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The item count method for sensitive survey questions:
Modelling criminal behaviour

Jouni Kuha and Jonathan Jackson

London School of Economics and Political Science, London, United Kingdom

Summary. The item count method is a way of asking sensitive survey questions which pro-
tects the anonymity of the respondents by randomization before the interview. It can be used
to estimate the probability of sensitive behaviour and to model how it depends on explanatory
variables. We analyse item count survey data on the illegal behaviour of buying stolen goods.
The analysis of an item count question is best formulated as an instance of modelling incom-
plete categorical data. We propose an efficient implementation of the estimation which also
provides explicit variance estimates for the parameters. We then suggest specifications for the
model for the control items, which is an auxiliary but unavoidable part of the analysis of item
count data. These considerations and the results of our analysis of criminal behaviour highlight
the fact that careful design of the questions is crucial for the success of the item count method.

Keywords: Categorical data analysis; EM algorithm; List experiment; Missing information;
Newton-Raphson algorithm; Randomized response

1. Introduction

Asking sensitive questions about behaviour and attitudes is one of the most difficult chal-
lenges in survey measurement. In this paper we consider a question on illegal behaviour,
but other sensitive areas include sexual activity, use of illicit drugs, and embarrassing or
socially undesirable opinions and prejudices. It is easily conceivable that many respondents
may not give truthful answers to direct questions on such topics.

Measurement error in answers to sensitive questions may be reduced by some choices in
the survey design, such as open-ended questions, asking about behaviour over long reference
periods, tolerantly loaded introductions, and self-administration of the sensitive questions
(see Tourangeau and Yan 2007 and Groves et al. 2009 for overviews). Another common
approach is the randomized response method, in which respondents employ a randomizing
device to add probabilistic misclassification to their responses and thus conceal their true
answers from the interviewer. The original randomized response method was proposed by
Warner (1965), and other variants have been developed since (see Chaudhuri and Mukerjee
1988, Lensvelt-Mulders et al. 2005 and Tourangeau and Yan 2007 for overviews).

Another way of protecting the respondents’ anonymity is the item count method or
list experiment (Miller (1984); Raghavarao and Federer (1979) proposed a closely related
approach), which has become increasingly popular recently (see Blair and Imai (2012) for a
list of some applications). Its basic idea can be introduced with the question shown in Table
1, which will be considered in our application. Each respondent is presented with some or
all of a list of questions with possible answers of Yes and No. One of these is the sensitive
item which is the focus of interest; in our case this is item 6, which asks if the respondent
has bought stolen goods in the past 12 months. All the other questions are control items
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which are not of direct interest and not meant to be sensitive. The survey respondents are
randomly assigned to either the control group whose list includes only the control items,
or the treatment group who receive both the control items and the sensitive item. In both
groups a respondent is asked to report only their total number of Yes answers but not the
replies to the individual items.

The intention of the item count method is that respondents in the treatment group
should feel able to include a truthful answer to the sensitive item in their response because
they would realise that it will be hidden from the interviewer when only the total count is
reported. Compared to the classical randomized response method, this has the advantage
of avoiding the potentially distracting act of randomization by the respondents themselves
during the interview. Potential disadvantages of the item count method are that only the
treatment group provides any information about the question of interest, and that the
inclusion of the control items complicates the survey design and adds uncertainty to the
estimation.

Quantities of interest can be estimated from randomized response data because the
randomization mechanism is known. We may be interested in both estimates of the un-
conditional probability of the sensitive behaviour and regression-type questions about its
associations with explanatory variables. For the item-count method, a moment-based
(mean difference) estimator has most often been used for the unconditional probability,
and straightforward extensions of it for regression modelling (Chaudhuri and Christofides
2007; Tsuchiya et al. 2007; Holbrook and Krosnick 2010; Glynn 2010; Coutts and Jann
2011). These approaches, however, may be inefficient, and the regression methods in par-
ticular are not ideally suited for modelling a count response.

The key to more efficient and coherent analysis of any randomized response items is
to treat it as a problem of incomplete categorical data. This idea has been applied to the
modelling of classical randomized response designs by, for example, Maddala (1983), Scheers
and Dayton (1988), Chen (1989), and van den Hout and van der Heijden (2004). For item
count data, it was first fully recognised by Imai (2011), whose work represents a major
advance in the methodology of the item count technique (see also Blair and Imai (2012);
Corstange (2009) also employs models for categorical data, for a related design where in
the control group each control item is asked individually).

In this paper we consider the modelling of item counts as categorical data. We expand
on the results of Imai (2011) in two main ways. First, we propose a faster implementation of
the estimation and an explicit estimate of the variance matrix of the estimated parameters.
Second, we propose a more flexible set of choices for the model for the control items,
which we argue can have a major impact on conclusions about the model of interest for
the sensitive item. These points are developed in Section 3. An application on modelling
criminal behaviour is introduced in Section 2 and analysed in Section 5. In Section 4 we
discuss the design of item count questions, and in Section 6 offer some conclusions.

2. Using survey data to model predictors of criminal behaviour

Our substantive application concerns criminal behaviour, in particular buying stolen goods.
A prominent problem in criminology is understanding what shapes deviant and illegal be-
haviour. Why people do or do not commit crimes speaks to what motivates people and to
how institutions can influence behaviour. In order to explain variation in such behaviour,
we need a relatively precise estimate of it. Yet, criminal activity is a classic sensitive is-
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Table 1. The item count question on buying stolen goods, as included in the Euro-Justis survey, and
the numbers of different responses in the control and treatment groups.

“I am now going to read you a list of five [six] things that people may do or that may happen to
them. Please listen to them and then tell me how many of them you have done or have happened
to you in the last 12 months. Do not tell me which ones are and are not true for you. Just tell me
how many you have done at least once.”

[Items included in both the control and treatment groups:]
1. Attended a religious service, except for a special occasion like a wedding or funeral.
2. Went to a sporting event.
3. Attended an opera.
4. Visited a country outside [your country]?
5. Had personal belongings such as money or a mobile phone stolen from you or from your

house.
[Item included in the treatment group only:]

6. Bought something you thought might have been stolen.

Count
0 1 2 3 4 5 6 Total

Control group 269 472 257 133 54 21 – 1206
Treatment group 279 446 281 124 53 20 9 1212

sue, which people tend to want to conceal in survey situations in order to create a good
impression.

In the criminological literature, the different motivations and routes of influence can
be organised into instrumental and normative motivations. Instrumental motivations are
guided by rational choice where people make implicit or explicit calculations of the risks of
action against the benefits; consonant modes of crime-control policy focus on deterrence and
punishment. Yet, thus far the evidence is mixed. It suggests that most people are not driven
by calculations of the risks and benefits of committing crime. Accordingly, criminologists
have started to move to trying to understand when and for which crimes deterrence might
be an influence.

Normative motivations speak to the idea that reasons of morality explain why most
people, most of the time, do not commit crimes. Influenced by socialization, family, friends
and so forth, people do not act in ways that they believe are wrong. Social pressure and
disapproval plausibly reinforce one’s motivation to act according to guiding moral principles.
The important thing then is that people think it is wrong to buy stolen goods, for example,
and think it is morally correct to obey the law simply because it is the law (Tyler 2006a,
2006b; Jackson et al. 2012). Criminological research on these issues continues apace, no
doubt with many important insights still to come.

