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Abstract

Market liquidity is typically characterized by a number of ad hoc metrics, such
as depth (or market impact), volume, intermediation costs (such as breadth)
etc. No general coherent definition seems to exist, and few attempts have
been made to justify the existing metrics on welfare grounds. In this paper we
propose a welfare-based definition of liquidity and characterize its relationship
with the usual proxies. The model on which the welfare analysis rests is an
equilibrium model with multiple assets and restricted investor participation.
Strategic intermediaries pursue profit opportunities by providing intermedia-
tion services (i.e. “liquidity”) in exchange for an endogenous fee. Our model
is well suited to study the contagion-like effects of liquidity shocks. We also
consider the case in which intermediaries can optimally design securities.

Journal of Economic Literature classification numbers: G10, G20, D52, D53.
Keywords: Liquidity, intermediation, arbitrage, restricted participation, con-
tagion, market microstructure.
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1 Introduction

Liquidity has long been a puzzle to financial economists. Given the myriad connota-
tions of “market liquidity,”, it is a bit odd that more attempts have not been made to
analyze and reconcile the various aspects of liquidity within one equilibrium model.
Some well-known attributes of liquidity are depth (the market impact of a trade),
breadth (the size of bid-ask spreads, also referred to as tightness), volume, as well as
timeliness and ease of execution. Rather than define liquidity by its attributes, we
define liquidity by the underlying function that gives rise to those attributes. While
any one model may be too specialized to capture all, or even many, of the salient
features, we believe that a general equilibrium model such as the one proposed here
may help to guide our intuition as to which features of liquidity are worthy of anal-
ysis. Indeed, since most papers on market liquidity are partial equilibrium models
or partial equilibrium empirical studies, it has not been obvious why the focus has
been on one or the other asset or one or the other measure of liquidity. It also is not
clear whether such proxies are in fact exogenous.

We believe that the study of liquidity needs to ultimately be unambiguously
grounded in a general equilibrium welfare analysis. Liquidity affects trades, which
then may affect depth, tightness and timeliness, which in turn affect liquidity and
welfare. In order to find a metric that is at the same time intuitive and welfare-based,
one does need to resort to a realistic general equilibrium model with liquidity de-
manders and liquidity suppliers. In this paper liquidity is provided both by investors
and by financial intermediaries. We explicitly model the objectives of intermediaries
and we view their profits as being part of the social welfare function. We agree with
Dewatripont and Tirole (1993) when they say:

The behavior of financial intermediaries . . . largely determines the liquid-
ity of financial markets. . . . A more complete understanding of financial
markets should thus explicitly integrate financial intermediation.

Within this setup, the current paper introduces and defends a particular liquidity
metric and shows that there is an unambiguous relationship with the attributes of
liquidity and welfare. The metric proposed is not model-dependent, but its prop-
erties of course will be. Roughly, liquidity is defined here as the gains from trade
achieved in equilibrium. This liquidity metric is therefore not foremost a measure of
how quickly and cheaply a particular market order is executed. It is a measure of
the ease of trade perhaps of one asset or another, but mostly it measures the ease
with which interpersonal gains from trade can be realized. In this sense, markets
may be very liquid, allowing welfare relevant trades to happen at low cost, and yet
some asset markets may have large bid-ask spreads or low depth. These particular
markets may therefore be rather irrelevant from a welfare point of view, and should
not affect the overall liquidity measure much. We are also concerned in this paper
with the contagion effects of liquidity. Our model lends itself directly to study how
in equilibrium a liquidity shock in one sector of the economy is transmitted by inter-
mediaries to other sectors, and which markets bear the brunt of the shock. We also
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find a feedback effect through which a detrimental liquidity shock lowers the number
of intermediaries which in turn lowers liquidity and so on.

