David W. Johnston, Grace Lordan
Weight perceptions, weight control and income: an analysis using British data

Article (Published version) (Refereed)

Original citation:
ISSN 1570-677X

DOI: 10.1016/j.ehb.2013.02.004

© 2013 Elsevier B.V

This version available at: http://eprints.lse.ac.uk/49900/

Available in LSE Research Online: December 2014

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.
Weight perceptions, weight control and income: An analysis using British data

David W. Johnston a, Grace Lordan b,*

a Centre of Health Economics Monash, University of Monash, Clayton Campus, Wellington Road, Clayton, Victoria 3800, Australia
b School of Social Policy LSE, Houghton Street, London WC2A 2AE, United Kingdom

A R T I C L E I N F O

Article history:
Received 16 February 2012
Received in revised form 21 February 2013
Accepted 21 February 2013
Available online 19 March 2013

Keywords:
Obesity
Overweight
Weight Control
Weight misperceptions

A B S T R A C T

The aim of this paper is to better understand one of the mechanisms underlying the income–obesity relationship so that effective policy interventions can be developed. Our approach involves analysing data on approximately 9000 overweight British adults from between 1997 and 2002. We estimate the effect of income on the probability that an overweight individual correctly recognises their overweight status and the effect of income on the probability that an overweight individual attempts to lose weight. The results suggest that high income individuals are more likely to recognise their unhealthy weight status, and conditional on this correct weight perception, more likely to attempt weight loss. For example, it is estimated that overweight high income males are 15 percentage-points more likely to recognise their overweight status than overweight low income males, and overweight high income males are 10 percentage-points more likely to be trying to lose weight. An implication of these results is that more public education on what constitutes overweight and the dangers associated with being overweight is needed, especially in low income neighbourhoods.

© 2013 Published by Elsevier B.V.

1. Introduction and background

Being overweight or obese is known to be bad for your health, yet the prevalence of obesity is increasing worldwide (Lobstein and Jackson Leach, 2007). Coined as the “most prevalent nutritional problem in the world” (Lau et al., 2007), the epidemic is most prevalent in developed countries. For example, in Canada, U.S., France and Australia, 23% (Linder et al., 2010), 33% (Dorsey et al., 2009), 17% (International Obesity Task Force, 2011) and 25% (International Obesity Task Force, 2011) of the population are classified as obese (BMI of 30 kilograms per squared metre or greater “for obese (inclusive of 30)”), respectively. While obesity rates are similar for males and females, there is a divergence between genders with respect to being overweight. For example, in Canada 42.8% of males and 23.7% of females are overweight (body mass index (BMI) of 25 kilograms per squared metre or greater” (inclusive of 25)) or obese. The equivalent figures for the U.S., France and Australia are 40.1% and 28.6%, 41.0% and 23.8%, and 42.1% and 30.9%, respectively (International Obesity Task Force, 2011).

In England, over 40% of men and 30% of women are overweight or obese (International Obesity Task Force, 2011), with predictions that without action, 60% of men, 50% of women and 25% of children will be obese or obese by 2050 (Butland et al., 2007). Action is being taken, however, with £75 million of public health funds and £200 million of external funds earmarked for a public health campaign called ‘Change4Life’ in 2009 (The Lancet, 2009). This campaign was launched in response to the extraordinary economic costs associated with the overweight population – approximately £7 billion per year in England (National Institute of Health and Clinical Excellence, 2006). These estimates include medical costs; being overweight is
associated with an increased risk of type 2 diabetes, heart disease, stroke, high blood pressure, certain cancers (colon, breast, endometrial and gallbladder), and high cholesterol. However, the campaign as yet has not produced any visible signals that it is defeating the obesity epidemic. Therefore, given that the obesity epidemic is not waning either in England or in other developed countries, there is scope to investigate further its underlying causes.

