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Abstract

This paper presents a game theoretic analysis of the generalized second price
auction that the company Overture operated in 2004 to sell sponsored search
listings on its search engine. We present results that indicate that this auction
has a multiplicity of Nash equilibria. We also show that weak dominance
arguments do not in general select a unique Nash equilibrium. We then
analyze bid data assuming that advertisers choose Nash equilibrium bids. We
offer some preliminary conclusions about advertisers’ true willingness to bid
for sponsored search listings. We find that advertisers’ true willingness to bid
is multi-dimensional and decreasing in listing position. We illustrate revenue
and efficiency gains of alternative auction rules. Our estimates indicate that
revenues for the search term Broadband could increase by at least 49 percent
if an alternative auction rule were used.



1 Introduction

Internet search engines such as Google and Yahoo provide a service where
users enter search terms and receive in response lists of links to pages on the
World Wide Web. Search engines use sophisticated algorithms to determine
which pages will be of most interest to their users. But they also offer to
advertisers against payment the opportunity to advertise their pages to all
users who entered specific terms. These advertisements are called “spon-
sored links.” Sponsored links are displayed on the same page as the links
determined by the search engine’s own algorithm, but separately from these.

Sponsored links are an important new marketing instrument. Sponsored
links offer advertisers a more targeted method of advertising than traditional
forms of advertising such as television or radio commercials, because spon-
sored links are only shown to users who have expressed an interest in a
search term that is related to the product that the advertiser seeks to sell.
For companies that run search engines advertising revenue constitutes a ma-
jor component of their total revenue. Google reported for the first six months
of 2006 a total revenue of $4.71 billion of which $4.65 billion originated in
sponsored search incomes.1 For the same period, Yahoo reported a total
revenue of $3.14 billion, of which $2.77 billion were attributed to “marketing
services.”2

The major search engines use auctions to sell spaces for sponsored links.
A separate auctions is run for each search term. Advertisers’ bids determine
which advertisers’ sponsored links are listed and in which order. The subject
of this paper is an early version of an auction of sponsored link spaces that was
operated until 2005 by a company called Overture. At the time, in 2004, at
which we observed Overture’s auction, advertisers bid in Overture’s auction
for sponsored search listings on Yahoo’s search pages. Indeed, Overture,
which had started as an independent company, had been acquired at this

1These figures are taken from the quarterly report filed by Google Inc. to
the United States Securities and Exchange Commission on August 9, 2006.
The figures are not audited. The report was accessed by the authors at:
http://investor.google.com/pdf/20060630 10-Q.pdf on August 13, 2006.

2These figures are taken from the quarterly report filed by Yahoo Inc. to
the United States Securities and Exchange Commission on August 4, 2006.
The figures are not audited. The report was accessed by the authors at:
http://www.shareholder.com/Common/Edgar/1011006/1104659-06-51598/06-00.pdf
on August 13, 2006.
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point by Yahoo, and it was later to be renamed Yahoo Search Marketing.

We examine a theoretical model, and bidding data, for Overture’s auction.
We seek to extract information about bidders’ valuation of sponsored search
advertisements, and we seek to understand how bidders responded to the
incentives created by the auction rules. Bidders in Overture’s sponsored
search auction, and also in the current sponsored search auctions run by
Yahoo Search Marketing and by Google, bid a payment per click. Whenever a
search engine user clicks on an advertiser’s sponsored link that advertiser has
to make a payment to the search engine. The auction format that Overture
used, and that is also currently used by Yahoo Search Marketing and by
Google, is a “generalized second price auction:”3 The highest bidder is listed
first and pays per click the second highest bid; the second highest bidder is
listed second and pays per click the third highest bid; etc.4

The generalized second price auction is a method for allocating hetero-
geneous objects, such as positions on a page of search results, to bidders. It
is based on the assumption that bidders agree which object has the highest
value, which one has the second highest value, etc. The generalized second
price auction is a somewhat surprising choice of auction format in the light of
the recent auction literature. An example of a modern auction format that
is used to allocate multiple, heterogeneous goods to bidders each of whom
acquires at most one unit the simultaneous ascending auction described in
Milgrom (2000). In this auction, bidders can specify in each round which
object that they are bidding for. Bids are raised in multiple rounds. Within
the limits of the auction rules, they can switch from bidding for one object
to bidding for another object. The auction closes when no further bids are
raised. By contrast, in the generalized second price auction, bidders submit
a single-dimensional bid without specifying what they are bidding for. It
seems worthwhile to investigate the properties of this new auction format.

Edelman et. al. (2007) and Varian (forthcoming) have recently offered
theoretical analyses of the generalized second price auction that suggest that
the auction may yield an efficient allocation of positions to bidders. The first
part of this paper reinvestigates the theory of the generalized second price
auction. We come to somewhat different conclusions than Edelman et. al.

3This expression was introduced by Edelman et. al. (2007).
4Google also uses a generalized second price format, but, when ranking advertisers and

determining their payments, Google incorporates the likelihood that a user will actually
click on the advertisers’ link.
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and Varian. These authors’ work relies on a relatively narrow specification
of bidders’ payoff functions: bidders’ values per click do not depend on the
position in which their advertisement is placed, and click rates are assumed
to grow at the same rate for all advertisers as one moves up in sponsored
link position. These authors’ work also relies on a selection from the set of
Nash equilibria of the generalized second price auction. The authors focus
on equilibria that, although, of course, they are strategic equilibria, are very
similar to Walrasian equilibria.

We propose a more flexible specification of bidders’ preferences than is
used by Edelman et. al. and Varian. We undertake a more exhaustive anal-
ysis of the set of Nash equilibria. We find that existence of pure strategy
Nash equilibrium can be proved quite generally. In fact, the generalized sec-
ond price auction typically has many Nash equilibria. Moreover, we suggest
that there are no strong theoretical reasons to expect the equilibria of the
generalized price auction to be efficient.

We then proceed to an analysis of bidding data for selected search terms.
We have collected our data from Overture’s website in the spring of 2004. We
use a revealed preference approach and maximum likelihood estimates to infer
the structure of bidders’ valuations. The more restrictive specifications of
preferences used by previous authors are nested by our model, and therefore
correspond to parameter restrictions within our model.

The evidence suggests that the properties of valuations that previous au-
thors have postulated do not hold in practice. Our non-parametric revealed
preference approach suggests that values per click decline in listing position.
Moreover, even with our flexible specification of payoffs we find that we can
rationalize most bidders’ behavior only over relatively short time periods,
after which we have to postulate an unexplained structural break in prefer-
ences. Thus we find that it is not easy to rationalize bidding behavior as
equilibrium behavior.

We then incorporate random components to valuations which are known
to bidders but not observed by the econometrician. Random components
rationalize bidding behavior as stemming from equilibrium and allow us to
take a parametric valuation model to the data. We find little evidence that
valuations are a function of listing positions held in the recent past suggest-
ing that our static modeling approach is not unreasonable. Based on our
parametric estimates, we quantify the slope coefficient, and undertake a pre-
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liminary assessment of the efficiency of equilibria. We do not find evidence
that equilibria are efficient. We illustrate possible revenue and efficiency
gains of alternative auction rules.

Bidding in sponsored search auctions has previously been examined em-
pirically by Edelman and Ostrovsky (2007) and by Varian (forthcoming).
Edelman and Ostrovsky’s data concern an even earlier version of the Over-
ture auction than we consider. At the time for which Edelman and Ostro-
vsky have data, Overture used a generalized first price format rather than
a generalized second price format. This differentiates their paper from ours.
Moreover, unlike us, Edelman and Ostrovsky do not use a structural model
of equilibrium bidding, and they do not present valuation estimates in any
detail.

Varian (forthcoming) uses bidding data for Google’s sponsored search
auction on one particular day. He finds evidence that supports a model of
equilibrium bidding in which bidders’ valuations are not rank dependent. By
contrast, we use data that have been collected over a period of several months.
To interpret observed bids as equilibrium bids over extended time periods,
we need to allow valuations to depend on rank, and we need to allow for
structural breaks. Varian’s model is based on an equilibrium selection that
implies efficiency of equilibria. Our analysis, using a data set that extends
over time, and using a more general structural model, does not find evidence
of efficiency of equilibria.

While it is a strength of our analysis in comparison to Varian’s that our
bidding data cover several months, a strength of Varian’s analysis is that he
has (proprietary) click rates available to him. When interpreting our results
it must be kept in mind that our findings may be distorted by the lack of
precise click rates.

The theory of sponsored search auctions also appears to be potentially
related to the theory of contests and tournaments with multiple, ranked
prizes (e.g. Moldovanu and Sela (2001), Moldovanu et. al. (2007)). One
can interpret the “effort level” in these models as the bid in our model.
However, the generalized second price rule that is the subject of our paper
seems specific to the sponsored search context.

This paper is organized as follows. Sections 2-6 describe our theoretical
analysis. Section 2 presents the model. Section 3 discusses a type of Nash
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equilibria that Varian (forthcoming) has called “symmetric.” Section 4 ana-
lyzes “asymmetric” Nash equilibria Section 5 discusses refinements of Nash
equilibria. Sections 6-9 constitute the empirical analysis. Section 6 describes
the data. Section 7 reports the results of revealed preference tests. Section
8 describes valuation estimates. Section 9 discusses ex post revenue and effi-
ciency losses in the auction. Section 10 concludes. One of the proofs of our
theoretical results is in an Appendix.

