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Unique equilibrium in a dynamic model of crises with frictions
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Abstract

This paper studies a dynamic model of crises with timing frictions that combines the main

aspects of Morris and Shin (1998) and Frankel and Pauzner (2000). The usual arguments for

existence and uniqueness of equilibrium cannot be applied. It is shown that the model has a

unique equilibrium within the class of threshold equilibria.
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Jel Classification: F3, D8

1 Introduction

In a currency crisis situation, the optimal strategy for an agent may depend on expecta-
tions: if everybody is expected to attack the currency, it is optimal to attack it, but if
everybody is expected to refrain from doing so, that is the optimal choice. In a complete
information setup, such models present multiple (Nash) equilibria. Building on Carlsson
and Van Damme (1993), Morris and Shin (1998, MS hereafter) showed that a unique equi-
librium arises in a model of self-fulfilling currency crises if agents observe the economic
fundamentals with some private noise.

Tackling different economic problems, Frankel and Pauzner (2000, FP hereafter) and
Burdzy, Frankel and Pauzner (2001) presented a dynamic model with strategic comple-
mentarities and timing frictions that has a unique equilibrium if fundamentals follow a
Brownian motion. Strategic complementarities are usually thought of as the cause of mul-
tiple equilibria, but they are crucial for the uniqueness arguments in both FP and MS.

The model in this paper is essentially a dynamic version of MS with timing frictions in-
stead of incomplete information. It can also be seen as a model of crisis using the framework
developed by FP. Interestingly however, by simply combining the currency crisis model of
MS and the dynamic framework developed by FP, we lose the property of strategic comple-
mentarities among agents’ choices that is key for their results. Why is that? In a dynamic
framework, the agents’ actions influence not only the occurrence of a crisis but also the
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size of the damage. In MS, the size of a devaluation is the realization of a random variable
and, thus, exogenous. Here, the stochastic process for the fundamentals is exogenous, the
agents’ actions depend on the level of fundamentals (as in MS) which makes the expected
magnitude of a devaluation an endogenous variable (differently from MS). Thus if agents
are more willing to hold the currency, fundamentals need to be worse to cause a crisis (as
in MS), which reduces the probability of a crisis (as in MS) but increases the expected
magnitude of the devaluation — which does not happen in the static model of MS. In some
cases, the effect in the magnitude dominates the effect in the probability: it is possible to
construct examples in which an agent would choose to attack the currency if all others were
not doing so but would not attack if all other agents were expected to attack.

Therefore, the argument of FP cannot be employed in the context of this model. This
paper provides a new argument to show the existence and uniqueness of an equilibrium in
this model within the class of threshold equilibria.1

Since Krugman (1979) and Flood and Garber (1984), considerable attention has been
devoted to the study of the dynamics of currency crisis. Some recent work (e.g., Broner
(2001), Chamley (2003) and Dasgupta (2003)) incorporates incomplete information and
learning in dynamic models of crisis. In a related work, Abreu and Brunnermeier (2003)
shows how slow diffusion of information can lead to bubbles and crashes. The model in this
paper does not aim at explaining what generates the frictions in the asset markets (they are
there by assumption) but it provides an interesting framework for the study of problems in
which coordination, dynamics and timing frictions are important. Variations of this model
could be applied to several economic problems, like bank runs, currency and financial crises
and riots.

A companion paper, Guimarães (2005), studies a variation of the model of Flood and
Garber (1984) — with Poisson frictions — that is a particular case of the model in this
paper. Guimarães (2005) aims at analyzing the impacts of asset market frictions in a
standard first generation model of currency crises. It mentions the existence and uniqueness
result, proved and explained here, and presents a brief discussion of the lack of strategic
complementarities and the resulting technical issues covered in detail in the paper.

Section 2 sets out the model. Section 3 discusses some properties of the model and its
relation with FP. Section 4 shows the existence and uniqueness of a threshold equilibrium.