In this paper, we investigate the obesity-income gradient by estimating the impact of income on weight perception and weight control in a sample of overweight British adults. While those of high income may have a lower weight because they can afford a healthier lifestyle, it is also plausible that they have a more narrowly defined standard for acceptable body size and adjust their behaviour accordingly. This would suggest an income gradient with respect to weight perceptions and a subsequent role for weight perceptions in determining a person's propensity to pursue weight control. An independent income gradient–weight control relationship is also likely to exist owing to the higher opportunity costs associated with weight control for poorer people.

Our work is related to two main strands of the obesity literature. The first of these is the literature that attempts to estimate the impact of income on the propensity to be overweight or obese. So far, many studies have found that higher socioeconomic status is related to a lower risk of obesity (Costa-Font et al., 2008; Walama et al., 1997; Zhang and Wang, 2007). However, the endogeneity of income in a weight regression complicates these studies interpretation. That is, income may cause a person to be overweight, being overweight may cause lower income or common factors may affect both income and overweight status. These factors include individual heterogeneity such as self-discipline and impulsivity (Cutler et al., 2003), along with weight misperceptions, which we explore in this work.

Attempts have been made to establish a causal relationship between BMI and income with mixed results. For example, Quintana-Domeque (2005) utilise the European Community Household Panel (ECHP), and exploit exogenous variation in household income owing to inheritance, gifts, or lottery winnings of €2000 or more to instrument for income in an obesity regression. They explore this relationship for nine countries and find a relationship between income and obesity only for women in both Denmark and Italy, and men in Finland. Notably, this work suffers from a weak instrument problem. In the U.S. context, Cawley et al. (2008) exploit exogenous variation in the social security policy but are unable to identify any statistically significant relationship between additional social security income and BMI in the elderly. Schmeiser (2009) examine the effect of family income changes on BMI and obesity using data from the National Longitudinal Survey of Youth 1979 cohort. They find that income significantly raises the BMI and probability of being obese for women only. Finally, using a longitudinal Swedish panel Ljungvall and Gerdtham (2010) estimate the impact of mean income, positive deviation from mean income and negative deviation from mean income on weight status using questionable instruments. They find income to be negatively related to obesity in general.

The second strand of literature that our work relates to concerns itself with the relationship between actual body size and body size perception. Self-perception of body size is a factor that can influence whether weight loss is a concern. Clearly, if a person is unaware they are overweight they cannot fully internalise the costs associated with the health risks of their weight status. This is in line with research suggesting accurately perceiving oneself as overweight or obese results in a greater motivation to engage in healthy lifestyle behaviours (Baranowski et al., 2003 and Rhee et al., 2005). Given that misperceptions of a normal weight among the overweight and obese have been highlighted in the general literature (Collins et al., 1987; Kuchler and Varijam, 2003; Maximova et al., 2008; Paeratakul et al., 2002; Viner et al., 2006) as well as in the literature specific to the UK (Wardle, 2002; Johnson et al., 2008) the problem of a failure to internalise is one that may contribute to the obesity epidemic. This work aims to explore the role of an income gradient on weight perceptions. Specifically we focus on individuals who are the targets of obesity campaigns in England. That is, we focus on the overweight and obese.

The potential for income to be associated with weight perceptions is linked to it being usual for poor individuals to have poor friends (Tigges et al., 1998; Wacquant and Wilson, 1989) and the likelihood that poorer people are more likely to be overweight or obese. Therefore, peer effects may imply an increased propensity for poorer people to perceive being overweight as a ‘healthy’ weight, which may reflect ideals of body weight among that group (Kemper et al., 1994). This arises because people’s behaviour is likely to be influenced by the norms in their social environment. Thus, when overweight becomes the norm within a peer group, it is likely that the negative social stigma associated with being overweight is reduced. The idea that your social circle can affect your weight is supported by recent research. Christakis and Fowler (2007) find that weight gain spreads through a population like a contagious disease owed to individuals being influenced by their friends and relatives; though, Cohen-Cole and Fletcher (2008) re-estimate these effects and find them greatly reduced and not significant once a more thorough econometric methodology is utilised. Elsewhere, Maximova et al. (2008) have shown that young people’s perceptions of weight is dependent on the weight of their parents and friends. Similarly, Blanchflower et al. (2008) describe a ‘keeping up with the Jones weight effect’ where weight perceptions and dieting are influenced by the individuals that surround us. Overall they suggest that individuals have different comparison groups, with the highly educated holding themselves to a ‘thinner’ standard. Oswald and Powdthavee (2007) argue that people have a utility function defined on relative weight and hence choose their weight with reference to the weight of their peers. Given the higher rates of obesity amongst the poor, this peer effect is likely to create an income gradient in weight perception and weight control, which further reinforces the obesity-income gradient. In addition, weight misperceptions among people of lower income may be explained by lower levels of health knowledge. Alternatively, those with higher levels of education may simply be
more capable of processing health information available to
them about the type of behaviours that yield them good
health (Gottfredson and Deary, 2004).1

