coef. Std. Error Observations
Belgium 14.447** (1.507) 13.695** (1.740) 95
Denmark 1.085 (2.074) 1.029 (2.072) 51
France 12.459** (1.200) 12.198** (1.220) 34
Ireland 6.076* (2.934) 4.456 (2.999) 35
Netherlands 2.723 (1.537) 3.234 (1.701) 48
Norway 3.072 (3.333) 4.628 (3.224) 52
Sweden 4.504 (2.270) 5.484* (2.187) 76
United Kingdom 8.233** (2.325) 6.105* (2.354) 91
United States 0.272 (0.772) -0.692 (0.892) 120

Australia -1.163 (2.389) -0.796 (2.415) 73
New Zealand -1.516 (1.775) -2.148 (1.808) 146
South Africa -5.816* (2.618) -6.112 (3.129) 120

Southern Hemisphere

Note: The Table shows the coefficients (and standard deviations) on the dummy variable St 

(second-third quarters) in the regressions gt=a+b×St+et, where gt is the annualized nominal or real 
house price growth, as indicated; a is a constant, omitted. The equations use quarterly data (see 
Appendix). Robust standard errors in parentheses. +Significant at the 10%; *significant at the 5%; 
**significant at 1%.

2.3 The Within-Country Regional Evidence

The size of countries (and hence the number of potential regional housing markets) varies substan-

tially in the sample studied before. In particular, for large countries, it is in principle inappropriate

to talk about a single national housing market. The finding of no seasonal patterns in prices at the

aggregate level, for example, might mask different seasonal behaviors at more disaggregated levels.

Conversely, the existence of a seasonal pattern in the aggregate might reflect some aggregation

anomalies. It is hence of importance to study the behavior of prices (and transactions) at a more

disaggregated level. we do so in this Section, starting with the U.K. and the U.S., the countries

with highest-quality data; we also document the behavior of rentals and interest rates for these

two countries. Finally, we describe the seasonal patterns for prices in different regions of Belgium

and France.

Housing Market Seasonality in the U.K.

Nominal Housing Price Changes

Figure 1 reports the average annualized price growth rates in the summer term (second and third
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quarters) and the winter term (fourth and first quarters) over the period 1983 through 2005 using

the Halifax index. As shown in the graph, the differences in price growth rates across seasons are

generally very large and economically significant. During the period analyzed, the average price

increases in the winter term were below 4 percent in all regions except for West Midlands (4.8

percent), Greater London (5.4 percent) and the North region (6.6 percent). In the summer term,

the average growth rates were above 11 percent in all regions, except for the North (9 percent).

Figure 1: Average annualized housing price growth in summers and winters. Halifax Index 1983-2005.
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Note: Annualized (quality-adjusted) price growth rates in summers (second and third quarters) and winters (fourth and 
first quarters) in the U.K. and its regions. Halifax, 1983-2005.

winter summer

Figure 2 shows the results from the ODPM index, starting in 1983 (for comparability with the

Halifax Index). The annualized average price growth during the summer term is above 12 percent

in all cases, whereas the increase during the winter term is systematically below 6 percent, except

for Greater London and Northern Ireland. The qualitative patterns are hence similar to those

obtained from Halifax; the relatively small quantitative differences between the two indexes might

be explained by the lag between approval and completion.

As mentioned, the ODPM index goes back to 1968 for most regions. The average difference in

growth rates between summers and winters during the longer period (not shown for the sake of

brevity), are of the same order of magnitude, roughly above 8 percent.
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Figure 2: Average annualized housing price growth in summers and winters. ODPM Index 1983-2005.
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Real Housing Price Changes

The previous Figures showed the seasonal pattern in nominal housing price inflation. The sea-

sonal pattern of real housing prices (that is, housing prices relative to the overall non-seasonally-

adjusted price index) depends of course on the seasonality of overall inflation. In the U.K. overall

price inflation displays a slightly seasonal pattern. In particular, over the period 1983 through

2005, the average annualized non-seasonally-adjusted inflation rate in the summer term has been

4.7 percent, whereas the corresponding figure in the winter term has been 2.8 percent. The dif-

ference of 2 percent can hardly “undo” the differences of over 8 percent in nominal housing price

inflation, implying a significant seasonal in real housing prices. This is illustrated in Figure 3. The

graph is based on the Halifax index, but the results are similar for the ODPM index, not shown

in the interest of space. Netting out the effect of overall inflation reduces the differences in growth

rates between winters and summers to a country-wide average just above 6 percent.

We should note in addition that non-seasonally adjusted indexes of inflation are rarely used in

practice (indeed it is even hard to find them), so they are unlikely to serve in contracts as financial

means to “hedge” part of the seasonal nominal housing price fluctuations.
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Figure 3: Average annualized real housing price growth in summers and winters.

Halifax Index 1983-2005.

E.Ang
E.Mids

Gr.Lon
N.West

North
S.East

S.West

W.Mids

Yorks&Humb
N.Ire

Scot
Wales

U.K.

winter
summer

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00
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Number of Transactions

The seasonal differences in housing prices are mirrored by the patterns exhibited by the number

of loans for housing purchases, which are a good proxy for the number of transactions. The data are

collected by the National Survey of Mortgage Lenders and go back to 1974. For comparability with

the price sample, Figure 4 shows the growth rate in the number of loans for mortgage completions

in the U.K. from 1983 to 2005. (The 1974-2005 pattern is qualitatively and quantitatively similar

to the one depicted in the Figure.) As Figure 4 shows, the number of transactions increases

sharply during the summer term and declines in the winter term. Similar results are obtained by

detrending the data using a linear trend (not shown).
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Figure 4: Annualized growth rate of the number of loans in summers and winters.
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Statistical Significance of the Differences between Summers and Winters

This Section reports on the statistical significance of the results displayed in the previous Figures,

as well as the characteristics of the houses and buyers involved in the transactions, by way of

region-by-region OLS regressions similar to those used for the countries as a whole, as described

in equations (2) and (3). The regressions are based on the Halifax data series, although similar

results are obtained from the ODPM data (results are available on request). Table 3 summarizes

the results. The first two columns show the coefficients and standard errors for the regressions

based on prices for all houses and buyers. They show that the differences in housing price inflation

are statistically significant at standard levels in all regions, except the North.

The following four columns show the corresponding figures for the prices of existing houses

and new houses. The figures indicate that seasonal differences are mainly driven by the prices

of existing houses, though new houses also display a fair amount of seasonality in some regions.

In particular, new houses’ inflation rates display a strong seasonal pattern in Greater London,

Scotland, Northern Ireland and West Midlands. Note that, while economically sizeable, however,

the seasonal differences are in many cases not statistically significant; one consideration that might

explain the lower precision in the seasonal effects in new houses is that new houses represent a very

small share of the market (due mostly to stringent construction restrictions), and hence the test on
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mean differences across seasons unavoidably displays lower significance levels. Another explanation

for the difference might be differences in repair and maintenance costs across the two seasons. To

the extent that repair costs are smaller in the summer (because good weather and the time of the

owners are important inputs in construction), sellers will take this into account and post accordingly

higher prices in the market. If differences in seasonal repair costs are behind the differences in

prices, then, insofar as new houses need less repair and the potential buyers can ask the developers

to tailor the final touches of the house to their needs, we should observe less seasonality in the

prices of new houses than in those of existing houses. Though qualitatively possible, yet, the

question remains as whether plausible differences in repair costs alone can quantitatively match

the seasonal variation in the data, a point to which we come back later.

Table 3: Average Difference in Annualized Housing Price Inflation Between Summer and Winters,

by Region and Type of House or Buyer

Coef. Std. Error Coef. Std. Error Coef. Std. Error Coef. Std. Error Coef. Std. Error
E. Anglia 10.770** (3.509) 10.028** (3.727) 5.513 (6.878) 12.201** (3.453) 5.663 (4.385)
E.Midlands 12.125** (3.607) 12.905** (3.651) 1.849 (5.814) 13.637** (3.847) 9.496* (3.699)
Gr. London 6.291* (2.865) 6.624* (2.898) 18.970* (9.316) 5.357* (2.658) 6.355* (3.086)
N. West 8.629** (2.813) 9.915** (2.871) -1.164 (7.051) 10.168** (3.026) 5.675+ (2.950)
North 1.864 (3.224) 2.319 (3.333) 1.559 (5.606) 0.742 (3.295) 3.294 (3.897)
S. East 7.675** (2.908) 8.061** (2.889) 3.112 (4.066) 8.775** (2.900) 4.301 (2.952)
S. West 10.961** (3.439) 11.202** (3.556) 8.004 (4.945) 11.895** (3.549) 6.530+ (3.907)
W. Midlands 7.380+ (3.766) 7.126+ (3.799) 14.721+ (8.072) 8.160* (3.965) 6.257+ (3.606)
Yorkshire&Humb 7.477* (3.137) 8.249* (3.194) 2.561 (6.449) 8.203* (3.121) 7.340* (3.506)
N. Ireland 9.253** (3.425) 11.172** (4.055) 10.977+ (6.082) 7.319 (4.524) 10.237* (5.014)
Scotland 11.028** (2.604) 13.627** (2.895) 15.305* (7.130) 12.591** (2.673) 6.257* (3.046)
Wales 9.332* (3.721) 9.255* (3.726) 1.146 (7.924) 9.943** (3.729) 6.902+ (3.938)
U.K. 8.233** (2.325) 8.896** (2.364) 5.674* (2.484) 9.114** (2.348) 5.809** (2.196)

All Houses             
(All buyers)

Existing houses          
(All buyers)

New houses             
(All buyers)

Former owner occupiers   
(All houses)

First-time buyer          
(All houses)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St (second and third quarters) in the regression gt=a+b×Summert+et, 
where gt is the annualized rate of nominal housing price inflation; a is a constant (omitted). The equations use quarterly data from 1983 to 2005. Robust 
standard errors in parentheses. +Significant at the 10%; *significant at the 5%; **significant at 1%.

The last four columns of Table 3 show the coefficients and standard deviations corresponding

to the regressions based on prices paid by former-owner occupiers and first-time buyers. The

distinction between former-owner occupiers and first-time buyers is interesting as some might a

priori hypothesize that repeated buyers have more information on the seasonal patterns of the

housing market and will hence be able to time their purchases to get better prices. On the other

hand, first-time buyers might be less dependent on chains (that is, they do not need to sell a

house before buying) and can thus better arbitrage across seasons. The regressions tend to point
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to slightly stronger seasonality in prices paid by former-owner occupiers, favouring the second

hypothesis, though as before, the results can also be driven by the natural loss of precision caused

by the relatively small number of first-time buyers in the market.

Table 4 shows the corresponding numbers for average differences in real housing price growth.

Since the average difference in overall inflation rates across summers and winters is around 2

percent, the average difference in real housing price growth is roughly equivalent to the difference

in nominal housing price inflation minus 2 percent.

Table 4: Average Difference in Annualized Real Housing Price Growth Between Summer and Winters,

by Region and Type of House or Buyer

Coef. Std. Error Coef. Std. Error Coef. Std. Error Coef. Std. Error Coef. Std. Error
E. Anglia 8.597* (3.589) 7.787* (3.780) 3.114 (6.815) 10.160** (3.531) 3.444 (4.483)
E.Midlands 10.148** (3.675) 10.854** (3.716) -0.027 (5.989) 11.766** (3.951) 7.495+ (3.772)
Gr. London 4.161 (3.006) 4.435 (3.034) 15.296 (9.526) 3.585 (2.803) 4.115 (3.275)
N. West 6.224* (2.784) 7.620** (2.847) -4.022 (7.140) 7.456* (3.012) 3.764 (2.905)
North -0.224 (3.238) 0.284 (3.356) -0.637 (5.747) -1.315 (3.327) 1.446 (3.910)
S. East 5.677+ (3.015) 6.084* (2.990) 0.756 (4.211) 6.854* (3.001) 2.259 (3.109)
S. West 8.569* (3.579) 8.863* (3.701) 4.188 (4.997) 9.567* (3.687) 3.869 (4.012)
W. Midlands 5.291 (3.800) 4.983 (3.823) 14.448+ (8.201) 6.02 (4.004) 4.285 (3.656)
Yorkshire&Humb 5.468+ (3.113) 6.195+ (3.169) 0.53 (6.536) 6.155+ (3.132) 5.521 (3.467)
N. Ireland 7.422* (3.580) 9.976* (4.186) 11.885* (5.813) 4.701 (4.544) 8.936+ (5.216)
Scotland 9.305** (2.462) 12.317** (2.695) 12.163+ (7.260) 11.010** (2.544) 4.476 (3.021)
Wales 6.895+ (3.723) 6.818+ (3.749) -1.32 (8.084) 7.659* (3.743) 5.021 (3.957)
U.K. 6.105* (2.354) 6.788** (2.393) 3.444 (2.579) 7.016** (2.387) 3.760+ (2.255)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St (second and third quarters) in the regression gt=a+b×Summert+et, 
where gt is the annualized rate of real housing price inflation; a is a constant (omitted). The equations use quarterly data from 1983 to 2005. Robust standard 
errors in parentheses. +Significant at the 10%; *significant at the 5%; **significant at 1%.