2 Model

There are K positions k = 1, 2, . . . , K for sale, and there are N potential
advertisers i = 1, 2, . . . , N . We shall refer to the potential advertisers as
“bidders.” We assume K ≥ 2 and N ≥ K. Bidders i = 1, 2, . . . , N si-
multaneously submit one-dimensional non-negative bids bi ∈ <+. Bids are
interpreted as payments per click. The highest bidder wins position 1, the
second highest bidder wins position 2, etc. The bidder with the K-th high-
est bid wins position K. All remaining bidders win no position. The highest
bidder pays per click the second highest bid, the second highest bidder pays
per click the third highest bid, etc. The K-th highest bidder pays per click
the K + 1-th highest bid if there is such a bid. Otherwise, if N = K, the
K-th highest bidder pays nothing. We will explain later how we deal with
identical bids, i.e. ties. We follow Edelman et. al. (2007) and refer to this
auction as a “generalized second price auction.”

The payoff to bidder i of being in position k if he has to pay b per click
is:

cki (γ
k
i − b) + ωki (1)

Here, cki > 0 is the click rate that bidder i anticipates if he is in position
k, that is, the total number of clicks that bidder i will receive in the time
period for which the positioning resulting from the auction is valid. Next,
γki > 0 is the value per click for bidder i if he is in position k. This is the
profit that bidder i will make from each click on his advertisement. Finally,
ωki ≥ 0 is the impression value of being in position k for bidder i. The
impression value describes the value that bidder i derives from merely being
seen in position k, independent of whether a search engine user clicks on
bidder i’s link. We have in mind that companies derive value from the fact
that a sponsored search link reminds customers of the existence of their
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company, and that it makes users more likely to buy in the future, even if
those users do not click on the link and make a purchase at the time of their
search. The impression value is thus similar to the value that advertisers
derive from other forms of advertising, such as television advertising, that
are less targeted than sponsored search advertising. Impression values seem
to be referred to frequently in marketing professionals’ conversations.5

Our representation of bidders’ payoffs is “reduced form,” that is, we do
not describe explicitly the behavior of users of search engines that generates
bidders’ payoffs. One reason for not modeling users’ behavior explicitly is
that this behavior is presumably driven not only by traditional economic
considerations, but also by human physiology (where do people look first on
a computer screen?) and by human psychology, and we do not know of good
ways of capturing these factors in a formal model. Another reason is that our
paper focuses on bidding data, and does not involve any data about users’
behavior.

A restrictive assumption implicit in equation (1) is that click rate, value
per click, and impression value for bidder i in position k do not depend on
the identity on the bidders that win other positions. In practice, this identity
might matter. Bidder i might attract a larger click rate in second place if the
bidder in the top position is a large, widely known company than if the bidder
in the top position is small and not well-known. In auction theory, this is
known as an “allocative externality.” It is well-known that such externalities
may create multiple equilibria in single unit auctions (Jehiel and Moldovanu,
2006). In our multi-unit auction, we find multiple equilibria even with the
specification of payoffs given in (1). By leaving allocative externalities out of
our model we thus identify an additional source of multiplicity of equilibria.
Our modelling choice also reflects that we do not attempt to identify and
measure allocative externalities. Measuring allocative externalities would
require sufficient data variation in the allocation realization which we cannot
guarantee as our data set is too small.

Equation (1) seems to assume that bidders know click rates, values per
click, and impression values. We can, however, allow the possibility that
bidders are uncertain about these variables, and maximize the expected value
of the expression in (1). The expected value will have the same form as (1),
with all three variables replaced by their expected value, if all three variables

5Note that we have not ruled out that the impression value is zero.
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involved are stochastically independent. Given independence, an alternative
interpretation of the expression in (1) and of each of the variables in (1) is
thus to read them as expected values.

We shall refer to the value of b which makes the payoff in expression (1)
zero as bidder i’s willingness to bid for position k. We denote it by vki :

vki = γki +
1

cki
ωki (2)

We can now equivalently write bidder i’s payoff as:

cki (v
k
i − b) (3)

This expression makes clear that our model is equivalent to one in which
there is no impression value, and the value per click is vki rather than γki . We
shall conduct our analysis using the notation in expression (3), but it will be
useful to keep in mind that the model admits the alternative interpretation
given in expression (1).

Our model nests as special cases those of Lahaie (2006), Edelman et. al
(2007), and Varian (forthcoming). These authors assume that the values per
click are independent of the position, that is, for every i = 1, 2, . . . , N there
is some constant vi such that:

vki = vi for all k = 1, 2, . . . , K (4)

and that the ratio of click rates for different positions is the same for all
bidders, that is, for every bidder i = 1, 2, . . . , N and every position k =
1, 2, . . . , K there are numbers ai and ck such that:

cki = aic
k (5)

Our analysis is more general than the analysis in the papers cited above,
although in Propositions 2 and 3 below we shall focus on the specification in
equation (5).

We shall study pure strategy Nash equilibria of the auction game. A pure
strategy Nash equilibrium is a vector of bids (b1, b2, . . . , bN) such that each
bid maximizes the bidder’s payoffs when the bids of the other bidders are
taken as given. To give a formal definition, we need to deal with ties. A
ranking of bidders is a bijection φ : {1, 2, . . . , N} → {1, 2, . . . N} that assigns
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to each rank ` the bidder φ(`) who is in that rank. A ranking of bidders is
compatible with a given bid vector (b1, b2, . . . , bN) if ` ≤ `′ ⇒ bφ(`) ≥ bφ(`′),
that is, higher ranks are assigned to bidders with higher bids, where ties can
be resolved arbitrarily. A ranking of bidders that is compatible with a given
bid vector thus represents one admissible way of resolving ties in this bid
vector. We now define a Nash equilibrium to be a bid vector for which there
is some compatible ranking of bidders so that no bidder has an incentive to
unilaterally change their bid.

Definition 1. A vector of bids (b1, b2, . . . , bN) is a Nash equilibrium if there
is a compatible ranking φ of bidders such that:

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with
k < k′ ≤ K:

ckφ(k)

(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′+1)

)
• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

1 ≤ k′ < k:

ckφ(k)

(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′)

)
• For all positions k with k ≤ K:

ckφ(k)

(
vkφ(k) − bφ(k+1)

)
≥ 0

• For all ranks ` with ` ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ckφ(`)

(
vkφ(`) − bφ(k)

)
≤ 0

Here, if K = N , we define bφ(N+1) = 0.

The first two conditions say that no bidder who wins a position has an
incentive to deviate and bid for a lower or for a higher position. Note the
following asymmetry. A bidder who bids for a lower position k has to pay
bφ(k+1) to win that position, but a bidder who bids for a higher position k
has to pay bφ(k) to win that position. The last two conditions say that no
bidder who wins a position has an incentive to deviate so that he wins no
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position, and no bidder who wins no position has an incentive to deviate so
that he wins some position.

Our approach of modeling the auction as a static game of complete infor-
mation and focusing on Nash equilibria of this game follows previous papers:
Lahaie (2006), Edelman et. al. (2007), and Varian (forthcoming). Clearly,
the static model is very stylized. Interactions in practice take place over
time. Moreover, the common knowledge assumption, literally interpreted,
is, of course, unrealistic. However, the idea of our approach is that the re-
peated nature of the interaction with almost continuous opportunities for
bid adjustment allows bidders to converge fast to a Nash equilibrium of the
auction. We do not model this adjustment process explicitly. However, we
have in mind that bidders behave naively in this process. Therefore, the
adjustment process itself need not be in equilibrium. But after a short while,
taking others’ bids as given, each bidder behaves optimally. In particular,
we shall assume that static equilibrium has been reached at every instance
in our data set.

3 Symmetric Nash Equilibria

We shall initially focus on a particular type of Nash equilibrium, namely
equilibria in which bidders don’t even have an incentive to win a higher
position k if they have to pay bk+1 rather than bk. Varian (forthcoming) has
called such equilibria “symmetric Nash equilibria.” We discuss asymmetric
equilibria in the next section. In Section 5 we shall ask whether there are
good reasons to focus on symmetric equilibria.

Definition 2. A vector of bids (b1, b2, . . . , bN) is a symmetric Nash equi-
librium if there is a compatible ranking φ of bidders so that the bid vector
satisfies the conditions of Definition 1, and:

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with
1 ≤ k′ < k:

ckφ(k)

(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′+1)

)
• For all ranks ` with ` ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ckφ(`)

(
vkφ(`) − bφ(k+1)

)
≤ 0
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The sense in which Nash equilibria that satisfy the conditions of Definition
2 are “symmetric” is that all bidders, when contemplating to bid for position
k, expect to pay the same price for this position, namely bφ(k+1). Thus, the
vector

(
bφ(2), bφ(3), . . . , bφ(K+1)

)
can be interpreted as a vector of Walrasian

equilibrium prices. If each bidder takes these prices as given and fixed, and
picks the position that generates for him the largest surplus at these prices,
then for each position there will be exactly one bidder who wants to acquire
that position, provided that indifferences are resolved correctly. Thus the
market for each position “clears”: demand and supply are both equal to 1.