An especially interesting area of on-going research draws instrumental and normative
motivations into a single model of motivation. For example, Kroneberg et al. (2010) reason
that only a certain proportion of individuals make cost-benefit calculations when considering
whether to commit a particular act. People who believe that the act is morally wrong do
not believe it is an option (see also Wikström et al. 2012). From an analysis of a survey of
Germans, on the specific crime of shoplifting, their findings were consistent with the idea
that “...respondents with strongly internalized norms disregard instrumental incentives to
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shoplift” In other words, if people believe that it is morally wrong to shoplift, then risk-
benefit calculations will not predict intentions to commit the crime; but if they think it is
not morally wrong to shoplift, then these calculations start to come into play.

We examine similar questions using data from a survey carried out in Italy, Bulgaria and
Lithuania in October-November 2010. The surveys were conducted separately by different
organizations in the three countries, but coordinated by the principal investigators in the
UK. The main purpose of the survey was to measure the legitimacy of the criminal justice
systems in these three European countries, as part of a broader project into trust in justice
known as Euro-Justis (Hough and Sato, 2011). One of the key outcomes of the Euro-
Justis project was the inclusion of a module of questions in round 5 of the European Social
Survey in 2010 (European Social Survey, 2011); however, this did not include the item
count question considered here. We use the pooled sample of 2549 respondents (1,007 for
Bulgaria, 521 for Italy and 1,021 for Lithuania). The surveys are not treated as probability
samples from the national populations. The main aim of our analysis is regression modelling
of illegal behaviour rather than estimation of population proportions.

We consider questions motivated by Kroneberg et al. (2010), using a subset of the
concepts they considered. The specific crime we consider is buying stolen goods. An item
count question on it was included in the Euro-Justis survey, worded as shown in Table 1 (and
translated into the national languages). We consider two explanatory variables of primary
substantive interest. The first is the assessment of the morality of the crime, measured by
a survey question whose core part was worded as follows: “...please tell me how wrong it is
to ... buy something you thought might be stolen”. The response options were “Not wrong
at all” (coded in our analysis as 1), “A bit wrong” (2/3) “Wrong” (1/3) and “Seriously
wrong” (0). The second variable we focus on is personal financial circumstances, measured
by the question “Which of [these descriptions] comes closest to how you feel about your
household’s income nowadays?”, with responses “Living comfortably on present income”
(0), “Coping on present income” (1/3), “Finding it difficult on present income” (2/3) and
“Finding it very difficult on present income” (1). We treat this as a measure of financial
need but also as a rough proxy for perceived benefits of financial crime such as buying stolen
goods — although acknowledging the obvious limitations of the latter treatment. “Don’t
know”responses are coded as missing for both variables. In the survey, the question on
morality was asked much earlier than the item count question, which came just before the
question on financial need.

Our substantive hypotheses are that lower financial need and a view that buying stolen
goods is morally wrong will be associated with lower probability of having committed the
crime. A further statistical hypothesis is that there would be a positive interaction between
the two explanatory variables. This corresponds to the substantive hypothesis, in the
spirit of Kroneberg et al. (2010), that strongly internalized norms lead people to disregard
instrumental incentives to commit the crime.

The methodological questions that we consider next are how the item count data should
best be analysed to answer the substantive questions, and what aspects of the quality of
the data and the survey design affect the chances of success of this analysis.
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3. Modelling item count data

3.1. Estimation
Consider an item count survey question which includes J control items and one sensitive
item. Suppose we have data on n = n0 + n1 respondents of whom n0 have been randomly
assigned into the control group where the question included only the control items, and n1

to the treatment group where the sensitive item was also included. Let ti, i = 1, . . . , n, be
a treatment indicator such that ti = 1 for respondents i in the treatment group, and ti = 0
in the control group.

Let Si = Zi+tiYi denote a respondent’s answer to the item count question, with possible
values 0, 1, . . . , J + 1, and si its observed value in the sample. Here Zi is the total for the
control items, and Yi = 1 if the answer to the sensitive item is Yes and Yi = 0 if it is No.
For the control group Si = Zi, but for the treatment group Si = Zi + Yi and Zi and Yi are
not observed separately (the value of Yi for the control group is hypothetical and not used).
Define t = (t1, . . . , tn)

′ and vectors s and Y similarly, and let X = [x1 . . .xn]
′ where xi is

a vector of explanatory variables for respondent i, including a constant 1.
We assume that Si for different respondents are independent given (xi, ti). The model

for Si is specified through two models, py(yi|xyi;β) = P (Yi = yi|xyi;β) for the sensitive
item and pz(zi|yi,xzi;ψ) = P (Zi = zi|Yi = yi,xzi;ψ) for the total of the control items, for
yi = 0, 1 and zi = 0, 1, . . . , J . Here xyi and xzi are two subsets of the variables in xi, which
need not be identical, and β and ψ are distinct parameter vectors. The substantive interest
is on the model for Yi, for which we use the binary logistic model

πyi = py(1|xyi;β) =
exp(x′

yiβ)

1 + exp(x′
yiβ)

. (1)

When xi = 1, the only unknown parameter in this is β = log[πy/(1 − πy)] where πy =
P (Yi = 1;β) is the unconditional probability of positive response to the sensitive item.
Different specifications for pz(zi|yi,xzi;ψ) are discussed in Section 3.2. Let θ = (β′,ψ′)′.

We make the following assumptions:

(a) The Yi included in Si in the treatment group is a truthful answer to the sensitive
question, so that py(yi|xyi;β) is substantively interesting. In contrast, Zi does not
need to represent the true total for the control items, as long as the assumptions below
are satisfied.

(b) py(yi|xyi;β) = P (Yi = yi|xyi, ti;β). This is satisfied by randomization, which makes
the joint distribution of (Yi,xyi) independent of ti for any xyi.

(c) pz(zi|yi,xzi;ψ) = P (Zi = zi|Yi = yi,xzi, ti;ψ), i.e. that conditional on (Yi,xzi) the
total reported for the control items is not affected by whether or not the sensitive item
was included in the question. This assumption is not related to the randomization,
so its plausibility must be considered separately.

(d) If the n respondents exclude any nonrespondents who did not answer the item count
question, the probability of nonresponse is independent of (Yi, Zi) given (xi, ti).

Under these assumptions, the model for the reported total Si in the observed data is

ps(si|xi, ti; θ) = P (Si = si|xi, ti; θ) = πyi pz(si − ti|1,xzi;ψ) + (1− πyi) pz(si|0,xzi;ψ) (2)

where we take pz(J + 1|0,xzi;ψ) = pz(−1|1,xzi;ψ) = 0; these correspond to the two
impossible values (0, J + 1) and (1, 0) of (Yi, si) in the treatment group.
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When there are no explanatory variables, a simple moment-based estimator of πy is

π̃y = n−1
1

n∑
i=1

tisi − n−1
0

n∑
i=1

(1− ti)si. (3)

It follows from (2) that π̃y is an unbiased estimator of πy. It is also the maximum likelihood
estimator under certain conditions, as discussed in Section 3.2. However, it lacks the flex-
ibility to accommodate less than saturated models for Yi and Zi. It also does not provide
a generally convenient extension to models with explanatory variables. The most obvious
generalisation of (3) in this direction is the linear model E(Si) = x′

iψ+ ti(x
′
yiβ) (Holbrook

and Krosnick, 2010). This yields a consistent estimator of β for a linear probability model
for Yi under certain assumtions about the model for Zi. However, a linear model for πyi is
generally unappealing, and the approach again fails to provide flexibility for modelling Zi.