To make room for liquidity-providing intermediaries, we model asset markets as
segmented. While there are assets that each given group of investors can trade among
themselves, some trades with other groups of investors require the intervention of in-
termediaries. As an obvious example we can cite the fact that buyers and sellers of
more exotic financial instruments rely on inter-dealer brokers to facilitate liquidity
by gathering pricing information and identifying counterparties with reciprocal in-
terests. As in the real world, intermediaries are modeled as larger, strategic entities
maximizing trading profits, given the trades of other intermediaries. Asset prices
and bid-ask spreads are determined endogenously at a Nash equilibrium. Since we
allow entry into the intermediation sector to be unrestricted, but costly, the number
of arbitrageurs is endogenous within the model. In other words, liquidity depends
on the number of intermediaries, and the number of intermediaries depends on the
liquidity. Liquidity in our model can therefore be thought of as provided partly
by the endogenous number of intermediaries (“across markets liquidity” in O’Hara
(1995)) and partly through direct centralized trading in markets (“within markets
liquidity” in O’Hara (1995)). This also contrasts with many market microstructure
studies where all trades must pass through market makers. When linking liquidity to
welfare, the endogenous transaction costs are not viewed as deadweight costs; they
are rather viewed as forming the intermediaries’ profits, which need to be accounted
for in any welfare analysis,

In order to keep the model tractable, we abstract from some attributes of liquidity.
In particular, we chose to study an economy with only two dates, so that the aspect
of liquidity as the price of immediacy an investor needs to pay to an intermediary in
order to transact now rather than later (as in Grossman and Miller (1988)) cannot
be captured. Nor can we capture resiliency, the tendency that order flows do or do
not have to induce return reversals. A second simplifying assumption imposed in
this paper is that information is symmetric.

Related Literature. There are many categories of papers studying market liquidity
directly or indirectly, with different foci. Hodrick and Moulton (2003) illustrate some
of these categories in a simple reduced form model. However, we are not aware of
any papers that define the “extent of liquidity” via an explicit metric that itself has a
clear welfare meaning, or that contrast this definition with the different attributes of
“liquidity,” such as depth, bid-ask spreads, transaction costs, immediacy services and
the like. Grossman and Stiglitz (1980) directly assume exogenous liquidity trades,
rather than liquidity shocks (idiosyncratic shocks to endowments or preferences)
that may give rise to optimal liquidity trades. This is also the case in the models of
Kyle (1985) and Glosten and Milgrom (1985) and in much of the ensuing literature
on market microstructure. A number of papers, following Diamond and Verecchia
(1981), have taken this further and study how different specifications of “liquidity
shocks” translate into optimal trades and equilibrium outcomes. Financial contagion
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has been studied by Allen and Gale (2000), Freixas et al. (2000), Fernando (2003),
and Gromb and Vayanos (2007), among others.

Traditionally, liquidity has been studied mostly in single-asset models, with little
attention given to multi-asset liquidity, common factors, liquidity substitutes and so
forth (Chordia et al. (2000) can be consulted for the relevant references on single-asset
microstructure papers). Recently, however, a few empirical market microstructure
papers have started to address this omission, among them Chordia et al. (2000),
Hasbrouck and Seppi (2001) and Huberman and Halka (2001). As far as theoretical
modeling of multi-asset liquidity is concerned, less work has been done, be it in
market microstructure or otherwise. Fernando (2003) models “liquidity shocks” as
non-informative additive shocks that affect investors’ marginal valuations of risky
assets. Investors are subject to deadweight transaction costs that benefit nobody.
There are no intermediaries in Fernando’s model, so liquidity is supplied directly by
the investors with low marginal valuations. While “liquidity shocks” are specified,
no definition or metric of “liquidity” is proposed. Fernando’s main interests are
the price effects of idiosyncratic versus systematic liquidity shocks as well as how
liquidity shocks to one asset affect prices of other assets.

The paper is organized as follows. In the next section we introduce our definition
of liquidity and outline some of its general properties. We then proceed to analyze
it in detail in the segmented markets setup of Rahi and Zigrand (2007b,a). The
results we need from these papers are summarized in Section 3. Section 4 elaborates
on the role played by intermediaries in the provision of liquidity. In the next few
sections we relate our liquidity measure to depth, bid-ask spreads, individual asset
liquidity, volume, and welfare. In Section 9 we show how our setup can be used to
study contagion. In Section 10 we allow intermediaries to introduce new securities
and analyze the impact on liquidity. Section 11 is devoted to extensions of our main
results. Proofs are collected in the Appendix.