All Houses             
(All buyers)

Existing houses          
(All buyers)

New houses             
(All buyers)

Former owner occupiers   
(All houses)

First-time buyer          
(All houses)

The behavior of prices is mimicked by that of the number of transactions. Table 5 shows the

average differences in growth rates in the number of transactions between summers and winters.

The Table reports the slope coefficients and standard errors of the summer-dummy regression (2)

corresponding to each region. The annualized difference in growth rates is roughly 120 percent.

Northern Ireland and the North region show the smallest average difference, which is roughly 100

percent. As the Table shows, the difference is stronger for former-owner occupiers than for first-

time buyers, consistent with the price patterns observed before. (Unfortunately, the data are not

disaggregated by type of house).
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Table 5: Average Difference in Annualized Growth Rates in the Number of Transactions

Between Summer and Winters, by Region and Type of Buyer

Coef. Std. Error Coef. Std. Error Coef. Std. Error
E. Anglia 137.066** (22.313) 214.294** (38.983) 136.538** (29.901)
E.Midlands 154.761** (44.188) 215.595** (58.098) 204.546* (89.538)
Gr. London 138.723** (40.132) 204.390** (71.944) 112.855** (28.587)
N. West 121.901** (17.117) 155.872** (19.788) 105.037** (21.158)
North 95.811** (16.419) 183.704** (35.753) 82.895* (37.257)
S. East 136.708** (16.753) 164.647** (18.295) 102.878** (15.453)
S. West 140.322** (24.109) 182.283** (27.215) 109.224** (21.898)
W. Midlands 155.984** (29.471) 207.046** (37.535) 112.131** (24.538)
Yorkshire&Humb 121.736** (20.539) 171.579** (31.494) 106.622** (22.217)
N. Ireland 118.920** (38.895) 172.178* (74.599) 119.912** (41.468)
Scotland 169.156** (42.906) 320.131** (67.460) 84.948** (25.485)
Wales 167.241** (39.668) 184.066** (38.418) 158.468** (40.656)
U.K. 130.277** (20.738) 168.636** (22.563) 102.730** (19.682)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St (Summer) in the regression 
xt=a+b×Summert+et, where xt is the annualized growth rate of the number of transactions; a is a constant (omitted). The equations 
use quarterly data from 1983 to 2005. Robust standard errors in parentheses. + Significant at 10%; * Significant at the 5%; ** 
significant at 1%.

All Houses                   
(All buyers)

Former owner occupiers         
(All houses)

First-time buyer               
(All houses)

Put together, the data point to a strong seasonal cycle, with a large increase in transactions

and prices during the summer relative to the winter term. Also, the seasonal patterns are similar

across regions, except for the North region, which tends to display less seasonality in prices.

Rents

Data on rents are not documented in as much detail as the data on prices. The series available

corresponds to the aggregate of the U.K. and comes from the ODPM; the data are not disaggregated

by region. We run regressions using as dependent variables both the rent levels and the log of

rents on the summer-term dummy. We also include, where indicated, a trend term. The results

are summarized in Table 6, which shows that there is virtually no seasonality in rents for the U.K.

as a whole. This is in line with anecdotal evidence suggesting that rents are fairly sticky.

Table 6: Summer Differentials in Rents in the U.K.

Summer-dummy St -47.90833 12.53771 -0.01406 0.00743
(255.798) (29.529) (0.091) (0.010)

Trend 61.67964** 0.02194**
(1.276) (0.000)

Rents log(Rent)

Note: The Table shows the coefficients (and standard deviations) on the dummy variable St (second-
third quarters) in the regressions xt=a+b×St+et, where xt is either the rent level or the log of the rent; a 
is a constant (omitted); a trend term is included where indicated. Data are quarterly, from 1989-2005. 
Robust standard errors in parentheses. + Significant at 10%; * Significant at the 5%; ** significant at 
1%.
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Mortgage Rates

Interest rates in the U.K. do not seem to exhibit a seasonal pattern. The evidence is summarized

in Table 7, which shows the summer dummy coefficients for different interest rate series provided

by the Bank of England. The first column shows the results for the quarterly average of the

repo (base) rate; the second column shows the corresponding results for the average interest rate

charged by 4 U.K. major banks (Barclays Bank, Lloyds Bank, HSBC, and National Westminster

Bank); and the third column shows the results for the weighted average standard variable mortgage

rate from Banks and Building Societies. The first two series cover the period 1978 through 2005,

whereas the third goes from 1994 through 2005.

As the Table shows, none of the interest rate measures appears to be different, on average,

during the summer term.

Table 7: Summer Differentials in Interest Rates in the U.K.
Repo rate Bank-4 Rate Mortgage Rate

Summer-dummy St -0.163 -0.144 0.018
(0.701) (0.696) (0.310)

Note: The Table shows the slope coefficients (and standard deviations) on the dummy variable 
St (second-third quarters) in the regressions xt=a+b×St+et, where xt is the Repo rate, the average 
of the 4 largest banks, or the mortgage interest rate, correspondingly; a is a constant (omitted). 
The equations use quarterly data from 1978 to 2005, except for the mortgage rate series, which 
starts in 1994. Robust standard errors in parentheses. + Significant at 10%; * Significant at the 
5%; ** significant at 1%.

Housing Market Seasonality in the U.S.

Housing Price Changes

As noted before, the U.S. aggregate price index displays no seasonal patterns. The question is

whether this result masks different seasonal patterns at a more disaggregated level. As it turns out,

this not the case. In the interest of space, and given the lack of seasonality in the data, we omit

the graphs and summarize the results in Table 8, displaying the summer-effects coefficients and

standard deviations using state-level data.11 As shown in the Table, only in one state (Kentucky)

there is a statistically significant summer effect on prices. (Similar results are found when using

the metropolitan- statistical-area-level data from the same source.12) The summer effect is also

11The data correspond to the 50 states and the district of Columbia.
12This is based on the 379 metropolitan areas defined by OFHEO.
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insignificant from an economic point of view; the only states with sizeable (though not statistically

significant) effects are Hawaii (exhibiting a negative summer effect), and Massachusetts, South

Dakota, Delaware, and West Virginia (exhibiting a positive summer effect).

Real prices display a similar pattern, as there is no significant differences in overall inflation

rates across seasons in the US (results not shown).13

Table 8: Average Difference in Annualized Housing Price Growth

between Second-Third Quarters and Fourth-First Quarters, by US State.
State Coef. Std. Error State Coef. Std. Error

Alabama 0.008 (3.591) Montana 4.453 (3.426)
Alaska -0.692 (1.655) North Carolina 0.406 (0.904)
Arizona 0.789 (2.473) North Dakota -6.223 (5.320)
Arkansas 0.588 (1.930) Nebraska -2.829 (1.819)
California 2.094 (1.757) New Hampshire 3.030 (3.231)
Colorado 1.606 (1.387) New Jersey -0.237 (1.685)
Connecticut 2.890 (2.004) New Mexico 0.207 (1.719)
District of Columbia 1.967 (6.001) Nevada -0.688 (2.128)
Delaware 10.757 (6.212) New York -0.903 (2.262)
Florida 0.133 (2.524) Ohio 0.853 (0.797)
Georgia -0.119 (1.202) Oklahoma -0.538 (1.595)
Hawaii -31.388 (30.242) Oregon 0.406 (1.798)
Idaho -0.131 (2.086) Pennsylvania 1.008 (1.495)
Illinois 0.292 (3.326) Rhode Island 2.345 (2.276)
Indiana 0.066 (1.287) South Carolina -0.671 (1.723)
Iowa -0.776 (1.238) South Dakota 16.066 (10.273)
Kansas 1.031 (0.935) Tennessee -1.878 (1.705)
Kentucky -1.883* (0.941) Texas 0.104 (1.449)
Louisiana -2.335 (1.615) Utah -1.363 (1.590)
Maine 2.000 (1.878) Virginia -0.427 (1.278)
Maryland 0.570 (1.258) Vermont -3.082 (7.957)
Massachusetts 16.131 (10.186) Washington 1.084 (1.623)
Michigan 1.616 (1.468) Wisconsin 2.594 (1.886)
Minnesota -0.025 (1.373) West Virginia 9.703 (10.014)
Missouri 2.726 (2.351) Wyoming -0.572 (2.663)
Mississippi -0.004 (3.132)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St (second and third quarters) 
in the regression gt=a+b×Summert+et, where gt is the annualized rate of nominal housing price inflation; a is a 
constant (omitted). The equations use quarterly data from 1975 to 2005. Robust standard errors in parentheses. 
+Significant at the 10%; *significant at the 5%; **significant at 1%.

Number of Transactions

As already observed, the U.S. as a whole displays a strong seasonality in the number of transac-

tions. This remains true across all four major regions of the U.S. (state-level data are not available).

The growth rates in the number of transactions in summers and winters are plotted in Figure 5.

13On the lack of seasonality of overall inflation in the U.S., see Barsky and Miron (1989).
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The average difference across seasons, together with the standard errors are summarized in Table

9. In sum, the data for the U.S. point to a strong seasonal pattern in the number of transactions,

with no discernible seasonal pattern in housing prices.

Figure 5: Annualized growth rate of the number of transactions in summers and winters

in the U.S. and its regions
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Note: Annualized growth rates of the number of transactions in summers (second and third quarters) and winters (fourth 
and first quarters) in the U.S. and its regions, 1975-2005. (Data for the U.S. as a whole corresponds to 1968-2005.)

winter summer

Table 9: Average Difference in Annualized Growth Rates in the Number of Transactions

Between Summer and Winters, by Regions in the U.S.
Region Coef. Std. Error
Northeast 220.718** (19.762)
Midwest 210.968** (27.558)
South 179.038** (21.219)
West 162.818** (25.816)
United States 162.354** (19.369)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St 

(Summer) in the regression xt=a+b×Summert+et, where xt is the annualized growth rate of 
the number of transactions; a is a constant (omitted). The equations use quarterly data 
from 1975 to 2005 for the regions and 1968-2005 for the U.S. as a whole. Robust 
standard errors in parentheses. + Significant at 10%; * Significant at the 5%; ** 
significant at 1%.
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Rents

Data on rents for the U.S. come from the Bureau of Labor Statistics (BLS); as a measure of

rents we use the non-seasonally adjusted series of owner’s equivalent rent and the non-seasonally

adjusted rent of primary residence; both series are produced for the construction of the CPI and

correspond to averages over all cities. For each series, we run regressions using as dependent

variables both the rent levels and the log of rents on the summer-term dummy. we also include,

where indicated, a trend term. The results are summarized in Tables 10 (owner’s equivalent rent)

and 11 (rent of primary residence). Both Tables show that there is no evidence of seasonality in

rents for the U.S. as a whole.

Table 10: Summer Differential in Rents in the U.S.: Owner’s Equivalent Rent

Summer-dummy St -0.19638 -0.19638 -0.00102 -0.00102
(8.133) (0.269) (0.051) (0.006)

Trend 1.45183** 0.00905**
(0.005) (0.000)

Rents log(Rent)

Note: The Table shows the coefficients (and standard deviations) on the dummy variable St 

(second-third quarters) in the regressions xt=a+b×St+et, where xt is either the rent level or the log 
of the rent; a is a constant (omitted); a trend term is included where indicated. Data are quarterly, 
from 1983-2005. Robust standard errors in parentheses. + Significant at 10%; * Significant at the 
5%; ** significant at 1%. (BLS, owner's equivalent rent.)

Table 11: Summer Differential in Rents in the U.S.: Rent of Primary Residence

Summer-dummy St -0.16594 -0.16594 -0.00098 -0.00098
(7.120) (0.638) (0.047) (0.005)

Trend 1.26671** 0.00827**
(0.012) (0.000)

Rents log(Rent)

Note: The Table shows the coefficients (and standard deviations) on the dummy variable St 

(second-third quarters) in the regressions xt=a+b×St+et, where xt is either the rent level or 
the log of the rent; a is a constant (omitted); a trend term is included where indicated. Data 
are quarterly, from 1983-2005. Robust standard errors in parentheses. + Significant at 10%; 
* Significant at the 5%; ** significant at 1%. (BLS, rent of primary residence.)