A more satisfactory framework for the analysis of item count data is to treat it as the
categorical data problem that it clearly is. For convenience of description and computer
implementation, we introduce first the device of a set of pseudo-data which consists of two
stacked copies of the observed data set. The pseudo-data thus has m = 2n observations
where, for each i = 1, . . . , n, observations i and i+ n have the same values of the observed
variables. We then add the pseudo-variables y∗i and z∗i with the values (y∗i , z

∗
i ) = (1, si− ti)

for i = 1, . . . , n and (y∗i , z
∗
i ) = (0, si) for i = n + 1, . . . ,m. We denote p∗yi = py(y

∗
i |xyi;β)

and p∗zi = pz(zi|y∗i ,xzi;ψ) for i = 1, . . . ,m, where by definition p∗yi is πyi for i = 1, . . . , n
and 1− πyi for i = n+ 1, . . . ,m.

The observed-data log-likelihood is �(θ; s) =
∑n

i=1 log ps(si|xi, ti; θ) or, in terms of the
pseudo-data, �(θ; s) =

∑n
i=1 log[πyi p

∗
zi+(1−πyi) p

∗
z,i+n]. One convenient way to maximize

it is with the EM algorithm (Dempster et al., 1977). This is based on viewing the values of
Yi as missing data. If they and thus also all Zi = si− tiYi were observed, the complete-data
log-likelihood would be

�(θ;Y, s) =

n∑
i=1

log p(Yi, si|xi, ti; θ)

=

n∑
i=1

log py(Yi|xyi, ti;β) +

n∑
i=1

log pz(si − tiYi|Yi,xzi, ti;ψ) = �(β;Y) + �(ψ;Y, s). (4)

To express this in terms of the pseudo-data, let Yi = Yi+n there be equal to the true Yi for
each i = 1, . . . , n. Then

�(θ;Y, s) =
m∑
i=1

I(Yi = y∗i ) log p
∗
yi +

m∑
i=1

I(Yi = y∗i ) log p
∗
zi (5)

where I(Yi = y∗i ) = 1 if Yi = y∗i and 0 otherwise. This means that if Yi were observed,
we would know which of the two paired rows of the pseudo-data corresponded to the true
value of Yi. As we do not know this, the EM algorithm gives weight to both possibilities.
The algorithm proceeds by alternating between two steps:

E-step: Calculate the conditional expected value of the complete-data log likelihood
(5) given the observed data and current estimate θ(t) of θ, as

Q(θ|θ(t)) = Q(β|θ(t)) +Q(ψ|θ(t)) = E[�(θ;Y, s)|s,X, t; θ(t)]

=

m∑
i=1

w∗
i(t) log p

∗
yi +

m∑
i=1

w∗
i(t) log p

∗
zi (6)
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where

w∗
i(t) = P (Yi = y∗i |si,xi, ti; θ(t))

=
p∗yi(t) p

∗
zi(t)

p∗yi(t) p
∗
zi(t) + p∗yi′(t) p

∗
zi′(t)

=
p∗yi(t) p

∗
zi(t)

p∗yi(t) p
∗
zi(t) + (1− p∗yi(t)) p

∗
zi′(t)

, (7)

i′ = i + n for i = 1, . . . , n and i′ = i − n for i = n + 1, . . . ,m. The subscripts (t) indicate
that all the probabilities in w∗

i(t) are calculated with the parameter values θ(t).

M-step: Maximise Q(θ|θ(t)) to obtain updated estimates θ(t+1) = (β′
(t+1),ψ

′
(t+1))

′.
The two terms Q(ψ|θ(t)) and Q(β|θ(t)) can be maximised separately. These are weighted
log likelihoods for the complete-data models for Yi and Zi, with weights w∗

i(t). The updated
estimates can thus be obtained by fitting the models to the pseudo-data using standard
software, as long as these allow the fractional frequency weights w∗

i(t).

Maximum likelihood estimate θ̂ of θ is obtained by iterating the algorithm to conver-
gence, starting with some initial values θ(0). This is the estimation method proposed by
Imai (2011) and implemented in the R software (R Core Team, 2012) with the package list
(Blair and Imai, 2010).

Two well-known disadvantages of the EM algorithm are that it can be slow to converge
and that it does not automatically provide an estimate of the variance matrix of θ̂. Here
the speed difference to our Newton-Raphson (N-R) algorithm described below is enhanced
by the fact that the EM implementation requires two iterative procedures at each M-step
where the N-R estimation invoves only a single noniterative step. In our application the
difference is mostly in convenience than real practical significance: a typical model might
take less than 1 second and 15 iterations with N-R and 12 seconds and 150 (M-step) it-
erations with EM. For the variance matrix, Imai (2011) used numerical differentiation of
�(θ; s), as implemented in the optim function in R, to approximate the observed-data infor-
mation matrix. It is in general preferable to replace such numerical methods with explicit
expressions where possible.

To remedy both of these shortcomings, we make use of an elegant but apparently rela-
tively little-used result which is implicit in some earlier literature on the EM algorithm but
which was first stated explicitly by Oakes (1999). This shows that the function Q(θ|θ(t)) de-
rived at the E-step of the EM algorithm can also be used to calculate both the observed-data
score function, as

u(θ(t)) =
∂�(θ; s)

∂θ

∣∣∣∣
θ=θ(t)

=
∂Q(θ|θ(t))

∂θ

∣∣∣∣
θ=θ(t)

, (8)

and the observed-data information matrix as

I(θ(t)) = − ∂2�(θ; s)

∂θ ∂θ′

∣∣∣∣
θ=θ(t)

= −
[
∂2Q(θ|θ(t))
∂θ∂θ′

+
∂2Q(θ|θ(t))
∂θ∂θ′(t)

]
θ=θ(t)

, (9)

both of which hold for any value of θ(t). In these expressions it is crucial that θ and θ(t)
are treated as distinct quantities.

The results (8) and (9) allow us, first, to speed up to convergence of the estimation
substantially by replacing the M-step of EM with a Newton-Raphson update step

θ(t+1) = θ(t) + I(θ(t))
−1 u(θ(t)).
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Second, the estimated variance matrix of the estimates θ̂ is given by (9) as v̂ar(θ̂) = I(θ̂)−1.
Because the N-R algorithm may also diverge, to achieve convergence it is important to use
sensibly chosen starting values and/or shorten the update step for some iterations if needed.

For the model for item count data, θ = (β′,ψ′)′ and Q(θ|θ(t)) is given by (6). Here p∗yi
and p∗zi depend only on θ and w∗

i(t), defined by (7), only on θ(t). Denote Xy = [xy1 . . .xyn]
′

and πy = (πy1, . . . , πyn)
′, evaluated at β. Define π∗

y(t) = (π∗
y1(t), . . . , π

∗
yn(t))

′ where π∗
yi(t) =

P (Yi = 1|si,xi, ti; θ(t)); note that π∗
yi(t) are equal to w∗

i(t) for i = 1, . . . , n. Let D1 be the

matrix with rows ∂ log p∗zi/∂ψ
′ for i = 1, . . . , n, and D0 the matrix with rows ∂ log p∗zi/∂ψ

′

for i = n + 1, . . . ,m, and define D1(t) and D0(t) analogously with rows ∂ log p∗zi(t)/∂ψ
′
(t)

where p∗zi(t) is like p∗zi but evaluated with θ(t). Let diag(ai) in general denote a diagonal

matrix with the elements of a vector (a1, . . . , an) on the diagonal, and 1 a vector of ones of
appropriate length. The score function (8) is then

