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LUC BOVEN S AND WLODEK RAB I NOW I C Z

BETS ON HATS: ON DUTCH BOOKS AGAINST GROUPS,
DEGREES OF BELIEF AS BETTING RATES, AND

GROUP-REFLECTION

A B S T R A C T

The Story of the Hats is a puzzle in social epistemology. It describes a situation
in which a group of rational agents with common priors and common goals
seems vulnerable to a Dutch book if they are exposed to different information
and make decisions independently. Situations in which this happens involve
violations of what might be called the Group-Reflection Principle. As it turns
out, the Dutch book is flawed. It is based on the betting interpretation of the
subjective probabilities, but ignores the fact that this interpretation disregards
strategic considerations that might influence betting behavior. A lesson to be
learned concerns the interpretation of probabilities in terms of fair bets and, more
generally, the role of strategic considerations in epistemic contexts. Another
lesson concerns Group-Reflection, which in its unrestricted form is highly
counter-intuitive. We consider how this principle of social epistemology should
be re-formulated so as to make it tenable.

Our Story of the Hats is a puzzle in social epistemology. Our earlier presentations
of this puzzle were rather technical (Bovens & Rabinowicz 2009, 2010). We would
like to take this opportunity to spell out an informal version of the puzzle and its
solution and to explore their philosophical relevance.
It all started when one of us, Luc Bovens, read a New York Times article on a

fascinating mathematical problem, named ‘the Hat Puzzle’, formulated by Todd
Ebert in his doctoral thesis in 1998 (Robinson 2001). In this problem, there are
n players, each with a hat on his head. Each hat is either black or white, with the
color chosen at random for each player. This is common knowledge among the
players. Each player can see the hats of the others, but not his own. Based on this
information, each player must independently and privately guess the color of his
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own hat. Abstaining from guessing is allowed. The group will receive a prize if
(i) at least one player makes a correct guess and (ii) no incorrect guesses are made.
The question Ebert raised was: How should the players act in order to maximize
the chance of winning the prize?
The problem is easy to solve for three players. The strategy that maximizes the

probability of winning the prize for the group is the following: If you see two hats
of the same color, then guess that your own hat is of the opposite color; if you see
two hats of different colors, then keep quiet. There are eight possible combinations,
all equiprobable, viz., (1: White; 2: White; 3: White), (1: White; 2: White; 3: Black),
etc. Of these eight combinations, there are six in which not all the hats are of the
same color. The strategy leads to a win in each of the six combinations in which the
hats are not of the same color and a loss in each of the two combinations in which
the hats are of the same color. So the strategy has a probability of 3/4 of being a
winning strategy.
More generally, Ebert’s question has been answered for all n such that for some

integer k, n =2k – 1. The chance of winning can then be maximized to n/(n+1).
But a solution for an arbitrary number of players is still unavailable, as far as we
know.
The other one of us, Wlodek Rabinowicz, thought one could use the Ebert

scenario to set up a new paradox of group rationality. In the Prisoner’s Dilemma,
individual rationality adds up to collective irrationality, due to the fact that each
player aims to promote her own goals rather than common goals. Now the aim was
to use the Hats puzzle to devise a Dutch book showing that individual rationality
could add up to collective irrationality even if the players aim to promote common
goals. In more detail, the aim was to show that a clever bookie could exploit a group
of agents who (i) are Bayesians, (ii) have common priors, (iii) have common goals,
and (iv) have common knowledge of (i), (ii) and (iii), if such agents are exposed
to different information and are expected to make decisions independently. This
we have named ‘the Story of the Hats’. Situations in which this happens involve
violations of what might be called the Group-Reflection Principle. The Dutch book
that can be set up against groups that violate Group-Reflection is a version of
van Fraassen’s well-known Dutch book against individual agents who violate the
standard individual version of Reflection.
Unfortunately, as it turned out, the argument leading to the paradox is flawed,

but it is flawed in interesting ways. It was based on the betting interpretation of the
subjective probabilities, but ignored the fact that this interpretation does not take
into account the strategic, i.e., game-theoretic, considerations that might influence
an agent’s betting behavior. If such considerations are taken into account, as they
clearly should, then – as we are going to show – the Dutch book construction
crumbles.1 This deconstruction process has been pursued by both of us together.
Thus, what the Story of the Hats helps us see is different from what originally

appeared to be its attraction. The argument that individual rationality in pursuing a
common objective can add up to collective irrationality does not go through after
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all. Instead, the lesson to be learned concerns the interpretation of probabilities in
terms of fair bets and, more generally, the role of game-theoretic considerations
in epistemic contexts. Another lesson concerns Group-Reflection, which in its
unrestricted form is a highly counter-intuitive principle. We consider how this
principle of social epistemology should be formulated so as to make it tenable.

1. A D U T C H B O O K ?

Here is how the Story of the Hats goes. Suppose that a group consisting of three
persons learns the following: Each of them will be given a hat to put on in the dark.
The hat’s color, either black or white, will be decided in secret and independently
for each individual by a toss of a fair coin (say, she gets a black hat if tails and a
white hat if heads). Then the lights will be turned on and each person will be able
to see the hats of the other two members of the group, but not her own. All of the
above is common knowledge in the group.
We distinguish three temporal stages: stage 1, in the dark; stage 2, when the

lights are turned on; stage 3, the aftermath, when the color of each hat is revealed
to everyone.
Consider the following proposition:

(A) Not all hats are of the same color.

At stage 1, given what the group members know at that stage, their probability for
A is 3/4. For, as we have seen in the introduction, the chance of A being true is
then known to be 6/8 (=3/4), and according to David Lewis’s principal principle,
a (Bayesian) rational agent will let her subjective probabilities be determined by her
knowledge of chances (cf. Lewis 1980/1986).
At stage 2, however, the group members’ probabilities for A may diverge.