Mortgage Rates

Interest rates in the U.S. do not exhibit a seasonal pattern (Barsky and Miron, 1989). Since

housing service costs are of particular interest here, we summarize In Table 12 the summer effect

(or lack thereof) in mortgage rates. The data come from the Board of Governors of the Federal

Reserve and correspond to contract interest rates on commitments for fixed-rate first mortgages;
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the data are quarterly averages beginning in 1972; the original data are collected by Freddie Mac.

As the Table shows, mortgage rates do not appear to be higher on average during the summer

term, consistent with the findings in Barsky and Miron (1989).

Table 12: Summer Differential in Mortgage Rates in the U.S.

Mortgage Rate
Summer-dummy St 0.104

(0.477)

Note: The Table shows the slope coefficient (and standard deviation) 
on the dummy variable St (second-third quarters) in the regressions 
xt=a+b×St+et, where xt is the average mortgage interest rate; a is a 
constant (omitted). The equations use quarterly data from 1972 
through 2005. Robust standard errors in parentheses. + Significant at 
10%; * Significant at the 5%; ** significant at 1%.

Housing Market Seasonality in Belgium and France

Tables 13 and 14 show the housing price regressions for Belgium and France, disaggregated by

regions with available data. As the Tables show, in both countries all regions display a strong

seasonal pattern, comparable to that reported for the country as a whole. Data on transactions

at the regional level are not available. As noted in the Data Appendix, the housing price indexes

for these countries are not quality adjusted and hence seasonal variation in prices might mask

variation in the quality of the houses on the market; this is why we emphasize throughout the

paper the results from the U.K. and the U.S.

Table 13: Average Difference in Annualized Housing Price Growth between

Second-Third Quarters and Fourth-First Quarters in Belgium, by Region.

Region Coef. Std. Error
Great Brussels 13.242** (3.039)
Flanders 10.753** (1.746)
Wallonia 19.329** (1.903)

Note: The Table shows the coefficients (and standard errors) on the 
dummy variable St (second and third quarters) in the regression 
gt=a+b×Summert+et, where gt is the annualized rate of nominal housing 
price inflation; a is a constant (omitted). The equations use quarterly data 
from 1981 to 2005. Robust standard errors in parentheses. +Significant at 
the 10%; *significant at the 5%; **significant at 1%.

21



Table 14: Average Difference in Annualized Housing Price Growth between

Second-Third Quarters and Fourth-First Quarters in France, by Region.
Region Coef. Std. Error
Ile-de-France 9.275** (2.294)
Province (All regions except Ile-de-France) 17.347** (1.906)
Provence-Alpes-Côte d'Azur 10.915** (2.624)
Rhône-Alpes 11.977** (2.648)

Note: The Table shows the coefficients (and standard errors) on the dummy variable St 

(second and third quarters) in the regression gt=a+b×Summert+et, where gt is the 
annualized rate of nominal housing price inflation; a is a constant (omitted). The 
equations use quarterly data from 1994 to 2005. Robust standard errors in parentheses. 
+Significant at the 10%; *significant at the 5%; **significant at 1%.

3 Quantifying the Price Puzzle

We carry out a back-of-envelope calculation using the findings for the U.K., given that the data are

of better quality than those in other continental-European countries that also feature seasonality

in prices. The U.S., as seen, displays no seasonality in prices.

We argued before that the predictability and size of the seasonal variation in housing prices in

some countries pose a puzzle to models of the housingmarket relying on standard asset-market equi-

librium conditions. In particular, the equilibrium condition embedded in most dynamic general-

equilibrium models states that the marginal benefit of housing services should equal the marginal

cost. Following Poterba (1984) the asset-market equilibrium conditions for any seasons j = s

(summer), w (winter) at time t is:14

dt+1,j0 + (pt+1,j0 − pt,j) = ct,j · pt,j (4)

where j0 is the corresponding season at time t+1, pt,j and dt,j are the real asset price and rental price

of housing services, respectively; ct,j · pt,j is the real gross (gross of capital gains) t−period cost of

housing services of a house with real price pt,j; and ct,j is the sum of after-tax depreciation, repair

costs, property taxes, mortgage interest payments, and the opportunity cost of housing equity.

Note that the formula assumes away risk (and hence no expectation terms are included); this is

appropriate in this context because we are focusing on a “predictable” variation of prices.15 As in

14See also Mankiw and Weil (1989) and Muellbauer and Murphy (1997), among others.
15Note that Poterba’s formula also implicitly assumes linear preferences and hence perfect intertemporal substitu-

tion. This is a good assumption in the context of seasonality, given that substitution across semesters (or relatively
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Poterba (1984), we make the following simplifying assumptions so that service-cost rates are a fixed

proportion of the property price, though still potentially different across seasons (ct,j = ct+2,j = cj,

j = s, w): i) Depreciation takes place at rate δj, j = s, w, constant for a given season, and the

house requires maintenance and repair expenditures equal to a fraction κj, j = s, w, also constant

for a given season. ii) The income-tax-adjusted real interest rate and the marginal property tax

rates (for given real property prices) are constant over time, though also potentially different across

seasons; they are denoted, respectively as rj and τ j, j = s, w (in the data, as seen, they are actually

constant across seasons; we come back to this point below).16 This yields cj = δj + κj + rj + τ j,

for j = s, w.

Subtracting (4) from the corresponding expression in the following season and using the con-

dition that there is no seasonality in rents (dw ≈ ds), we obtain:

pt+1,s − pt,w
pt,w

− pt,w − pt−1,s
pt−1,s

pt−1,s
pt,w

= cw − cs ·
pt−1,s
pt,w

(5)

Considering the real differences in house price growth rates documented for the whole of the U.K.,
ps−pw
pw

= 7.04%, pw−ps
ps

= 0.75%, the left-hand side of (5) equals 6.3% ≈ 7.04% − 0.75% · 1
1.0075

.

Therefore, cw
cs
= 0.063

cs
+ 1

1.0075
. The value of cs can be pinned-down from equation (4) with j = s,

depending on the actual rent-to-price ratios (d/p) in the economy. In Table 15, we summarize the

extent of seasonality in service costs cw
cs
implied by the asset-market equilibrium conditions, for

different values of d/p (and hence different values of cs = dw
ps
+ pw−ps

ps
= dw

ps
+ 0.75%).

Table 15: Ratio of Winter-To-Summer Cost Rates

(annualized) d/p Ratio Relative winter cost rates cw
cs

1.0%
2.0%
3.0%
4.0%
5.0%
6.0%

459%
328%
267%
232%
209%
193%

As the Table illustrates, a remarkable amount of seasonality in service costs is needed to explain

the differences in housing price inflation across seasons. Specifically, assuming annualized rent-to-

short periods of time) should in principle be quite high.
16We implicitly assume the property-price brackets for given marginal rates are adjusted by inflation rate, though

strictly this is not the case (Poterba, 1984): inflation can effectively reduce the cost of homeownership. This,

however, should not alter the conclusions concerning seasonal patterns emphasized here. As in Poterba (1984) we

also assume that the opportunity cost of funds equals the cost of borrowing.
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price ratios in the range of 2 through 5 percent, total costs in the winter should be between

328 and 209 percent of those in the summer. Depreciation and repair costs (δj + κj) might be

seasonal, being potentially lower during the summer.17 But income-tax-adjusted interest rates and

property taxes (rj+τ j), two major components of service costs are not seasonal. Since depreciation

and repair costs are only part of the total costs, given the seasonality in other components, the

implied seasonality in depreciation and repair costs across seasons in the U.K. is even larger.

Assuming, quite conservatively, that the a-seasonal component (rj + τ j = r + τ) accounts for

only 50 percent of the service costs in the summer (r + τ = 0.5cs), then, the formula for relative

costs cw
cs
= δw+κw+0.5cs

δs+κs+0.5cs
implies that the ratio of depreciation and repair costs between summers

and winters is δw+κw
δs+κs

= 2 cw
cs
− 1.18 For rent-to-price ratios in the range of 2 through 5 percent,

depreciation and maintenance costs in the winter should be between 557 and 318 percent of those

in the summer. (If the a-seasonal component (r + τ) accounts for 80 percent of the service costs

(r + τ = 0.8cs), the corresponding values are 1542 and 944 percent). By any metric, these figures

seem extremely large.

Let us now for the sake of the argument concede that these figures are indeed as large as implied

by the asset-pricing equilibrium condition, the question is then: Why is it the case that depreciation

and repair costs are so seasonal in the U.K. (and potentially higher in other continental European

countries that exhibit larger seasonality in prices) while in other countries, such as the U.S., they

are a-seasonal? Deviations from the standard asset-pricing equilibrium condition are needed to

match both the U.K. and the U.S. data.

The need to deviate from the asset-market approach has been acknowledged, in a different con-

text, among others, by Stein (1995). While static in nature, Stein’s model is capable of generating

unexpected booms and busts in prices (and transactions) in a rational-expectation setting. In a

dynamic setting with forward-looking agents, however, predictably large changes in prices cannot

be sustained: Expected price increases in the next season will actually be priced in the current

season (or, in other words, sellers will refuse to sell at lower prices today given the perspective of

higher prices in the next season); similarly, prospective buyers will benefit from waiting (at most a

17Good weather can help with external repairs and owners’ vacation might reduce the opportunity cost of time–

though it is key here that leisure is not too valuable for the owners.
18Call λ the asesonal component as a fraction of the summer service cost rate: r+ τ = λcs, λ ∈ (0, 1) (and hence

δs+κs = (1−λ)cs). Then: cw
cs
= δw+κw+λcs

δs+κs+λcs
= δw+κw+λcs

cs
. Or cw = δw +κw +λcs. Hence: cw−λvs

(1−λ)cs =
δw+κw
(1−λ)cs ; that

is δw+κwδs+κs
= cw

(1−λ)cs −
λ
1−λ , which is increasing in λ for cw

cs
> 1.
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few months) and paying a significantly lower price. Even when agents are both sellers and buyers,

if they are aware of the differences in prices (or price growth rates), in a dynamic setting they will

seek to sell in the summer and to buy in the winter; the excess supply in the summer will then

push prices down, while the excess demand in the winter will push them up.

In the next Section, we develop a search model for the housing market that can generate

significant differences in the number of transactions across seasons. The model can also deliver

seasonality in prices, comparable to that observed in U.K. data, as well as no seasonality, as in

U.S. data.

4 A Search Model for the Housing Markets

The basic setup of the model builds on previous contributions by Krainer (2001), Wheaton (1990),

and Williams (1995), which in turn borrow from the labor search literature (see, for example,

Pissarides (1990)).

The model economy is populated by a unit measure of infinitely lived agents who have linear

preferences over a non-durable consumption good and a housing good. Each period agents receive

a fixed endowment of the consumption good which they can use to buy houses with. The housing

good is indivisible and agents can only live in one house at a time (though they can potentially

own more than one). The housing stock is constant and there are as many houses as agents. Each

house starts a period in one of two “states:” It can be either “matched,” when it delivers positive

housing services flows to its owner, or “on sale,” when it does no longer yield any services to its

owner. As long as a house is “matched,” it yields idiosyncratic housing services ε to its owner,

which we assume to be constant over time. The “quality of the match” ε is only observed by the

potential buyer, but not by the seller.

There are two seasons, j = s, w (for summer and winter); each model period is a season, and

seasons alternate. At the beginning of a period, each match has a probability (1−φj) of breaking,

and the house goes “on sale.” The parameter φj is the only (ex ante) difference between any two

seasons.

Agents who are not matched to a house seek to buy one (“buyers”) and agents who own houses

where the match is broken seek to sell them (“sellers”). Note that an agent may be only “buyer,”

only “seller,” and both “buyer” and “seller.” Also, sellers may have multiple houses to sell. Buyers
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and sellers are randomly matched. Each period a buyer visits only one house, and each house is

visited by only one buyer.

We call vj the stock of vacant houses and bj be the number of agents without a house in season

j = s, w, all of which are determined in equilibrium. Since when a match is destroyed a homeowner

becomes both a buyer and a seller simultaneously, it is always the case that vj = bj, that is, the

number of vacant houses equals the number of potential buyers.