2 Liquidity as Realized Gains from Trade

In this section we shall define what we mean by market liquidity. While there are
many different meanings of liquidity in general, market liquidity is usually associated
with the following attributes:

1. Depth

2. Volume of trade

3. Bid-ask spreads

4. Intermediation and transaction costs (e.g. brokerage fees and the degree of
competition in market making)

These are meant to be proxies for the ease with which agents can execute desirable
trades. We capture this notion of ease of trade directly by defining liquidity as
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“realized gains from trade.” We argue that this metric captures the overall economic
meaning of liquidity, as reflected in welfare. Insofar as the attributes listed above
are not a good proxy for the liquidity measure, they may not be truly economically
relevant.

At the most fundamental level, markets are more liquid the more diverse are the
valuations of agents in the absence of trading. In the extreme case where all agents
have the same no-trade valuations, there are no gains from trade to be realized—
trading volume is zero and markets can be deemed to be completely illiquid. For
example, a situation in which all agents want to be on the same side of a trade, so
that these trades cannot be consummated, is often referred to as a “drying up of
liquidity.”

We formalize this idea in a two-period economy in which assets are traded at date
0 and pay off at date 1. Our measure of liquidity involves a comparison of state-
price deflators. Given a collection of J assets with random payoffs d := (d1, . . . , dJ)
and prices q := (q1, . . . , qJ), a random variable p is called a state-price deflator1 if
qj = E[djp] for every asset j, or more compactly, q = E[dp].

Consider first the benchmark case of a frictionless economy with complete mar-
kets. Let pi be the no-trade valuation of agent i, i.e. the state-price deflator at which
the agent chooses not to trade. Let pW be a Walrasian state-price deflator. Then we
measure the gains from trade of agent i in the equilibrium under consideration by2

νiE[(pi − pW )2], where νi is a preference parameter.3 The corresponding liquidity
measure is

L :=
∑
i

νiE[(pi − pW )2]. (1)

Liquidity thus defined is a measure of the gains from trade realized in equilibrium.
However, there is no sense in which it can reflect bid-ask spreads, transaction costs,
or intermediation costs, as these are absent in a complete-markets economy with no
frictions. Accordingly, we introduce two kinds of market imperfections: incomplete
markets and market segmentation. Agents can trade only a limited number of assets,
and different agents (or groups of agents) have access to different sets of assets. This
provides a role for intermediaries to exploit price differentials across market segments
and in the process to provide liquidity.

We formalize market segmentation as follows. Assets are traded in several loca-
tions or “exchanges.” There are K such exchanges, with Ik investors on exchange
k. We also use K and Ik to denote the set of exchanges and the set of investors
on exchange k,4 i.e. K := {1, . . . , K} and Ik := {1, . . . , Ik}. There are Jk assets
available to agents on k, with the random payoff of a typical asset j denoted by dkj .

1Other terms used in the literature for “state-price deflator” are “state-price density,” “stochastic
discount factor,” and “pricing kernel.”

2We restrict all random variables to lie in the linear space L2 of square-integrable random
variables.

3For simplicity, we restrict ourselves to a single-parameter family of preferences. The precise
meaning of νi will depend on the way preferences are modeled. We do this in the next section.

4Following standard convention, we use the same symbol to denote a set and its cardinality.
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Asset payoffs on exchange k can then be summarized by the random payoff vector
dk := (dk1, . . . , d

k
Jk

).
In general, markets are incomplete on exchange k. The set of marketable payoffs

on exchange k is Mk := {x : x = dk · θ, for some portfolio θ ∈ RJk}. Given the
linear space Mk, a random variable x can be split into a marketable component xMk

and a non-marketable component ε in such a way that the mean-square distance
between x and xMk is minimal. This marketable component xMk is given by the
least-squares regression of x on dk. In other words, there is a unique decomposition
x = xMk + ε, with E[εdk] = 0, and xMk the payoff of a portfolio of the assets dk, such
that E[(xMk − x)2] is minimal. If markets are incomplete on exchange k there are
multiple state price deflators consistent with the same asset prices and payoffs on k.
However, the traded state-price deflator pMk is unique (see Lemma 2.1 below).