We now introduce an assumption that guarantees the existence of a sym-
metric Nash equilibrium.

Assumption 1. For every bidder i = 1, 2, . . . , N and for every position
k = 2, 3, . . . K the following two inequalities hold:

ck−1
i vk−1

i > cki v
k
i and vk−1

i ≥ vki

The first inequality says that the expected value of a higher position for
bidder i is at least as large as the expected value of a lower position. The
second inequality says that the same monotonicity is true for bidder i’s will-
ingness to bid. Even if the value per click and the impression value are larger
for larger positions, the second inequality in Assumption 1 may be violated
if the click rates increases too fast in comparison to the impression value.
This can be seen from equation (2). Thus, the second part of Assumption 1
is somewhat restrictive.

Proposition 1. Under Assumption 1 the game has at least one symmetric
Nash equilibrium in pure strategies.

Proof. Step 1: We show the existence of Walrasian equilibrium prices for
the K positions. This is essentially an implication of Theorem 3 in Milgrom
(2000). Milgrom proves existence of competitive equilibrium indirectly. He
postulates that K objects are sold through a simultaneous ascending auction,
and that bidders bid straightforwardly. He then proves that the auction will
end after a finite number of rounds, and that the final prices paid for the
K objects converge to Walrasian equilibrium prices as the increment in the
simultaneous ascending auction tends to zero. This implies that Walrasian
equilibrium prices exist. To apply Milgrom’s argument to our context, we
need to modify his construction, and assume that bids in the simultaneous
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ascending auction are payments per click, rather than total payments. With
this modification, Milgrom’s argument goes through without change. Mil-
grom’s result assumes that objects are substitutes: each bidder’s demand for
an object does not decrease as the prices of the other objects increase. This
assumption is obviously satisfied in our setting with single unit demand.

Denote by φ a ranking of the bidders that is compatible with the Wal-
rasian equilibrium, that is, in the Walrasian equilibrium position k is obtained
by agent φ(k). Denote by (p1, p2, . . . , pK) some vector of Walrasian equilib-
rium prices that has been constructed by Milgrom’s method. Observe that,
as one can easily show, N = K implies pK = 0.

Step 2: We show that p1 ≥ p2 ≥ . . . ≥ pK . Indeed, suppose that for
some k we had pk−1 < pk, and consider the bidder i who acquires position k.
Because position k is the optimal choice for bidder i at the given prices:

cki
(
vki − pk

)
≥ ck−1

i

(
vk−1
i − pk−1

)
(6)

Because pk−1 < pk this implies:

cki
(
vki − pk

)
> ck−1

i

(
vk−1
i − pk

)
⇔ (7)(

ck−1
i − cki

)
pk > ck−1

i vk−1
i − cki vki (8)

The expression on the right hand side of (8) is by Assumption 1 positive.
The expression on the left hand side is linear in pk. For pk = 0 it equals zero
and is thus smaller than the right hand side. The largest possible value of pk
is vki . We now show that even for this largest value of pk the expression on
the left hand side is smaller than the expression on the right hand side:(

ck−1
i − cki

)
vki ≤ ck−1

i vk−1
i − cki vki ⇔ (9)

vki ≤ vk−1
i (10)

which holds by Assumption 1. Thus, there is no value of pk for which (8)
could be true, and the assumption pk−1 < pk leads to a contradiction.

Step 3: We now construct a symmetric Nash equilibrium. For each k
with 2 ≤ k ≤ K we set the bid of the bidder who wins position k in the
Walrasian equilibrium equal to the price that position k − 1 has in that
equilibrium:

bφ(k) = pk−1 (11)
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For bidder φ(1) who wins position 1 we can choose any bid bφ(1) that is
larger than p1. Finally, if there are bidders i who don’t obtain a position
in the Walrasian equilibrium, we set their bids equal to pK . Because the
Walrasian prices are ordered as described in Step 2 these bids imply that
every bidder who wins a position in the Walrasian equilibrium wins the same
position in the auction, and pays in the auction the price that he pays in the
Walrasian equilibrium. Moreover, because we have implemented a Walrasian
equilibrium, no bidder prefers to acquire some other position at the price that
the winner of that position pays over the outcome that he obtains in the
proposed bid vector, and hence we have a symmetric Nash equilibrium.

Two remarks are in order. First, as the second part of Assumption 1
is somewhat restrictive, one might wonder whether it can be relaxed. We
have not pursued this question. Second, the simultaneous ascending auction
to which we refer in Step 1 of the above proof may be regarded as a an
alternative to the generalized second price auction used by Overture. We
have not attempted to evaluate the relative merits of this alternative auction
format for sponsored search positions.

If we knew bidders’ valuations vki , could we predict who will win which
position in a symmetric Nash equilibrium? We shall consider this question
under the following simplifying assumption.

Assumption 2. For every bidder i = 1, 2, . . . , N and for every position
k = 1, 2, . . . , K there are numbers ai > 0 and ck > 0 such that

cki = aic
k

for all i and all k.

Proposition 2. Under Assumption 2 a ranking φ of bidders that is compat-
ible with a symmetric Nash equilibrium maximizes

K∑
k=1

ckvkφ(k)

among all possible rankings φ.
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For generic parameters, there will be a unique allocation of positions to
bidders that maximizes the sum in Proposition 2. In this sense, Proposition 2
provides conditions under which we can unambiguously predict which bidder
will win which position in a symmetric equilibrium.

The function that according to Proposition 2 symmetric Nash equilib-
rium rankings maximize is similar to a utilitarian welfare function. However,
a utilitarian welfare function would assign to each ranking the sum of all
bidders’ valuations of positions, that is:

K∑
k=1

aic
kvkφ(k)

In the expression in Proposition 2 the bidder specific factors ai are omitted. It
is intuitively plausible that the Overture auction cannot lead to an allocation
which takes these factors into account. These factors only affect the absolute
level of click rates, but not their ratio. Incentives in the auction only depend
on the ratio of click rates.

Proof. Le φ be a ranking of bidders that is compatible with a symmetric Nash
equilibrium, and let φ̂ be an alternative ranking. Without loss of generality
assume that φ is the identity mapping. Let pk (for k = 1, 2, . . . , K) be the
Walrasian prices associated with the symmetric equilibrium. By definition
of the Walrasian equilibrium we have for all positions k that are won under
φ̂ by bidders φ̂(k) that would also win a position under φ, i.e. for whom
φ̂(k) ≤ K:

aφ̂(k)c
k
(
vk
φ̂(k)
− pk

)
≤ aφ̂(k)c

φ̂(k)
(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
⇔ (12)

ck
(
vk
φ̂(k)
− pk

)
≤ cφ̂(k)

(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
(13)

For all positions k that are won under φ̂ by bidders φ̂(k) that would not win
a position under φ, i.e. for whom φ̂(k) > K:

aφ̂(k)c
k
(
vk
φ̂(k)
− pk

)
≤ 0⇔ (14)

ck
(
vk
φ̂(k)
− pk

)
≤ 0 (15)
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Summing (13) and (15) over all k = 1, 2, . . . , K we obtain:

K∑
k=1

ck
(
vk
φ̂(k)
− pk

)
≤

∑
k∈{1,...,K|φ̂(k)≤K}

cφ̂(k)
(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
(16)

which implies:

K∑
k=1

ck
(
vk
φ̂(k)
− pk

)
≤

K∑
k=1

ck
(
vkk − pk

)
⇔ (17)

K∑
k=1

ckvk
φ̂(k)

≤
K∑
k=1

ckvkk (18)

Thus, the value of the function in Proposition 2 under φ̂ is not larger than
it is under φ.

To illustrate how Proposition 2 allows one to predict symmetric equilib-
rium allocations we consider the case in which bidders are ranked according to
a single crossing condition: the marginal value of higher positions decreases
as a player’s index goes up.

Assumption 3. Assumption 2 holds, and for all bidders i = 1, 2, . . . , N − 1
and all position k = 1, 2, 3, . . . , K − 1

ckvki − ck+1vk+1
i > ckvki+1 − ck+1vk+1

i+1

The following is an immediate implication of Proposition 2.

Corollary 1. Under Assumption 3 in every symmetric Nash equilibrium
bidder i wins position i for i = 1, 2, . . . , K.

If Assumptions 1 and 3 hold simultaneously we can infer the existence of a
symmetric equilibrium in which bidder i wins position i. Existence results
that have been obtained constructively by Edelman et. al. (2007, Theorem
1) and Varian (forthcoming, Section 2) are implications of this observation.
These authors study models in which Assumption 2 holds, values vki are
independent of position k, and ck > ck+1 for k = 1, 2, . . . , K − 1. This
implies Assumption 1. Assumption 3 is then satisfied if bidders are labeled
such that v1 > v2 . . . > vN .
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4 Asymmetric Nash Equilibria

The game defined in Section 2 has further Nash equilibria if we allow for
equilibria that are not symmetric, that is, asymmetric equilibria. It is hard
to give a complete description of all Nash equilibria. We provide two partial
results. The first result concerns the case discussed at the end of the previous
section.

Proposition 3. Under Assumptions 1 and 3 there is an asymmetric Nash
equilibrium in which bidder 1 wins position 2, bidder 2 wins position 1, and
bidder i wins position i for all i = 3, 4, ..., K.