∂Q(θ|θt)/∂β = X′
y(π

∗
y(t) − πy)

∂Q(θ|θt)/∂ψ = (D1 −D0)
′π∗

y(t) +D′
01. (10)

For the first term of (9),

∂2Q(θ|θ(t))
∂β∂β′ = −X′

y diag[πyi(1− πyi)]Xy

∂2Q(θ|θ(t))
∂ψ∂ψ′ =

m∑
i=1

w∗
i(t)

∂2 log p∗zi
∂ψ∂ψ′ (11)

and ∂2Q(θ|θ(t))/∂β∂ψ′ = [∂2Q(θ|θ(t))/∂β∂ψ′]′ are zero matrices. The second term of (9)
is

∂2Q(θ|θ(t))
∂θ∂θ′(t)

=

[
X′

y

(D1 −D0)
′

]
diag[π∗

yi(t)(1− π∗
yi(t))]

[
Xy (D1(t) −D0(t))

]
(12)

which is symmetric when D1 and D0 are evaluated at θ = θ(t) to become D1(t) and D0(t).
These expressions apply when the model for Yi is the logistic model (1). The spe-

cific forms of (10)–(12) depend on the choice of the model for pz(zi|yi,xzi;ψ). It can
be seen that only the first and second derivatives of the logarithms of these probabilities
are needed to complete the calculations. Explicit expressions for the four models that
we will consider are given in Appendix A. Finally, the observed-data log-likelihood at
the maximum likelihood estimates can be calculated from the pseudo-data as �(θ̂; s) =∑n

i=1 log(πyip
∗
zi + (1− πyi)p

∗
z,i+n), with the probabilities evaluated at θ̂.

3.2. Specification of a model for the control items
The formulation of the problem in the previous section makes it clear that any analysis
of item count data involves a model pz(zi|yi,xzi;ψ) for the totals Zi of the control items,
whether or not this is explicit in the formulas of estimators. This model is a distinctive
element of the method which does not arise in classical forms of randomized response. It is
a nuisance element which is of no substantive interest in itself. Nevertheless, it still needs
to be specified appropriately, lest errors there distort estimates of the model of interest for
Yi. In this section we compare possible choices for the model for the control items.
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There are two parts to the specification of the model for Zi: the choice of the distribution
itself, and how it may depend on the explanatory variables Yi and xzi. For the distribution,
Imai (2011) and the computer implementation by Blair and Imai (2010) considered the
binomial and the beta-binomial. For the explanatory variables they used xyi or (x

′
yi, Yix

′
yi)

′,
i.e. the same variables as in the model for Yi, or these interacted fully with Yi. Here we
suggest some generalisations for both of these elements of the model. Details of the specific
models we use are given in Appendix A.

Let Zij , j = 1, . . . , J , denote respondent i’s unobserved answer to control item j, with
values 0 for No and 1 for Yes, so that Zi =

∑
j Zij . Suppose that each Zij follows a

Bernoulli distribution with probability pij , and that different items Zij may be dependent,
with covariances cov(Zij , Zik). Then Zi has mean E(Zi) = Jp̄i and variance

var(Zi) = Jp̄i(1− p̄i)−
J∑

j=1

(pij − p̄i)
2 +

∑
j �=k

cov(Zij , Zik). (13)

where p̄i = J−1
∑

j pij . The mean is equal to that of a binomial distribution with index
J and probability p̄i. The first term of (13) is the variance of this binomial distribution,
while the last two terms represent over- or underdispersion relative to this variance. The
second term, which is due to heterogeneity of the probabilities pij , is always negative and
thus contributes underdispersion. The third term can be positive or negative, depending
on the pattern of dependencies among the Zij .

If there is neither heterogeneity nor dependence, the last two terms of (13) are both zero
and the distribution of Zi is binomial. If there is no dependence, the last term is zero and we
get the Poissonian binomial distribution in the sense of Johnson et al. (1992, S. 3.12.2), which
is always underdispersed relative to the binomial. If there is no heterogeneity, the second
term is zero. If we then further assume that the covariances cov(Zij , Zik) are all equal,
we get var(Zi) = Jp̄i(1 − p̄i)[1 + (J − 1)ρ] where ρ is the common “intraclass correlation”
between Zij for respondent i. The beta-binomial distribution has a variance of this form.
Its standard motivation as a mixture distribution implies that ρ is nonnegative, but more
generally the distribution is also well-defined for some negative values of ρ (Prentice, 1986).

It is, however, undesirable to consider only such special cases of the distribution of Zi.
First, even a general version of the beta-binomial, say, cannot accommodate a distribution
that is strongly underdispersed relative to the binomial. Such a distribution for the control
items would in fact be ideal from a design point of view (see discussion in Section 4), so
we should prefer a distribution which can represent such items if we do manage to create
them. Second, in the item count context it may not be enough to consider only the mean
and variance of Zi. Expression (2) of the probabilities for the observed data shows that
these involve all the probabilities of individual values of Zi. An adequate model for all of
them is thus needed to correctly disentangle them from the model for Yi.

We would suggest that by default the distribution of Zi should be specified with maxi-
mum flexibility, as a multinomial distribution with index 1 and probabilities pz(z|yi,xzi;ψ)
for z = 0, . . . , J . In the examples below we compare the multinomial with the binomial
and beta-binomial models. For dependence of the multinomial probabilities on explanatory
variables we consider two possibilities, the multinomial logistic model which ignores the
ordering of the values of Zi, and the ordinal logistic (proportional odds) model which takes
the ordering into account. The ordinal model is in principle appealing because it is flexible
in the response distribution but relatively parsimonious in the parametrisation of the effects
of the explanatory variables.
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Consider now choices for the explanatory variables for the model for Zi. We denote
these by vi, which include at least xzi but possibly also Yi and even products (interactions)
between Yi and some or all of xzi. Note that xzi does not need to include the same variables
as xyi, and there may be some gain in efficiency if it does not. Throughout, models with
nested choices of vi may be compared using likelihood ratio tests.

The most consequential aspect of the model for Zi is the extent to which it depends
on Yi. In particular, the estimates will be most efficient when it does not, i.e. when Zi

and Yi are conditionally independent given the explanatory variables. If this is the case,
(2) shows that ps(si|xi, ti = 0; θ) = pz(si|xzi;ψ). The parameters ψ could then even be
estimated directly by fitting the model for Zi for Si for the control group only, and the
data in the treatment group will contribute information mostly about the model for Yi. If
the conditional independence does not hold, a smaller amount of information is available
on both models, and both are mixed up in both groups.