The sequence of events is as follows. At the beginning of period t, an existing match between

a homeowner and his house breaks with probability 1− φj, adding to the stock of vacant houses

and potential buyers. Every seller meets with a buyer randomly. The potential buyer observes the

utility services ε (not observable to the seller) generated by the match and decides whether or not

to buy. If the transaction goes through, the buyer pays pj to the seller, and starts enjoying the

utility flow from that period. If the transaction does not go through, the house lies empty and the

buyer does not receive any flow utility from housing. We discuss two price-setting scenarios. In

the first and benchmark, which we call “the seller’s market,” the seller posts a price and the buyer

decides whether the match quality is high enough to pay the price. In the second, which we call

“the buyer’s market,” the buyer sets a price and makes a take-it-or-leave-it offer to the seller.

4.1 Sellers’ Market

4.1.1 Utility services

The model embeds the intuitively appealing notion that in a market with many houses on sale a

buyer can find a house closer to her ideal and hence her willingness to pay increases. We model this

idea by assuming that the (idiosyncratic) quality of a match, ε, in season j follows a distribution

F j (ε) with positive support and finite mean such that:

F j (ε) 6 F j0 (ε) ;∀ε⇔ vj > vj
0
for j, j0 = s, w (6)

That is, F j (.) stochastically dominates F j0 (.) if and only if vj > vj
0
, where vj (vj

0
), the stock of

houses in season j, is endogenously determined. In other words, when the stock of houses vj is

bigger, the draw ε is likely to be higher.19

19One way to interpret this assumption is the following. Suppose there are v (discrete) units of houses. The

buyer can sample all v houses (e.g. by searching online or through newspapers). Let (X1,X2, ..Xv) denote an iid

random sample of idiosyncratic utility flows from the continuous distribution G (.) . Let ε be the maximum Xi; then

26



Note that ε captures the quality of a match between a house and the potential buyer. In other

words, for any vacant house, the potential utility services are idiosyncratic to the match between

the house and the buyer. Hence, ε is not the type of the house (or of the seller who owns a particular

house); indeed, there is only one representative house in our model, with the utility derived from

living in the house being idiosyncratic. This is consistent with the data we look at, which are

adjusted for houses’ characteristics, such as size and location, but not for the (unobserved) quality

of a match.20

To study pricing and transaction decisions, we first need to derive the value of living in a house

if a transaction goes through. The value function for a homeowner who lives in a house with

quality ε in season s is given by:

Hs (ε) = ε+ βφwHw (ε) + β (1− φw) [V w +Bw]

With probability (1−φw) he receives a moving shock and becomes both a seller and a buyer, with

continuation value (V w+Bw), where V j is the lifetime utility of being a seller and Bj is the lifetime

utility of being a buyer in season j, defined below. With probability φw he keeps receiving utility

services ε and stays in the house. (Notice that the formula for Hw (ε) is perfectly isomorphic

to Hs (ε); in the interest of space we omit here and throughout the paper the corresponding

expressions for season w.) The value of being a homeowner can be therefore re-written as:

Hs (ε) =
1 + βφw

1− β2φwφs
ε+

β (1− φw) (V w +Bw) + β2φw (1− φs) (V s +Bs)

1− β2φwφs
. (7)

4.1.2 The Buyer

Upon visiting a house, the buyer draws a match quality ε from the distribution F s (ε) ≡ F (ε | vs)

in season s. (And, correspondingly, from Fw (ε) ≡ F (ε | vw) in season w). Since the match quality

is idiosyncratic to a house and buyer, it is natural to assume that the seller does not observe ε.

Thus, in a seller’s market, the seller posts a price ps independent of the level of ε. The buyer’s

value function in season s is:

Bs = Es
ε max {Hs (ε)− ps, βBw} , (8)

the distribution of ε is F v (ε) = [G (X)]v . It follows that F v (ε) ≤ F v0 (ε) for v > v0. Intuitively, as the sample size

v increases, the maximum becomes “stochastically larger”. Assume that in each period buyers only visit the house

that is ranked first. The price is then determined by the take-it-or-leave-it offer made by the corresponding seller

in a seller’s market, or by the buyer in a buyer’s market.
20Neither repeat-sale indices nor hedonic price indices can control for the quality of a match.
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where Es [.] indicates the expectation taken with respect to the distribution F s (.).

As said, buyers consume no housing services until they find a successful match. This can be the

case, for example, if buyers searching for a house pay a rent equal to the utility they derive from

the rented property; what is key is that the rental property is not owned by the same potential

seller with whom the buyer meets.

Since Hs (ε) is increasing in ε, a “reservation policy,” whereby the buyer accepts the posted

price if ε exceeds a cutoff level, is optimal. The transaction is hence carried out if ε > εs, where

the cutoff εs is given by:

Hs (εs)− ps = βBw. (9)

1− F s (εs) is thus the probability that a transaction is carried out. From (7), the response of the

reservation quality εs to a change in price is given by:

∂εs

∂ps
=
1− β2φwφs

1 + βφw
. (10)

4.1.3 The Seller

Taking the optimal decision rules of the buyer as given, the seller chooses a price to maximize the

expected surplus value of a sale. The seller’s value function is hence

V s = βV w + u+max
p
{[1− F s (εs (p))] (p− βV w − u)} , (11)

where u is the utility flow from being a seller; this could be interpreted, for example, as a net

rental income received by the seller while the house in on the market; to be consistent with the

data, we assume that the rental income u does not vary across seasons. Again, what is key is that

the tenant is not the same potential buyer who visits the house.

The optimal price ps solves

[1− F s (εs)]− [p− βV w − u] f s (εs)
∂εs

∂ps
= 0. (12)

Rearranging terms we obtain:

ps − βV w − u

ps
mark-up

=

"
psf s (εs) ∂ε

s

∂ps

1− F s (εs)

#−1
inverse-elasticity

,

which makes clear that the price-setting problem of the seller is similar to that of a monopolist

who sets a markup equal to the inverse of the elasticity of demand (where demand in this case is

given by the probability of a sale, 1− F s (εs).
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4.1.4 Market equilibrium

Prices Let Ss
v ≡ ps−βV w−u be the surplus to a seller from a housing transaction. The optimal

decisions of the buyer (10) and the seller (12) together imply:

Ss
v =

1− F s (εs)

f s (εs)

1 + βφw

1− β2φwφs
. (13)

Equation (13) says that the net surplus to a seller generated by the transaction is higher when the

distribution has a thicker tail, 1−F
s(εs)

fs(εs)
. Together with the value function of the seller, the optimal

price satisfies (see derivation in Appendix 8.1):

ps =
u

1− β
+
1− β2F s (εs)

1− β2
Ss
v +

β [1− Fw (εw)]¡
1− β2

¢ Sw
v . (14)

Reservation quality Let Ss
b (ε) ≡ Hs (ε)− ps − βBw be the surplus to a buyer from buying a

house with flow value ε. The reservation quality εs satisfies Ss
b (ε

s) = 0. Using (7), the surplus to

a buyer is

Ss
b (ε) = Hs (ε)−Hs (εs) =

1 + βφw

1− β2φwφs
(ε− εs) . (15)

Let Ss (ε) ≡ Ss
b (ε) + Ss

v be the total surplus from a transaction with flow value ε. An equilibrium

with positive number of transactions exists if the total surplus is positive. By definition, in a

seller’s market εs also satisfies Ss (εs) = Ss
v, that is

Hs (εs) = Ss
v + βBw + βV w + u, (16)

which equates the housing value of a marginal owner in season s, Hs (εs) , to the sum of the

surplus generated to the seller (Ss
v), plus the sum of outside options for the buyer (βB

w) and seller

(βV w + u). Using (7), εs solves:

1 + βφw

1− β2φwφs
εs = Ss

v + u+
βφw

¡
1− β2φs

¢
1− β2φwφs

(V w +Bw)− β2φw (1− φs)

1− β2φwφs
(V s +Bs) . (17)

The reservation quality εs depends on the sum of the outside options for buyers and sellers in

both seasons, which in turn depend on the discounted values of becoming a seller and a buyer.

The value of being a buyer, in turn, depends on the expected surplus value of homeownership,

conditional on drawing a match quality ε > εs, that is, Es [Ss
b (ε) | ε > εs] . The value of being a

seller depends on the present value of the rental income u and the expected surplus from meeting

other buyers. We can hence write (see Appendix 8.1)

Bs + V s (18)

=
u

1− β
+
1− F s (εs)

1− β2
Es (Ss (ε) | ε > εs) +

β [1− Fw (εw)]

1− β2
Ew (Sw (ε) | ε > εw) .
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The thick-and-thin market equilibrium through the distribution F j affects the equilibrium price

and reservation quality (pj, εj) in season j = s, w through two channels: the tail of the distribution
1−F j

fj
and the conditional mean Ej [ε | ε > εj] . As shown in (13), a thicker tail implies higher

expected surplus to the seller Sj
v, which increases the equilibrium price pj in (14). Similarly as

shown in (15), higher a conditional mean implies a higher expected surplus to the buyer Sj
b . These

two channels affect the total outside options of the buyer and the seller in (18), and as a result

affect the reservation quality εj in (17).

Stock of vacant houses The law of motion for the stock of vacant houses (and hence for the

stock of buyers) is

vs = (1− φs) (vw [1− Fw (εw)] + 1− vw) + vwFw (εw)

where the first term includes houses that received a moving shock this season and the second term

comprises vacant houses from last period that did not find a buyer. The expression simplifies to

vs = vwφsFw (εw) + 1− φs, (19)

that is, in equilibrium vs depends on the equilibrium matching values of ε and on the distribution

F (.).

An equilibrium is a vector (ps, pw, Bs + V s, Bw + V w, εs, εw, vs, vw) that jointly satisfies equa-

tions (14),(17), (18) and (19), with the surpluses Sj
v and S

j
b (ε) for j = s, w, derived as in (13), and

(15).

4.2 Buyers’ Market

The setup of the model is the same as before, except that now we assume that it is the buyer, rather

than the seller, who makes a take-it-or-leave-it offer after visiting a house. The buyer extracts all

the surplus from the seller by setting a price such that Sj
v = 0, j = s, w. Together with the value

function of the seller, the equilibrium prices in seasons s and w become

ps = pw =
u

1− β
, (20)

which is the same as (14) after setting Ss
v = Sw

v = 0. The optimal strategy of the buyer still follows

the reservation rule defined in (9). The equilibrium values of εs and Bs + V s are the same as in
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(17) and (18) with Ss
v = 0. (The values for ε

w and Bw + V w are, as before, isomorphic to εs and

Bs+V s.) The equilibrium values of the stock of vacancies vs and vw follow the same law of motion

as in (19).

5 Model-generated Seasonality of Prices and Transactions

5.1 Qualitative Results

We now derive the extent of seasonality in prices and transactions generated by the model, and

show how they depend on whether sellers or buyers have the “power” to set prices, as well as on

the level of rental income u. The driver for seasonality in the model is the probability of a moving

shock, which we assume to be higher in the summer: 1 − φs > 1 − φw. Using (19), the stock of

vacant houses in season s is given by:

vs =
(1− φw)φsFw (εw) + 1− φs

1− φwφsF s (εs)Fw (εw)
. (21)

(The expression for vw is correspondingly isomorphic). The ex ante higher probability of a shock

in the summer (1−φs > 1−φw) clearly has a direct positive effect on vs. Because F s (ε) first-order

stochastically dominates Fw (ε) when vs > vw (that is, F s (ε) 6 Fw (ε) ;∀ε), this can amplify the

seasonal shock to generate a higher seasonality in vacancies (as long as the indirect effect through

higher εs is small). This amplification effect is what we call a thick-market externality. As shown

in (14), since the rental income u is a-seasonal, housing prices are seasonal only if the surplus to

the seller is seasonal. Two observations follow:

Remark 1 In a buyer’s market, there is no seasonality in prices.

Remark 2 In a seller’s market, prices are seasonal. The extent of seasonality in prices is de-

creasing in the rental flow u.

To see this, note that when the buyer sets prices, the surplus of the seller is zero; the equilibrium

price is equal to the outside option of the seller, that is, his rental income u, which is a-seasonal.

Hence, prices are a-seasonal in a buyer’s market. When the seller sets prices his surplus is positive

in both seasons; the equilibrium price is hence the sum of his outside option (u) plus a positive

surplus from the sale. The surplus Ss
v, as shown in (13), is seasonal. Given vs > vw, the thick-

market effect implies a thicker tail in quality in the hot season. In words, the quality of matches
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goes up in the summer and hence buyers’s willingness to pay increases; sellers can then extract a

higher surplus in the summer: thus, Ss
v > Sw

v . The extent of seasonality in prices decreases as the

a-seasonal component–the outside option u–increases.