(i) They will diverge if A is true. If A is true, there will be two hats of the same
color and one hat of a different color. Consequently, at stage 2, one person, j, will
be seeing two hats of the same color, while the other two persons will be seeing one
black hat and one white hat. The probabilities of the latter two for A will therefore
be 1, since they can infer from what they see that A is true. Person j ’ s probability
for A will be 1/2: A is true just in case the color of her hat differs from that of the
hats of the other two players and j knows that the prospect of her hat being of the
same color is just as likely as the prospect of it being of a different color, since she
knows that the color of her hat was chosen independently and at random. (ii) If
A is false, on the other hand, all three persons will be seeing two hats of the same
color, which means that each of them will assign probability 1/2 to A.
We assume that the three persons in the group have common assets with

which they manage their bets and a common objective – viz., to maximize the
group’s holdings – but for the argument to follow it is crucial that each person can
independently draw on the common assets of the group. Thus, they are a group
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with common assets and with common interests, but with decentralized powers:
each member of the group is an independent decision-maker.
We first sketch the betting interpretation of subjective probabilities (or degrees

of belief or credences, as we shall also call them). A bet on a proposition X has a
price C and a non-zero stake S, where the latter is the monetary prize to be won if
one buys the bet and X turns out to be true. It is said to be fair for a given agent if
and only if the latter is willing to take each side of the bet, i.e., if she is just as willing
to buy the bet as to sell it. Assuming that there is such a bet on a proposition X
and that the C/S ratio is constant for different fair bets on X (i.e., that changing
the stake requires a proportional change in the price), then this ratio is the agent’s
betting rate for X : P(X ) =C/S. These assumptions about the existence of fair bets
and the constancy of the C/S ratio are controversial, but we shall ignore this in
what follows. On the betting interpretation, the agent’s degrees of belief for various
propositions are her betting rates for the propositions in question. Note that this
makes the expected monetary value of a fair bet equal to zero: if the agent’s degree
of belief P(X ) equals the betting rate C/S, then (S × P(X )) –C = (S × C/S ) –
C =0. This also explains why the agent is equally willing to buy such a bet as to
sell it: gains for the seller become losses for the buyer and vice versa. As a buyer,
the agent’s expected monetary value is (S × P(X )) –C, as a seller, her expected
monetary value is C– (S × P(X )). If one of these differences equals 0, then so
does the other, and hence the expected monetary values of buying and selling are
identical.
The identification of degrees of belief with betting rates has the advantage of

making degrees of belief observable and measurable. It also makes it possible to
give pragmatic arguments for various epistemic rationality constraints on beliefs,
such as the requirements that degrees of belief obey standard probability axioms,
conditionalization, reflection, etc. An agent whose degrees of belief do not satisfy
these requirements will have betting rates that make her vulnerable to exploitation.
What we are after here is a betting arrangement that is meant to exploit the

group as a whole, despite the fact that each member’s degrees of belief satisfy the
constraints of individual rationality and despite the fact that all of them start out
with the same degrees of belief (the same priors). Here is how such a Dutch book
could be set up. Suppose that at stage 1, i.e., before the lights are turned on, the
bookie offers to sell a single bet on the proposition A with a stake of $4 at a price
of $3, and subsequently, after the lights are turned on at stage 2, he offers to buy
a single bet on A with a stake of $4, as before, but at a lower price of $2. Suppose
that all of the above from the outset is common knowledge among the players.
Since at stage 1 each group member assigns probability 3/4 to A, each should

be willing to buy the first bet, whose price-stake ratio is $3/$4. And since at stage 2
there will be at least one agent who assigns probability 1/2 to A, there will be at
least one agent who should be willing to sell the second bet, whose price-stake ratio
is $2/$4. (If there are several volunteers, we can assume that the bookie will pick
one of them at random.) Since (i) the bets are on the same proposition, (ii) the
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stakes are equal, and (iii) the price of the second bet is lower, the bookie can make
a Dutch book –whether all hats are of the same color or not, he has a guaranteed
profit of $1.
More precisely, consider what happens at stage 3, when the colors of the hats are

revealed to everyone. If A turns out to be true, the bookie pays out the stake of $4
on the first bet and collects the same amount on the second bet. If A turns out to
be false, no stake-payments will be made. But, whether A is true or not, the bookie
makes the net profit of $3 – $2 = $1 on the price difference: first he sells a bet on
A, and then buys it back at a lower price. The group has thus been exploited by
a bookie without any superior knowledge, even though all of the group members
start with the same information and each of them has updated her probabilities in
a perfectly reasonable way and acts on these probabilities in a seemingly perfectly
rational manner.2

2. G R O U P - R E F L E C T I O N

The well-known Reflection Principle requires an agent to adjust her present
probabilities to her expected future probability assignments. In one of its versions,
the principle may be formulated as follows:

If P (P ′(X) ≤ k) > 0, then P (X|P ′(X) ≤ k) ≤ k.

Here X is an arbitrary proposition, P stands for the agent’s probability at a time
point t, and P ′ for her probability at some point t ′ that is not earlier than t.
So, what the principle says is the following: Assume that one deems it possible
that one’s future probability for X is less than or equal to k. Then, conditionally
on this possibility being the case, one should now assign to X a probability
less than or equal to k. One’s current probability, conditional on a hypothetical
future probability assignment, should reflect this future assignment. This Reflection
Principle thus demands full trust in one’s future self.
As is well known, Bas van Fraassen (1984) has shown that agents who violate

Reflection are vulnerable to diachronic Dutch books.
Now one might ask: If we want to make a group invulnerable to a Dutch book,

then what sort of reflection principle should the group abide by? Consider the
following principle:

T he Group-Ref lection P rinciple :

For any i in G, if Pi (∃j ∈ G: P ′
j (X) ≤ k) > 0,

then Pi(X|∃j ∈ G: P ′
j (X) ≤ k) ≤ k.