2 The Model

A continuum of agents, with mass equal to 1, chooses either to go long or not in 1 unit of a
currency — hereafter, we will denote agents’ possible choices by Long and Not, respectively.
The state of the economy is characterized by two state variables: (i) θ represents the

1This result is weaker than the obtained by FP and MS (they prove uniqueness of a rationalizable equilibrium)

but still interesting and useful, as the assumption of Markov Perfection is very common in the applied literature.
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fundamental imbalances and follows a Brownian motion (dθ = µθdt + σθdX); (ii) A is the
fraction of agents currently long in the currency. There is a flow benefit of holding the
currency, denoted by r, constant and exogenous. This benefit can be interpreted as the
interest rate differential earned by choosing Long.2

Pressure for devaluation is higher when θ is higher (fundamentals are worse) and when
A is lower (fewer people hold the currency). There exists an increasing function of A — θ̃ :
[0, 1] → [0, b], θ̃(0) = 0, θ̃′ > 0 — such that a devaluation occurs when the curve θ̃ is reached
(see figure 1). A similar assumption is made by Morris and Shin (1998).3 The function
θ̃ also corresponds to the zero-reserves curve of the first generation models of currency
crises (e.g., Krugman (1979) and Flood and Garber (1984)) — the government is forced
to abandon the pegged exchange rate regime when such bound is reached.4 Analogously,
Abreu and Brunnermeier (2003) assume that the bubble bursts when enough agents refrain
from going long in the asset.

The function θ̃, as well as the current values of A and θ, are common knowledge. Once a
devaluation occurs, the balances of the agents long in the currency are multiplied by D(θ)
and the game ends. It is assumed that D(0) = 1 and D′(θ) < 0 (if, θ = 0 there is no
devaluation and worse fundamentals imply a higher devaluation).

-
0 θ

A = 0

A = 1

θ̃(A)

Figure 1: Threshold for occurrence of devaluation (θ̃(A))

Each agent gets the opportunity to change position according to an independent Poisson
process with arrival rate δ, assumed to be greater than r. Thus: (i) an attack does not

2Under the assumption of risk neutrality, nothing substantial changes in the model if we allow agents to hold

fractional units of the currency, as their optimal decision will always be in a corner, given the payoff structure. Also,

if agents were choosing between going short or not, the analysis would be taken in the same way — A would be the

fraction of agents not short and θ̃ would also be increasing in A. Now, if the marginal utility of holding domestic

deposits is decreasing, then agents’ optimal decision could be much more complicated. Guimarães and Morris (2004)

present a static model of currency crisis, similar to Morris and Shin (1998) but where agents are risk averse and have

a continuous set of actions. They show that while the main results of Morris and Shin (1998) holds — there is a

unique equilibrium, defined by a threshold — the equilibrium depends substantially on parameters related to risk

aversion, wealth, portfolio composition and market incompleteness.
3In the static model of currency crises of Morris and Shin (1998), a threshold for the government behavior is

obtained by assuming a fixed benefit of keeping the current regime and a cost of abandoning it increasing in θ and

decreasing in A. However, in a dynamic framework, this assumption cannot be justified in the same way.
4See Guimarães (2005).
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occurs instantaneously, it takes some (little) time until it forces the devaluation and (ii)
agents are uncertain about whether they will be able to escape if there is a crisis. If, at
a given moment, all agents decide to attack the currency, all are ex-ante equally likely
to succeed in running before a devaluation occurs. But when θ̃ is reached, some will be
caught by the crisis while others will escape. As in MS, an agent’s decision must take into
account the risk of a devaluation, which depends on others’ actions. The frictions and the
assumption that the devaluation will not occur before θ̃ is reached give some time for the
agents to run and compete against each other.

2.1 The agent’s problem

When the opportunity of changing position comes, the agent decides between Long or Not.
His decision holds until the next random signal comes. Choosing Not yields 0 up to the
next opportunity of changing portfolio.

In general, a strategy could assign a decision for every history, that is, for every path
of (θ,A). However, an agent’s payoff of investing depends just on the current state and on
others’ strategies, so past values of (θ, A) are relevant only if agents condition their actions
on past events in an arbitrary way. Future work may answer if it is possible to construct
equilibria in which the path of (θ, A) matters. This paper restricts its attention to strategies
that depend only on the current state (Markov strategies). So, a strategy for the agent yields
a decision (Long or Not) for every pair (θ, A), that is, s : R2 → {Long, Not}.

A process {x} = {(θ, A)} will denote a particular path of the state variables of the
model, and z will denote a particular realization of the Brownian motion. Suppose that
all other agents are following a strategy around a threshold θ∗ as shown in figure 2. The
threshold θ∗ defines 2 regions: the ‘L’ area, at its left, where agents choose Long and the
‘N’ area, at its right, where agents choose Not. Let (θ0, A0) denote the current state of the
economy. Call ∆t(z) the time it will take for the crisis and θend(z) the level of fundamental
imbalances when the crisis occurs.