We next turn to the degree of seasonality in transactions. The number of transactions in

equilibrium in season s is given by:

Qs = vs [1− F s (εs)] . (22)

(An isomorphic expression holds for Qw). A bigger stock of vacancies in the summer, vs > vw,

tends to increase transactions in the summer. Whether buyers or sellers set prices also affects

the degree of seasonality in transactions through the equilibrium value of εs. More specifically, a

relatively higher reservation quality in the hot season, εs > εw, tends to decrease the degree of

seasonality in transactions. As shown in (17), the equilibrium cutoff εs depends on the surplus to

the seller (Ss
v) and on the sum of the seller’s and buyer’s outside options. We have already shown

that Ss
v > Sw

v in a seller’s market because of the thick-market effect. Using (15), the thick market

effect also implies that the expected surplus to the buyer is higher in the hot season, so the expected

total surplus is also higher in the hot season: Es (Ss (ε) | ε > εs) > Ew (Sw (ε) | ε > εw). It follows

from (18) that (Bs + V s) > (Bw + V w) . The seasonality of Ss
v implies a higher reservation value

εs in the hot season s (the marginal house has to be of higher quality in order to generate a bigger

surplus to the seller). The seasonality in sellers’ and buyers’ outside options, on the other hand,

tends to reduce the cutoff εs in the hot season s. This is because the outside option in the hot

season s is linked to the sum of values in the winter season: Bw + V w. To see this negative effect

more explicitly, rewrite (17) as

1 + βφw

1− β2φwφs
εs (23)

= Ss
v + u+

βφw (1− β) (1 + βφs)

1− β2φwφs
(V w +Bw) +

β2φw (1− φs)

1− β2φwφs
(V w +Bw − V s −Bs) ,

which makes clear that (Bs + V s) > (Bw + V w) has a negative effect on εs/εw. This gives rise to

the following observations:

Remark 3 In both a seller’s and a buyer’s market, transactions are seasonal. The seasonality of

transactions is higher in a buyer’s market.

To see this, note that the outside option for both the buyer and the seller in the hot season is

to wait and transact in the cold season. This makes both buyers and sellers less demanding in the
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hot season, yielding a larger number of transactions. In other words, the “counter-seasonality” in

outside options increases the seasonality in transactions. On the other hand, when the seller sets

prices, the surplus of the seller is higher in the hot season and hence sellers are more demanding

and less willing to transact, which reduces the seasonality of transactions. Hence, in a seller’s

market, the seasonality of outside options and of the seller’s surplus have opposite effects on the

seasonality of reservation quality, causing a relatively lower degree of seasonality in transactions.

In a buyer’s market instead, only the seasonality of the outside options affects (positively) the

degree of seasonality. Therefore, the seasonality of transactions is higher when the buyer sets

prices. Finally, the effect of the rental flow u on the seasonality of transactions is as follows:

Remark 4 In both the seller’s and buyer’s market, the extent of seasonality of transactions is

decreasing in the rental flow u.

The observation follows from the fact that the extent of the seasonality of outside options for

buyers and sellers is decreasing in u (similar to the reasoning in Remark 2). Hence, as u increases,

transactions become less seasonal.

We show in Appendix 8.4 that the existence of seasonality in transactions in the decentralized

economy is an efficient outcome that is, the planner’s solution also yields seasonality in transactions;

this results naturally from the seasonality of moving probabilities. The actual extent of seasonality

in both the seller’s and buyer’s markets, however, is inefficient, because the decentralized economy

takes the stock of vacant houses as given and therefore ignores the thick market externality on the

housing market. We clarify these points in Appendix 8.4.

5.2 Calibration of the model

5.2.1 Parameter values

We now calibrate the model to study its quantitative implications. We set the discount factor β

so that the implied annual real interest rate is 5 percent.

We set the average probability of staying in the house φ = (φs + φw) /2 to match survey data

on the average duration of stay in a given house, which in the model is given by 1
1−φ). The median

duration in the U.S. from 1993 through 2005, according to the American Housing Survey, was

18 semesters; the median duration in the U.K. during this period, according to the Survey of

English Housing was 26 semesters. The implied (average) moving probabilities φ per semester are
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0.056 and 0.039 for the US and the UK, respectively. These two surveys also report the main

reasons for moving. Around 30− 40 percent of the respondents report that living closer to work

or to their children’s school and getting married are the main reasons for moving.21 These factors

are of course not entirely exogenous, but they can carry a considerably exogenous component; in

particular, the school calendar is certainly exogenous to housing market movements (see Tucker,

Long, and Marx (1995)’s study of seasonality in children’s residential mobility.) In all, the survey

evidence supports our working hypothesis that the ex ante probability to move is higher in the

summer (or, equivalently the probability to stay is higher in the winter).

To illustrate the thick market effect, We assume that F j (.) follows a uniform distribution on

the support [0, vj] (where vj is endogenously determined) Intuitively, a hot season with a higher

vs is characterized by a housing market where the matching quality is better on average.

We calibrate the net rental flow received by the seller, u, to match the implied average (de-

seasonalized) rent-to-price ratio received by the seller in a seller’s market.22 In the UK, the average

gross rent-to-price ratio is 5 percent per year, according to Global Property Guide.23 The u/p ratio

in our model corresponds to the net rental flow received by the seller after paying taxes and other

relevant costs. It is accordingly lower than the gross rent-to-price ratio. As a benchmark, we

choose u so that u/p is equal to 3 percent per year (equivalent to paying a 40 percent income tax

on rent).24 To do so, we use the equilibrium equations in the model without seasonality, that is,

the model in which φs = φw = φ. From (14), the equilibrium price in a seller’s market in the

21Using monthly data on marriages from 1980 through 2003 for the U.K. and the U.S., we find that marriages are

highly seasonal in both countries, with most marriages taking place between April and September. (The difference

in annualized growth rates of marriages between the broadly defined “summer” and “winter” semesters are 200

percent in the U.S. and 400 percent in the U.K.). Results are available from the authors.
22Note that in a buyer’s market, u/p is always constant, given by: ups =

u
pw = 1 − β = 0.024 per semester (just

below 5 percent per year).
23Data for the U.K. and other European countries can be found in

http://www.globalpropertyguide.com/Europe/United-Kingdom/price-rent-ratio
24In principle, other costs can trim down the 3-percent u/p ratio, including maintenance costs, and inefficiencies

in the rental market that lead to a higher wedge between what the tenant pays and what the landlord receives;

also, it might not be possible to rent the house immediately, leading to lower average flows u. Note, however, that

lower values of u/p lead to even higher seasonality in prices and transactions for any given level of seasonality in

moving shocks. In that sense, lower u/p-ratios make it “easier” for our model to generate seasonality in prices.
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absence of seasonality in moving probabilities is

p =
u

1− β
+

Ã
1− βF

¡
εd
¢

1− β

!
Sv, (24)

where the equilibrium reservation quality εd can be derived from (17) (see Appendix 8.2):

εd

1− βφ
= Sv +

u+ βφ
1−βφ

R ε̄
εd
εdF (ε)

1− βφF (εd)
, (25)

and, from (13), Sv =
1−F(εd)

f(εd)(1−βφ)
. We substitute u = 0.03 · p and find the equilibrium value of p

given the calibrated values for β and F (.) . The implied values for u are 0.13 and 0.11 when the

average durations of stay are 9 years and 13 years, respectively.

Finally, we need to calibrate the extent of seasonality in the probability to move, (1− φs) / (1− φw) .

Since there is no direct evidence on this–the available data can only help to pin down the average

φ = (φs + φw) /2–we report results for different values of (1− φs) / (1− φw) ranging from 1.2 to

2 (which implies a range for the difference in moving probabilities, φw − φs, of 0.01 to 0.037 when

the duration is 9 years and of 0.007 to 0.026 when the duration is 13 years).

5.2.2 Buyer’s versus seller’s market

Throughout the quantitative analysis that follows, we will maintain the working hypothesis that

the U.S. behaves like a buyer’s market, while the U.K. behaves like a seller’s market. The question

is of course whether this mapping is a good characterization of the U.S. and U.K. housing markets.

There are at least five reasons why we think this is a reasonable approximation. First, population

density in the U.K. (246 inhabitants per km2) is 700 percent higher than in the U.S. (31 inhabitants

per km2), making land significantly scarcer relative to population in the U.K. and potentially

conferring home owners more power in price setting.

Second, anecdotal evidence suggests that land use regulations are particularly stringent in the

U.K. Indeed in its international comparison of housing markets, the OECD Economic Outlook 78

highlights the “complex and inefficient local zoning regulations and slow authorization process”

in the U.K. economy, which the report cites as one of the reasons for the remarkable rigidity of

housing supply.25 Restrictions reinforce the market power of owners in practice by reducing the

supply of houses.

25OECD Economic Outlook Number 78, chapter III (available at http://www.oecd.org/dataoecd/41/56/35756053.pdf)
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Third, in the model, prices are higher in a seller’s market than in a buyer’s market for any

given level of u, β, and φj, since the surplus to the seller is positive in (14) in a seller’s market;

also, because income is normalized to 1, this is equivalent to saying that price-to-income ratios are

higher in a seller’s market. In the data, housing prices relative to income are significantly higher

in the U.K. According to the “Demographia International Housing Affordability Survey 2008,” in

the U.K. it takes more than 14 years of median household income to pay for the median priced

house, while in the U.S. as a whole it takes only 8 years on average. The same survey finds that

in 25 out of the 28 housing markets identified for the U.K., houses are severely unaffordable, with

the “median multiple” (median house price divided by median household income) above 5.1, while

in the U.S. only 30 out of the 129 housing markets identified by the survey are above 5.26

Fourth, the housing stock in the U.K. is significantly older than in the U.S. Over time, dif-

ferential degrees of maintenance efforts across owners, architectural styles, and construction tech-

nologies, can lead to more substantial heterogeneity in unobservables in the U.K. housing stock.

To the extent that this differentiation reduces the degree of substitutability across houses, it can

potentially generate higher monopoly power for the seller.

The fifth and final reason for our working hypothesis is simply the failure of alternative channels

to generate price seasonality in one country and not in the other, while at the same time generating

seasonality in transactions in both countries. We have discussed most potential channels in the

empirical Section and argued why they fail to explain the cross-country patterns. We examine

further the role of seasonality in transaction costs in Section 6 and conclude that they fail to

generate quantitatively meaningful levels of seasonality.

5.3 Quantitative Results

We present the baseline results in Tables 16 and 17. Table 16 shows the model-generated seasonality

in prices and transactions assuming an average stay in the house of 9 years–the average stay in

the U.S. Column (1) shows the ratio of moving probabilities, (1− φs) / (1− φw) , and Column

(2) shows the implied difference in probabilities, φw − φs, across the two seasons; Columnns (3)

through (6) show correspondingly the differences across seasons in annualized growth rates for

26Of course, international comparisons are not free of problems; for example, it may well be that the U.K. housing

markets provide more amenities, which are then reflected in higher housing prices; we accordingly read this evidence

as suggestive, rather than conclusive.
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prices and transactions in both a seller’s and a buyer’s market, which can be directly compared

to the statistics reported in the empirical Section. Table 17 shows the corresponding figures when

the average stay is 13 years–the average in the U.K.

The Tables illustrate the analytical results derived earlier. First, for all values of (1− φs) / (1− φw) ,

housing prices display seasonality in a seller’s market but no seasonality in a buyer’s market. Sec-

ond, for all values of (1− φs) / (1− φw), seasonality in transactions is significantly larger in a

buyer’s market than in a seller’s market. Indeed, small differences in moving probability across

seasons are substantially amplified in a buyer’s market.

The question we address in this Section is whether the model can quantitatively mimic the

empirical patterns described before. The answer is positive, under our conjecture that the U.S.

housing market behaves more like the buyer’s market in our model and the U.K. housing market

behaves like the seller’s market. (See our justification for this conjecture in Section 5.2.2.) Under

this characterization, it is clear from Table 16 (where the average stay corresponds to that in the

U.S.), that a buyer’s market can yield a-seasonal prices (column 5), while at the same time yielding

considerably high levels of seasonality in transactions (column 6), comparable to those found in

U.S. data (see Table 9), when the ratio of moving probabilities is 1.4, or, equivalently, when the

difference in moving probabilities across seasons is 0.019. Furthermore, as it is apparent from Table

17 (where the average stay matches that in the U.K.), a seller’s market can generate seasonality in

prices comparable to that observed in the U.K. (column 3), when the ratio of moving probabilites

is 2. This number might seem at first large but it simply requires that the probability of moving

in the summer be higher than the probability of moving by 0.026; in other words, this implies that

there are 2.6 percent more houses-homeowners matches subject to a moving shock in the summer

than there are in the winter; in this range also, the model generates differences in annual growth

rates of transactions of around 104 percent, just below the numbers observed for the U.K. economy

(see Table 5).
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Table 16. Model-Generated Seasonality for an Average Stay of 9 years (U.S.)