In a segmented economy agents can trade among themselves within each seg-
ment, and they can also trade across segments via intermediaries. Regardless of how
intermediation is modeled, there is a natural generalization of the liquidity measure
(1). Consider an equilibrium of the intermediated economy in which a state-price
deflator for exchange k is given by p̂k, k ∈ K. Except in an ideal world of perfect
intermediation, the p̂k’s will typically be different across exchanges. Let pk,i be a
no-trade state-price deflator of the i’th agent on exchange k. Then we define the
liquidity metric for exchange k as

Lk :=
∑
i∈Ik

νk,iE[(pk,i
Mk − p̂kMk)

2], (2)

and the aggregate liquidity measure as

L :=
∑
k∈K

Lk. (3)

In the complete-markets frictionless case, all payoffs are marketable, and p̂k = pW

for all k, so that (3) reduces to (1).
A complete characterization of this liquidity measure, and an analysis of its rela-

tionship to attributes such as trading volume and bid-ask spreads, must await a full
description of the model. At this stage we motivate and describe some of its general
properties that do not depend on the particular way in which equilibrium prices (the
p̂k’s) are determined.

The term E[(pk,i
Mk−p̂kMk)

2] in the definition of liquidity is the mean-square distance

between agent (k, i)’s (traded) valuation pk,i
Mk and the equilibrium (traded) valuation

of exchange k, p̂k
Mk . This has the interpretation of gains from trade reaped by agent

(k, i) constrained by the assets available for trade on k (in particular, if there are no
markets on k, these gains are zero). More generally, we can rely on the work of Chen
and Knez (1995) on market integration to provide a characterization of mean-square
distance between state-price deflators:

Lemma 2.1 Given random variables p and p′, and a marketed subspace M for some
collection of assets, we have:

7



1. pM = p′M if and only if E[dp] = E[dp′], for all payoffs d ∈M .

2.
E[(pM − p′M)2] = max

d:E[(dM )2]=1
[E(dpM)− E(dp′M)]

2

i.e. E[(pM − p′M)2] is the maximal squared pricing error induced by pM and p′M
among payoffs d with E[(dM)2] = 1.

3.
E[(pM − p′M)2] = max

d∈M :E[(d)2]=1
[E(dp)− E(dp′)]

2

i.e. E[(pM − p′M)2] is the maximal squared pricing error induced by p and p′

among marketed payoffs d with E[(d)2] = 1.

The first statement says that two random variables are valid state-price deflators
for a given collection of assets if and only if their marketed components are the same.
Thus our liquidity measure does not depend on which state-price representation is
chosen (i.e. pk,i could be any no-trade state-price deflator for agent (k, i) and p̂k could
be any equilibrium state-price deflator for exchange k). The last two statements
characterize the mean-square distance between the traded state-price deflators pM
and p′M as a bound on the difference in asset valuations induced by them. More
precisely, it is the maximal squared pricing error using p and p′ to price (normalized)
payoffs in M , or alternatively it is the maximal squared pricing error using the traded
state-price deflators themselves to price all (normalized) payoffs, whether marketed
or not.

Liquidity in our setting is provided by both investors and intermediaries. We can
isolate the first component as follows. Let pk be an autarky state-price deflator for
exchange k. In the absence of intermediaries, p̂k = pk, so that liquidity on k is

Lk
∣∣
N=0

=
∑
i∈Ik

νk,iE[(pk,i
Mk − pkMk)

2], (4)

This is the liquidity generated from the batch auction on exchange k, without any
intervention of the intermediaries. It reflects the realized gains from trade of investors
on k from trading among themselves.

For much of this paper we will be studying the case in which intra-exchange liq-
uidity, given by (4), is zero, so that all liquidity is intermediated. This is a special case
of our setup in which all investors within an exchange have the same no-trade valu-
ations, but where endowments, preferences and asset spans differ across exchanges.
We call this economy a clientele economy. In a clientele economy, pk,i = pk, for all
k. Then liquidity on exchange k is

Lk = νkE[(pkMk − p̂kMk)
2],

where νk :=
∑

i∈Ik ν
k,i is the aggregate preference parameter for exchange k. In the

absence of intermediation p̂k = pk and Lk = 0, for all k: markets are completely
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illiquid, as there are no liquidity providers. Liquidity on each exchange is also zero if
the pk’s are all the same, so that there is no reason to trade across exchanges to begin
with (in this case p̂k must be equal to pk for all k, as there are no profit opportunities
for intermediaries).

It has been usual in the literature on liquidity, especially in applied work, to focus
on depth and on spreads. While we will be more precise later on the relationship
between our measure of liquidity and these proxies, a few general remarks are in
order.