Proof. Suppose that b1, b2, . . . , bN is a symmetric Nash equilibrium in which
bidder i wins position i for i = 1, 2, . . . , K. By Proposition 1 and Corollary
1 such an equilibrium exists. Define a new vector of bids, b̃1, b̃2, . . . , b̃N , as
follows: b̃i = bi for i = 3, . . . , N , b̃1 = b3 + ε where ε > 0 is very close to
zero, and b̃2 is arbitrary but very large, and, in particular, larger than b̃1. We
now show that we can choose ε so small that no bidder has an incentive to
deviate and bid for a different position. We ignore the possibility of deviating
and bidding for position 1, because by choosing b̃2 sufficiently large we can
eliminate all incentives to bid for position 1.

We first consider the incentives of bidder 2. Bidder 2 wins position 1 at a
price that is ε larger than the price that he paid in the original equilibrium
for position 2. If bidder 2 were to deviate and bid for position 2, the change
in his payoff would be:

a2c
2(v2

2 − b3)− a2c
1(v1

2 − b3 − ε)
= a2

[
c2v2

2 − c1v1
2 + (c1 − c2)b3 + c1ε

]
We want to show that for sufficiently small but positive ε this expression is
negative. For this, it is obviously sufficient to show that c2v2

2−c1v1
2+(c1−c2)b3

is strictly negative. This term is linear in b3. Note that 0 ≤ b3 < v2
2. The

reason why b3 has to be strictly less than v2
2 is that otherwise bidder 2 would

make non-positive profits in the original equilibrium. Bidder 2 could then
deviate and make positive profits by bidding for the lowest position. It
thus suffices to show that the expression in question is strictly negative for
b3 = 0, and that it is non-positive for b3 = v2

2. The first claim follows from
Assumption 1, and the second claim follows if we substitute b3 = v2

2 to obtain
c1(v2

2 − v1
2) which is non-negative by Assumption 1. We infer that bidder 2
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has no incentive to bid for position 2. Bidder 2 does not have an incentive
to deviate and bid for an even lower position because such a deviation was
not profitable in the original equilibrium, and in the new equilibrium bidder
2 obtains a higher profit than in the original equilibrium.

We next consider the incentives of bidder 1. Bidder 1 obtains position 2
at the same price at which originally bidder 2 obtained position 2. We show
that bidder 1 does not have an incentive to bid for a lower position because in
the original equilibrium bidder 2 did not have an incentive to bid for a lower
position. Bidder 2 does not have an incentive to bid for a lower position if
and only if the following inequality is true for all k ≥ 3:

a2c
2(v2

2 − b3) ≥ a2c
k(vk2 − bk+1)⇔

c2v2
2 − ckvk2 ≥ c2b3 − ckbk+1

By Assumption 3 this implies:

c2v2
1 − ckvk1 ≥ c2b3 − ckbk+1 ⇔

a1c
2(v2

1 − b3) ≥ a1c
k(vk1 − bk+1)

which says that bidder 1 does not have an incentive to bid for position k.

Finally, we argue that bidders i = 3, 4, . . . , N have no incentive to bid for
a different position. Recall that we started with a symmetric equilibrium.
Thus, these bidders have no incentive to deviate in the original equilibrium
if thy assume that all positions are available to them at the prices which
the current winners of those positions pay. Because the price of none of
the positions 2, 3, . . . , K have changed, these bidders continue to have no
incentives to bid for any of those positions. As noted, an incentive to bid for
position 1 can be ruled out by making bidder 2’s bid b̃2 arbitrarily high.

Finally, observe that the equilibrium that we have described is not sym-
metric. If bidder 1 could obtain position 1 at the same price as bidder 2
obtains it, then for sufficiently small ε he would want to deviate.

For a further illustration of the multiplicity of Nash equilibria in our
model we now take a closer look at the case that N = K = 3. For this case
explicit calculations that we provide in the Appendix prove the following
result.6 Note that this result relies on none of the assumptions used earlier.

6Lahaie (2006, Lemma 3) provides a necessary condition for the existence of a Nash
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Proposition 4. Suppose K = N = 3. An equilibrium in which bidder i wins
position i for i = 1, 2, 3 exists if and only if either c23v

2
3 ≤ c33v

3
3 and

c11v
1
1 ≥ c31v

3
1

c22v
2
2 ≥ c32v

3
2

or, alternatively, c23v
2
3 > c33v

3
3 and in addition to the two conditions above also

the following two conditions hold:(
c11v

1
1 − c31v3

1

)
≥ c11
c23

(
c23v

2
3 − c33v3

3

)
(
c11v

1
1 − c21v2

1

)
+
c21
c22

(
c22v

2
2 − c32v3

2

)
≥ c11
c23

(
c23v

2
3 − c33v3

3

)
The conditions in Proposition 4 are very weak. The second to last in-

equality in Proposition 4, for example, requires that the marginal value to
bidder 1 of being in position 1 rather than position 3 (the left hand side
of the inequality) is at least as large as a variable that is proportional to
the marginal value to bidder 3 of being in position 2 rather than position 3,
where the proportionality factor is some ratio of click rates. The last inequal-
ity is a similarly weak inequality relating the marginal value that bidder 1
derives from being in position 1 rather than position 2, the marginal value
that bidder 2 derives from being in position 2 rather than position 3, and
the marginal value that bidder 3 would have if he were in position 2 rather
than position 3.

We now give an example in which Proposition 4 implies that every allo-
cation of positions to bidders can be an equilibrium allocation. We describe
corresponding bid vectors.

Example 1. There are 3 bidders and 3 positions. Click rates are bidder
independent: c1i = 3, c2i = 2, c3i = 1 for all bidders i = 1, 2, 3. The willingness
to bid per click is independent of a bidder’s position: vk1 = 16, vk2 = 15, vk3 =
14 for all positions k = 1, 2, 3. Whenever one bidder bids 11, another bids
9, and another bidder bids 7, then this will be a Nash equilibrium. Thus, all
allocations of positions to bidders are possible equilibrium allocations.

equilibrium that assigns position i to bidder i for all i = 1, 2, ...,K. He asserts that this
condition is also sufficient, but after publication of his paper he found this part of the claim
to be incorrect. We are grateful to Sebastién Lahaie for helpful discussions regarding his
result. Our Proposition 3 corrects Lahaie’s work for the special case that N = K = 3.
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5 Refinements of Nash Equilibrium

In this section we ask whether there are good reasons to expect only some of
the Nash equilibria described in the previous sections to be played and not
others. In other words, we ask whether there are plausible ways of refining
the set of Nash equilibria in the auction game that we are studying. Edelman
et. al. (2007) and Varian (forthcoming) focus on symmetric Nash equilibria.
We comment on these authors’ approaches towards the end of this section.
The purpose of this section is to examine the equilibrium selection issue from
a different angle than these authors.

The classic way of selecting among equilibria in second price auctions is
to rule out Nash equilibria in weakly dominated strategies. Weak dominance
arguments are powerful in our model only if the number of bidders is N = 2.
In that case each bidder knows that even a bid of zero guarantees at least
the second position. Bidders only bid for the marginal benefit of being in the
first rather than the second position. The auction is strategically equivalent
to a single unit, second price auction. It is well-known that the single unit
Vickrey auction has multiple Nash equilibria,7 but that the only strategy
that is not weakly dominated is to bid one’s true value. This observation
extends to our setting. Although the multiplicity of equilibria described in
the previous section also prevails in the case of N = 2, it is easily seen that
each bidder i has a weakly dominant strategy, namely to place the bid bi that
makes bidder i indifferent between obtaining the first position with bid bi,
and obtaining the second position for free. This bid thus solves the following
equation:

c1i (v
1
i − bi) = c2i v

2
i ⇔ (19)

bi = v1
i −

c2i
c1i
v2
i (20)

Unfortunately, the situation changes quite dramatically when N ≥ 3.
This is shown in the following result that provides a range of not weakly
dominated bids. Intuitively, the reason why in the case N ≥ 3 we obtain a
range of not weakly dominated bids rather than a single such bids is that
for N ≥ 3 the marginal gain of a bidder who raises his bid is no longer
clear unambiguously defined. Raising one’s bid may, in the best case, move a

7See, for example, Blume and Heidhues (2004) for the case of incomplete information.

18



bidder up from no listing to top position, but it may also, for example, move
a bidder up by only one position, from position k to k+1. The range of bids is
the range of marginal utilities derived from any such marginal improvement
in a bidder’s position, modified by a correction factor that takes into account
how positions affect click rates.