Here, Pi stands for i’s probability at a time t, while P ′
j stands for j ’s probability

at some time t ′ that is not earlier than t. What the principle says is the following:
Assume that you belong to a group and deem it possible that some group member’s
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future probability forX won’t exceed k. Then, conditional on this possibility being
the case, you should now assign to X a probability not exceeding k. As it stands,
this principle is quite counterintuitive, even if the group members are known to
be fully epistemically rational. We will discuss the principle’s intuitive standing in
section 5.
In our Story of the Hats, the Group-Reflection Principle is violated, as is easy

to see. At stage 1, each individual i in the group G that consists of three persons is
certain that at stage 2 there will be some person j in the group whose probability for
the proposition A will be 1/2. Then it is easy to show that, by Group-Reflection,
the players i at stage 1 should set Pi(A) ≤ 1/2,3 but they violate Group-Reflection,
since they set Pi (A) =3/4.
As we have argued, the group in our example seems to be vulnerable to a

diachronic Dutch book. In fact, similarly vulnerable is any group that violates the
Group-Reflection Principle. To set up a Dutch book for such a group, we make
appropriate adjustments in van Fraassen’s construction. Here is how this can be
done.
Let t be any time point and G any group of agents. Let Pi specify agent i’s

probability assignments at t and P ′
j specify j ’s probability assignments at a time t ′

that is not earlier than t. Suppose that the Group-Reflection Principle is violated:

(VIOL) For some i in G, Pi(E) ≥ z andPi(X|E) ≥ y

with E = ∃j ∈ G : P ′
j (X) ≤ k,

where z > 0 and y > k.

We let the bookie make an offer to sell to the first-comer in G the following
conditional bet at t :

Bet 1: Bet onX, conditional onE, with a positive stake S and a price C = S×y.
That the bet is conditional means that it will be called off if the condition E will
turn out not to be fulfilled. As is easy to see, the bookie’s offer is fair or more than
fair: The group member i will be prepared to buy Bet 1 since the price-stake ratio
of that bet isn’t higher than her conditional probability for X given E: Pi (X|E)
≥ y = (S×y)/S. Person i’s expected winnings from that bet if E is the case, S ×
Pi (X|E), are at least as large as the price of the bet, S×y.
To offer the conditional bet at the right odds, the bookie needs to know that the

Group-Reflection Principle is violated and how it is violated. He needs to know,
for some y >k, that the group contains a member who assigns a probability of
at least y to X given E, thereby violating Group-Reflection. To guarantee that the
bookie does not know more than any member of the group, we need to assume
that everyone in G knows as much. The argument to follow is meant to show that if
the above is the case, a bookie who lacks superior knowledge can set up a Dutch
book against G. More precisely, without any need of superior knowledge on the
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part of the bookie, a Dutch book can be set up against a group G if (VIOL) and
every j in G knows that (VIOL).4

Let us continue our description of the Dutch book. At the second stage, at t ′,
the bookie offers to buy the following unconditional bet from the first-comer inG :

Bet 2: Bet on X, with a stake S and a price S×k.
If that offer is accepted, the bookie pays S×k to the seller and then collects S iff X
is true.
There are two possible cases.

(i) E is false. Then for every j in G, j ’s probability for X at t ′ exceeds k, which
means that no j will be prepared to sell Bet 2 to the bookie. For j ’s expected
value from selling Bet 2 is (S×k) – (S×P ′

j (X )), which is negative if
P ′
j (X ) >k.

(ii) E is true. Then there will be some j in G such that P ′
j (X ) ≤ k. There is thus

a willing seller of Bet 2, since j ’s expected value from selling that bet is non-
negative. (In case there are several persons willing to sell Bet 2, the bookie will
pick one of them at random, or buy that bet from the first-comer.)

We conclude that if E is true, Bet 1 will be in force and Bet 2 will find a seller, j.
The bookie will pay the price S×k for Bet 2 and he will receive the price S×y for
Bet 1. Since y >k, the bookie’s total price balance, S×(y – k), will be positive. As
for the stake S that the bookie has to pay out to i on Bet 1 in case X is true, he will
receive exactly the same amount in that case from j on Bet 2, which means that the
bookie’s net gain, whether X is true or not, will be positive: S×(y – k).
Still, as things stand, the bookie won’t make any profit ifE is false.5 For then the

first bet will be off and the second will not be accepted. To cover this eventuality,
let us modify the set-up. Suppose that the bookie at t offers to sell two bets: the
conditional Bet 1 and a side bet on E at a stake S×(y – k) and a price z×S×(y – k).
Since i’s probability for E is at least as high as z, the offered side bet is fair or more
than fair for i, which means that she is willing to take on this side bet as well. Now,
since z is positive and y >k, the price for the side bet is positive. Thus, ifE is false,
the bookie still gains: Bet 1 will be called off, but the bookie will have the amount
z×S×(y – k), which he received as the price for the side bet. On the other hand,
if E is true, then the bookie’s overall profit will be S×(y – k) [= the net gain from
Bets 1 and 2] – (S×(y – k) – z×S×(y – k)) [= the net loss from the side bet on E]
= z×S×(y – k). Thus, the bookie will profit no matter what happens.

3. P R O B A B I L I T Y D I V E R G E N C E A N D E P I S T E M I C I D E A L I Z A T I O N S

Let us return to the example we have started with. One reaction might be that it
isn’t at all strange or paradoxical that groups with common assets and decentralized
powers can be exploited if their members have divergent probability assignments.
Thus, to illustrate, think of a husband and wife who assign different probabilities
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to some proposition X. Suppose, for example, that the wife’s probability for X
is lower than her husband’s. Then a bookie can sell a bet on X to the husband
and buy that same bet from the wife for a lower price, thereby making a sure
profit. If the husband and his wife know each other’s probabilities, then the bookie
needn’t know more than each of the spouses in order to make a sure profit. Why
bother then with the Story of the Hats? Why is the husband-and-wife example not
sufficient to make our point about group vulnerability?
One might think that the latter example is less compelling since, for the

exploitation to become possible, it presupposes that the group members’
probability assignments actually diverge. In the Story of the Hats, on the other
hand, it is not necessary that the probabilities of the group members should diverge
at any stage. At stage 1, their (relevant) probabilities are the same. And at stage 2,
they will also be the same if all hats happen to be of the same color. Divergence at
stage 2 is possible but not necessary. It is the possibility of divergence rather than
its actual occurrence that is essential for the example in question.
However, even the husband-and-wife case can be modified so as to make actual

divergence unnecessary. Such a modified version is presented in (Christensen 1991,
see esp. 244ff). Essentially, as Christensen points out, it is enough if, say, the
husband considers it possible that his wife’s probability assignments diverge from
his own but is not prepared to adjust his conditional probabilities accordingly.
If the husband thinks that his wife tends to be unduly pessimistic (or unduly
optimistic), then his conditional probabilities will violate the Group-Reflection
Principle6 and thus, as we showed in section 2, the exploitation will be possible,
quite independently of whether the wife’s probability assignments actually diverge
from her husband’s or not.
The more fundamental difference between the two examples is the following:

In the husband-and-wife story, it appears that something of an epistemic nature is
amiss and that this is what brings about the couple’s divergent probabilities or the
suspicion that these probabilities might diverge. It is not made explicit what it is
that is amiss. Maybe one of the parties is unduly optimistic or pessimistic in their
reasoning. Or maybe they start from different priors. Or, in Christensen’s modified
version, it is sufficient that one of the parties believes that the other is unduly
optimistic or pessimistic or starts from different priors. In the Story of the Hats, on
the other hand, there is nothing epistemically amiss about the parties – they start
from the same priors, they do not process information in an unduly optimistic or
pessimistic manner, and they have common knowledge hereof. The bookie is not
exploiting some kind of epistemic shortcoming. And yet, they are still vulnerable,
as a group, to a Dutch book. Or, at least, so it seems.

4. T H E D U T C H B O O K D E C O N S T R U C T E D

So, seemingly, in the Story of the Hats, the bookie has succeeded in making a Dutch
book. This seems worrisome. A Dutch book is a mark of irrationality. There seems
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to be some breakdown of group rationality, as in Christensen’s cases. One can also
juxtapose the Story of the Hats to the Prisoner’s Dilemma. In a Dutch book, the
group loses. In the equilibrium solution to the Prisoner’s Dilemma, the group does
worse than it could have done. Now, this is due to the fact that each player acts to
her own advantage. But in the Story of the Hats, the players act in the group interest
(unlike in the Prisoner’s Dilemma) and they do so in a fully rational manner (unlike
in Christensen’s husband-and-wife cases).
Fortunately, the Dutch book we have presented is spurious. (Or unfortunately?

It’s always a pity when a nice paradox goes down the drain.) Showing this will
hopefully prove instructive.
Let’s focus on the second bet on proposition A, the one that the bookie offers

to buy at stage 2. The price he offers to pay is $2 and the stake of the bet is $4. Thus,
the price-stake ratio is 1/2. As we know, at stage 2, there is at least one person in the
group who sees two hats of the same color and therefore assigns probability 1/2
to A. We have been assuming that for every person in this position, the bet offered
by the bookie is fair, which implies that anyone in this position should be willing
to sell such a bet to the bookie. But is this really the case? Suppose that Alice is a
person in this position and consider how she might reason about the bookie’s offer.
There are two possible cases: either A is true or A is false.
If A is true, i.e., if not all hats are of the same color, then Alice is the only person

in the group who sees two hats of the same color. The other two group members
see two hats of different colors, which means they know that A is true. So they will
certainly ignore the bookie’s bid to buy a bet onA. This means that if Alice declares
herself willing to sell the bet to the bookie, she will be the only volunteer and her
offer will be accepted. But if she does sell the bet on A, she will cause a net loss to
the group: she will collect the price of $2, but then will have to pay out the stake
of $4 to the bookie. If she abstained from declaring herself willing, no other group
member would come forward and the loss to the group would be avoided.
If A is false, on the other hand, selling the bet on A to the bookie would lead to

a net gain for the group. But if A is false, then the other two group members are in
the same situation as Alice: each also sees two hats of the same color and therefore
assigns probability 1/2 to A. Alice might think, therefore, that in this situation
it’s fine to abstain from declaring her willingness to sell the bet, since there are
other group members who could declare themselves willing to sell the bet. In other
words, she might think that in such a situation it’s fine to let others do what needs
to be done.
So, Alice might draw the conclusion that she should abstain from declaring

herself willing to sell the bet, because the declaration of willingness would be
positively harmful if A is true and abstaining from it does not lead to any loss
of opportunity for the group if A is false.
There is something fishy, though, about this reasoning. If A is false, then every

group member is in the same position as Alice. This means that if her reasoning
is sound, then her conclusion would be drawn by the other two group members
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as well: neither one of them would declare herself willing to sell the bet. This
undermines the second part of Alice’s argument. If A is false, then her decision
not to come forward would involve an opportunity loss for the group.
Still, even if the reasoning is faulty, we can see that the standard betting

interpretation of subjective probabilities is too coarse to deal with the situations
in which an agent makes decisions on bets while interacting with other agents. There
are various strategic considerations that become relevant in situations of this kind,
which complicates matters.
An appropriate tool for the study of interactions is game theory. Let us therefore

consider the situation created by the bookie’s bet offer from a game-theoretic
perspective. There are three players – the three members of the group. Each player
i can either volunteer to sell the bet to the bookie or abstain from volunteering.
Since she can also opt for a mixed action as well, we can describe her options as
a set of probability values: she can volunteer with a certain probability p between
0 and 1, and abstain with probability 1 – p. What a player decides to do depends
on her information at stage 2. She then either sees two hats of the same color or
two hats of different colors. i’s strategy can therefore be described as a pair of
probabilities (p, q), where p specifies the probability of volunteering if she sees two
hats of the same color, while q the probability of volunteering if she sees two hats
of different colors. Each strategy profile < (pa, qa), (pb, qb), (pc , qc )> for players
Alice, Barbara, and Carol yields payoffs that are identical for all players, since the
players’ sole objective is to increase the common resource pool.
Now, since the bet on A the bookie wants to buy is offered at odds that