Further insight into this loss of information is provided by the form of the information
matrix I(θ) in (9). Its second term can be seen as the “missing information” due to the
fact that Yi are not observed. All of its terms depend on the quantities π∗

yi(t)(1 − π∗
yi(t)),

which are the predictive variances of the unknown Yi given (si,xi, ti) and θ(t). For ψ, and
through the cross-derivative terms of I(θ) also for β, the missing information also involves
contributions from D1 − D0, which are of the form ∂ log(p∗zi/p

∗
z,i+n)/∂ψ. These describe

how different the gradients of log pzi are at the two possible values 0 and 1 of Yi. The
magnitude of these differences, and thus the amount of missing information, depend on the
specification of the model for Zi. The key feature of the case where Zi is conditionally
independent of Yi is that then log(p∗zi/p

∗
z,i+n) = 0 for all observations in the control group,

so they do not add anything to this component of the missing information.
A model of special interest is one with xyi = 1 and multinomially distributed Zi with

xzi = (1, Yi)
′. This has no other explanatory variables and has 2J +1 parameters to model

the (J + 1) + J = 2J + 1 free probabilities ps(s|t) in the table of randomization group t
by observed item count s (c.f. Table 1). The model is thus saturated, and the maximum
likelihood estimators of ps(s|t) are the observed sample proportions p̂s(s|t). Solving the
expressions of these probabilities in (2) for πy and pz(z|y) = P (Z = j|Y = y), we get as
estimate of πy the mean difference π̃y given by (3), and for pz(z|y)

p̃z(j|0) = [p̂s(j|1)− π̃y p̃z(j − 1|1)]/(1− π̃y) and (14)

p̃z(j|1) = [p̂s(j|0)− (1− π̃y)p̃z(j|0)]/π̃y (15)

for j = 0, . . . , J , starting with p̃z(−1|1) = 0 (see also Glynn 2010, who gives corresponding
expressions for the probabilities of Y given Z). These are equal to the maximum likelihood
estimates of πy and pz(z|y) obtained as in Section 3.1, if p̃z(j|y) are all non-negative (the
case where they are not is discussed in the next section). This equivalence demonstrates
that any gain in efficiency obtained by the maximum likelihood estimators over the mean
difference (3) is not due to the formulation of the problem as a model for categorical data,
but is only realised if we are able to assume that Zi and Yi are independent.

We conducted a limited simulation study to learn more about the possible impact of
the specification of the model for Zi. Four situations were considered, with 1000 data sets
simulated in each. There were no explanatory variables. In each case the sample size was
2400 with 1200 observations in each of the treatment and control groups, Yi was drawn from
a Bernoulli distribution with probability πy = 0.1, and there were 5 control items. The four
cases differ in the model for Zi, and represent different combinations of its distribution and
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Table 2. Results of a simulation study of estimators of the probability of a sensitive item obtained from
item count data. The table shows means and root mean squared errors of estimators over 1000 simulated
data sets (multiplied by 1000). See the text for the details of the simulation specifications.

Estimated model for Z:
Multinomial Ordinal

Binomial Beta-Binomial logistic logistic
True model for Z: Indep.∗ Dep. Indep. Dep. Indep. Dep. Dep.

Mean (true value is 100):

Binomial, independent 102 101 102 101 102 102 97
Binomial, dependent 131 103 118 104 113 100 98
Multinomial, independent 289 437 112 89 100 110 92
Multinomial, dependent 308 437 172 79 154 112 89

Root Mean Squared Error:

Binomial, independent 38 40 49 40 40 40 44
Binomial, dependent 45 37 40 39 40 43 44
Multinomial, independent 191 340 33 55 28 53 46
Multinomial, dependent 209 338 79 68 61 52 50

* “Indep.”: Z and Y are modelled as independent; “Dep.”: Z and Y are modelled as dependent.

whether this depends on Yi. In cases 1 and 2, Zi follow a binomial distribution, in case 1
with probability 0.25 for all respondents, and in case 2 with probability 0.25 when Yi = 0 and
0.355 when Yi = 1. In cases 3 and 4, Zi are drawn from a multinomial distribution, in case
3 with probabilities (0.2, 0.2, 0.2, 0.2, 0.1, 0.1) for Z = 0, . . . , 5 for every respondent; in case
4 these probabilities apply when Yi = 0 and the probabilities (0.1, 0.15, 0.15, 0.2, 0.2, 0.2)
when Yi = 1. The multinomial probabilities are chosen so that they are not well-represented
by a binomial distribution.

Table 2 shows the results of the simulation for estimates of πy. We consider maximum
likelihood estimators under the four models listed in Appendix A, each both assuming Zi and
Yi to be independent and allowing them to be dependent, for a total of seven estimators (the
multinomial logistic and ordinal logistic model are equivalent under independence). There
were a handful of simulations where some estimators converged to a very small value (less
than −10 on the logit scale). These may represent false convergence of the algorithm, so
simulations where this happened for any estimator are excluded; there were no more than
19 instances of this in any of the four cases.

The simulation means in the upper part of Table 2 show that all of the estimators are
approximately unbiased when the model for Zi is correctly specified or overparametrised.
When this model is incorrectly specified, however, the estimator of πy is biased, in many
cases dramatically so. This happens whether the misspecification concerns the distribution
of Zi or the association between Zi and Yi. It is worth noting that at least in these cases the
one additional parameter of the beta-binomial model reduces its bias substantially relative
to the binomial model when the true model is multinomial.

The main message of the lower part of Table 2 concerns the loss of efficiency when we
have to assume dependence between Zi and Yi. This can be seen by comparing the results
under independence models for correctly specified distributions. It can be seen that this
loss of efficiency is small when the true distribution is binomial but much larger when it is
multinomial. In the latter case the use of an ordinal model for the dependence improves
the efficiency slightly but still leaves it far lower than that of the independence model.
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4. Considerations on the design of item count questions

Careful design of the survey items is clearly a prerequisite for the success of the item
count methodology. Here we consider briefly some elements of design (for more extensive
discussions, see for example Glynn (2010), Blair and Imai (2012), and references cited
therein). We focus on the technical questions of articulating the assumptions that the
items should satisfy, how these affect the model specification, and how they may be checked
in the analysis. This is informative on, but does not directly answer, the central practical
challenge of design, which is how we should choose the items in order to have a good chance
of satisfying the assumptions. This question is not amenable to simple technical analysis
or solutions, because the success of the exercise is ultimately dependent on how the survey
respondents react to the questions. For understanding and predicting these reactions, the
designer of an item count question will benefit from a good knowledge of the general theories
and empirical evidence on the psychology of survey response (Tourangeau et al., 2000).

The item count technique or any other randomized response method is also likely to
involve psychological peculiarities of its own. These relate to what might be termed the
“weirdness factor” of the method, which is created when the interviewer appears to the
respondent to deviate from the implicit social contract of what a survey interview should
involve. With a classical randomized response question this happens when the respondent
is suddenly asked to do something like spin a dial to choose at random which question
they should answer. In an item count question, the weirdness arises from being presented
with a list of apparently disparate items with no indication of why the total of them might
be of interest to the interviewer. The strangeness of this may be lesser than that of the
dial-spinning but it can still be nonnegligible. It can thus not be taken for granted that the
respondents will react to an item count list exactly as intended, even if all the individual
items are ostensibly simple and easy to answer.

Validity of item count measurement requires that the assumptions (a)–(d) stated in
the beginning of Section 3.1 are satisfied. Of them, (b) is satisfied by the randomization
unless it is undermined by failure of assumption (d), i.e. differential nonresponse. The other
assumptions cannot be guaranteed through design.

Assumption (a) of no lying is the motivation of the item count technique in the first
place, in that it is designed to reduce reasons for lying by guaranteeing anonymity. This
protection will fail completely in one situation, the “ceiling effect” of a respondent in the
treatment group whose truthful answer to all of the items would be affirmative, in which
case a truthful total of J +1 would logically reveal the answer to the sensitive item. Direct
evidence of the prevalence of this problem is given by the proportion of counts of J in
the control group. In design, the aim should then be to select control items for which
few respondents would give only affirmative answers. One way to achieve this is to use
items which are individually rare. Another one, which also reduces the chances of the floor
effect discussed below, is to choose a control set where some pairs of items are negatively
correlated (Glynn, 2010).