Prices     
(3)

Transactions  
(4)

Prices        
(5)

Transactions  
(6)

1.2 0.010 1.6% 27.7% 0.0% 90.3%
1.4 0.019 2.9% 51.2% 0.0% 179.3%
1.6 0.026 4.0% 71.6% 0.0% 278.0%
1.8 0.032 4.9% 89.7% 0.0% 389.7%
2.0 0.037 5.7% 106.0% 0.0% 518.4%

Average moving probability:  0.0556

ratio of 
moving 

probabilities 
across seasons 

(1)

Differences in Annualized Differences in Annualized
Growth Rates Growth Rates

difference in 
moving 

probabilities 
across seasons    

(2)

Seller's Market Buyer's Market

Table 17. Model-Generated Seasonality for an Average Stay of 13 years (U.K.).

Prices     
(3)

Transactions  
(4)

Prices        
(5)

Transactions  
(6)

1.2 0.007 1.7% 27.3% 0.0% 82.8%
1.4 0.013 3.1% 50.5% 0.0% 176.0%
1.6 0.018 4.2% 70.6% 0.0% 271.0%
1.8 0.022 5.3% 88.5% 0.0% 378.2%
2.0 0.026 6.1% 104.5% 0.0% 500.9%

Average moving probability: 0.0385
ratio of 
moving 

probabilities 
across seasons 

(1)

difference in 
moving 

probabilities 
across seasons    

(2)

Seller's Market Buyer's Market
Differences in Annualized Differences in Annualized

Growth Rates Growth Rates

As we argued in Section 3, matching the seasonal features of housing markets is not straightfor-

ward in models with standard asset-pricing conditions. Recall that, in that framework, we needed

percent differences in depreciation rates and repair costs across seasons of the order of 400 percent

or higher to match U.K. price seasonality. And even if one were willing to (heroically) assume

that those costs were indeed so different across seasons, there would still remain the puzzle of why

these differences were not present in the U.S.

Though stylised, our model can mimic the empirical seasonal patterns in both the U.S. and

the U.K. for reasonable parameter values. In particular, it can yield considerable amplification

in the seasonality of transactions in a buyer’s market, without leading to seasonality in prices, a

feature consistent with U.S. data, and at the same time generate seasonality in both transactions

and prices comparable to those observed in U.K. data.
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6 Transaction Costs

It is interesting to ask whether and how the introduction of transaction costs would alter the

patterns of seasonality in prices and transactions obtained in the baseline model. We hence extend

our model to allow for transaction costs associated to the purchase (or sale) of a house for both

the buyers and sellers in seasons j = s, w :

T j
b

¡
pj
¢
= τ̄ jb + τ bp

j;

T j
v

¡
pj
¢
= τ̄ jv + τ vp

j,

where T j
b (p

j) is the transaction cost paid by the buyer in season j and T j
v (p

j) is the corresponding

cost paid by the seller. We allow the fixed-cost components, τ̄ jb and τ̄ jv, such as moving costs and

repairing costs, to be seasonal.27 The proportional components, τ b and τ v, such as estate agents’

fees or taxes, are (realistically) assumed to be a-seasonal.

We show in Appendix 8.5 that the equilibrium price equation (14) stills holds by simply re-

placing ps with ps − Tv (p
s), the net price received by the seller:

ps − T s
v (p

s) =
u

1− β
+
1− β2F s (εs)

1− β2
Ss
v +

β [1− Fw (εw)]¡
1− β2

¢ Sw
v , (26)

where the surplus Ss
v in the seller’s market (13) is now multiplied by

1−τv
1+τb

, which is analogous to the

“tax wedge” applied to a match between a firm and a worker in the labour economics literature:

Ss
v =

µ
1− τ v
1 + τ b

¶µ
1− F s (εs)

f s (εs)

¶
1 + βφw

1− β2φwφs
. (27)

The reservation-quality equation (17) also holds by including the total transaction costs T s (ps) =

T s
b (p

s) + T s
v (p

s) on the right-hand side:

1 + βφw

1− β2φwφs
εs = Ss

v + u+ T s (ps) +
βφw

¡
1− β2φs

¢
1− β2φwφs

(V w +Bw)− β2φw (1− φs)

1− β2φwφs
(V s +Bs) . (28)

Finally, Ss
b (ε) and (B

s + V s) remain exactly as in (15) and (18) in the baseline model.

There are two interesting observations. First, for small enough proportional costs, (1− τ v) / (1 + τ b) '

1− (τ v + τ b) , the modified surplus to the seller, Ss
v, depends (to a first approximation) on the sum

27Repair costs (both for the seller who’s trying to make the house more attractive and for the buyer who wants to

adapt it before moving in) may be smaller in the summer because good weather and the opportunity cost of time

(assuming vacation is taken in the summer) are important inputs in construction). Moving costs, similarly, might

be lower during vacation (both job and school holidays).
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of proportional costs (τ v + τ b) and on εs. From the modified equations (15) and (17), εs depends

on total costs only. Hence, from (19), in equilibrium, the number of vacant houses, vs, depends

only on total costs. It follows that also the extent of seasonality in the number of transactions

depends only on total costs.

Second, the modified price equation (26) shows that the extent of seasonality in prices depends

not only on total costs but also on how these costs are distributed between buyers and sellers.

Specifically, seasonality in prices in the seller’s market (barring seasonality in the fixed cost itself)

increases when the buyer bears most of the fixed cost of the transaction.

From a quantitative standpoint, however, transaction costs do not significantly alter the extent

of seasonality documented in the baseline model, where seasonality is measured (as before) as the

difference in annualized growth rates of prices or transactions across seasons. We study the quanti-

tative implications of transaction costs in various steps. Table 18 explores the role of proportional

transaction costs for different degrees of seasonality in moving shocks. Using the same calibrated

parameters as before, for an average stay of 9 years (or average moving probability φ = 0.0556), we

assume that both the buyer and the seller pay a transaction cost of 3 percent of the property price,

which is consistent with the averages reported in various guides for home buying and selling in

both the U.S. and the U.K. That is, we set τ v = τ b equal to 3 percent of the property price. (Note

that the only difference with Table 16 is that in there we set τ v = τ b = 0). Though proportional

transaction costs increase seasonality, quantitatively, the increase is only slight and the results are

very close to those in Table 16. The results when the average stay is 13 years (not reported for

the sake of brevity) are equally insensitive (from a quantitative standpoint) to the introduction of

proportional costs of this size.

Table 18. Model-Generated Seasonality with Proportional Costs

Prices     
(2)

Transactions  
(3)

Prices        
(4)

Transactions  
(5)

1.2 1.7% 28.9% 0.0% 92.1%
1.4 3.0% 53.5% 0.0% 184.1%
1.6 4.2% 75.0% 0.0% 285.9%
1.8 5.2% 94.0% 0.0% 402.9%
2.0 6.0% 111.6% 0.0% 539.2%

ratio of moving 
probabilities 

across seasons    
(1)

Seller's Market Buyer's Market
Average moving probability:  0.0556

Differences in Annualized Differences in Annualized
Growth Rates Growth Rates
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Tables 19 through 21 explore the role of fixed transaction costs. As said, both the sum of the

fixed costs paid by the seller and the buyer, as well as its distribution between the two parties

matter for seasonality. To make this distinction clear, we let τ̄ b = θ · τ̄ and τ̄ v = (1− θ) · τ̄ . (Note

that we are for the moment ignoring any seasonality in fixed costs, a point to which we come

back later.) Given that there is no systematic empirical evidence on the size of fixed costs, we

explore a relatively large range for τ̄ , equivalent to 0 through to 10 percent of the ex-post value

of the house. We then study the degree of seasonality generated by the model for different fixed

costs and different ratios of moving probabilities across seasons. Table 19 assumes the fixed cost

is equal for both sellers and buyers, that is, θ = 0.50. All other parameters are calibrated as in

Table 16. As Table 19 shows, increasing the fixed cost from 0 to 10 percent, increases price and

transaction seasonality in a seller’s market only slightly; seasonality in transactions in the buyer’s

market appears to be more sensitive, but only when the moving shock is highly seasonal (in the

Table, when the ratio of moving probabilities is 2).

Table 19. Model-Generated Seasonality with Fixed Costs and θ = 0.50

Prices        
(2)

Transactions   
(3)

Prices        
(4)

Transactions   
(5)

0% 2.9% 51.2% 0.0% 179.9%
5% 3.0% 53.2% 0.0% 184.7%
10% 3.1% 55.3% 0.0% 190.2%

0% 4.9% 89.7% 0.0% 389.7%
5% 5.1% 93.4% 0.0% 405.0%
10% 5.3% 97.2% 0.0% 422.5%

0% 5.7% 106.0% 0.0% 518.4%
5% 6.0% 110.5% 0.0% 542.7%
10% 6.2% 115.0% 0.0% 570.7%

Fixed-cost-
to-price 

ratio        
(1)

Seller's Market Buyer's Market
Differences in Annualized Differences in Annualized

Growth Rates Growth Rates

Average moving probability:  0.0556

ratio of moving probabilities across seasons = 1.4

ratio of moving probabilities across seasons = 1.8

ratio of moving probabilities across seasons =2.0

Table 20 reports the results from the same exercise carried out in Table 19, with the only dif-

ference that we now assume that only the buyer pays a fixed cost, that is, θ = 1. As observed while

discussing the analytical results, the extent of seasonality in transactions is virtually unaffected

by the distribution of the total fixed cost between the two parties. Hence, the figures for season-
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ality in transactions are almost identical to the corresponding ones in Table 19.28 Seasonality in

prices, though, increases when the buyer pays the fixed cost, with the increase being more sub-

stantial when the moving shock is more seasonal (that is, for higher values of the ratio of moving

probabilities).

Table 20. Model-Generated Seasonality with Fixed Costs and θ = 1

Prices        
(2)

Transactions   
(3)

Prices        
(4)

Transactions   
(5)

0% 2.9% 51.2% 0.0% 179.9%
5% 3.2% 53.2% 0.0% 185.3%
10% 3.4% 55.0% 0.0% 190.5%

0% 4.9% 89.7% 0.0% 389.7%
5% 5.4% 93.4% 0.0% 406.7%
10% 5.8% 96.8% 0.0% 423.3%

0% 5.7% 106.0% 0.0% 518.4%
5% 6.3% 110.4% 0.0% 545.2%
10% 6.8% 114.5% 0.0% 571.8%

Growth Rates

ratio of moving probabilities across seasons = 1.4

ratio of moving probabilities across seasons = 1.8

ratio of moving probabilities across seasons =2.0

Average moving probability:  0.0556
Fixed-cost-

to-price 
ratio        
(1)

Seller's Market Buyer's Market
Differences in Annualized Differences in Annualized

Growth Rates

Table 21 reports the corresponding results when only the seller pays the fixed cost of the

transaction, that is, θ = 0. As discussed earlier, seasonality in transactions is unaltered (compared

the corresponding figures in Tables 19 and 20), while seasonality in prices decreases vis-à-vis the

cases in which the buyer pays some or all of the fixed cost. Note also that seasonality in prices in a

seller’s market decreases (though slightly) with the size of the fixed cost. This is because the fixed

cost (paid by the sellers) is an a-seasonal component in the price equation (26), which reduces the

extent of seasonality in prices generated by the surplus terms. The conclusions drawn from Tables

19 through 21 are unchanged when the average stay is 13 rather than 9 years. (The results, not

reported for the sake of space, are available from the authors).