Proposition 5. Suppose N ≥ 3, and Assumption 1 holds. Consider any
bidder i. If N = K, a bid bi is not weakly dominated by any other bid b̂i if
and only if:

min{vki −
ck

′
i

cki
vk

′

i | k′ > k} ≤ bi ≤ v1
i

If N > K, a bid bi is not weakly dominated by any other bid b̂i if and only if:

min({vki −
ck

′
i

cki
vk

′

i | k′ > k} ∪ {vKi }) ≤ bi ≤ v1
i

Proof. We give the proof in the case N = K. The proof in the case N > K
is analogous. We first show that any bid outside the range described in
Proposition 5 is weakly dominated. First, obviously any bid bi > v1

i is weakly
dominated by bid v1

i . It remains to show that any bid below the boundary
described in Proposition 5 is weakly dominated. Let bi be any such bid, and
let b̂i > bi be another such bid that is also lower than the lower boundary
in Proposition 5. We shall show that b̂i weakly dominates bi. For some bid
vectors of the other bidders it will not make a difference whether bidder i
bids b̂i or whether he bids bi. Suppose it does make a difference, and that
bidder i, by bidding b̂i acquires position k whereas bidding bi yields position
k′ > k. We shall show that it is better to bid b̂i than bi. The worst case is
that bidding bi acquires position k′ at price 0, whereas bidding b̂i acquires
position k at price b̂i. We shall show that in even this case it is better to bid
b̂i rather than bi:

cki (v
k
i − b̂i) > ck

′

i v
k′

i ⇔ (21)

b̂i < vki −
ck

′
i

cki
vk

′

i (22)

This holds by construction.

We now show that no bid that satisfies the inequality in Proposition 5
is weakly dominated. Consider any bid bi ≤ vi, and consider any other bid
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b̂i 6= bi. We shall construct a vector of bids of the other bidders such that
bi achieves a higher payoff than b̂i. Suppose first b̂i < bi. Consider a vector
of bids of all other bidders such that no two bids are equal to each other,
the highest bid of the other bidders is b̂i + ε and the second highest of the
other bidders bid is b̂i − ε. Here, ε is a positive number. Suppose that it is
sufficiently small so that bidder i, if he bids bi, wins position 1 and has to
pay for it b̂i + ε, but if he bids b̂i he wins position 2 and has to pay b̂i − ε.
By Assumption 1 bidder 1 strictly prefers position 1 to position 2 if he has
to pay the same price for both positions. Therefore, for ε sufficiently close
to zero, he also prefers bidding bi to bidding b̂i.

Now consider the case that b̂i > bi. Assume that k, k′ are the indices for
which the minimum in Proposition 5 is attained. Let bi be a bid that is equal
or greater than this minimum. Let b̂i > bi be an alternative bid. Suppose
that N − k′ bidders bid 0. Suppose that k′ − k of the remaining bidders
bid b̂i − ε > bi, and that all other bidders bid above b̂i. Here, ε > 0. Then
bidding bi wins position k′ at price 0, whereas bidding b̂i wins position k at
price b̂i − ε. It is better to bid bi if:

ck
′

i v
k′

i > cki (v
k
i − b̂i − ε)⇔ (23)

b̂i − ε > vki −
ck

′
i

cki
vk

′

i (24)

By construction

b̂i > vki −
ck

′
i

cki
vk

′

i (25)

and hence for sufficiently small ε also (24) will be true.

Observe that Proposition 5 examines only weak dominance when the
dominating strategy is a pure strategy. In principle, it may be that more
strategies can be ruled out when mixed strategies are considered. We con-
jecture that this is not the case. A formal examination of this issue would
require us to specify bidders’ risk attitudes. We have not pursued this issue.

Proposition 5 indicates that there is little chance of obtaining a substan-
tial refinement of the set of Nash equilibria by appealing to weak dominance.
In Example 1 neither of the equilibria displayed is ruled out by weak dom-
inance, as the intervals of undominated bids are in that example [16

3
, 16],
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[15
3
, 15] and 14

3
, 14] for bidders 1, 2, and 3 respectively. One can also ver-

ify that the equilibria constructed in Edelman et. al. (2007) and Varian
(forthcoming) are not in weakly dominated strategies.

Edelman et. al. (2007) and Varian (forthcoming) in more special models
than ours select among all Nash equilibria the symmetric Nash equilibria.
Varian offers no game theoretic motivation for this. Edelman et. al. (2007,
p. 249) argue that the selection can be derived from the assumption that
bidders raise their bids to induce a higher payment for the next highest
bidder, but that they do so only up to the point b̄ at which they would not
regret having raised their bid if the next highest bidder were to lower his bid
slightly below b̄. Edelman et. al. refer to the selected equilibria as “locally
envy-free.” This construction appears ad hoc. It is not clear why the relevant
case for bidders to consider is the case that other bidders lower their bids
just below b̄.

Edelman et. al. (2007) offer two further justifications for their selection.
The first (their footnote 17) is that there is an analogy between symmetric
Nash equilibria and the requirement in single unit, second price auctions that
bidders bid at least their true value. We argue that in single unit, second
price auctions this requirement is not attractive per se, but only in as far as it
is implied by weak dominance. Our analysis shows that weak dominance does
not always select symmetric Nash equilibria. Edelman et. al. (2007, Section
IV) also introduce an ascending price auction with incomplete information,
and show that the unique perfect Bayesian equilibrium of this auction results
in rankings and payments identical to those in symmetric Nash equilibria of
the static, complete information model. They interpret the ascending price
auction as a description of the process by which bidders arrive at equilibrium.
One can conceive of other models of this process, and we prefer to remain
agnostic on this point. In any case, in this paper we interpret the data
without committing to any particular equilibrium selection.

6 Data

We have collected bid data for five search terms over a period from February
3rd 2004 to May 31, 2004. The search terms are Broadband, Flower, Loan,
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Outsourcing and Refinance.8 For each search term, the data describe the
current bid levels every 15 minutes9 yielding 96 bid observations per bidder
for every day.10 We include a bid observation (and time period) for bidder i
in the final data only when the bidder places a new bid or alters the bid level
of an existing bid. The data selection avoids a set of issue related to delays
in bidders’ response times.11

We augmented the bid data with weekly click-through data for 46 weeks
in 2004.12 Based on the click through data we calculate that the ratio ck−1

i /cki
equals about 1.5 for top positions on average across our search terms. We
use this number in the subsequent analysis. The assumption of a common
click through ratio is restrictive as it does not permit the possibility of bidder
heterogeneity in click through ratios. We make the assumption as our data
do not contain information on bidder specific click throughs. The empirical
findings have to be interpreted subject to this caveat.

The price paid reflects a lower bound on an advertiser’s willingness to pay
per click. The lower bound varies substantially across categories. The price
for the top Broadband position equals $2.05 on average. The average top
position price equals $2.44, $4.62, $2.54, $6.92 for the search terms Flower,
Loan, Outsourcing, and Refinance respectively.

There is substantial dispersion in bids over time suggesting that revealed
preference arguments may achieve tight bounds on advertisers’ willingness to
pay. The bid dispersion varies in magnitude across categories. The low stan-
dard deviation occurs for Outsourcing with a standard deviation of the top

8Initially, search words were chosen at random by using an english dictionary, and we
collected one sample of bid prices for each search word. We then selected the search words
that achieve high bid prices. The motivation for our selection was that bidders may be
more likely to behave optimally when more money is at stake.

9The data were collected using the publicly accessible bidtool on the webpage
http://uv.bidtool.overture.com/d/search/tools/bidtool. The data retrieval time
interval ranges between 10 and 20 minutes.

10Bidders revise their bids frequently and the 15 minute sampling frequency was chosen
to capture bid changes accurately. On average across search terms a new bid is chosen, or
an existing bid is revised every 43 minutes across search terms, yielding an average of 63
changes per day. There is variation across search terms with the average number of bid
revisions ranging from five per day for Outsourcing to 63 per day for Flower.

11In particular, the data selection avoids the concern that an initially payoff maximizing
bid may no longer be an optimal bid choice when an opponent’s bid level changes.

12The data were kindly provided to us by Yahoo.
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position price equalling 0.27. On the other extreme is the category Broad-
band with a standard deviation of 0.81. The empirical distribution reveals
that ninety percent of high Outsourcing position price observations fall into
the interval $2.00 to $3.00. Ninety percent of Broadband price observations
fall into the interval $1.32 to $3.25.

The price difference between two adjacent positions is 20 cents on average
across search terms for top ten positions. The price difference between two
adjacent positions varies across search terms and ranges from 14 cents for
Outsourcing to 31 cents for Refinance.

In the data we see that some bidders are regular bidders for premium
positions while other bidders achieve a premium position on occasions only,
or vanish after a short time. These two types of bidders may exhibit distinct
valuation processes and we wish to distinguish them in the subsequent anal-
ysis. To illustrate the difference we determine the average position in the
bid ranking during our sample period. There are 167 bidders with average
ranking of one to ten and there are 1,227 bidders with average ranking of ten
or higher. The bidders with average ranking of one to ten win 85 percent
of the top five positions. We focus on the regular bidders in the subsequent
analysis.

7 Revealed Preferences

This section explores a non-parametric revealed-preference approach to infer
bounds on advertisers’ willingness to pay. We assume that the submitted bid
maximizes the bidder’s payoff. We use the bid data in conjunction with the
optimality condition to deduce bounds on the willingness to pay. We illus-
trate when the bounds imply a non-empty set of valuations and examine the
non-emptiness hypothesis empirically. We discuss the shape of the valuation
profiles consistent with the bounds. Section 7.1 illustrates when a set of bid
observations yields a non-empty set of valuations. Section 7.2 describes our
empirical test results.

7.1 Test of the Revealed Preference Hypothesis

It is instructive to distinguish two types of bid submissions depending on
whether the submitted bid wins an item or not. First, suppose the chosen bid
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of bidder i does not win a position which we call a type one bid submission.
If we denote by bφ(k) the k − th highest bid, then, it must be that the bid
prices exceed the valuation of the position:

vki ≤ bφ(k) for all k ≤ K (26)

Thus, we obtain an upper bound on the valuation vector.