-
0 θ

A = 0

A = 1

θ̃(A)

NL

θ∗(A)

Figure 2: Investors’s threshold for investing (θ∗(A))

The difference between the expected payoffs of choosing Long and Not (hereafter called
‘expected payoff of choosing Long ’ to ease notation) equals the expected payoff of going
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long in the currency until the next opportunity of choosing — what happens after that is
irrelevant because the present choice has no influence in future decisions. An agent that is
long in the currency gets exp(r.dt) at every dt if a crisis has not occurred yet. But when it
occurs, his balance is multiplied by D(θ). Given z and θ∗, the only source of uncertainty
is the realization of the Poisson process, and the expected payoff of choosing Long is given
by:

π(z; θ0, A0, θ
∗) =

∫ ∆t(z)

0
δe−δtertdt + er∆t(z).D

(
θend(z)

)∫ ∞

∆t(z)
δe−δtdt − 1

The first term is what an agent gets if he receives a signal before time ∆t(z). The second
term is the agent’s return if he is caught by the crisis.

Doing the algebra, we obtain:

π(z; θ0, A0, θ
∗) =

(
1− e−(δ−r)∆t(z)

) δ

δ − r
+ e−(δ−r)∆t(z).D

(
θend(z)

)
− 1 (1)

Long is the optimal choice if Eπ(θ0, A0, θ
∗) ≥ 0 where:

Eπ(θ0, A0, θ
∗) =

∫

z
π(z; θ0, A0, θ

∗)f(z)dz (2)

3 The lack of strategic complementarities

Frankel and Pauzner (2000) present a model of sectorial choice in which agents choose
between 2 actions and get the opportunity to revise their decisions according to a Poisson
process. The gains from using one technology depends positively on the fraction of agents
that is currently employing it and on an exogenous fundamental variable, that follows a
Brownian motion. It is shown that a unique strategy survives iterated deletion of strictly
dominated strategies.

However, their results cannot be applied here because, in their framework, player’s
actions are strategic complements: the incentives to choose an action depend positively
on the fraction of agents that are expected to choose it in the future. It could seem that
such property would hold in this model. It is true that the likelihood of a crisis depends
negatively on the fraction of agents that will choose Long. However, the magnitude of the
devaluation depends positively on the fraction of agents expected to go long in the currency
in the future. The choice of Not works as a ‘discipline device’, by preventing fundamental
imbalances to get too high.

Figure 3-a shows an example to illustrate why the property of strategic complementar-
ities does not hold in this model. All examples in this section assume D(θ) = exp(−θ).5

Suppose that all other agents will choose Not. Then, an agent choosing Long at (θ =

5The other parameters used in this example are: δ = 1, r = 0.01, µθ = 0.1, σθ = 0.1 and θ̃ = 0.25A
1
3 .
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−0.05, A = 0) has a positive expected payoff of around 0.0025, because the crisis will occur
when θ hits 0, so there is no risk of losing money. On the other hand, if all other agents are
choosing Long, her expected payoff drops to around −0.0200. The graph at figure 3-a shows
an example of the path of θ when everybody picks Long, starting from the point marked
with ∗: the possibility of getting a high devaluation makes going long in the currency a
risky business.

The existence of strategic complementarities is key to the results of Frankel and Pauzner
(2000) and also to the global games literature (see, for example, Morris and Shin, 2003).6

If that property holds, the fact that Long is the optimal choice in a given state if everybody
else is choosing Not implies that Long is a dominant strategy. Here that is not true. That
is why the proof by Frankel and Pauzner (2000) based on iterative deletion of strictly
dominated strategies cannot be applied here.
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Figure 3: Counter examples for some usual assumptions
6Indeed, the argument for uniqueness in the global games model of Frankel, Morris and Pauzner (2003) and in the

dynamic model of Frankel and Pauzner (2000) are similar.
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It is worth mentioning some other complicating features of this model. First, Eπ is not
always increasing in A. Suppose the same parameter values used in figure 3-a. Assume
that everybody else will choose Not and θ = −0.05. If A = 0, choosing Long yields a
positive payoff, but if A = 1, the expected payoff of Long is around −0.0200. The graph at
3-b shows an example of the path of θ when everybody picks Not, starting from the point
marked with a circle. The large devaluation would not happen if nobody was long in the
currency at the beginning.