28The analytical result shows that the extent of seasonality in transactions depends only on the level of total

costs. Note that Tables 19− 21 report the results when the fixed-cost-to-price ratio are equal (varying from 5 to 10

percent). Therefore, the figures in column (5) of Tables 19− 21 are not exactly identical because the level of prices
vary under the alternative settings of θ = 0; 0.5; 1. and hence so do the implied calibrated levels of the total cost (τ̄)
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Table 21. Model-Generated Seasonality with Fixed Costs and θ = 0

Prices        
(2)

Transactions   
(3)

Prices        
(4)

Transactions   
(5)

0% 2.9% 51.2% 0.0% 179.9%
5% 2.8% 53.2% 0.0% 184.2%
10% 2.8% 55.6% 0.0% 190.1%

0% 4.9% 89.7% 0.0% 389.7%
5% 4.9% 93.5% 0.0% 403.4%
10% 4.8% 97.8% 0.0% 422.4%

0% 5.7% 106.0% 0.0% 518.4%
5% 5.7% 110.5% 0.0% 540.2%
10% 5.6% 115.8% 0.0% 570.7%

ratio of moving probabilities across seasons = 1.4

ratio of moving probabilities across seasons = 1.8

ratio of moving probabilities across seasons =2.0

Average moving probability:  0.0556

Fixed-cost-
to-price 

ratio        
(1)

Seller's Market Buyer's Market
Differences in Annualized Differences in Annualized

Growth Rates Growth Rates

Finally, it is of interest to explore the quantitative effects of seasonality in the fixed cost itself

and whether this seasonality might be the underlying driver of seasonality in housing markets. As

expressed before, it might be natural to think that certain costs, such as repair or moving costs

are lower in the summer (due to good weather and vacation time). How much lower, it is hard

to point out, given the paucity of empirical evidence on the subject; for this reason, we study a

range of possibilities, with relative total fixed costs in winters and summers, τ̄w

τ̄s
, ranging from 1.2

through 2. We fix the average fixed cost (over summer and winter, τ̄
w+τ̄s

2
) at 5 percent and assume

that this cost is shared equally between the buyer and seller (that is, θ = 0.5).

To focus only on the effect of seasonality in fixed costs, we calibrate the moving probabilities

to be equal across seasons φs = φw and assume as before an average stay of 9 years. All other

parameters are calibrated as in Table 16. The results from this exercise, displayed in Table 22 show

that in a seller’s market, seasonality in costs can generate very little seasonality in prices, while

generating significant seasonality in transactions. Moreover, and perhaps surprisingly, in a buyer’s

market, seasonality in prices is reverted, while seasonality in transactions becomes extremely large.

This result for prices follows immediately from the fact that the only seasonal component in the

price equation (26) for a buyer’s market is the cost term; hence, a higher cost in the winter implies

a higher price, which in turns implies an even lower number of transactions in the winter. The

results then suggest that it is very unlikely that seasonality in moving or repair costs could be the
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triggering force for the empirical findings documented in this paper.

Table 22. Model-Generated Seasonality with Seasonal Fixed Costs, φs = φw, and θ = 0.5

Prices     
(2)

Transactions  
(3)

Prices        
(4)

Transactions  
(5)

1.2 0.6% 46.0% -2.8% 137.0%
1.4 1.1% 86.2% -5.2% 301.5%
1.6 1.4% 123.1% -7.1% 534.6%
1.8 1.8% 157.7% -8.8% 885.9%
2.0 2.1% 190.7% -10.3% 1433.6%

ratio of winter to 
summer fixed 

costs            
(1)

Seller's Market Buyer's Market
Average moving probability:  0.0556

Differences in Annualized Differences in Annualized
Growth Rates Growth Rates

7 Concluding Remarks

This paper documents seasonal booms and busts in housing markets and argues that the pre-

dictability and high extent of seasonality in prices observed in some of them cannot be quantita-

tively reconciled with standard asset-pricing equilibrium conditions.

To explain the empirical patterns, the paper presents a search model that can quantitatively

account for most of the empirical puzzle. As a by product, the model sheds new light on inter-

esting mechanisms governing fluctuations in housing markets that can potentially be useful in a

study of lower-frequency movements. In particular, the model highlights the roles of thick-market

externalities and the distribution of power between buyers and sellers as the key determinants of

housing markets’ behavior.

In future work, the authors plan to adapt the model presented in the paper to study lower

frequency movements in the housing markets.

8 Appendix

8.1 Derivation for the model with seasons

Deriving the optimal price (14):

Using the definition of Ss
v ≡ ps − βV w − u, rewrite the value function of the seller (11) as

V s = βV w + u+ [1− F s (εs)]Ss
v.
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Solving out V s explicitly:

V s =
1− F s (εs)

1− β2
Ss
v +

β [1− Fw (εw)]

1− β2
Sw
v +

u

1− β
, (29)

where Ss
v is solved in (13). Substituting (29) into the definition of S

s
v, we obtain (14).

Deriving B + V in (18):

By definition of optimal price ps and reservation quality εs, the value function (8) becomes:

Bs =

Z ε̄s

εs
(Hs (ε)− ps) dF s (ε) + F s (εs)βBw

which can be rewritten as

Bs = βBw + (1− F s (εs))Es [Ss
b (ε) | ε > εs] ,

where Ss
b is solved in (15). Solving out B

s explicitly:

Bs =
1− F s (εs)

1− β2
Es [Ss

b (ε) | ε > εs] +
β [1− Fw (εw)]

1− β2
Ew [Sw

b (ε) | ε > εw] (30)

Combining (30) with (29), we derive (18).

8.2 The model without seasons

The value functions for the model without seasonality are identical to those in the model with

seasonality without the superscripts s and w. It can be shown that the equilibrium equations are

also identical by simply setting φs = φw. Using (17),

εd

1− βφ
= Sv + u+

βφ

1− βφ
(1− β) (V +B)

where Sv follows from (13),

Sv =
1− F

¡
εd
¢

f (εd) (1− βφ)
.

and B + V from (18),

B + V =
u

1− β
+
1− F

¡
εd
¢

1− β

(£
E
¡
ε− εd | ε > εd

¢¤
1− βφ

+ Sv

)

=
1

1− β

∙
u+

£
1− F

¡
εd
¢¤
Sv +

Z ε̄

εd

µ
ε− εd

1− βφ

¶
dF (ε)

¸
.

substitute into the reservation equation,

εd

1− βφ
= Sv + u+

βφ

1− βφ

∙
u+

£
1− F

¡
εd
¢¤
Sv +

Z ε̄

εd

µ
ε− εd

1− βφ

¶
dF (ε)

¸
which simplifies to (25).
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8.3 Efficiency

This Section discusses the efficiency of equilibrium in the decentralized economy under both a

seller’s and a buyer’s market scenarios. The planner observes the match quality ε and is subject to

the same exogenous moving shocks that hit the decentralized economy. The interesting comparison

is the level of reservation quality achieved by the planner with the corresponding levels in a seller’s

and a buyer’s market.

To spell out the planner’s problem, we follow Pissarides (2000) and assume that in any period

t the planner takes as given the expected value of the housing utility service per person in period

t (before he optimizes), which we denote by ht−1, as well as the beginning of period’s stock of

vacant houses, vt. Thus, taking as given the initial levels h−1 and v0, and the sequence {φt}t=0...,

which alternates between φj and φj
0
for seasons j, j0 = s, w, the planner’s problem is to choose a

sequence of {εt}t=0,.. to maximize

U ({εt, ht, vt}t=0...) ≡
∞X
t=0

βt [ht + uvtF (εt; vt)] (31)

subject to the law of motion for ht :

ht = φtht−1 + vt

Z ε̄(vt)

εt

xdF (x; vt) , (32)

the law of motion for vt (which is similar to the one in the decentralized economy):

vt+1 = vtφt+1F (εt; vt) + 1− φt+1, (33)

and the inequality constraint:

0 6 εt 6 ε̄ (vt) . (34)

Intuitively, the planner faces two types of trade-offs when deciding the optimal reservation

quality εt : a static one and a dynamic one. The static trade-off stems from the comparison of

utility values generated by occupied houses and vacant houses in period t in the objective function

(31). The utility per person generated from vacant houses is the rental income per person, captured

by uvtF (εt) . The utility generated by occupied houses in period t is captured by ht, the expected

housing utility service per person conditional on the reservation value εt set by the planner in

period t. The utility ht, which follows the law of motion (32), is the sum of the pre-existing expected

housing utility ht−1 that survives the moving shocks and the expected housing utility from the new

matches. By increasing εt, the expected housing value ht decreases, while the utility generated by
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vacant houses increases (since F (εt) increases). The dynamic trade-off operates through the law

of motion for the stock of vacant houses in (33). By increasing εt (which in turn decreases ht), the

number of transactions in the current period decreases; this leads to more vancant houses in the

following period, vt+1, and consequently to a thicker market in the next period.

Assuming the inequality constraints are not binding, i.e. markets are open in both the cold

and hot seasons, the optimal reservation quality, εj, j = s, w, in the periordic steady state is (see

Appendix 8.4):

εj

Ã
1 + βφj

0

1− β2φjφj
0

!
=

¡
1 + βφj0Aj0

¢
u+ β2φjφj

0
Aj0Dj + βφj

0
Dj0

1− β2φjφj
0
AjAj0

, (35)

where

Aj ≡ F j
¡
εj
¢
− vjT j

1 ; Dj ≡ 1 + βφj
0

1− β2φjφj
0

ÃZ ε̄j

εj
εdF j (ε) + vjT j

2

!
, (36)

and the stock of vacant houses, vj, j = s, w, satisfies (19) as in the decentralized economy.

The thick-market effect enters through two terms: T j
1 ≡ ∂

∂vj
[1− F j (εj)] > 0 and T j

2 ≡
∂
∂vj

R ε̄j
εj
εdF j (ε) > 0. The first term, T j

1 , indicates that the thick-market effect shifts up the

acceptance schedule [1− F j (ε)] . The second term, T j
2 , indicates that the thick-market effect in-

creases the conditional quality of transactions. The interior solution (35) is an implicit function

of εj that depends on εj
0
, vj, and vj

0
. It is not straightforward to derive an explicit condition for

εj < vj, j = s, w. However, when there are no seasons, φs = φw, it follows immediately from (19)

that the solution is interior, ε < v. On the other hand, when the exogenous difference in moving

propensities across seasons is large enough, the Planner might find it optimal to close down the

market in the cold season. Before we turn to such situation, it is helpful to understand the sources

of inefficiency in the decentralized economy when there are no seasons.

Abstracting from seasonality for the moment, there are two sources of inefficiency in the de-

centralized economy. First, the match quality ε is private information: Only buyers observe it.

This implies that the number of transactions in a seller’s market is inefficiently low. Second, the

optimal decision rules of buyers and sellers take the stock of houses in each period as given, thereby

ignoring the effects of their decision rules on the stock of vacant houses in the following periods.

The thick-market effect generates a negative externality that makes the number of transactions

in the decentralized economy (both in a seller’s and a buyer’s market) inefficiently high for any

given stock of vacant houses. More specifically, setting φs = φw = φ in (35) implies the planner’s
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optimal reservation quality εp satisfies:

εp

1− βφ
=

u+ βφ
1−βφ

³R ε̄
εp
εdF (ε) + vT2

´
1− βφF (εp) + βφvT1

. (37)

The two sources of inefficiency can now be seen explicitly by comparing (37) with (25). The positive

term Sv affecting εd in the decentralized seller’s market increases the reservation quality and hence

lowers the number of transactions with respect to the efficient (Planner’s) outcome. This source of

inefficiency disappears in a buyer’s market, since Sv = 0. The second source of inefficiency, which

operates through the thick-market externality, is present in both sellers’ and buyers’ markets. The

thick-market effect, captured by T1and T2, generates two opposite forces. The term T1 decreases

εp, while the term T2 increases εp in the planner’s solution. Thus, the positive thick-market effect

on the acceptance rate T1 implies that the number of transactions is too low in the decentralized

economy, while the positive effect on quality T2 implies that the number of transactions is too high.

Since 1− βφ is close to zero, however, the term T2 dominates. Therefore, the overall effect of the

thick-market externality is to increase the number of transactions in the decentralized economy

relative to the efficient outcome.29 Hence, the number of transactions in a buyer’s market is too

high compared to the planner’s solution, while in a seller’s market it can be too low or too high,

depending ultimately on the shape of the distribution F (.) .

We now return to the planner’s problem in the case in which it is optimal to close down the

market during the cold season. In this case, the solution implies setting εwt = ε̄wt in the planner’s

problem. The optimal reservation quality, εs, in the periodic steady state is (see Appendix 8.4):

εs

1− β2φwφs
=

u+ β2φwφs

1−β2φwφs

³R ε̄s
εs
εdF s (ε) + vsT s

2

´
1− β2φsφw [F s (εs)− vsT s

1 ]
, (38)

which is similar to the Planner’s solution with no seasons in (37) with β2φwφs replacing βφ.