Thus far the role of the income gradient on mispercep-
tions is under explored, however, Wardle and Griffith
(2001) have examined the effects of socioeconomic status –
defined as occupational social class. They find a sample
of British adults that higher SES people have higher
levels of perceived overweight, more closely monitor their
weight, and are more likely to state they are trying to lose
weight. Understanding weight misperceptions is im-
portant given that those who are satisfied with being
overweight are less likely to do anything about it.
Conversely, those who are aware that they have
an elevated BMI are more likely to take action.

It is noteworthy that feeling overweight does not in
itself motivate attempts at weight loss, however the
majority of those who feel this way do try to lose weight
(approximately 60%) according to some received studies
(Horm and Anderson, 1993; Wardle and Johnson, 2002)
and the literature generally points to a positive correla-
tion between self perceived weight status and weight control
(Crawford and Campbell, 1999, Forman et al., 1986 and
Riley et al., 1998). Even once weight misperceptions are
accounted for, given the higher opportunity cost of weight
control for those of lower income it is likely that an
independent income-weight control relationship will
exist. For example, this greater opportunity cost arises
because the neighbourhoods in which poorer people live
have characteristics that are positively correlated with
obesity such as poor walkability (Sallis et al., 2009), a lack
of healthy food options (Zick et al., 2009), a higher
presence of unhealthy food outlets (Harrison et al., 2011)
and greater disorder (Burdette and Hill, 2008). Addition-
ally, the literature has identified a relationship between
income and healthy lifestyle choices including the
propensity to exercise and eat well (Pampel et al., 2010)
and higher rates of dieting (French et al., 1994; Jeffrey
and French, 1996).

2. Data and methodology

Our data source is the annual Health Survey for England
(HSE), which is a household level survey that collects
information through an interview, self-completion ques-
tionnaire and medical examination. We pool data from the
1997, 1998 and 2002 surveys and consider prime working
age (25–60) respondents who, according to BMI measure-
ments collected by a nurse, are of an unhealthy weight:
defined either by BMI ≥ 25 or BMI ≥ 30. The individuals
are unaware that they have been classified as ‘overweight’. The
survey year, age and BMI ≥ 25 restrictions, as well as a
restriction of non-missing income information, leaves us
with an estimation sample of 9089.

Data from 1997, 1998 and 2002 are used because in
these years adult respondents were asked questions
regarding their weight perceptions and weight goals. Specif-
ically, individuals were asked:

(i) Given your age and height, would you say that you are:
about the right weight, too heavy or too light?
(ii) At the present time are you trying to lose weight, trying
to gain weight or are you not trying to change your
weight?

The responses are used to define two binary variables.
The first represents weight perception and equals one if the
individual believes they are too heavy. Given that only
those who are classified as overweight (or obese) are
included, this variable also measures weight mispercep-
tions. The second key variable represents weight control,
and equals one if the overweight (or obese) individual is
trying to lose weight.

Approximately 75% of overweight (BMI ≥ 25) respon-
dents feel too heavy and approximately 60% are trying to
lose weight (equivalent percentages for the obese sample
are 95% and 73%). In other words, 25% of respondents
incorrectly perceive themselves as the right weight, and
40% are not trying to change their weight (very few
overweight respondents feel they are “too light” or are
“trying to gain weight”). However, these sample averages
mask heterogeneity. For example, mean values of weight
perception and control are 64% and 47% for men, and 87% and
75% for women. This suggests that women are more
likely to recognise their overweight status and more
concerned with their weight. Similarly, the raw propen-
sities depend upon income; high income respondents are
more likely to recognise their overweight status.