Second, it is also possible to build examples in which Eπ is not monotonically decreasing
in θ. This assumption sounds very natural: the higher is θ (more fundamental imbalances),
the less incentives an agent has to choose Long. That indeed holds in equilibrium, but it
does not work for any threshold in any situation.

Graph 3-c shows an example of a situation in which payoff is sometimes increasing with
respect to θ.7 Graph 3-d shows the payoffs at points marked with a dot in graph 3-c. The
key for this example are the high values of µθ and σθ. When the economy is close enough
to θ̃, in the ‘L’ area, the payoff is negative but small in absolute value because a small
devaluation is very likely to come quickly. However, at those points further from 0, A and
θ are likely to increase at the beginning and the devaluation is likely to be much greater
and take not much time. So, choosing Long is worse in this case.

The last example may sound a bit contrived. Indeed, in equilibrium, payoffs are always
decreasing in θ as we would expect. So, the failure of the such assumption may not have
so interesting economic impacts. However, it presents theoretical difficulties to prove the
existence and uniqueness of equilibrium.

Last, if the size of the devaluation is a known constant (∀θ, D(θ) = c < 1) and θ influences
only the occurrence of a crisis, there are strategic complementarities in the model and we
can apply Frankel-Pauzner tools (the other 2 assumptions mentioned above also hold).

4 Equilibrium

In a threshold equilibrium, choosing according to the threshold is the optimal decision for
an agent given that all others are doing so.

Definition 1 A Threshold equilibrium is characterized by a continuous function θ∗ : [0, 1] →
(−∞, θ̃(1)]. An agent deciding at time t (optimally) chooses Long if θt < θ∗(At) and Not
if θt > θ∗(At).

Theorem 1 If σθ 6= 0, there exists a unique threshold equilibrium.

The proof of the theorem is fully presented in the appendix. It is divided in 3 proposi-
tions, that can be summarized as following:

7The parameters are: δ = 1, r = .01, µθ = 0.2, σθ = 0.1, and θ∗ and θ̃ are shown in the figure.
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1. There exists a function θ∗ such that ∀a ∈ [0, 1], Eπ(θ∗(a), a; θ∗) = 0.

2. If lemma 1 holds, Long is the optimal strategy at the ‘L’ area and Not is the optimal
strategy at the ‘N’ area. So, a threshold equilibrium exists.

3. There can’t be more than one threshold equilibrium.

The proof of proposition 1 frames the problem in a way that allows it to apply the
Schauder’s fixed point theorem.8 The existence of dominant regions and continuity of
Eπ(θ∗(A), A; θ∗) on θ∗ are the 2 key factors of the proof.

The proof of proposition 2 starts by assuming that all agents are playing according to a
threshold equilibrium around θ∗, such that ∀a,Eπ(θ∗(a), a; θ∗) = 0. At the ‘L’ area, players
must have positive payoffs because when the economy gets to θ∗, they will be indifferent
and, up to that moment, they will be profiting from the positive interest rate r. A key
assumption for the argument is that the opportunity of changing position is a Poisson
event.

At the ‘N’ area, the proof is trickier. It compares two processes: x′, starting at x′0 =
(θ′0, A), and x, starting at x0 = (θ0, A), such that θ0 > θ′0 ≥ θ∗(A), as indicated at figure
4. The problem is that x′ can get a lower payoff than x by achieving the ‘L’ area, going up
in A, returning to the ‘N’-area and getting a higher devaluation. It is shown that although
that can indeed happen for some realizations of the Brownian motion z, the expected payoff
of x′ is always higher than the expected payoff of x. In order to get a higher devaluation,
x′ needs to go to the ‘L’ area and, then, cross again the threshold θ∗ to enter the ‘N’ area.
The key to the argument is that when x′ crosses the threshold, its expected payoff is zero,
as if it was crossing θ∗ at any other point.

-
0 θ

A = 0

A = 1

θ̃(A)θ∗(A)

r rx′0 x0

Figure 4: Points x0 and x′0

As the argument above illustrates, the proof of proposition 2 relies on the expected
payoff at any point of θ∗ being equal to zero. That does not hold in the examples shown
at figure 3-c-d.