Second, suppose the bid by bidder i wins position k ≤ K. We call this a
type two submission. Optimality of the bid choice implies the following three
inequalities:

−vki ≤ −bφ(k+1) (27)

vk
′

i ≤
cki
ck

′
i

vki +

[
bφ(k′) −

cki
ck

′
i

bφ(k+1)

]
for k′ < k (28)

vk
′

i ≤
cki
ck

′
i

vki +

[
bφ(k′+1) −

cki
ck

′
i

bφ(k+1)

]
for K ≥ k′ > k (29)

The first inequality says that the valuation of position k is at least as large
as the winning price which places a lower bound on the valuation vki . The
second and third inequalities say that the valuation for a position that is not

won, vk
′
i with k′ 6= k, is bounded from above by a line with slope

cki
ck

′
i

and

an intercept equal to bφ(k′) − cki
ck

′
i

bφ(k+1) for k′ < k and an intercept equal to

bφ(k′+1) − cki
ck

′
i

bφ(k+1) for k′ > k, respectively.

We can write the above inequalities compactly in matrix notation as

Atvi ≤ αt (30)

where vi =
(
v1
i , v

2
i , . . . , v

K
i

)
is a K × 1 dimensional valuation vector; At

is a K × K dimensional matrix and αt is a K × 1 dimensional vector.
In type one submissions At equals the identity matrix and αt is equal to(
bφ(1), bφ(2), . . . , b(K)

)
. In type two submissions, when position k is won, At

is equal to a matrix with entry k, k equal to -1, entry (k, k′) equal to 0,
entry (k′, k′) for k′ 6= k equal to 1, entry (k′, k) equal to −

(
cki /c

k′
i

)
and all

other entries equal to zero;13 and vector αt has entry k equal to −bφ(k+1),

13Here, k′ 6= k.
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entries k′ where k′ < k equal to bφ(k′) − cki
ck

′
i

bφ(k+1), and entries k′ > k equal

to bφ(k′+1) − cki
ck

′
i

bφ(k+1).

Given a set of observations T , we denote the set of valuations that satisfy
restriction (30) as VT

i ,

VT
i =

{
vi ∈ <K+ |Atvi ≤ αt for all t ∈ T

}
Revealed preference predicts that the set VT

i is non-empty. The revealed
preference hypothesis can be tested empirically. Observe though that the
computational complexity of the empirical test can be high even for moder-
ately sized K due to the curse of dimensionality.

Figure 1 illustrates the set VT
i graphically in the case of two positions,

K = 2.14 The dark shaded area with boundary points a1, a2, a3, a4, a5,
and a6 is consistent with three hypothetical bid vectors b1, b2, b3 where the
superscript in the bid vector indicates that bidder i wins item 1, item 2, or
no item, respectively. Item 1 is won in the area south-east of the solid line
segments b1φ(2), a5 and a7.

15 Item 2 is won in the area north-west of the dashed

line segments b2φ(3), a3 and a8.
16 No position is won in the area south-west of

the dotted line-segments going through the points b3φ(3), a1, and b3φ(1).

Figure 1 can be easily extended to an arbitrary set of bids. To see that,
partition the set of observations T into three sets T 1, T 2, T 3, so that T 1, T 2

denote the sets of bids in which position 1, 2 is won and T 3 denotes the set of
bids in which no position is won. The dotted line is defined by the minimum
bids for positions 1 and 2, b3φ(2) = mint∈T 3(btφ(2)), and b3φ(1) = mint∈T 3(btφ(1)),

the dashed line segments are defined by b2φ(3) = maxt∈T 2(btφ(3)) and a10 =

mint∈T 2(btφ(1)−(c2i /c
1
i )b

t
φ(3)), and the solid line segments are defined by b1φ(1) =

maxt∈T 1(btφ(2)) and a9 = maxt∈T 1(btφ(2) − (c2i /c
1
i )b

t
φ(3)). Hence, the bid vectors

b1, b2, b3 in Figure 1 denote the corresponding minima and maxima. If some
set T i is empty, then the corresponding boundary will not bind and the

14In Figure 1, we write “b12” for b1φ(2) etc.
15The line going through the points a5 and a7 has slope c1i /c

2
i and intercept b1φ(3) −(

c1i /c
2
i

)
b1φ(2).

16Here the line going through the points a3 and a8 has slope c1i /c
2
i and intercept b2φ(3)−(

c1i /c
2
i

)
b2φ(1).
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shaded area in the figure will be enlarged.17

With multiple positions, K > 2, the set VT
i is contained in <K . The

boundary of the set VT
i along dimension (vki , v

k′
i ) shares the features as in

Figure 1 for any pair (vki , v
k′
i ).

Next, we state that a pairwise non-empty boundary is a necessary con-
dition for the revealed preference hypothesis. We denote the set of bid ob-
servations in which the submitted bid wins position k by T k ⊂ <N , and the
set of bid observations in which the submitted bid does not win an position
by TK+1 ⊂ <N . We adopt the convention that the maximum and minimum
over an empty set equals −∞ and +∞, respectively.

Condition 1 (Non-empty Pairwise Boundaries). Given a set of observations
T , a necessary condition for the valuation range VT

i to be non-empty is that

max
t∈Tk

(
btφ(k+1)

)
≤ min

t∈TK+1
(btφ(k)) for all k ≤ K;

max
t∈Tk

(
btφ(k+1) −

ck
′
i

cki
btφ(k′+1)

)
≤ min

t∈Tk′

(
btφ(k) −

ck
′
i

cki
btφ(k′+1)

)
for all k, k′ ≤ K with k < k′.

The non-empty pairwise boundary condition is a necessary condition for
a non-emptiness of the set VT

I . The first necessary condition states that the
position price paid during some period cannot exceed the price of the same
position during another period when the bidder doesn’t win a position. The
second necessary condition says that when position k is won the valuation
difference, vki −

(
ck

′
i /c

k
i

)
vk

′
i , is bounded from below by the price differences

btφ(k+1) −
(
ck

′
i /c

k
i

)
btφ(k′+1), and, when position k′ is won it is bounded from

above by the price differences btφ(k) −
(
ck

′
i /c

k
i

)
btφ(k′+1), respectively. Observe

that condition 1 is not a sufficient condition as two two-dimensional areas
that share one dimension need not overlap in the common dimension.

17If T 1 is empty, then the left boundary of the shaded area will equal the vertical
line

(
0, v2

i

)
as by assumption v1

i > 0. If T 2 is empty, then the bottom boundary of the
shaded area will equal the horizontal line

(
v1
i , 0
)
. If T 3 is empty, then the shaded area is

unbounded to the north-east.
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Examining empirically whether the set VT
i ⊂ <K is non-empty can be

computationally complex for moderately sized K. Yet, the necessary pair-
wise boundary condition can be examined at relatively small computational
costs for all K. For computational reasons we proceed with a two step test
approach of the revealed preference hypothesis: In the first step, we examine
whether there is a violation of the necessary pairwise boundary condition.
In the second step, we examine whether there is a non-empty set for those
observations with a non-empty pairwise boundary.

A violation of the revealed preference hypothesis may be indicative of
behavior inconsistent with rationality. Alternatively, it may suggest taste
changes across subsets of the observations. For instance, preferences may be
different during day-time than during night-time. The revealed preference
hypothesis may be satisfied during day-time periods and during night-time
periods, but not for both periods jointly.

7.2 Revealed Preference Test Results

This section examines the revealed preference hypothesis for our data. We
also comment on the shape of the valuation profile for observations that
satisfy the revealed preference hypothesis.

The non-empty pairwise boundary hypothesis is examined for a subset of
our data consisting of bidders that submit a bid for a top five position on
average.18 In total there are 71 such bidders. We find no violation of the
non-empty pairwise boundary condition for 21 of 71 bidders, or 30 percent.
Violations arise for bidders submitting numerous bids. On average, a bidder
with a violation submits 154 bids. In contrast, a bidder without a violation
submits about 3 bids.

A violation may be attributable to a discrete change in an observable
characteristic, such as a change from day-time to night-time. Alternatively,
a violation may be attributable to a gradual change in observable charac-
teristics, for instance when there is a time trend. Violations may also arise,

18An examination of all bidders shows that a violation of the non-empty boundary con-
dition occurs for 14 percent of bidders only. The low violation rate may appear surprising
initially. However, the bidders without a violation win position 70 or higher on average.
For these bidders, the upper valuation bound is binding most of the time, and there are
hardly any observations that provide a lower bound on the valuation range.

28



if bidders are inexperienced and make periodic mistakes in assessing their
willingness to pay or in submitting erroneous bids.

To examine whether violations arise suddenly or gradually, we select all
bidders with a violation for the entire sample period. We determine the
(maximal) length of sub-periods on which the non-empty boundary hypoth-
esis holds. The algorithm is simple. For each bidder, we start with the first
observation and then add on additional consecutive observations as long as
no violation of the non-empty boundary hypothesis occurs. When a viola-
tion arises, we start a new set of observations. The algorithm partitions the
set of observations into consecutive sub-period Ti1, . . . , Titi with the property
that the non-empty boundary hypothesis is satisfied on each sub-period. No-
tice that period Ti1 starts when bidder i places the first bid, or revises the
existing bid, which can be well inside the sample period. Indeed, an examina-
tion of the length of the bidding activity period reveals that it is on average
substantially shorter than the length of the entire sample period.