Given our binary dependent variable, we use linear
regression models to estimate the impact of log household
annual income on weight perception and weight control
(probit regressions give similar results). The model for
individual i’s weight perception is:

\[
Pr(\text{heavy}_i = 1) = \Phi(\alpha_0 + \alpha_1 \log \text{inc}_i + X_i\beta_2)
\]

where heavy equals one if an individual has the correct
perception that they are overweight and zero otherwise,
\(\Phi(\cdot)\) represents the normal cumulative distribu-
tion function (CDF), inc denotes real household income, and \(X\)
is a vector of control variables. The probit regression model
of weight control, conditional on the individual correctly
perceiving themselves as overweight, can be similarly
represented:

\[
Pr(\text{losewgt}_i = 1|\text{heavy}_i = 1) = \Phi(\beta_0 + \beta_1 \log \text{inc}_i + X_i\beta_2)
\]

where losewgt equals one if an individual is trying to lose
weight and zero otherwise, and inc, heavy, and \(X\) are
defined as above. Model (2) conditions on heavy\(_i\) = 1
because without this restriction the income effect in the
weight control models would represent an amalgamation
of the income effect on weight perception and the income
effect on weight control – few people who perceive
themselves as the right weight or too light try to lose
weight, especially amongst the obese population.

Our empirical strategy is to sequentially estimate richer
variants of Eqs. (1) and (2) in order to test whether the

1 The relationship between SES and weight misperceptions may also
arise because such individuals are more likely to attend a general
practitioner (GP) and request a health check.
income effect can be ‘explained’ by mediating variables. The purpose of this exercise is to gauge which covariates are the potential pathways between income and our outcome (weight misperception/weight control). First we add a set of baseline controls, which represent demographic information that is personal to the individual. Therefore, model (1) includes gender, age, age-squared, married, divorced, number of children, Black Caribbean or African, Asian, year 1997 and year 1998. Second, given the link between obesity and environment our second set of variables (model (2)) pertains to area of residence information: rural versus metropolitan and North-East, North-West, Yorkshire, West-Midlands, East-Midlands, South-East, and South-West. Next, model (3) adds general health indicators: long-standing illness and limiting long-standing illness. Given that income is essentially one dimension of socio-economic status that is correlated with other dimensions, our next step is to add some of these dimensions. Therefore, model (4) adds highest educational attainment and employment status: degree, vocational qualification, A levels, O levels, and employed. In the context of this data, those who have O and A levels stay in secondary education until the ages of 16 and 18 respectively. Finally, model (5) adds occupation categories: professional, associate professional and technical, administrative and secretarial, skilled trades, personal service, sales and customer service, plant and machine operatives, and elementary. Importantly, all sets of control variables (1–5) include BMI since it is a significant predictor of weight perceptions and weight control even amongst samples of overweight and obese respondents. Note that if we did not control for BMI the estimated income coefficient would be downward biased – BMI is negatively correlated with income and positively correlated with our dependent variables. Table 1 includes descriptive statistics for some of the included covariates.

Given Eqs. (1) and (2) are estimated using a non-random subset of the population, the income coefficients may suffer from sample selection bias. The direction of any bias is likely to be negative because the negative income–obesity relationship implies that high individuals in the sample (i.e. overweight) care relatively little about their weight. Therefore, the true income effects are likely to be larger. To test this proposition we estimated probit sample selection models and found that the estimated income effects were indeed larger than those from our probit regression models. However, these models were identified solely through the assumption of jointly normal disturbance terms, as our data does not contain a definable exclusion restriction. For this reason we prefer estimates from probit regression models.