The proof of proposition 3 supposes the existence of 2 threshold equilibria, characterized
by θ and θ̄, respectively, and finds a contradiction. Denote by a a point that maximizes

8Schauder’s fixed point theorem extends Brouwer’s theorem to more generic metric spaces.
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the horizontal distance between the two curves — indicated at figure 5 — and consider a
process x′ starting at x′0 = (a, θ(a)) when all agents follow a switching strategy around θ(A)
and a process x starting at x0 = (a, θ̄(a)) when all agents follow a switching strategy around
θ̄(A). The proof shows that the expected payoff of x is lower than the expected payoff of
x′, which contradicts the assumption that the expected payoff is zero at the equilibrium
threshold.

-
0 θ

A = 0

A = 1

θ̃(A)

θ(A) θ̄(A)

a
x′0 x0

Figure 5: Functions θ̄(A) and θ(A) and point a

For any realization of the Brownian motion, at the first time x and x′ are not at the
same side of their own thresholds, the expected payoff of x is lower: either x′ is over θ

(expected payoff is 0) and x is at its ‘N’ area (expected payoff is negative) or x′ is at its
‘L’ area (expected payoff is positive) and x is over θ̄ (expected payoff is 0). If x and x′ are
always at the same side of the threshold until x gets to θ̃, then, at that moment, x′ will
be at its ‘N’ area and will either get a smaller devaluation or hit θ (which is the same as
getting devaluation equal to 0).
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A Proof of Theorem 1

The proof starts with a few auxiliary lemmas.

Lemma 1 Let x be a process starting at x0 = {θ̄, a} and let θ̂ : [0, 1] → (−∞, θ̃(1)] be a
continuous function. Define t as the time that x hits the curve θ̂ for the first time. Let
θ̄ → θ̂(a). Then, ∀ ε > 0:

lim
θ̄→θ̂(a)

Pr(t ≤ ε) → 1 (3)

Proof: this follows automatically from the fact that a standard Brownian motion changes
sign infinitely many times in any time interval [0, ε], ε > 0 (see, e.g., Karatzas and Shreve,
2000).
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Lemma 2 Consider a process x starting at time 0. Suppose that at time t̄ the economy is
at (θ, A). Then the (conditional) expected payoff of x is:

Eπ(x; θ∗) =
(
1− e−(δ−r)t̄

) δ

δ − r
+ e−(δ−r)t̄ [Eπ(θ, A; θ∗) + 1]− 1 (4)

Proof:
If the agent hasn’t got the Poisson signal until t̄, his expected payoff at t̄ is [Eπ(θ, A; θ∗)].

But up to t̄, the agent earns ert̄. So, conditional on getting the Poisson signal after t̄, the
agent’s expected payoff is:

ert̄ [Eπ(θ,A; θ∗) + 1]− 1

If the agent gets the Poisson signal at some t < t̄, his payoff is ert − 1. So, conditional
on getting the Poisson signal before t̄, the agent’s expected payoff is:

1
1− e−δt̄

∫ t̄

0
δe−δt(ert − 1) =

1
1− e−δt̄

δ

δ − r

(
1− e−(δ−r)t̄

)
− 1

The agent gets the signal before t̄ with probability 1− e−δt̄ (and after t̄ with probability
e−δt̄). Summing the products of the conditional payoffs and their respective probabilities,
we get the claim.¤

Equation 4 is similar to equation 1. The difference is that instead of having the value
obtained at a terminal point, we have the expected payoff at a given state. This friendly
formulation relies on the assumption of a Poisson process for δ.

Lemma 3 shows that we can work with a modified form of equation 2:

Lemma 3 The expected payoff function can be written as:

Eπ(θ0, A0, θ
∗) =

∫

z
πmod(z; θ0, A0, θ

∗)f(z)dz (5)

where πmod(z; θ0, A0, θ
∗) is given by:

πmod(z; θ0, A0, θ
∗) =

(
1− e−(δ−r)∆tmod(z)

) δ

δ − r
+ e−(δ−r)∆tmod(z)D

(
θmod(z)

)
− 1 (6)

where ∆tmod(z) is the time it takes for reaching either θ̃ or θ∗ for the first time, and
θmod is defined below:

θmod =

{
θend if θ̃ is reached before θ∗

0 if θ∗ is reached before θ̃

Proof:
Consider a process x starting at (θ, A) and a particular realization z of the Brownian

motion. Clearly, if θ∗ is not reached until the process ends at θ̃, equation 6 is equal to
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equation 1. Now, suppose θ∗ is reached before θ̃. Call ∆tmod(z) the time it takes for the
economy to get to θ∗ and az the value of A when θ∗ is reached. Using equation 4, the
expected payoff of x conditional on hitting θ∗ at (θ∗(az), az) is:

Eπ(x; θ∗) =
(
1− e−(δ−r)∆tmod(z)

) δ

δ − r
+ e−(δ−r)∆tmod(z) [Eπ(θ∗(az), az; θ∗) + 1]− 1

=
(
1− e−(δ−r)∆tmod(z)

) δ

δ − r
+ e−(δ−r)∆tmod(z) − 1

=
(
1− e−(δ−r)∆tmod(z)

) δ

δ − r
+ e−(δ−r)∆tmod(z)D

(
θmod(z)

)
− 1

if we define θmod(z) = 0. The second equality comes from the expected payoff being
equal to 0 at any point of θ∗.¤

Corollary 1 ∀ θ, A, θ∗, Eπ(θ,A; θ∗) > D
(
θ̃(A)

)
− 1

Corollary 1 comes from applying equation 6, noting that θmod ≤ θ̃(A).

Now, we will prove Proposition 1.

Proposition 1 There exists a continuous function θ∗ : [0, 1] → (−∞, θ̃(1)], such that
Eπ(θ∗(A), A; θ∗) = 0 for any A ∈ [0, 1].

The expected payoff function (Eπ) is defined only at the left of θ̃. For analytical conve-
nience, we will define a functional q that coincides with the expected payoff of investing at
each point over the threshold θ̂ when all other agents are following a strategy according to
θ̂ if the payoff is defined at that point:

q(θ̂, A) =

{
Eπ(θ̂(A), A; θ̂) if θ̂(A) < θ̃(A)

D
(
θ̃(A)

)
− 1−

(
θ̂(A)− θ̃(A)

)
if θ̂(A) ≥ θ̃(A)

First, it will be shown the existence of a function θ∗ : [0, 1] → [θ, θ̄] such that q(θ∗, A) = 0
for all values of A ∈ [0, 1].

The proof starts by arguing that q is a continuous mapping:

Lemma 4 The mapping q is continuous in θ. That is:

lim
θ′→θ̂

q(θ′, A) = q(θ̂, A)

Clearly, for a given A, q(., A) is continuous whenever θ̂(A) > θ̃(A). Now, note that
q(., A) is continuous at θ̃(A). Due to lemma 1, as θ(A) → θ̃(A), the probability of an
‘instantaneous’ devaluation approaches 1. That is, when θ(A) → θ̃(A), for almost all
realizations of z, ∆t(z) → 0 and θend(z) → θ̃(A). Using equations 1 and 2, we get that:
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limθ(A)→θ̃(A)Eπ
(
θ(A), A; θ̂

)
= D

(
θ̃(A)

)
− 1 for any θ̂

Now, it needs to be shown that:

limθ̂′→θ̂Eπ
(
θ̂′(A), A; θ̂′

)
= Eπ

(
θ̂(A), A; θ̂

)

First, note that for any ε1 > 0, there exists some ∆̄t such that ∀∆t(z) > ∆̄t, π(z, θ0, A0; θ̂) ∈(
δ

δ−r − ε1,
δ

δ−r

)
(see equation 1).

Now, consider two processes, x = (θ,A) starting at x0 =
(
θ̂(A0), A0

)
and moving

according to the threshold θ̂, x′ = (θ′, A′) starting at x′0 =
(
θ̂′(A0), A0

)
and moving

according to the threshold θ̂′, both following a given realization of the Brownian motion, z.
Let θ̂′ → θ̂. Then, for almost all z, and for processes lasting less than ∆̄t, the amount of
time x and x′ will be at different sides of their own thresholds is arbitrarily small because,
due lemma 1, whenever one of the processes crosses its threshold, the other will do the
same in arbitrarily small time with probability one. Thus, ∀ ε2 > 0, after some time
∆t < ∆̄t, Pr (|A−A′| ≤ ε2) → 1. Clearly, θ − θ′ = θ̂(A0) − θ̂′(A0), which approaches zero
by assumption.