The length of the sub-periods without a violation amounts to 1.34 days
on average. During the 1.34 days the bidder submits a total of 4.7 bids on
average. The frequent violations suggest that valuations may vary over time,
or that bidders may make mistakes periodically. In the next section, we will
explore these interpretations further.

Next, we describe our test results of the revealed preference hypothe-
sis. We examine whether the hypothesis holds for observations without a
violation of the non-empty pairwise boundary condition.

The non-empty VT
i hypothesis. In total we include 1618 observations.

These include all observations of bidders with a non-empty pairwise bound-
ary during the entire period and all observations with a non-empty pairwise
boundary for sub-periods. To limit the computational complexity of the
exercise, we examine the non-emptiness hypothesis for a five dimensional
valuation profile consisting of the top five valuations (v1

i , v
2
i , . . . , v

5
i ). We do

not examine the restrictions placed by the hypothesis for higher position
valuations, (v6

i , v
7
i , . . . , v

10
i ). For each test candidate, we take one million in-

dependently and identically distributed multi-variate random draws from a
uniform distribution.19

19The support of the uniform distribution is defined by the position price when no item
is won, and the price paid when the item is won. Specifically, we take as the upper bound
for valuation vki the low bid observation that does not win a top ten position, mint∈T 11 bt(i),

29



The results are the following: For 50 percent of observations the set VT
i

is non-empty. We can conclude that for about half the observations the
revealed preference hypothesis is satisfied.

Next, we explore the shape of the valuation profiles that are consistent
with revealed preference.

Shape of the Valuation Profile. We consider two alternative hypothesis:
(i) constant valuations, v1

i = v2
i = . . . = v5

i ; and (ii) monotone decreasing
valuations, v1

i > v2
i > . . . > v5

i . The data include all observations that pass
the revealed preference test.

The hypothesis of a constant valuation profile is tested in the following
way. We fix a grid with 0.5 cent increment and determine whether there
exists a constant valuation profile ṽi ∈ {0.005, 0.01, . . . , 15} such that ṽi ∈
VT

i . The hypothesis of monotone decreasing valuations is tested by using
a sample of randomly drawn monotone valuation profiles. We select one
hundred thousand draws from a multi-variate uniform distribution and we
check whether ṽi ∈ VT

i .

We find that 16 percent of observations pass the constant valuation test.
We interpret the test result as a rejection of the null hypothesis of con-
stant valuations. We find that 98 percent of observations pass the monotone
decreasing valuation test. We cannot reject the monotonicity of valuation
profiles.

To examine whether the decrease amounts to at least five percent for all
consecutive pairs of valuations we consider the hypothesis that vki > 1.05·vk+1

i

for k = 1, ..., 4. We cannot reject the null hypothesis of a five percent decline
for all consecutive pairs for 97 percent of observations.

The test results indicate that the willingness to pay decreases with the
position. We conclude this section with a caveat of the revealed preference
approach as the chosen data partition may influence the interpretation of
the test results. For example, it may be of interest to partition the data into
day-time and night-time observations, and to examine whether the revealed
preference hypothesis holds for the respective sub-samples. Yet, it is difficult
to determine whether the newly created partition improves the fit simply

and we take as the lower bound the price paid when position k is won, maxt∈Tk btφ(k+1).
When the upper bound does not exist, we replace it with 15. When the lower bound does
not exist, we set it to 0.
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due to the increased fineness of the partition, or indeed reflects a structural
break.

To avoid this conceptual difficulty, we consider a statistical approach
in the next section. We assume that valuations consist of a (parametric)
deterministic component plus a random error. We find the set of covariates
that best describes the bidders valuations in the sense that the probability
of being close to the deterministic component is maximized.

8 Willingness to Pay Estimates

This section describes willingness to pay estimates. We assume that valu-
ations consist of a parametric component plus an error. The error can be
interpreted as optimization error, as in McKelvey and Palfrey (1995), or may
reflect random components in valuations which are known to bidders but not
observed by the econometrician. Maximum likelihood is used to estimate the
parameters of the parametric component.

The valuation vector is given by,

vi = Xt
iαi + εi (31)

where Xt
i is a deterministic set of covariates, αi is a parameter vector, and εi

is a K × 1 dimensional vector of standard normally distributed errors, with
εki ∼ Φ. We sometimes use the notation Xk,t

i αi to denote the deterministic
component of valuation k.

We can combine the parametric assumption with the bounds on the val-
uations described in Section 7 to obtain a set of inequalities for any bid
observation bt. For a type one submissions, when the bid does not win a top
position and t ∈ TK+1, the inequality is,

Xk,t
i αi + εki ≤ btφ(k) for all k ≤ K for k ≤ K. (32)

For type two submissions, when the submitted bid wins position k ≤ K and
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t ∈ T k, the inequalities are

Xk,t
i αi + εki ≥ btφ(k+1) (33)

Xk′,t
i αi + εk

′

i ≤
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′) −
cki
ck

′
i

btφ(k+1)

for k′ < k (34)

Xk,t
i αi + εk

′

i ≤
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′+1) −
cki
ck

′
i

btφ(k+1)

for K ≥ k′ > k (35)

The standard normal assumptions on the error ε allows us to derive the
likelihood. The log-likelihood is given by

` =
∑

t∈TK+1

K∑
k=1

ln
(

Φ
(
btφ(k) −Xk,t

i αi

))
+

K∑
k=1

∑
t∈Tk

ln

(∫ ∞
bt
φ(k+1)

−Xk,t
i αi

[∏
k′<k

Φ
(
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′) −
cki
ck

′
i

btφ(k+1) −Xk′,t
i αi

)

·
∏
k′>k

Φ
(
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′+1) −
cki
ck

′
i

btφ(k+1) −Xk,t
i αi

)
φ(εki )dε

k
i

])
(36)

where the first line describes the contribution to the likelihood of type one
bid submissions, and lines two and three describe the likelihood contribution
of type two bid submissions.

Table 1 reports estimates for a linear valuation model where we postulate:
vki = α0

i + (α1 · α0
i ) · k+ εkti . The coefficients α0

i measure bidder fixed effects.
The coefficient α1 enters the multiplicative term (α1 · α0

i ) and measures the
valuation decrease relative to the bidder specific intercept α0

i . The top posi-
tion has index k equal to one. The specification is chosen so that for α1 ≤ 0
the estimates satisfy assumption 1 and by Proposition 1 are consistent with
equilibrium bidding. The data include the top three premium bidders who
submit at least ten bids and who occupy a top ten position for more than two
weeks during the sample period. Estimates are reported for all five search
terms.

Table 1 shows that the high Broadband valuation equals $5.56 and the
high valuation ranges between $3.44 and $7.75 for other search terms. We
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Table 1: Maximum Likelihood Estimates
Keyword Broad- Flower Loan Out- Re-

band sourcing finance
Obs 301 1,141 512 324 735
Log-Lik -197.4 -1,509.9 -789.8 -451.8 -1,032.2

α1 -0.237 -0.050 -0.086 -0.080 -0.021
(0.01) (0.01) (0.00) (0.01) (0.00)

α0
1 5.559 4.063 4.621 3.429 7.748

(0.23) (0.08) (0.12) (0.11) (0.07)
α0

2 5.270 3.574 5.001 2.554 6.164
(0.31) (0.11) (0.10) (0.15) (0.155)

α0
3 2.477 3.424 4.974 2.631 7.235

(0.29) (0.09) (0.11 (0.25) (0.11)

can test whether values per click depend on the position in which their ad-
vertisement is placed. The null hypothesis of constant valuations, α1 = 0, is
rejected for all search terms at the 99% confidence interval. The slope coef-
ficients α1 in Table 1 are all negative in accordance with assumption 1 and
sharply estimated. Valuations decrease as the position increases. The av-
erage Broadband valuation decreases by 24 percent as the position increases
by one. For other search terms the decrease ranges between two percent for
Refinance and nine percent for Loan. The two percent decrease for Refinance
appears a small number but translates into 15 cents between adjacent posi-
tion which is considerable. We can conclude that valuations decrease in the
position.

Table 2 reports estimates for a linear valuation specification in which
bidder heterogeneity is accounted for in the intercept and also in the slope
coefficient. The postulated valuation model is: vki = α0

i +α1
i ·k+εkti .To ensure

that the slope coefficient α1
i is non-positive in accordance with assumption 1

we specify α1
i = −

(
(α2

i )
2
) 1

2
and maximize the likelihood with the parameter

tuple (α0
i , α

2
i )

3
i=1. From Proposition 1 we can deduce that the specification is

consistent with equilibrium bidding.