3. Results

The upper panel in Table 2 presents estimates from the weight perception probit regressions for overweight samples (BMI ≥ 25), and the lower panel presents estimates for obese samples (BMI ≥ 30). The reported standard errors are clustered at the household level and are reported to allow for correlation between weight perceptions and weight control of individuals living in the same household. The figures represent the percentage-point change in the probability of feeling too heavy for a 1 unit change in log income (i.e. marginal effects). Note that moving from the 5th percentile to the 95th percentile of the income distribution (i.e. from impoverished to wealthy) has the...
Table 2
Estimated effects of log household income on self reported weight perceptions.

<table>
<thead>
<tr>
<th></th>
<th>Overweight sample</th>
<th>Obese sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Females</td>
</tr>
<tr>
<td>(1) Baseline controls</td>
<td>0.046†</td>
<td>0.032†</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(2) +Area of residence</td>
<td>0.046†</td>
<td>0.032†</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(3) +Illness</td>
<td>0.050†</td>
<td>0.034†</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(4) +Education and employment</td>
<td>0.036†</td>
<td>0.028†</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Sample size</td>
<td>9089</td>
<td>4373</td>
</tr>
</tbody>
</table>

Note: Figures are the estimated marginal effects of log household income from separate probit regression models where the dependent variable equals 1 if the individual thinks they are “too heavy”. Standard errors are clustered at the household level. Samples restricted to those that are overweight (BMI > 25) or obese (BMI > 30). The controls variables are: (1) gender (in full sample models), BMI, age, age squared, married, divorced, number of children, black, Asian, year 1997 and year 1998; (2) plus rural, metropolitan, North-East, North-West, Yorkshire, West-Midlands, East-Midlands, South-East, South-West; (3) plus long-standing illness and limiting long-standing illness; (4) plus degree, vocational qualification, A levels, O levels, and employment status; (5) plus occupation groups: professional, associate professional and technical, administrative and secretarial, skilled trades, personal service, sales and customer service, plant and machine operatives, and elementary. * Denotes significance at the 5% level of significance.

The effect of increasing log income by roughly 2.5. Thus, the first estimate in column 1 – 0.046 – implies that moving from a low to a high income increases the probability of (correctly) feeling too heavy by around 12 percentage points. The equivalent effect for overweight men is roughly 15 percentage-points (relative to a sample mean of 64%, equalling a 23% increase).

Three key findings are gained from Table 2. First, regardless of the sample – male, female, overweight or obese – high income respondents are significantly more likely than low income respondents to recognise they are ‘too heavy’. Second, income effects are larger for men than women: using the baseline set of control variables, the male effect is roughly 2 times larger than the female effect in both the overweight and obese samples. A potential explanation is that low income men are more likely to view larger body size as an indicator of prowess and dominance than high income men, thus creating an income effect in body size perception (McLaren and Kuh, 2004). Third, controlling for the respondent’s area and their health has little effect on the income estimates. One potential explanation for significant income effects is that low income regions tend to have insufficient health services, and therefore, residents of these regions receive less information regarding the thresholds for overweight and its dangers. However, the similarity of the estimates in rows (1) and (2) suggest that this is not the case.

It appears that part of the income effect – but not all – can be explained by higher income individuals having greater education and working in different occupation types. For example, the income effect for overweight males drops from 0.066 in model (3), to 0.044 in model (4) with education controls, and then to 0.028 in model (5) with occupation controls. Having a university degree is estimated in model (4) to increase correct weight perception (relative to no qualifications) by 5.2 percentage-points, while having a managerial level occupation is estimated in model (5) to increase correct weight perception (relative to an unskilled, elementary occupation) by 8.4 percentage-points.