Now, suppose WLOG that x reaches the threshold θ̃ before x′. Suppose ∆t(z) < ∆̄t.
Then, given that (θ′, A′) → (θ,A) and lemma 1, ∆t′(z) → ∆t(z) and θ′end → θend for
almost all z, which implies, for almost all z, that π(z, θ̂′(A0), A0; θ̂) → π(z, θ̂(A0), A0; θ̂)
(see equation 1). Using equation 2, Eπ(θ̂′(A0), A0; θ̂) → Eπ(θ̂(A0), A0; θ̂). ¤

A similar argument can show that for a given continuous function θ̂, q is continuous in A.

Now, note that:

1. There exists a number θ+ such that ∀ A and θ̂, if θ̂(A) < θ+, q(θ̂, A) > 0.

2. There exists a number θ− such that ∀ A and θ̂, if θ̂(A) > θ−, q(θ̂, A) < 0.

Define:

F =
{

θ̂ | θ̂ is continuous and θ̂ : [0, 1] → [θ, θ̄]
}

and

y : F → F , y(θ̂) = θ̂ + αq(θ̂) for some small α

where θ < θ+ and θ̄ > θ− as indicated in figure 6. For small enough α, the image of the
function y(θ̂) is always inside [θ, θ̄] given the behavior of function q.
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Figure 6: θ+, θ−, θ and θ̄

By lemma 4, y is a continuous mapping of F . The set F is convex and compact. Thus,
we can apply Schauder’s fixed point Theorem.9 So there exists a continuous θ∗ such that:

y(θ∗) = θ∗ + αq(θ∗) = θ∗ ⇒ q(θ∗) = 0

Now, ∀A > 0, if θ̂(A) > θ̃(A), q(θ̂, A) < 0. Thus, there must exist a continuous function
θ∗ : [0, 1] → (−∞, θ̃(1)], such that Eπ(θ∗(A), A; θ∗) = 0 for any A ∈ [0, 1], which is the
claim. ¤

Proposition 2 If Proposition 1 holds, Long is the optimal choice at the ‘L’ area and Not
is the optimal choice at the ‘N’ area. At θ∗, the agent is indifferent.

Proposition 2 is a consequence of 2 lemmas. Lemma 5 shows that the payoff at the ‘L’
area is always positive and decreasing in θ. Lemma 6 shows that the payoff at the ‘N’ area
is always negative and decreasing in θ.

Lemma 5 For all (θ, A) in the ‘L’ area:

1. Eπ(θ, A, θ∗) > 0,

2. Eπ(θ, A, θ∗) is decreasing in θ.

Proof:
Any process starting in the ‘L’ area will reach θ∗ before reaching θ̃. For any process z,

call t1(z) the time it takes for reaching θ∗. Equation 6 simplifies to:

π(z; θ0, A0, θ
∗) =

(
1− e−(δ−r)t1(z)

) δ

δ − r
+ e−(δ−r)t1(z) − 1

Using equation 5, we get:

Eπ(θ,A; θ∗) =
∫

z

r

δ − r

(
1− e−(δ−r)t1(z)

)
f(z)dz > 0 (7)

9see, e.g., Smart (1974).
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which proves the first statement.
Now, consider two processes: x, starting at (θ, A) and x′, starting at (θ′, A), such that

θ′ > θ > θ∗(A). Call t1(z) and t′1(z), the time it takes for x and x′ to reach the threshold
θ∗, respectively. It is easy to see that for any z, t1(z) < t′1(z). The difference of expected
payoffs is given by:

∆π = Eπ(θ′, A; θ∗)−Eπ(θ,A; θ∗)

=
∫

z

r

δ − r

(
e−(δ−r)t1(z) − e−(δ−r)t′1(z)

)
f(z)dz

> 0

which completes the proof. ¤

Lemma 6 For all (θ, A) in the ‘N’ area:

1. Eπ(θ, A, θ∗) < 0,

2. Eπ(θ, A, θ∗) is decreasing in θ.

Proof:
Consider two processes: x, starting at (θ, A) and x′, starting at (θ′, A), such that θ∗(A) ≥

θ′ > θ.
Consider also a process x′′ that starts at starting at (θ′, A) (with x′) but moves in a

different way, following the x”-rules: until x reaches either θ∗ or θ̃ for the first time, A′′

always decreases as if the economy was at the ‘N’ area (x”-rule with respect to A); and θ

follows the Brownian motion z except that it never crosses the threshold θ∗ to get to the ‘L’
area, as shown at figure 7. Whenever the Brownian motion would push θ to the ‘L’ area,
θ stays over θ∗ (x”-rule with respect to θ). After x hits θ∗ or θ̃, x′′ behaves in the regular
way (as x and x′).