Analysis of depths and spreads in individual assets, as has been typical in the
literature, suffers from the usual pitfalls of partial equilibrium analysis. For example,
a particular asset may not be liquid, but substitutes may be liquid enough to make
the overall market liquid. This calls for a global point of view that considers multiple
assets traded in multiple markets. This is what we do in the present paper.

While depths will play a role in our measure of liquidity, we do not equate liq-
uidity with depth. The liquidity aggregate L is intended to be a measure of inside
liquidity. This is in contrast to what could be called outside liquidity, which is the
ease of trade by agents coming from outside the Marshallian demand side, e.g. mar-
ket orders submitted by noise traders. In other words, when we consider the cost
related to the execution of an exogenous market order, we are thinking of liquidity
as perceived by an outside trader whose utility function, endowments and so forth
are not incorporated in the equilibrium demand function. Such outside liquidity is
a direct unambiguous function of depths.

Spreads have been analyzed in the literature by picking a few assets and then
arguing that the spread in these assets is representative of the economy as a whole.
For instance, refer to the excellent monograph by Marston (1995) where the integra-
tion of various national financial markets is measured by the degree of closeness with
which these markets price various money market and fixed-income securities. Our
liquidity metric, on the other hand, leads naturally to a measure of spreads that is a
function of the mean-square distances between the state-price deflators {p̂k}k∈K . The
advantage of such a measure is that it considers willingness to pay directly, rather
than indirectly through proxies computed from a limited number of securities. In the
latter procedure, a judgement must be made as to the most relevant assets or asset
classes to compare. Furthermore, since identical assets, or more generally payoffs,
may not exist on multiple exchanges, one would need to compare substitute assets.
Both points raise a Pandora’s box of judgmental issues which can be avoided entirely
by using state prices instead. As shown in Lemma 2.1, the mean-square distance be-
tween the traded state-price deflators on two exchanges is equal to the bound on the
squared pricing errors in using these state-price deflators to price any (normalized)
payoff, whether marketed or not. In other words, it exactly represents what one
is looking for when computing price differentials, and has the virtue of using and
representing all available information.

That asset-by-asset depth or asset-by-asset bid-ask spreads may have no relation-
ship with liquidity is easy to illustrate. For instance when all exchanges have the

9



same autarky valuations, liquidity as defined is zero, no matter how deep the respec-
tive markets are. An outside market order may have barely any effect on prices, and
yet markets are illiquid since there is no reason to trade within the model. This is
reflected also in zero volume of trade across the exchanges.5 Equally, it is easy to see
that the level of mispricing, e.g. the size of bid-ask spreads, for individual securities
need not have any relationship with the level of overall liquidity. Consider, for the
sake of illustration, an asset with payoff d, E[d] = 0, that is traded on two exchanges,
1 and 2. The mispricing of this asset, given by E[(p̂1 − p̂2)d], may be very low. For
instance it is zero if the covariance between d and p̂1 − p̂2 is zero. Yet markets may
be very illiquid, for instance if there are no intermediaries or if the potential gains
from trade are insignificant. And the same applies to the converse: liquidity may be
relatively high and yet bid-ask spreads for some asset may be large. In other words,
the bid-ask spread for one particular asset may not necessarily provide a reliable
indication as to the level of liquidity in the markets. All information impounded
into the pricing relationships and gathered from the equilibrium actions of all agents
needs to be taken into consideration, as is the case when using state prices.

In summary, market liquidity as we see it is a general snapshot spread, properly
aggregated across all payoffs and all market segments. The apparent drawback of
our definition is that it involves terms, such as autarky state-price deflators, which
are hard to estimate. We shall show in the next few sections, however, that this
criticism is not warranted as a number of observed variables can serve as a proxy for
these unobservable terms.

3 Equilibrium

The definition of liquidity proposed in this paper does not crucially depend on any
particular choice of timing, preferences or endowments, and is therefore of universal
application. However, in order to derive closed form solutions and to relate liquidity
to welfare, a modeling choice must be made. The major difficulty that needs to
be overcome is the fact that strategic intermediaries play a game whose payoffs are
functions of the outcomes of a general equilibrium.