Often discussed alongside the ceiling effect is the “floor effect” of a respondent in the
treatment group whose truthful answers would be negative to all the control items but
affirmative to the sensitive item. The argument is that such a person might judge that a
truthful count of 1 would be known to correspond to the sensitive item. This, however,
follows logically only if the interviewer can reasonably conclude from their observation of
that respondent that his or her answer to all of the control items must be No, a situation
which should not be allowed to arise with a sensible set of control items. In other cases,
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concern with the floor effect involves a less compelling argument which requires reference
to a population of other respondents, i.e. a judgement that the control items are such that
most people’s answer to all of them is likely to be negative. This does not necessarily follow
even if all of the items are individually rare.

A violation of the nonresponse assumption (d) can also lead to violation of assumption
(c). Apart from that, (c) is essentially a requirement of compliance, that the respondents
actually respond to the question as stated and report a sum of the items rather than
somehow react to the list as a whole (in which case it could matter whether the sensitive
item was on it or not). Assuring this at the design stage is a considerable challenge. In the
analysis, there is one obvious if partial way of examining the validity of the assumption.
This is to use the logical conditions that P (S ≤ s|T = 0) ≥ P (S ≤ s|T = 1) for all
s = 0, . . . , J − 1 and P (S ≤ s − 1|T = 0) ≤ P (S ≤ s|T = 1) for all s = 1, . . . , J (Blair and
Imai, 2012). If these do not hold for all sample proportions, some of the moment estimates
(14)-(15) of the probabilities of Z will also be negative. This may occur because of sampling
variation even when assumption (c) is satisfied, so a significance test for the conditions is
needed; such a test is proposed by Blair and Imai (2012). A test result that does not
detect a significant violation is not sufficient evidence that the assumption is satisfied, but
a significant test result does provide strong evidence that it is not. Furthermore, apart
from sensitivity analysis of the possible biases there is nothing that can really be done in
the analysis to adjust for such a violation. The conclusion from this part of the analysis
may thus be the disheartening one that an item count question is irretrievably flawed.

Another element of validity is that of the model specification, especially of the model for
the control items as we argued in Section 3.2. Even when correct, this model also affects the
efficiency of the analysis, i.e. the extent of missing information that reduces the precision
of the estimates of the parameters of interest. This depends on the complexity of the model
for the control items, most of all on whether or not they are conditionally independent of
the sensitive item. This conditional independence should be one aim of the design of an
item count question. It should not be impossible to achieve when the control items are
unrelated in content to the sensitive item, but it cannot be guaranteed in advance.

These considerations suggest that the ideal set of control items would be one for which
every respondent would report the same count z with 0 < z < J , achieved in such a way
that the z would not be the same items for everyone (this to avoid a version of the floor
effect). Such items would both satisfy all of the assumptions for validity and maximize the
efficiency of the estimates. They are of course unachievable in practice but worth keeping
in mind as a general aim.

How then do the Euro-Justis item count questions measure up against these criteria?
When the questions were designed, there was a conscious attempt to avoid very common
items and some aim to include ones which would be weakly or even negatively correlated
with each other. To try to reduce the weirdness factor, the list consists of relatively general
and not strikingly peculiar inquiries. Furthermore, item 5, which asks if the respondent
has been a victim of crime, was included to try make the item count list seem a little less
out of place in a survey that was otherwise mostly about crime and criminal justice. This,
however, may have been disadvantageous in a different way, by introducing an association
between the sensitive item and the total of the control items. It is clear from the analysis
below that there is indeed such an association, and it may well be due to the fact that
victimisation and criminal behaviour tend to be correlated.

The survey organisations in the three countries of the Euro-Justis survey each produced
a field report where the interviewers summarised their own experiences and common reac-
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tions by the respondents. It is encouraging to note that none of the three reports mentioned
any concerns about the item count question. This contrasts with comments, which came
consistently from all the countries, that many respondents had reacted negatively to di-
rect questions elsewhere in the survey on other sensitive topics such as family income and
attitudes toward crime.

Only 5.6% of the respondents in the control group and 4.7% in the treatment group
refused to answer the item count question, so nonresponse is unlikely to be a major source
of bias. The potential for ceiling effects is also minimal, as only 21 of 1206 respondents in
the control group gave the maximum value of 5. Less reassuring is the finding that two of
the cumulative proportions in the observed sample are inconsistent. These are the ones for
counts of 0 and 2, where the cumulative probability is smaller in the control than in the
treament group (0.223 vs. 0.230 and 0.828 vs. 0.830). These differences are not statistically
significantly negative, so they can be due to sampling variation. Nevertheless, they give
some reason to worry that assumption (c) of consistency of responses may be violated.

5. Item count estimates of criminal behaviour

Table 3 shows estimates for models without explanatory variables for the item count ques-
tion in the Euro-Justis survey. The quantity of main interest is the probability πy of the
sensitive item Y of having bought stolen goods in the past year. The table also includes
estimates of the probabilities of different counts Z for the five control items. Here the focus
is on how the estimates of πy are affected by different choices for the model for the control
items. We consider the moment-based estimators given by (3), (14) and (15), and maximum
likelihood estimators with each of the four models for Z listed in Appendix A, each of the
latter both with and without the assumption that Z and Y are independent. For assessment
and comparison of model fits, the table includes the AIC statistic AIC = −2�(θ̂; s) + 2q
where q is the number of estimated parameters in a model, and p-value for χ2 test of good-
ness of fit which compares the fitted counts for reported totals S from each model to the
observed counts that are shown in Table 1.

As discussed in Section 4, two of the moment-based estimates of the probabilities of Z
are negative; these probabilities have boundary estimates of 0 in the saturated multinomial
logistic model where Y and Z are dependent. For each model for Z, the hypothesis of inde-
pendence between Z and Y is clearly rejected, and there is a substantial difference between
the estimated probabilities of Z conditional on the two values of Y . The probabilities given
Y = 0 are generally similar to the ones obtained when Z and Y are assumed independent,
while the probabilities given Y = 1 are much less stable.

For these data, the estimated proportion of people who have bought stolen goods varies
widely depending on the model for the control items. It is 12–14% when the clearly inappro-
priate assumption of independence between Z and Y is made, but 2-9% without it. Different
dependence models also produce rather different results. The binomial and beta-binomial
give the higher estimates of 6–9%. The goodness of fit of these two models is inadequate
according to the χ2 test even when Z and Y are dependent. Only the multinomial models
where Z depends on Y yield a good fit, both with a multinomial logistic and an ordinal
logistic model for the dependence. Estimates of πy are then 4.1% with the multinomial and
1.7% with the ordinal model. In this example the estimate of the probability of substantive
interest is thus very sensitive to assumptions about the model for the control items, the
nuisance element of item count analysis.
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Table 3. Probabilities of buying stolen goods (π̂ y) and of different counts for the five control items,
estimated from the item count question in the Euro-Justis survey. The table shows estimates under
different model assumptions for the control items.