The proof of proposition 6 comes in 2 parts:

1. Eπ(x′; θ∗) > Eπ(x′′, θ∗)

2. Eπ(x′′; θ∗) > Eπ(x, θ∗)

First part: Eπ(x′; θ∗) > Eπ(x′′, θ∗)
By lemma 5, the expected payoff at any point in the ‘L’-area is positive. By lemma

1, the expected payoff at any point over θ∗ is zero. Thus, the x”-rule with respect to θ

is automatically substituting states that yield a positive payoff by states that yield zero
payoff. The x′′ rule with respect to A has no effect on payoffs because the payoff at any
point over θ∗ is zero.
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Figure 7: Path of θ′ and θ′′

Due to the assumption of a Poisson process, the expected payoff at any point can be
written as a function of the expected payoff of its reachable states (weighted by the prob-
ability of reaching each state). Thus, the expected payoff of x′ must be greater than the
expected payoff of x′′. The strict inequality depends on the fact that x′ will reach θ∗ with
positive probability.

Second part: Eπ(x′′; θ∗) > Eπ(x, θ∗)
Suppose that x reaches θ∗. Then, from that point on, paths of x and x′′ coincide.
Suppose that x gets to θ̃ (without never hitting θ∗) at time t. From that point on, x′′

follows the regular laws of motion of the game. From equation 4 and corollary 1, expected
payoff of x′′ in this case is greater than expected payoff of x.

The strict inequality depends on the fact that x′ will reach θ∗ with probability smaller
than one.

Combining both parts, we get the claim. ¤

Proposition 3 There is not more than one threshold equilibrium.
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Proof: Suppose 2 equilibria, one with threshold θ(A) and other with threshold θ̄(A).
Define the point a such that a = argmax{|θ̄(A)− θ(A)|} as shown in figure 5.

Suppose a process x′ starting at x′0 = (a, θ(a)) when all agents follows a switching
strategy around θ(A) and a process x starting at x0 = (a, θ̄(a)) when all agents follow a
switching strategy around θ̄(A). If both curves do not coincide, the expected payoff of x′ is
strictly greater that the expected payoff of x, which contradicts the fact that investors are
indifferent at all points of those thresholds.

Let Γ be the set of realizations of the Brownian motion (z) such that x and x′ are never
at different sides of their own thresholds and Γ′ its complement.

For any z ∈ Γ, we know that x will get to θ̃ before x′ and the value of A will be the
same for both processes (as x and x′ were always at the same side of their own thresholds).
By corollary 1 and equation 4, we get:

∫

z∈Γ

[
π(z;x′0, θ)− π(z; x0, θ̄)

]
f(z)dz > 0 (8)

For all z ∈ Γ′, call t1(z) the first moment in which x and x′ are not at the same side
of their own thresholds. It will happen when one process (x or x′) hits its own threshold
while the other has not reached it. As a maximizes the distance between curves, it must
be true that x′z,t1(z) will be at the ‘L’ area or over θ, which implies:

∫

y∈Ω
π(y; x′z,t1(z), θ)f(y)dy > 0

while xz,t1(z) will be at the ‘N’ area or over θ̄(A) and so:
∫

y∈Ω
π(y; xz,t1(z), θ̄)f(y)dy < 0

Combining both inequalities and considering there is no difference in payoffs for agents
that got a signal before t1(z), we get:

∫

z∈Γ′

[
π(z; x′0, θ)− π(z; x0, θ̄)

]
f(z)dz = (9)

∫

z∈Γ′
e−(δ−r)t1(z)

(∫

y∈Ω

[
π(y;xz,t1(z), θ)− π(y; xz,t1(z), θ̄)

]
f(y)dy

)
f(z)dz > 0

Summing (8) and (9), we get a contradiction. ¤
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