An alternative estimation approach, which can aid interpretation, is to replace the continuous log income with income categorical variables. If we take this approach and include dummy variables indicating the quintile of the income distribution, we find that individuals in the top quintile (richest 20%) are 8 percentage points more likely to feel too heavy than individuals in the bottom quintile (poorest 20%) – estimated results available upon request. Equivalent effects for the female and male samples are 5 percentage points and 11 percentage points, respectively. We have also considered whether there exists nonlinear relationships between log income and misperceptions, but all higher order polynomial terms were insignificant for all subsamples and covariate sets used in the analysis.4

Our overall interpretation of the results in Table 2 is that income is an important predictor of weight perceptions given that income remains a significant predictor of perceptions even after controlling for a very large set of covariates that are correlated with income. Importantly, this result is not being driven by all high income people, regardless of their weight status, feeling fat – perhaps driven by a propensity to seek some idealised body image. We also examined whether income increases the propensity for an individual who is of normal weight to incorrectly perceive themselves as overweight. In this regression the estimate of the log of income is not significant (p = 0.472). Thus it appears that the mechanism is truly that income promotes correct self-assessment.

Table 3 presents similar estimated income effects from the weight control models. We again find income to be a significant determinant of whether an individual is trying

4 Full estimates are available on request from the authors. However, as an example the p-values associated with a chi-squared joint-significance test of log income squared and log income cubed in model (5) in Table 2 equal 0.396, 0.245 and 0.567, for all overweight respondents, females and males, respectively.
Table 3
Estimated effects of log household income on weight control for 'Too Heavy' sample.

<table>
<thead>
<tr>
<th></th>
<th>Overweight sample</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>(1) Baseline controls</td>
<td>0.033</td>
<td>0.026</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>(2) +Area of residence</td>
<td>0.037</td>
<td>0.028</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>(3) +Illness</td>
<td>0.042</td>
<td>0.031</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>(4) +Education and</td>
<td>0.043</td>
<td>0.034</td>
<td>0.051</td>
</tr>
<tr>
<td>employment</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>(5) +Occupation</td>
<td>0.039</td>
<td>0.029</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Sample size</td>
<td>6819</td>
<td>3812</td>
<td>3007</td>
</tr>
</tbody>
</table>

Note: Figures are the estimated marginal effects of log household income from separate probit regression models in which the dependent variable equals 1 if the individual thinks they are 'too heavy'. Standard errors are clustered at the household level. Samples restricted to those that are 'too heavy' and also overweight (BMI ≥ 25) or obese (BMI ≥ 30). See the note to Table 1 for control variables.

* Denotes significance at the 5% level of significance.

Table 4
Estimated Effects of Log Household Income by Age and Gender.1

<table>
<thead>
<tr>
<th>Perception</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>All aged <40</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
</tr>
<tr>
<td>All aged ≥40</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
</tr>
<tr>
<td>Females aged <40</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
</tr>
<tr>
<td>Females aged ≥40</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
</tr>
<tr>
<td>Males aged <40</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
</tr>
<tr>
<td>Males aged ≥40</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
</tr>
</tbody>
</table>

Note: Figures are the estimated marginal effects of log household income from separate probit regression models. Standard errors are clustered at the household level. Samples restricted to those that are overweight (BMI ≥ 25) and also to those who are 'too heavy' for weight control models. Baseline controls used – see note to Table 1.

* Denotes significance at the 5% level of significance.

** Denotes significance at the 10% level of significance.

to lose weight. Importantly, these models are estimated with only those respondents who feel too heavy, and thus, income is having an effect on weight control even after controlling for the effect of income on weight perceptions. We again find the income effect is larger for men, at least in the overweight sample. For example, in the model that controls for demographics, area of residence, illness, education, employment and occupation, it is estimated that a rich overweight male is 12 percentage-points more likely than a poor overweight male to be trying to lose weight. Unlike the weight perception results in Table 2, occupation and education do not appear to be modifying the relationship between income and weight control.5

Finally, we investigate whether the income relationships in Tables 2 and 3 hold equally for younger (<40) and older (≥40) sub-samples. The estimates in Table 4 are from probit models estimated with the baseline set of controls and samples of overweight respondents. They suggest that the effect of income on the probability of correctly perceiving yourself as 'too heavy' is larger for older respondents. For example, the effect for older female respondents is twice as large as the effect for younger female respondents (0.039 versus 0.020), while the difference between older and younger male respondents is 2 percentage-points (0.066 versus 0.046). In contrast, the estimation results from the weight control models suggest that the estimated income effect does not differ by age.