Model for the control counts Z
Estimator Conditional Count
(model for Z) on Y ? 0 1 2 3 4 5 π̂y p (χ2)∗ AIC

Moment-based Y = 0 .24 .39 .22 .11 .04 .01
Y = 1 −.27 .62 −.10 .21 .25 .29 .026 — —

Multinomial Y = 0 .24 .39 .22 .11 .04 .01

logistic Y = 1 .00 .50 .00 .16 .17 .18 .041 .91† 7280

Independent .24 .39 .21 .10 .04 .02 .123 < .001 7291

Ordinal Y = 0 .23 .39 .23 .11 .04 .01
logistic Y = 1 .00 .02 .05 .14 .36 .43 .017 .67 7278

Independent .24 .39 .21 .10 .04 .02 .123 < .001 7291

Beta- Y = 0 .25 .38 .25 .10 .02 .00
binomial Y = 1 .00 .04 .15 .30 .34 .16 .064 .005 7290

Independent .27 .33 .24 .12 .04 .01 .144 < .001 7353

Binomial Y = 0 .25 .40 .26 .08 .01 .00
logistic Y = 1 .01 .05 .18 .34 .31 .16 .087 .003 7291

Independent .21 .38 .28 .11 .02 .00 .149 < .001 7509

* p-value for a χ2 test of goodness of fit compared to the observed counts shown in Table 1.
† With 2 degrees of freedom, allowing post hoc for the two estimated probabilities of 0.

Table 4. Regression models for the item count question in the Euro-Justis survey. The
table shows estimated coefficients and (in parentheses) their standard errors for binary
logistic models for having bought stolen goods in the past 12 months, and for ordinal logistic
models for the total count of the control items.

Model 1 Model 2 Model 3 Model 4

Model for sensitive item Y (buying stolen goods):

Constant −2.97 −3.11 −3.82 −4.72
Age −0.01 (0.01) −0.01 (0.01)
Morality 2.23 (0.95) 1.72 (1.48) 0.71 (0.64) 2.87 (1.90)
Need 1.05 (1.04) 1.60 (1.21) 2.22 (0.86) 3.41 (1.34)
Morality*Need −2.58 (2.16)

Model for the total Z of the control items:

Age −0.02 (0.00) −0.02 (0.00) −0.02 (0.00) −0.02 (0.00)
Morality −0.17 (0.16) −0.28 (0.32)
Need −1.38 (0.16) −1.60 (0.28) −1.71 (0.21) −1.72 (0.20)
Y 0.99 (0.40) 1.11 (0.42) 0.99 (0.38)

Log-likelihood −3226.5 −3222.5 −3223.8 −3223.1

The constant terms for every model for Z are approximately (−3.1,−1.2, 0.1, 1.2, 2.4).
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In Table 4 we turn to regression modelling of the item count question. The first anal-
yses have given us some reason to approach this with caution, as the apparent association
between the sensitive and control items will reduce the available information, and as there
is some indication of noncompliance by respondents. However, it is still of interest to see
what the item count question can reveal about associations between explanatory variables
and self-reported criminal behaviour.

We consider two substantively interesting explanatory variables, the respondents’ judge-
ment of the moral acceptability of buying stolen goods and their self-reported economic
circumstances. The motivation and definitions of these variables were given in Section 2.
The respondent’s age in years is also included as a control variable. For the control items
we use an ordinal logistic model. This provides flexibility for the choice of the distribution
by treating it as multinomial, but is more parsimomious than a multinomial logistic model
in how the effects of the explanatory variables are specified.

Estimates for four models are shown in Table 4. Models 1 and 2 include all three ex-
planatory variables in the models for both Y and Z. They differ in that in Model 1 the
outcomes Y and Z are conditionally independent given the predictors, while in Model 2
Z depends also on the main effect of Y as an additional explanatory variable (the model
with interactions between Y and the other predictors was not significantly different from
this). The difference between these models is statistically significant, so the previous con-
clusion that Y is significantly associated with Z holds even after controlling for the three
explanatory variables. Comparison of the estimated coefficients and their standard errors
between these two models shows clearly that conclusions about the model of interest may
be strongly affected by whether or not an association between Z and Y is included, and
that uncertainties are substantially increased if it needs to be included.

In Model 3 we remove two explanatory variables from Model 2, age from the model for
Y and moral judgement from the model for Z. Neither is significant in Model 2, and for the
morality variable there is also no substantive motivation for considering it as a predictor
for the control items. In this model, the associations involving Z are strongly significant
and substantially sensible. They indicate that older people and people who are struggling
on their present income tend to have engaged in fewer of the activities on the control list.
The effect of Y is that people who have bought stolen goods tend to report higher totals
for the control items. As discussed in Section 4, a possible substantive explanation of this
involves the control item on having been a victim of crime.

The model of interest in Model 3 includes moral judgement and financial need as ex-
planatory variables. These are taken to represent aspects of normative and instrumental
motivations of criminal behaviour respectively. Their estimated effects are in expected di-
rections: respondents who have a higher need are more likely to have bought stolen goods,
as are people who do not regard such action as morally wrong. The coefficient of moral
judgement is not significant, but that of financial need is. For at least one explanatory vari-
able the item count has thus provided enough information for us to be able detect a positive
association between it and the sensitive item, separate from its (negative) association with
the control items.

Finally, in Model 4 we examine the last substantive hypothesis discussed in Section 2,
that of an interaction between morality and need. The point estimate of this interaction
is negative. This would be an intriguing conclusion in that it would suggest that moral
judgement makes a difference only when need is low, and need only makes a difference
when an act is judged immoral in general — which would be the exact opposite of the
hypothesis proposed by Kroneberg et al. (2010). However, the interaction is clearly not
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significant so no firm conclusions should be drawn. It is apparent that estimating such an
interaction represents a bridge too far in what the information from these item count data
can reliably support.

6. Conclusions

The item count method is a valuable and increasingly commonly used addition to the
methodology of asking sensitive survey questions. It has some definite advantages over
both direct questioning and other randomized response methods. Statistical analysis of
item count data can be implemented elegantly and efficiently with methods for categorical
data analysis for incomplete data. We illustrated this in our application, where substantively
plausible models for illegal behaviour were obtained.

The method also has its disadvantages and peculiar methodological challenges. Most of
these stem from the distinctive feature of an item count question, which is the list of the
control items. Even though these items are of no direct substantive interest themselves,
careful attention must be paid to them so as not to compromise information about the
sensitive item of interest. We have argued that at the analysis stage sufficiently flexible
model specification for the total of the control items is crucial, in particular that it should
usually be treated as multinomially distributed.

Most of the effort and ingenuity in the design of an item count question should also
be devoted to the control items. For validity, responses to them should not be affected by
the presence of the sensitive item on the list or to give respondents reasons to lie about it,
and for efficiency the control items should ideally be independent of the sensitive item. At
the design stage it is not easy to be confident that these conditions will be satisfied. At
the analysis stage, failures of them cannot always be detected and even when they can, are
typically not correctable.

All of this makes for a substantial challenge for designers of surveys on sensitive topics,
and one which will no doubt generate much future research. One practical recommendation
that it suggests is that we should aim to build up a body of knowledge about specific item
count questions, so that control items which have been found to work well in the past could
be used again, even in item count surveys of different sensitive topics.
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A. Details of models for the control items

The model expressions in Section 3 involve probabilities of the form pzi = P (Zi = zi|Yi =
yi,xzi;ψ) for observations i, for different values of zi and yi. We obtain them by specifying
a model for πzij = P (Zi = j|Y = yi,xzi;ψ), for all j = 0, 1, . . . , J . Defining δij for

j = 0, . . . , J such that δij = 1 if zi = j and δij = 0, we have pzi =
∑J

j=0 δijπzij . We denote
by vi the vector of functions of yi and xzi, possibly including interactions between them,
which enters into the linear predictor of the model. Let V1 and V0 denote the matrices
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whose rows are vi for the first and last n observations of the pseudo-data respectively, where
yi = 1 and yi = 0 respectively, and let V = [V′

1 V′
0]

′.
We also need to define the quantities that depend on the model for Zi and that appear

in the estimation procedure described in Section 3.1. These include the matrix in (11) and
D1, D0, D1(t) and D0(t) in (10) and (12). For the latter, we give the formulas for D1,
where zi = z∗i = si − ti and yi = y∗i = 1 for the first n rows of the pseudo-data, vi are the
rows of V1 and all the probabilities are calculated at parameter value ψ. The forms of the
other three matrices are similar, except that for D0 and D0(t) the data are zi = z∗i = si,
yi = y∗i = 0 and V0 for the last n rows of the pseudo-data, and that for D1(t) and D0(t)

the parameters are set at ψ(t).
Below we define these quantities for four different models.