correspond to the probability for A of a player who sees two hats of the same
color, and since a player who sees two hats of different colors knows that the bet
will be lost by the group, it might be thought that the following profile provides a
solution for this game: < (1,0), (1,0), (1,0)>. That is, each player volunteers to sell
the bet if she sees two hats of the same color, but stays back otherwise. However, a
moment’s reflection shows that this cannot be the right solution, since the profile
in question is not a Nash equilibrium, i.e., there is a reason for at least one of the
players to deviate from it provided that the other two players do not deviate. To
see that, let us look at the matter from the point of view of the player who sees two
hats of the same color. There will be at least one such player at stage 2 and let’s
suppose it will be Alice. The outcome of < (1,0), (1,0), (1,0)> is that the bet will be
placed. In terms of Alice’s credences at stage 2, the expected payoff of the bet for
the group is 0. But suppose that she were to unilaterally deviate to < (0,0), (1,0),
(1,0)>. The expected payoff for the group would then be positive. That all the
hats are of the same color (and the group wins $2) is just as probable from Alice’s
perspective as that they are not (and the group loses $2). If they are of the same
color, then Barbara and Carol will step forward if < (0,0), (1,0), (1,0)> is played and
the bet will be sold. If they aren’t of the same color, then Barbara and Carol will
not step forward and the bet won’t be sold. Hence the expected payoff of < (0,0),
(1,0), (1,0)> from Alice’s perspective equals $1 – there is a 50% chance of winning
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$2 and a 50% chance of the group refraining from betting. So < (1,0), (1,0), (1,0)>
is not a Nash equilibrium since a unilateral deviation by Alice increases the payoff
of the group.
Somewhat surprisingly, however, it turns out that < (1,1), (1,1), (1,1)> is a

Nash equilibrium. On this profile, every player volunteers to sell the bet whatever
information she receives at stage 2. Consider the situation from Alice’s point of
view: Whether she sees two hats of the same color or of different colors, she
knows that the other two players will volunteer whatever she does. So it doesn’t
matter what she does herself: the bet will be accepted by the group anyway.
Consequently, there is no reason for her to unilaterally deviate from the profile
under consideration.
Does this show that the bookie can rest assured that he will manage to buy

the bet at stage 2 and in this way complete his Dutch book? No, it doesn’t. Apart
from the fact that < (1,1), (1,1), (1,1)> is not a unique Nash equilibrium in this
game (which means there is no guarantee that players will settle on that one rather
than on some other solution), it is easy to show that this equilibrium has a serious
disadvantage: it’s not trembling-hand perfect.7 That is, as soon as we entertain the
possibility that players have a slight tendency to ‘tremble’ (i.e., fail to move as the
strategy profile requires), volunteering to sell the bet when you see two hats of
different colors, and thus know that selling the bet will cause a loss to the group,
becomes plain stupid. After all, in such a situation you don’t gain anything by
volunteering and you can cause a positive loss if both other players tremble and
abstain from volunteering to sell the bet.
Note that this argument applies not only to < (1,1), (1,1), (1,1)> , but to every

profile in which at least one of the players volunteers with some positive probability
if she sees two hats of different colors. And since we already know that < (1,0),
(1,0), (1,0)> is not even a Nash equilibrium, it follows that there is no strategy
profile < (1, qa), (1, qb), (1, qc )> that is a trembling-hand perfect Nash equilibrium.
This means that the bookie cannot rest assured that the player who sees two hats
of the same color will step forward and sell the bet to him. He knows that there
will be at least one such player, but there is no guarantee that any of them will be
stepping forward. Consequently, the Dutch book crumbles.
There are several trembling-hand perfect Nash equilibria in this game, but one of

them is especially salient because of its symmetry properties: < (0,0), (0,0), (0,0)>.
That this profile is a Nash equilibrium is clear, since from the point of view of the
player who sees two hats of the same color, the bet offered by the bookie has a
zero payoff, which means it doesn’t matter whether the bet will be made or not.
While if a player sees two hats of different colors, she knows that the bet would
be disadvantageous, which means she never has any reason to deviate from her
resolution to stay back, whatever she believes about other players. Thus, in both
cases, nothing is gained by a unilateral deviation from the profile that requires each
player to stay back whatever information she gets.
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To show that < (0,0), (0,0), (0,0)> is trembling-hand perfect, we only need to
consider it from the point of view of a player, say, Alice, who sees two hats of the
same color. Suppose Barbara and Carol have a slight tendency to ‘tremble’ – each of
them might step forward with some small probability, where that probability does
not depend on the information that they receive. There are two possibilities, each
with probability 1/2: Barbara and Carol see (i) two hats of the same color, or (ii) two
hats of different colors. In case (i), if someone volunteers, the expected payoff to the
group is 2, while in case (ii), it is−2. If no one volunteers, the expected payoff is 0.
In each of those cases, there is some positive probability � that Barbara or Carol
(or both) will volunteer because of their trembling hands.8 So, if Alice stays back,
the expected outcome of her action is 1/2 (2�) + 1/2 (−2�) =0. And obviously,
if Alice volunteers, the bet will be sold to the bookie, so the expected outcome of
volunteering will again equal zero: 1/2 (2) + 1/2 (–2) =0. Consequently, she has
no reason for a unilateral deviation from her resolution to stay back.9

5. D U T C H B O O K S A N D G R O U P - R E F L E C T I O N

What are the implications of this deconstruction of the Dutch book in the Story
of the Hats for the general Dutch book argument for the Group-Reflection
Principle? The Dutch book that we laid out in the section on Group-Reflection
is an exploitation set-up that is meant to be applicable whenever Group-Reflection
is violated. Does the deconstruction of this Dutch book in the case of the Story
of the Hats show that the exploitation set-up in question is generally faulty
and unworkable? It does not. It all depends on whether the game-theoretic
considerations that we have adduced to undermine the Dutch book in the Story
of the Hats are applicable in other cases in which Group-Reflection is violated.
A crucial step in the Dutch book against violators of Group-Reflection is this
one (we quote): “At the second stage, at t ′, the bookie offers to buy the following
unconditional bet from the first-comer in G :

Bet 2 on X, with a stake S and a price S×k.