4. Discussion

This work investigates explanations for the strong relationship between SES and obesity using a large survey of overweight British adults. The aim is to better understand why the poor are more likely to have elevated BMIs, so that effective policy interventions can be developed. Our work finds that overweight low income individuals are more likely to incorrectly believe they are a healthy weight, and conditional on weight misperceptions, less likely to attempt weight loss. Both of these effects are larger for males than females. Further research is required to order to tease out the differences in these gender effects and establish causal effects. A suggestion is that they may be driven by peer group effects, whereby males’ peer group composition is more sensitive to income than females.

Our two main findings feed into very different policy options. Firstly, for those who incorrectly believe they are a healthy weight, further research is needed to investigate the underlying drivers. People often rely on comparison with peers to make assessments of their weight status, rather than relying upon medical advice. Given that

5 A potential avenue for exploration at this point may seem to be checking whether the income effect on weight perceptions and control documented in Tables 2 and 3 respectively can be partially explained by differences in discount rates. This is in line with the literature that suggests that time preference links to BMI (Komlos et al. (2004), Smith et al. (2005), Ikeda et al. (2010) and Courtemanche et al. (2011)). To test this possibility we estimated probit regression models of weight perceptions with variables representing smoking status and weekly alcohol consumption. The results show that these variables were not statistically different from zero. Moreover, the estimated income effect was unchanged by their inclusion. This is however not out of line with the fore mentioned literature given that we study a group of overweight people who may already have a high discount rate regardless of income.
obesity has become the norm within low income groups, the existence of such effects implies that people with lower incomes tend to be less concerned with being overweight, reinforcing the obesity–income relationship. This problem may arise because of mixed messages in the media concerning optimal body weight size. Deciphering these mixed messages is more likely to be achieved by those of higher socioeconomic status. The implication of this reasoning is that more public education on what constitutes overweight and the dangers associated with being overweight may be needed, especially in low income neighbourhoods.

This is however not the end of the story, as our results also highlight that there are many who realise they are overweight but are not attempting weight loss. Again, the cause for this may lie with peer effects models. That is, within a peer group, friends may realise they are overweight but reinforce bad eating and exercise habits. Therefore whilst it is not that peer group effects cause the SES/obesity gradient per se, they do contribute to the growing disparity once a threshold number of individuals with low SES are overweight. Furthermore, it may be more difficult for those of lower socio-economic status to lose weight given that their home environment often lacks the necessary inputs such as an availability of healthy foods and exercise opportunities. The latter extends from lack of gyms through to safe areas for walking. To remedy such environmental level factors would involve policy changes that go beyond health-specific policies.

It should be noted that some commentators argue that any policy to address the obesity epidemic is paternalistic and should be avoided. That is, we should not intervene as individuals rationally choose their own weight (by consuming and expending a certain number of calories). It is unlikely that individuals can weigh up the costs and benefits, both future and present, of this choice. It is also unlikely that the overweight weigh up the costs that fall on the health service owing to the obesity epidemic. As discussed, these costs are expected to rise to £10 billion per year by 2050 with no government action (Butland et al., 2007). Equally they are unlikely to consider the wider costs to society and business, such as decreased tax revenue and loss of productivity due to related illnesses, which are estimated to reach £49.9 billion per year (2007 prices) if the obesity epidemic is allowed to continue its current increasing trend (Butland et al., 2007). Therefore, we argue that policy makers must take some action, and from our work, additional education on what constitutes a healthy weight and adopting a healthy lifestyle for low income households could be beneficial, without being regressive given that our work highlights that income is a strong predictor of weight misperceptions and control. Perhaps these could be piloted in a subset of low income neighbourhoods initially so cost effectiveness can be gauged. A bigger challenge lies with addressing the environmental factors that may inhibit individuals losing weight. While the literature has done well in highlighting that various environmental factors do indeed influence a person’s health status, the next challenge is to identify the main factors that could do the ‘heavy lifting’ with respect to addressing the obesity epidemic.

References