8.4 Analytical derivations of the planner’s solution

The Planner’s solution when the housing market is open in all seasons

Because the sequence {φt}t=0,...alternates between φj and φj
0
for seasons j, j0 = s, w, the planner’s

problem can be written recursively. Taking (ht−1, vt) , and {φt}t=0,.. as given, and provided that
29This result is similar to that in the stochastic job matching model of Pissarides (2000, chapter 8), where the

reservation productivity is too low compared to the efficient outcome in the presence of search externalities.
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the solution is interior, that is, εt < vt, the Bellman equation for the planner is given by:

W (ht−1, vt, φt) = max
εt

£
ht + uvtF (εt; vt) + βW

¡
ht, vt+1, φt+1

¢¤
(39)

s.t.

ht = φtht−1 + vt

Z ε̄(vt)

εt

xdF (x; vt) ,

vt+1 = vtφt+1F (εt; vt) + 1− φt+1.

The first-order condition impliesÃ
1 + β

∂W
¡
ht, vt+1, φt+1

¢
∂ht

!
vt (−εtf (εt; vt)) +

Ã
βφt+1

∂W
¡
ht, vt+1, φt+1

¢
∂vt+1

+ u

!
vtf (εt; vt) = 0,

which simplifies to

εt

Ã
1 + β

∂W
¡
ht, vt+1, φt+1

¢
∂ht

!
= u+ βφt+1

∂W
¡
ht, vt+1, φt+1

¢
∂vt+1

. (40)

Using the envelope-theorem conditions, we obtain:

∂W (ht−1, vt, φt)

∂ht−1
= φt

Ã
1 + β

∂W
¡
ht, vt+1, φt+1

¢
∂ht

!
(41)

and

∂W (ht−1, vt, φt)

∂vt
=

Ã
u+ βφt+1

∂W
¡
ht, vt+1, φt+1

¢
∂vt+1

!
(F (εt; vt)− vtT1t) (42)

+

Ã
1 + β

∂W
¡
ht, vt+1, φt+1

¢
∂ht

!ÃZ ε̄(vt)

εt

xdF (x; vt) + vtT2t

!

where T1t ≡ ∂
∂vt
[1− F (εt; vt)] > 0 and T2t ≡ ∂

∂vt

R ε̄(vt)
εt

xdF (x; vt) > 0.

In the periodic steady state, the first order condition (40) becomes

εj

Ã
1 + β

∂W j0
¡
hj, vj

0¢
∂hj

!
= u+ βφj

0 ∂W j0
¡
hj, vj

0¢
∂vj0

(43)

The envelope condition (41) implies

∂W j
¡
hj

0
, vj
¢

∂hj0
= φj

"
1 + β

Ã
φj

0
+ βφj

0 ∂W j
¡
hj

0
, vj
¢

∂hj0

!#
which yields:

∂W j
¡
hj

0
, vj
¢

∂hj0
=

φj
³
1 + βφj

0
´

1− β2φjφj
0 (44)
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Substituting this last expression into (42), we obtain:

∂W j
¡
hj

0
, vj
¢

∂vj
=

Ã
u+ βφj0

∂W j0
¡
hj, vj

0¢
∂vj0

!
Aj +Dj,

where

Aj ≡ F j
¡
εj
¢
− vjT j

1 ; Dj ≡ 1 + βφj
0

1− β2φjφj
0

ÃZ ε̄j

εj
εdF j (ε) + vjT j

2

!
.

Hence, we have

∂W j
¡
hj

0
, vj
¢

∂vj
=

(
u+ βφj0

"Ã
u+ βφj

∂W j
¡
hj

0
, vj
¢

∂vj

!
Aj0 +Dj0

#)
Aj +Dj,

which implies

∂W j
¡
hj

0
, vj
¢

∂vj
=

uAj
³
1 + βφj

0
Aj0
´
+ βφj

0
Dj0Aj +Dj

1− β2φjφj
0
AjAj0

. (45)

Substituting (44) and (45) into the first-order condition (43), we get:

εj

Ã
1 + β

φj
0 ¡
1 + βφj

¢
1− β2φjφj

0

!
= u+ βφj0

uAj0
¡
1 + βφjAj

¢
+ βφjDjAj0 +Dj0

1− β2φjφj
0
AjAj0

simplify to (35).

The Planner’s solution when the housing market is closed in the cold season

Setting εwt = ε̄wt , the Bellman equation (39) can be rewritten as:

W s
¡
hwt−1, v

s
t

¢
= max

εst

⎡⎢⎢⎢⎣
φshwt−1 + vst

R ε̄st
εst
εdF s

t (ε) + uvstF
s
t (ε

s
t)

+β
¡
hwt+1 + u [vstφ

wF s
t (ε

s
t) + 1− φw]

¢
+β2W s

¡
hwt+1, v

s
t+2

¢
⎤⎥⎥⎥⎦ (46)

s.t.

hwt+1 = φw

"
φshwt−1 + vst

Z ε̄st

εst

εdF s
t (ε)

#
,

vst+2 = φs [vstφ
wF s

t (ε
s
t) + 1− φw] + 1− φs.

Intuitively, “a period” for the decision of εst is equal to 2t. The state variables for the current

period are given by the vector
¡
hwt−1, v

s
t

¢
, the state variables for next period are

¡
hwt+1, v

s
t+2

¢
, and

the control variable is εst .

The first order condition:

0 = vst (−εstf st (εst)) + uvstf
s
t (ε

s
t)

+β (φwvst (−εstf st (εst)) + uvstφ
wf st (ε

s
t))

+β2
∙
∂W s

∂hwt+1
(φwvst (−εstf st (εst))) +

∂W s

∂vst+2
(φsvstφ

wf st (ε
s
t))

¸
,
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which simplifies to:

0 = −εst + u+ β (−φwεst + uφw)

+β2

"
∂W s

¡
hwt+1, v

s
t+2

¢
∂hwt+1

(−φwεst) +
∂W s

¡
hwt+1, v

s
t+2

¢
∂vst+2

φsφw

#
and can be written as:

εst

"
1 + βφw + β2φw

∂W s
¡
hwt+1, v

s
t+2

¢
∂hwt+1

#
= (1 + βφw)u+ β2φwφs

∂W s
¡
hwt+1, v

s
t+2

¢
∂vst+2

(47)

Using the envelope-theorem conditions, we obtain:

∂W s
¡
hwt−1, v

s
t

¢
∂hwt−1

= φs + βφwφs + β2φwφs
∂W s

¡
hwt+1, v

s
t+2

¢
∂hwt+1

, (48)

and

∂W s
¡
hwt−1, v

s
t

¢
∂vst

= (1 + βφw)

ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!
+ (1 + βφw)u [F s

t (ε
s
t)− vstT

s
1t]

+β2
∂W s

¡
hwt+1, v

s
t+2

¢
∂hwt+1

φw

ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!

+β2
∂W s

¡
hwt+1, v

s
t+2

¢
∂vst+2

φsφw [F s
t (ε

s
t)− vstT

s
1t] ,

where T s
1t ≡ ∂

∂vst
[1− F s

t (ε
s)] > 0 and T s

2t ≡ ∂
∂vst

R ε̄st
εst
εdF s

t (ε) > 0. This last expression can hence

be written as:

∂W s
¡
hwt−1, v

s
t

¢
∂vst

(49)

=

Ã
1 + βφw + β2φw

∂W s
¡
hwt+1, v

s
t+2

¢
∂hwt+1

!ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!

+

Ã
(1 + βφw)u+ β2φsφw

∂W s
¡
hwt+1, v

s
t+2

¢
∂vst+2

!
[F s

t (ε
s
t)− vstT

s
1t]

In steady state, (48) and (49) become

∂W s (hw, vs)

∂hw
=

φs (1 + βφw)

1− β2φwφs
, (50)

and

∂W s (hw, vs)

∂vs
¡
1− β2φsφw [F s (εs)− vsT s

1 ]
¢

(51)

=

µ
1 + βφw + β2φw

φs (1 + βφw)

1− β2φwφs

¶µZ ε̄s

εs
εdF s (ε) + vsT s

2

¶
+(1 + βφw)u [F s (εs)− vsT s

1 ] .
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Substituting into the FOC (47),

εs
1 + βφw

1− β2φwφs
= (1 + βφw)u

+β2φwφs
(1 + βφw)u [F s (εs)− vsT s

1 ] +
1+βφw

1−β2φwφs

³R ε̄s
εs
εdF s (ε) + vsT s

2

´
1− β2φsφw [F s (εs)− vsT s

1 ]

which simplifies to (38).

8.5 The model with Transaction costs

We now introduce transaction costs for buying and selling a house into the baseline model. The

value function of the homeowner is the same as (7) in the baseline model. The buyer’s value

function is modified to:

Bs = Es
ε max {Hs (ε)− ps − T s

b (p
s) , βBw} ,

so the cutoff εs is given by:

Hs (εs)− ps − T s
b (p

s) = βBw,

and
∂εs

∂ps
=
1− β2φwφs

1 + βφw
(1 + τ b) .

The seller’s value function is modified to:

V s = βV w + u+max
p
[1− F s (εs (p))] (p− T s

v (p)− βV w − u) ,

where the optimal price ps solves

ps − T s
v (p

s)− βV w − u

(1− τ v) ps
=

Ã
psf s (εs) ∂ε

s

∂ps

1− F s (εs)

!−1
.

Following similar simplifications as in Appendix 8.1, we obtain

Ss
v =

µ
1− τ v
1 + τ b

¶µ
1− F s (εs)

f s (εs)

¶
1 + βφw

1− β2φwφs
,

ps − T s
v (p

s) =
u

1− β
+

µ
1 +

β2 [1− F s (εs)]

1− β2

¶
Ss
v +

β [1− Fw (εw)]¡
1− β2

¢ Sw
v ,

1 + βφw

1− β2φwφs
εs = Ss

v + u+ T s (ps) +
βφw

¡
1− β2φs

¢
1− β2φwφs

(V w +Bw)− β2φw (1− φs)

1− β2φwφs
(V s +Bs) ,

and Bs + V s as in (18).
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9 Data Sources

For U.K. and U.S. data, see text.

Australia The housing price index comes from the Australia Bureau of Statistics (ABS); it

is a weighted average for eight capital cities, available from 1986; the series is based on prices

at settlement and are based on data provided to the land titles office; it is not quality adjusted.

The CPI (non seasonally adjusted, NSA) also comes from the ABS and is a national index, not

available at a disaggregated level; in what follows, for all countries, the price index considered in

the analysis corresponds to the national index.

Belgium The housing price index comes from STADIM (Studies & advies Immobiliën) and

covers Belgium and its three main regions from 1981; the series is based on the average selling

prices of small and average single-family houses; apartments are not included; the data come from

registered sales, and are not quality adjusted. The CPI (NSA) comes from the National Institute

for Statistics.

Denmark The housing price index comes from the Association of Danish Mortgage Banks

and corresponds to existing single-family homes (including flats and weekend cottages). The data

come from the Land Registry, where all housing transactions are registered; they are not adjusted

by quality and start in 1992. The CPI (NSA) comes from Danmarks Statistik.

France The housing price index comes from INSEE (National Institute for Statistics and

Economic Studies) and corresponds to existing single-family homes. The data are not quality

adjusted and start in 1994. The index covers all regions, and comes also disaggregated into 4

regions. The CPI (NSA) comes from the same source.

Ireland The housing price index comes from Permanent TSB, which accounts for about 20

percent of residential mortgage loans in the country, starting in 1996; the index is adjusted by the

size of the property, dwelling type (detached, semi-detached, terrace, or apartment), and heating

system. The number of transactions (loans) comes from the same source. The CPI (NSA) comes

from the Central Statistical Office in Ireland.
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Netherlands The housing price index comes from the Dutch Land Registry; it is a repeat-

sale index, starting in 1993. The CPI (NSA) comes from the CBS (Statistics Netherlands).

New Zealand The housing price index comes from the Reserve Bank of New Zealand, starts

in 1968, and is not adjusted by quality; the CPI (NSA) comes from the same source.

Norway The housing price index comes from Statistics Norway, starting in 1992; the data

are not adjusted by quality as meticulously as in the U.K., however, the properties considered

need to satisfy a set of broadly defined) characteristics to be included in the index; the CPI (NSA)

comes from the same source.

South Africa The housing price index comes from ABSA, a commercial bank that covers

around 53 percent of the mortgage market in South Africa. The data are recorded at the application

stage of the mortgage lending process and the series starts in 1975. There is no quality adjustment,

although the properties considered need to satisfy a set of (broadly defined) characteristics to be

included in the index. The CPI (NSA) comes from Statistics South Africa.

Sweden The housing price index comes from Statistika Centralbyrån; the data correspond

to one and two-dwelling properties and are not quality-adjusted; the series starts in 1986; data on

transactions and CPI (NSA) come from the same source.
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