If that offer is accepted, the bookie pays S×k to the seller and then collects S iff X
is true.”
The claim was that if E is true, i.e., if there is some j in G who at t ′ assigns to

X probability lower than or equal to k, then the bookie will find at least one group
member who will be willing to sell Bet 2 at t ′. The bookie is supposed to be able
to find such a person j because from the point of view of at least one j, Bet 2 has
non-negative expected value in terms of her probabilities for X. Now, this step is
problematic if there may be several such j ’s at that stage, on the assumption that E
is true. Then there are strategic considerations that such agents j need to take into
account – and this was precisely the predicament of the group members at stage 2
in the Story of the Hats. However, if there can be only one such j on the assumption
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thatE is true, then game-theoretic considerations do not apply and the Dutch book
is unassailable – as in Christensen’s husband-and-wife story.
As a general epistemic principle, Group-Reflection is highly counter-intuitive.

As it stands, this principle requires us to respect the probability assignments of
every other group member, even those who have different priors or whom we do
not consider to be fully rational, epistemically speaking (cf. the case of husband and
wife mentioned above). Also, the principle requires us to respect the probability
estimates of group members who might have less evidence at their disposal than
we do. Surely, this is not right. In the case of individual Reflection, we can assume
that our future self will have access to all that we know and possibly to some
new evidence. This explains why there is a good reason to respect that future
self’s probability estimates (as long as we do not have good reason to expect that
we will become epistemically corrupted in the future10). But even if we modify
Group-Reflection along these lines and restrict the scope of the principle to group
members who have the same priors, are fully epistemically rational, and have all
the evidence that we have and possibly more, the so restricted principle can still
lead us astray, as we have seen in the Story of the Hats. There, the agents at
stage 1 are certain that at stage 2 one of them will on good epistemic grounds
have probability 1/2 for A and that this person will know more than they know
now. But they still ascribe probability 3/4 to A and are perfectly justified in
doing so.
To get a tenable version of Group-Reflection, we need to restrict the principle

even further and require that the group members we can rely on should have at
least as much information as every other member in the group. Here is a tentative
formulation that one might consider:

The Restricted Group-Reflection Principle:

For any i, if Pi(∃j ∈ G(i) ⊆ R(i) : P ′
j (X) ≤ k) ≥ 0,

then Pi (X|∃j ∈ G(i) ⊆ R(i) : P ′
j (X) ≤ k) ≤ k.

Here, as before, Pi stands for i’s probability at a time t and P ′
j stands for the

probability of an agent j at some time t ′ that is not earlier than t. Let R(i) be the
set of all individuals that i considers to have the same priors as she has and to
be epistemically rational. G (i) is the subset of R(i) consisting of all individuals j
in R(i) about whom i at t believes that j at t ′ has all the evidence that at t is available
to i and all the evidence that at t ′ is available to other members of R(i) (and possibly some
additional evidence as well). It is only if j satisfies these very demanding conditions
that the Restricted Group-Reflection requires i to adjust her probabilities to j ’s
probabilities.
As is easy to see, the Restricted Group-Reflection is not violated in the Story of

the Hats. It’s simply not applicable in that story. The agent who at stage 2 will have
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probability 1/2 for A will not have all the evidence that is available to other group
members at that stage: she won’t be seeing the color of her own hat.
It is worthwhile to reflect on the structure of our argument. In the case of the

standard probability axioms, Dutch book arguments are invoked to show that a
rational agent lets her degrees of belief be governed by the axioms in question. In
this case, we start off with seemingly reasonable principles of rational belief and
the Dutch book arguments are used to shore up their intuitive appeal against a
skeptic. Now, in the case of Group-Reflection, we were not quite certain what
a reasonable principle would be. So we started with a naïve Group-Reflection
principle. Subsequently, there are two ways of proceeding, which operate in parallel.
First, we can just present counter-examples to the naïve principle and refine it by

trying to duck the counter-examples. This is how we can make use of Christensen’s
husband-and-wife story. It teaches us that Group-Reflection has appeal only for
groups whose members can rely on each other, insofar as they assume that they
start from the same priors and process the evidence in the same way. Now, it may
well be that in the absence of these conditions we can construct a Dutch book
against Group-Reflection violators. (The example of the husband and wife is a
case in point.) But this by itself does not vindicate Group-Reflection. Consider the
following analogy: Suppose that someone proposes the erroneous principle that
our degree of belief in the tautology should equal .9. We then show that a Dutch
book can be made against an agent who violates this suggested principle by setting
P(Q or not-Q) at .95 (instead of .9). Clearly, this Dutch book does not vindicate
the proposed principle!
Second, we present a violation of the naïve principle in the Story of the Hats

and then show that no Dutch book can be made. So now we work backwards: if
no Dutch book can be made, then maybe there is no violation of what would be
an appropriate Group-Reflection Principle in the Story of the Hats. So what could
such an appropriate Group-Reflection Principle be? In the Story of the Hats, each
player at t ′ has all the evidence available to the players at t, together with some
further evidence. However, there are several players at t ′ and none of them has all
the evidence available to every other player at t ′. This means that relying on any
one of them rather than on her co-players would be unreasonable. And this leads
us to the presentation of the Restricted Group-Reflection Principle. Consider again
the analogy we have used above: Suppose that we violate the suggested erroneous
principle for the tautology (the one requiring us to assign to the tautology the
degree of belief of .9) by setting the degree of belief for P(Q or not-Q) at 1.
Subsequently we show that no Dutch book can be made on grounds of this
assignment. Then this points the way to an appropriate principle for our degree
of belief in the tautology – viz., a principle which prescribes the degree of belief in
the tautology to be 1 rather than .9.
The logic of Dutch book arguments is as follows. If there is a constraint of

rationality, then in a situation in which the constraint is violated, a Dutch book
can be made. So how does this help us in putting our finger on what constitutes a
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correct principle of rationality? First, if we have a prima facie reasonable constraint
and it is possible to make a Dutch book when the constraint is violated, then
this provides inductive evidence for the constraint. Second, if we have a prima
facie reasonable constraint and it is not possible to make a Dutch book when the
constraint is violated, then we know that the constraint either must be rejected
or needs fine-tuning – it needs to be fine-tuned in such a way that the new and
improved principle is no longer violated in the situation in which the construction
of a Dutch book is precluded.
David Christensen argues against diachronic principles of rationality, including