The setup is as in Rahi and Zigrand (2007b,a). In this section we provide a brief
synopsis of the model and the characterization of equilibrium. The reader is referred
to the original papers for proofs and interpretive discussions.

Investor i ∈ Ik on exchange k ∈ K has endowments (ωk,i0 , ωk,i), where ωk,i0 ∈ R is
his endowment at date 0, and ωk,i, a random variable, is his endowment at date 1.
His preferences are given by quasilinear quadratic expected utility

Uk,i(xk,i0 , xk,i) = xk,i0 + E

[
xk,i − 1

2
βk,i(xk,i)2

]
,

5If the market order from the outside liquidity trader does reflect gains from trade, then the
initial model was not a complete characterization of the economy and liquidity in equilibrium is not
zero.
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where xk,i0 ∈ R is consumption at date 0, and xk,i is a random variable representing
consumption at date 1. The coefficient βk,i is positive. Investors are price-taking
and can trade only on their own exchange. It will be useful later to characterize
exchange k in terms of its aggregate preference parameter βk := [

∑
i(β

k,i)−1]−1, and
its aggregate date 1 endowment ωk :=

∑
i ω

k,i. Similarly we define the corresponding
parameters for the entire economy: β := [

∑
k(β

k)−1]−1 and ω :=
∑

k ω
k. We assume

that 1−βω ≥ 0, which says that the representative investor with aggregate preference
parameter β is weakly nonsatiated at the aggregate endowment ω.

In addition to the price-taking investors, there are N arbitrageurs (with the set
of arbitrageurs also denoted by N) who possess the trading technology which allows
them to also trade across exchanges, or in other words, which allows them to act as
intermediaries if they so wish. For simplicity, we assume that arbitrageurs only care
about time zero consumption. They are assumed to be imperfectly competitive in
our model, as they clearly are in actual financial markets. We also assume they have
no endowments, so they can be interpreted as pure intermediaries.

We assume that all random variables (asset payoffs and endowments) have finite
support. Then we can describe the uncertainty by a finite state space S := {1, . . . , S}.

The interaction between price-taking investors and strategic arbitrageurs involves
a Nash equilibrium concept with a Walrasian fringe, pioneered by Gabszewicz and
Vial (1972). Let yk,n be the supply of assets on exchange k by arbitrageur n, and
yk :=

∑
n∈N y

k,n the aggregate arbitrageur supply on exchange k. For given yk, qk(yk)
is the market-clearing asset price vector on exchange k, with the asset demand of
investor i on exchange k denoted by θk,i(qk).

Definition 1 Given an asset structure {dk}k∈K, a Cournot-Walras equilibrium (CWE)
of the economy is an array of asset price functions, asset demand functions, and ar-
bitrageur supplies, {qk : RJk → RJk , θk,i : RJk → RJk , yk,n ∈ RJk}k∈K, i∈Ik, n∈N , such
that

1. Investor optimization: For given qk, θk,i(qk) solves

max
θk,i∈RJk

xk,i0 + E
[
xk,i − βk,i

2
(xk,i)2

]
subject to the budget constraints:

xk,i0 = ωk,i0 − qk · θk,i

xk,i = ωk,i + dk · θk,i.

2. Arbitrageur optimization: For given {qk(yk), {yk,n′}n′ 6=n}k∈K, yk,n solves

max
yk,n∈RJk

∑
k∈K

yk,n · qk
(
yk,n +

∑
n′ 6=n

yk,n
′
)

s.t.
∑
k∈K

dk · yk,n ≤ 0.
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3. Market clearing:
{
qk(yk)

}
k∈K solves∑

i∈Ik
θk,i(qk(yk)) = yk, ∀k ∈ K.

Let pk,i := 1 − βk,iωk,i and pk := 1 − βkωk. This is consistent with our usage of
pk,i and pk in Section 2, as it can be shown that pk,i is a no-trade state-price deflator
for agent (k, i) and pk is an autarky state-price deflator for exchange k. Indeed, for
given arbitrageur supply yk,

qk(yk) = E
[
dk[pk − βk(dk · yk)]

]
. (5)

Thus pk−βk(dk ·yk) is a state-price deflator for exchange k. The autarky state-price
deflator pk is obtained by setting yk = 0.