A.1. Binomial logistic model
Here Zi follows a binomial distribution with index J and probability γi = [1+exp(−v′

iψ)]
−1.

Then πzij =
(
J
j

)
γji (1 − γi)

(J−j). Let γ∗i be γi for the observations i = 1, . . . ,m of the

pseudo-data, evaluated at ψ. Then D1 = diag[z∗i − Jγ∗i ]V1 for i = 1, . . . , n, and (11) is
∂2Q(θ|θ(t))/∂ψ∂ψ′ = −V′ diag[J w∗

i(t)γ
∗
i (1− γ∗i )]V for i = 1, . . . ,m.

A.2. Beta-binomial logistic model
We specify the beta-binomial model as in Prentice (1986). Let γi = [1 + exp(−v′

iψγ)]
−1 as

for the binomial logistic model, and let ρ denote the intraclass correlation. For simplicity
we consider here only models where ρ is a constant, but this can easily be generalised. Then
ψ = (ψ′

γ , ρ)
′ and

πzij =

(
J

j

) ∏j−1
l=0 (γi + τl)

∏J−j−1
l=0 (1− γi + τl)∏J−1

l=0 (1 + τl)

where τ = ρ(1 − ρ)−1. Here any product with upper limit of −1 is taken to be 1,
and any such sum is taken to be 0. Let γ∗i be γi for the observations i = 1, . . . ,m
of the pseudo-data, evaluated at ψ. Then D1 =

[
diag(ai)V1 diag(bi)(1 − ρ)−21

]
where

ai =
[∑z∗

i −1
l=0 (γ∗i + τl)−1 −∑J−z∗

i −1
l=0 (1− γ∗i + τl)−1

]
γ∗i (1 − γ∗i ) and bi =

∑z∗
i −1

l=0 l(γ∗i +

τl)−1 +
∑J−z∗

i −1
l=0 l(1 − γ∗i + τl)−1 − ∑J−1

l=0 l(1 + τl)−1 for i = 1, . . . , n. The elements of
∂2Q(θ|θ(t))/∂ψ∂ψ′ are ∂2Q(θ|θ(t))/∂ψγ∂ψγ

′ = V′diag(w∗
i(t)ci)V, ∂2Q(θ|θ(t))/∂ψγ∂ρ =

V′diag(w∗
i(t)(1−ρ)−2di)1 and ∂2Q(θ|θ(t))/∂ρ2 = 1′diag(w∗

i(t)(1−ρ)−3ei)1 for i = 1, . . . ,m,
where

ci = −
⎡⎣z∗

i −1∑
l=0

(γ∗i + τl)−2 +

J−z∗
i −1∑

l=0

(1− γ∗i + τl)−2

⎤⎦ [γ∗i (1− γ∗i )]
2
+ ai (1− 2γ∗i ),

di =

⎡⎣− z∗
i −1∑
l=0

l(γ∗i + τl)−2 +

J−z∗
i −1∑

l=0

l(1− γ∗i + τl)−2

⎤⎦ γ∗i (1− γ∗i ) and

ei =

⎡⎣− z∗
i −1∑
l=0

l2(γ∗i + τl)−2 −
J−z∗

i −1∑
l=0

l2(1− γ∗i + τl)−2 +

J−1∑
l=0

l2(1 + τl)−2

⎤⎦ (1− ρ)−1 + 2bi.
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A.3. Multinomial logistic model
Here Zi follows a multinomial distribution with index 1 and probabilities πzij = exp(v′

iψj)[1+∑J
l=1 exp(v

′
iψl)]

−1 for j = 1, . . . , J and πzi0 = 1 −∑J
j=1 πzij , so that ψ = (ψ′

1, . . . ,ψ
′
J )

′.
Let π∗

zij be πzij for the observations i = 1, . . . ,m of the pseudo-data, evaluated at ψ, and
define, for i = 1, . . . ,m, δ∗ij = 1 if z∗i = 1 and δ∗ij = 0 othewise. Then

D1 = [diag(δ∗i1 − π∗
zi1)V1 . . . diag(δ

∗
iJ − π∗

ziJ )V1]

for i = 1, . . . , n, and (11) is

∂2Q(θ|θ(t))
∂ψ∂ψ′ = −

⎡⎢⎣V
′diag(w∗

i(t)π
∗
zi1)V . . . 0

...
. . .

...
0 . . . V′diag(w∗

i(t)π
∗
ziJ )V

⎤⎥⎦

+

⎡⎢⎣V
′diag(w∗

i(t)π
∗
zi1π

∗
zi1)V . . . V′diag(w∗

i(t)π
∗
zi1π

∗
ziJ )V

...
. . .

...
V′diag(w∗

i(t)π
∗
ziJπ

∗
zi1)V . . . V′diag(w∗

i(t)π
∗
ziJπ

∗
ziJ )V

⎤⎥⎦
for i = 1, . . . ,m.

A.4. Ordinal logistic model
Redefine vi by omitting its first element which corresponds to the constant term of the
model, and let vij = (d′

j ,−v′
i)

′ for j = 0, . . . , J − 1, where di is a J-vector of 0s, ex-
cept for a 1 as its (j + 1)th element, and let vi,−1 and viJ be vectors of 0s. Let ψ =
(ψ00, . . . , ψ0,J−1,ψ

′
v)

′. Here Zi follows a multinomial distribution with index 1 and prob-
abilities πzij = αij − αi,j−1 for j = 0, . . . , J , where αi,−1 = 0, αiJ = 1 and αij =
{1 + exp(−v′

ijψ)}−1 = {1 + exp(−[ψ0j − v′
jψv])}−1 for j = 0, . . . , J − 1. Let V(j) and

V(j−1) be matrices whose rows i = 1, . . . ,m are vij and vi,j−1 respectively when z∗i = j,
and let V1(j) and V1(j−1) be the first n rows of these matrices respectively. Let αiz = αij

and αi,z−1 = αi,j−1 when z∗i = j. Then D1 = diag(αiz(1−αiz)/p
∗
zi)V1(j)−diag(αi,z−1(1−

αi,z−1)/p
∗
zi)V1(j−1) and (11) is given byV′

(j)diag(ai)V(j)+V′
(j)diag(bi)V(j−1)+V′

(j−1)diag(bi)V(j)−
V′

(j−1)diag(ci)V(j−1) where ai = w∗
i(t)αiz(1−αiz)[(1− 2αiz)p

∗
zi −αiz(1−αiz)]/(p

∗
zi)

2, bi =

w∗
i(t)αiz(1−αiz)αi,z−1(1−αi,z−1)/(p

∗
zi)

2, and ci = w∗
i(t)αi,z−1(1−αi,z−1)[(1−2αi,z−1)p

∗
zi+

αi,z−1(1− αi,z−1)]/(p
∗
zi)

2 for i = 1, . . . ,m.
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