the standard individual Reflection Principle, by showing that Dutch books can be
made against violators of principles that are in the neighborhood of Reflection
but that are entirely implausible. One such principle is his Solidarity, which is the
(unrestricted) Group-Reflection Principle applied to the case of the husband-and-
wife. In this respect, diachronic principles of rationality are radically different from
the probability axioms, he argues.
This is a misunderstanding of the force of Dutch book arguments.11 The fact

that a Dutch book can be made against a violator of some principle does not show
that the principle is a bona fide constraint of rationality. It shows this neither for
synchronic nor for diachronic principles. A Dutch book could be made against
a violator of the principle that our degree of belief in the tautology should equal
.9 – but this does not show that Dutch book arguments for synchronic principles of
rationality should be thrown out of the window. Neither does a Dutch book against
violators of the implausible Solidarity principle show that Dutch book arguments
for diachronic principles of rationality should be thrown out of the window. One
needs to properly appreciate the logic of these arguments: the presence of a Dutch
book in the case of a violation of some prima facie reasonable principle suggests
that this principle might turn out to be a bona fide constraint of rationality, but it
does not prove it, while the absence of a Dutch book in the case of a violation of
a prima facie reasonable principle proves that this principle is not acceptable as it
stands.
So we used the absence of a Dutch book in the Story of the Hats to refine the

Group-Reflection Principle so that the original Group-Reflection was no longer a
constraint. But where does this leave the presence of a Dutch book in Christensen’s
husband-and-wife example? The presence of a Dutch book shows that there is
something epistemically amiss in the situation. But what, more precisely? One
possibility is that there is a violation of Restricted Group-Reflection. This would
be the case if the husband h considers his wife to belong to G (h) ⊂ R(h) but still
does not bother adjusting his degree of belief to hers. But, as Christensen tells the
story, the violation of the Dutch book is due to a different kind of epistemic failing.
The husband simply does not consider his wife as a member of R(h). There is a
lack of epistemic trust – he considers her to be unduly optimistic or pessimistic.
The implication is that, in his view, she operates with different priors than he
does or is not epistemically rational. And so Restricted Group-Reflection does not

295



Luc Bovens and Wlodek Rabinowicz

apply. Thus, to sum up, depending on how we tell the story, a Dutch book can be
made against the husband and wife either because Restricted Group-Reflection is
violated or because of the lack of epistemic trust within the group.

6. W H A T ’ S W R O N G W I T H T H E B E T T I N G I N T E R P R E T A T I O N12

On the betting interpretation, subjective probabilities are identical with betting
rates. As the Story of the Hats has shown, this interpretation is unsatisfactory. But
what precisely is wrong with it?
In “Truth and Probability”, where the betting interpretation is proposed, Frank

Ramsey himself mentions the limitations of this method:

the proposal of a bet may alter [the agent’s] state of opinion; just as we could not always
measure electric intensity by actually introducing a charge and seeing what force it was
subject to, because the introduction of the charge would change the distribution to be
measured. (1926/1931, 170)

There are two standard cases in which this is so. First, if you offer me a bet, then
this might make me think that you have special expertise in the matter and hence
I become less confident in my own judgment. In this case my betting rate matches
my credence conditional on having been offered a bet. Call this the Expert case.
Second, I may think it quite unlikely that I will, say, be able to quit smoking, but
things change when I am offered a bet on that proposition. Taking a bet with
high stakes on my quitting helps me to strengthen my resolve and so I become
more confident that I will be able to quit. In this case my betting rate matches
my credence conditional on my accepting the bet. Call this the Smoking case. In
both cases, there is a probabilistic dependence between the proposition betted on
and the availability of the bet, and this explains why betting rates do not match
credences.
The Story of the Hats is both similar and dissimilar toExpert and Smoking. InExpert

and Smoking, the explanation of the disparity rests on the following claim:

(Ramsey) If there is probabilistic dependence between the proposition betted on
and the availability of the bet, then betting rates and credences diverge.

Now, in Expert and Smoking, we do a simple modus ponens on (Ramsey) to explain
why betting rates and credences diverge.
But this won’t work in the Story of the Hats. On the assumption that the players

settle on the symmetric trembling-hand perfect Nash-equilibrium < (0,0), (0,0),
(0,0)>, nobody will ever step forward to take up the bookie’s offer. So if Alice sees
two hats of the same color, she is able to take up the bookie’s offer, whether A is
true or not. She knows that the bet is available. Hence, there is no probabilistic
dependence between the proposition betted on (i.e., A) and the availability of
the bet. Modus ponens on (Ramsey) fails as an explanation of why betting rates and
credences diverge in the Story of the Hats.
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The argument is slightly different. We first need to establish that in the Story of
the Hats,

(Hats) If betting rates were to match credences, then there would be probabilistic
dependence between the proposition betted on and the availability of the
bet.

This is easy to see. Suppose that betting rates were to match credences. Let Alice
see two hats of the same color. Suppose that the proposition betted on (i.e., A)
is true. Then no one else will step forward to sell the bet and so the chance that
the bet is available to Alice is 1. Suppose that A is false. Then both Barbara and
Carol see two hats of the same color and, on the supposition that betting rates
match credences, they will also step forward, just like Alice. In that case the chance
that the bet is available to Alice is 1/3. Hence, there is a probabilistic dependence
between the proposition betted on and the availability of the bet.
Now we can see the logic of the argument. The argument is a reductio. Assume

for reductio that in the Story of the Hats, betting rates match credences. Then by
(Hats), there is probabilistic dependence between the proposition betted on and
the availability of the bet. Hence by (Ramsey), betting rates do not match credences.
So we can reject the reductio premise: in the Story of the Hats, betting rates do not
match credences.
The explanation of the divergence between betting rates and credences in the

Story of the Hats is (Ramsey). In that respect it is similar to Expert and Smoking. But
the argument is a reductio argument and not a simple modus ponens. In that respect it
is dissimilar.