The slope coefficients in Table 2 are less precisely estimated than in Ta-
ble 1 as some bidders submit most of their bids for a specific position. This
makes it more difficult to estimate both an intercept and slope coefficient.
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Table 2: Maximum Likelihood Estimates
Keyword Broad- Flower Loan Out- Re-

band sourcing finance
Obs 301 1,141 512 324 735
Log-Lik -191.8 -1,507.9 -736.6 -439.7 -991.8

α0
1 5.554 4.050 5.067 3.496 7.919

(0.23) (0.08) (0.16) (0.11) (0.07)
α0

2 5.763 3.643 4.690 2.257 5.491
(0.40) (0.11) (0.11) (0.18) (0.28)

α0
3 2.288 3.390 5.270 3.016 7.019

(0.28) (0.10 (0.13) (0.31) (0.15)
α1

1 -1.304 -0.154 -0.606 -0.341 -0.281
(0.13) (0.05) (0.06) (0.05) (0.03)

α1
2 -1.728 -0.271 -0.270 0.000 -0.039

(0.27) (0.06) (0.03) (0.06) (0.05)
α1

3 -0.340 -0.132 -0.562 -0.406 0.000
(0.11) (0.05) (0.04) (0.11) (0.07)

In the table all but two slope coefficients are negative and all but two are
significant at the 99 percent level. Two slope coefficients are zero which is
consistent with the interpretation that these two bidders have constant val-
uations. Table 2 also suggests that bidders with an average higher rank may
have on occasions a lower valuation than bidders with a lower average rank
indicating the possibility of inefficiencies. We will examine this hypothesis
more closely in the next section.

Tables 3 examines the dependence of valuations on the percentage of time
a bidder held a top three position in the past seven days. The postulated
valuation model is: vki = α0

i +(α1 · α0
i ) ·k+α2 ·Top3ti+εkti where Top3ti is the

percentage of time bidder i held a top three listing position during the seven
days preceding day t and α0

i controls for bidder heterogeneity as in Table
1. The variable Top3ti is not defined for the first seven days of the sample
period and we exclude all bid observations during that period. The number
of bid observations in Table 3 is thus smaller than in Table 1. The Top3ti
variable allows us to test the presence of dynamic elements in valuations.
For instance, if bidders are financially constrained, then we will expect that
the value of an additional customer is reduced if the bidder had held many
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Table 3: Maximum Likelihood Estimates
Keyword Broad- Flower Loan Out- Re-

band sourcing finance
Obs 295 1,134 505 306 623
Log-Lik -190.7 -1,486.7 -772.4 -426.1 -877.7

α1 -0.237 -0.048 -0.086 -0.076 -0.028
(0.01) (0.01) (0.00) (0.01) (0.003)

α0
1 7.483 5.203 4.170 2.984 7.956

(1.23) (0.25) (0.35) (0.35) (0.18)
α0

2 6.727 4.534 4.693 2.327 6.560
(0.95) (0.23) (0.27) (0.22) (0.20)

α0
3 3.956 4.118 4.748 2.547 7.353

(1.05) (0.17) (0.20) (0.36) (0.14)
α2 -0.020 -0.015 0.005 0.005 -0.001

(0.012) (0.003) (0.004) (0.004) (0.002)

top listing positions in the past resulting in a negative α2 coefficient. We
examine the validity of the static valuation model by testing the null of a
zero α2 coefficient.

In the table three α2 coefficients are negative and two are positive. Four
of five α2 estimates are not significant. We cannot reject the null of a static
model for four search terms which are Broadband, Loan, Outsourcing, and
Refinance. For the search term Flower, the static null is rejected. But even
for Flower the magnitude of the dynamic effect is not overwhelming. Note
also that for all search terms the slope coefficient estimate α1 remains similar
to the estimate in Table 1 suggesting that the slope coefficient is robust to
the inclusion of the intertemporal variable. On the other hand the intercept
coefficients in Table 3 are less precisely estimated than in Table 1. The inclu-
sion of the additional variable may capture some bidder heterogeneity which
may explain the increased variance. We can conclude that the percentage of
time a bidder held a top three position in the past seven days does not have
an overwhelming effect on valuations. We cannot reject the static valuation
model.

A bidder’s rent estimate equals the difference between the predicted will-
ingness to pay and the price paid. Our estimates in Table 1 imply an es-
timated rent per click equal to 55 cents for top three bidders across search

35



terms. The estimated bidder’s rent per click equals $1.52, $1.05, $-0.57,
$0.28, $0.47 for the search term Broadband, Flower, Loan, Outsourcing, and
Refinance, respectively.

9 Revenue and Efficiency Losses

The willingness to pay estimates allow us to illustrate possible efficiency and
revenue gains of alternative auction rules. The measures are defined in the
following way. We examine the occasions in our data in which two or more of
the top-three-premium bidders win a position. We interchange the relative
positions of the top-three-premium bidders in order to maximize the total
surplus. Our measure of efficiency loss is defined as the incremental surplus
that can be achieved by making this interchange. We hold the bids and
position positions of all other bidders fixed in the exercise and the estimates
will provide us with a lower bound on possible revenue and efficiency gains,
as there could be additional revenue and efficiency gains among non-top-
three-premium bidders. The efficiency measure is reported relative to the
observed revenue which is the price paid weighted with the click through
rate. For Broadband inefficiencies equal 0.6 percent of observed revenues.
The inefficiency equals 0.4, 0.6, 06, 1.7 percent of observed revenues for the
search term Flower, Loan, Outsourcing, and Refinance, respectively.

Our measure of revenue losses is based on the maximal surplus that can be
extracted from premium bidders based on our willingness to pay estimates.
For Broadband, our estimates imply that a full rent extracting auction would
improve revenues by as much as 49 percent. For other search terms the
possible revenue improvements are smaller. The revenue improvement equals
5, 7, 7 and 32 percent for the search term Flower, Loan, Outsourcing, and
Refinance, respectively.

10 Conclusion

We have presented a game theoretic analysis of the Yahoo sponsored search
auction, and we have interpreted bidding data assuming that this theory is
a correct model of bidders’ behavior. Our analysis suggests that it might be
interesting to consider a dynamic model of bidding behavior in the auction
in which bidders pursue repeated game strategies. Another missing element
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in our model might be bidders’ budget constraints. It seems common that
bidders in sponsored search auctions have to respect budget constraints. The
rich data that high frequency sponsored search auctions provide allows the
examination of a variety of further issues.
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Appendix: Proof of Proposition 4

Observe that we can choose b1 arbitrarily high and thus ensure that no bid-
der has an incentive to bid for position 1. Therefore, we can find a Nash
equilibrium of the required type if and only if we can find non-negative bids
b2 and b3 such that four incentive constraints hold. Firstly, bidder 1 does not
want to bid for position 2:

c11(v
1
1 − b2) ≥ c21(v

2
1 − b3)⇔

b2 −
c21
c11
b3 ≤ v1

1 −
c21
c11
v2

1 (37)

Secondly, bidder 1 does not want to bid for position 3:

c11(v
1
1 − b2) ≥ c31v

3
1 ⇔

b2 ≤ v1
1 −

c31
c11
v3

1 (38)

Next, bidder 2 does not want to bid for position 3:

c22(v
2
2 − b3) ≥ c32v

3
2 ⇔

b3 ≤ v2
2 −

c32
c22
v3

2 (39)

Finally, bidder 3 does not want to bid for position 2:

c33v
3
3 ≥ c23(v

2
3 − b2)⇔

b2 ≥ v2
3 −

c33
c23
v3

3 (40)

We now distinguish two cases. The first case is that the lower bound in
(40) is not-positive.

v2
3 −

c33
c23
v3

3 ≤ 0⇔

c23v
2
3 ≤ c33v

3
3 (41)

In this case, a necessary and sufficient condition for the existence of a non-
negative solution to (37)-(39) is that the right hand sides of (38) and (39)
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are non-negative. The necessity is obvious. To see sufficiency note that
b2 = b3 = 0 will solve (37)-(39) in this case. The upper boundary in (38) is
non-negative if:

v1
1 −

c31
c11
v3

1 ≥ 0⇔

c11v
1
1 ≥ c31v

3
1 (42)

The upper boundary in (39) is non-negative if:

v2
2 −

c32
c22
v3

2 ≥ 0⇔

c22v
2
2 ≥ c32v

3
2 (43)

Inequalities (42) and (43) are the first two conditions in Proposition 4.

Now suppose that the lower bound in (40) is positive.

c23v
2
3 > c33v

3
3 (44)

Obviously, (42) and (43) remain necessary. But we also need that the upper
boundary in (38) is not less than the lower boundary in (40):

v1
1 −

c31
c11
v3

1 ≥ v2
3 −

c33
c23
v3

3 ⇔

c11v
1
1 − c31v3

1 ≥
c11
c23

(c23v
2
3 − c33v3

3) (45)

If (42), (43) and (45) hold, then the difference on the left hand side of
(37) is minimized when b2 is at the lower bound given by (40), and b3 is at
the upper bound given by (39). Thus, a necessary and sufficient condition
for the existence of a non-negative solution is that for these choices of b2 and
b3 inequality (37) holds:

v2
3 −

c33
c23
v3

3 −
c21
c11

(
v2

2 −
c32
c22
v3

2

)
≤ v1

1 −
c21
c11
v2

1 ⇔

(c11v
1
1 − c21v2

1) +
c21
c22

(c22v
2
2 − c32v3

2) ≥ c11
c23

(c23v
2
3 − c33v3

3) (46)

Inequalities (45) and (46) are the second pair of conditions in Proposition 4.
2
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