7. C O N C L U S I O N

In the Story of the Hats, there is a group of epistemically ideal players with common
priors, common goals, mutual trust in each other’s rationality, and common
knowledge thereof. We construct a simple principle of Group-Reflection and show
how van Fraassen’s Dutch book construction against violators of the Reflection
Principle can be adapted to the group violating the Group-Reflection Principle in
the Story of the Hats.
However, if we pay attention to strategic considerations and approach the

problem as a game-theorist would, it turns out that the Dutch book in the Story
of the Hats is spurious. Nonetheless, there is a violation of the Group-Reflection
Principle despite the fact that the players in our story are epistemically ideal. This
induces us to restrict the Group-Reflection Principle so that there is no longer a
violation of Restricted Group-Reflection in the Story of the Hats.
We take a stand against Christensen, who presents a simple case of a failure

of Group-Reflection and argues that it is questionable whether Dutch book
arguments for principles of diachronic rationality are valid. We argue that Dutch
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book arguments do signal an epistemic deficit and show how the presence and
absence of Dutch books are instrumental in refining principles of rationality.
The Story of the Hats poses a challenge to the fair betting-rate interpretation

of subjective probability. There are already well-known challenges to this
interpretation, e.g., cases in which there is probabilistic dependence between the
availability of a bet and the proposition on which the bet is to be made. In
such cases, fair betting rates match not subjective probability tout court, but rather
the subjective probability that the proposition would be true conditional on the
availability of the bet.13 The logic of the challenge in the Story of the Hats is
different, though: the probabilistic dependence between the availability of a bet and
the proposition on which the bet is to be made enters in only within the context
of a reductio argument on the assumption that (unconditional) subjective probability
determines the fair betting rate.
The Story of the Hats is a story of paradox gained and paradox lost. However,

there is philosophical enchantment in this gain and loss. We have come to
understand better the role of strategic considerations in betting against a group,
the possibility of a reasonable principle of Group-Reflection, the place of Dutch
book arguments with respect to epistemic ideals, and the betting interpretation of
subjective probability.14
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NOTES

1 We are indebted to Anthony Williams for alerting us to this problem.
2 If you find the diachronic form of this argument worrying, consider the following
synchronic version of the Story of the Hats, this time with four agents instead of three.
Three of the agents, Alice, Barbara, and Carol, have been equipped with hats. Each
sees the hats the other two agents wear, but not her own. The fourth agent, Diana,
is hatless and doesn’t see the hats of the other three women. The color of each hat,
either black or white, has been chosen in secret, independently, and at random. All this
is common knowledge in the group. Now Diana’s probability for the proposition A is
3/4. At least one agent in the group, Alice, Barbara, or Carol, ascribes probability 1/2 to
A. All this is common knowledge. Thus, a clever bookie who doesn’t know more than
what’s common knowledge in the group can set up a synchronic Dutch book against
the group as a whole: He can sell to Diana a bet on A at her odds (price 3, stake 4) and
at the same time offer to buy a single bet on A with the same stake and a lower price
(price 2, stake 4), knowing that that this second bet is fair for at least one of the other
three agents. So he will again profit due to the price difference.

3 Let P and P ′ stand for probability assignments at stages 1 and 2 respectively. Then,
by construction, for all i, j in the group, (i) Pi (∃j∈G : P ′

j (A) = 1/2) = 1; Hence, (ii)
Pi (∃j∈G : P ′

j (A) ≤ 1/2)> 0, and so, by Group-Reflection, (iii) Pi (A|∃ j∈G : P ′
j (A) ≤

1/2) ≤ 1/2; From (i), also (iv) Pi (∃j∈G : P ′
j (A) ≤ 1/2) = 1; And so, from (iii) and (iv),

by the probability calculus, Pi (A) ≤ 1/2.
4 A similar remark applies to the violations of Reflection by a single agent. A Dutch
book without superior knowledge on the part of the bookie can be set up against such
an agent only if she herself knows her own probability assignments that violate the
principle. This self-introspection on the part of the agent is usually tacitly assumed in
the discussion of the Reflection Principle.

5 In our Story of the Hats, we have excluded this possibility. In that story, E = ∃j ∈ G:
P ′
j (A) ≤ 1/2 holds by the construction of the example. In other words, that at stage 2
some agent will assign probability 1/2 to A is something that is bound to happen.

6 If the husband thinks the wife is unduly pessimistic with respect to a propositionX, then
it may well happen that his conditional probability PHusband(X|PWife(X ) ≤ k) >k, in
violation of Group-Reflection.

7 The idea of a trembling-hand perfect equilibrium goes back to Selten (1975).
8 If the probability of tremble equals � for each player, then � = 1 – (1 – �)2 = 2� – �2.
9 Note that the same argument shows that a non-symmetric profile < (1,0), (0,0), (0,0) >

is also a trembling-hand perfect Nash equilibrium. We are indebted for this point
and for other useful comments to Chlump Chatkupt, who has helped us to see that
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our previous formulation of the game-theoretic approach to the Story of the Hats in
(Bovens and Rabinowicz 2010) wasn’t satisfactory.

10 For a discussion of (individual) Reflection and counterexamples to Reflection, see
(Bovens 1995).

11 For a discussion of the difference between synchronic and diachronic Dutch books, see
(Rabinowicz 2008). That paper, however, does not discuss Dutch books against groups.

12 Our discussion in this section is influenced by (Eriksson and Rabinowicz forthcoming).
13 This is still somewhat oversimplified. In cases such as Smoking, in which the bet might
causally influence the proposition betted on, the rate of a fair bet instead coincides
with the subjective probability that the proposition would be true if the bet were made,
conditional on the availability of the bet. See (Eriksson and Rabinowicz forthcoming).

14 We are grateful to Chlump Chatkupt and Paul Weirich for helpful comments and to
the Dutch Organisation for Scientific Research (NWO–project nr. 236-20-005) and
Swedish Collegium for Advanced Study (SCAS) for their support.
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