Proposition 3.1 (Cournot-Walras equilibrium: Rahi and Zigrand (2007b))
There is a unique CWE.6

1. Equilibrium arbitrageur supplies are given by

dk · yk,n =
1

(1 +N)βk
(
pkMk − pAMk

)
, k ∈ K (6)

where pA ≥ 0 is a state-price deflator for the arbitrageurs.

2. Equilibrium asset prices on exchange k are given by q̂k := E[dkp̂k], where

p̂k :=
1

1 +N
pk +

N

1 +N
pA. (7)

Thus p̂k is an equilibrium state-price deflator for exchange k.

3. Aggregate arbitrageur profits originating from exchange k are given by

Φk := q̂k · yk =
N

(1 +N)2βk
E[(pkMk − pAMk)

2]. (8)

4. The equilibrium demands of investors are given by

dk · θk,i =
1

βk,i
(pk,i
Mk − p̂kMk), i ∈ Ik, k ∈ K. (9)

6We should point out some notational differences relative to Rahi and Zigrand (2007b). Here
we denote equilibrium asset prices on exchange k by q̂k instead of qk; the latter notation is reserved
for asset prices in autarky (see Section 6).
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5. The equilibrium utilities of investors are given by

Uk,i = Ūk,i +
1

2
βk,iE[(dk · θk,i)2], i ∈ Ik, k ∈ K, (10)

where Ūk,i is a constant that does not depend on the asset structure or investor
portfolios.

The random variable pA is a state-price deflator for the arbitrageurs in the sense
that it is a state-price deflator, i.e. q̂k = E[dkpA] for all k, and moreover pA(s) is the
arbitrageurs’ marginal shadow value of consumption in state s (formally, pA(s) is the
Lagrange multiplier attached to the arbitrageurs’ no-default constraint in state s).
Note that pA can be chosen not to depend on N .

Given the centrality of the arbitrageur valuation pA, it is important to provide
an explicit characterization of it. To this end, we define a Walrasian equilibrium
with restricted consumption as an equilibrium in which agents can trade any asset
on a centralized exchange, facing a common state-price deflator pRC , but agents on
exchange k can consume claims in Mk only.7 There are no arbitrageurs.

Proposition 3.2 (Arbitrageur valuations: Rahi and Zigrand (2007a) )
Arbitrageur valuations in the CWE coincide with valuations in the Walrasian equilib-
rium with restricted consumption, i.e. pA

Mk = pRC
Mk , for all k. Consequently limN→∞ q̂

k =
E[dkpRC ].

Thus asset prices in the arbitraged economy converge to asset prices in the restricted-
consumption Walrasian equilibrium, as the number of arbitrageurs goes to infinity
(note, that this is an immediate consequence of (7) once it is established that pA

Mk =
pRC
Mk).

8 It is in this sense that arbitrageurs serve to integrate markets.
We obtain a sharper characterization of pA under some restrictions on the asset

structure {dk}k∈K . Let p∗ denote the complete-markets Walrasian state-price deflator
of the entire integrated economy with no participation constraints. It can be shown
that

p∗ =
∑
k∈K

λkpk,

where

λk :=

1
βk∑K
j=1

1
βj

, k ∈ K.

The state-price deflator p∗ reflects the investors’ economy-wide average willingness
to pay, with the willingness to pay on each exchange weighted by its relative depth.

Now consider the following spanning condition:

7See Rahi and Zigrand (2007a) for a formal definition, and also for a discussion of the subtle
difference between this notion of equilibrium and Walrasian equilibrium with restricted participa-
tion. In the latter, agents face a common state-price deflator, but agents on exchange k can trade
claims in Mk only.

8The equilibrium allocation (for investors) in the arbitraged economy also converges to the
restricted-consumption Walrasian equilibrium allocation.
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(S) Either (a) Mk = M , k ∈ K, or (b) pk − p∗ ∈Mk, k ∈ K.

Under S(a) we have an standard incomplete markets economy in which all investors
can trade the same set of payoffs. S(b) is the condition that characterizes an equilib-
rium security design (see Rahi and Zigrand (2007b)). We have the following analogue
of Proposition 3.2:

Proposition 3.3 (Arbitrageur valuations II: Rahi and Zigrand (2007b) )
Suppose condition S holds. Then, arbitrageur valuations in the CWE coincide with
valuations in the complete-markets Walrasian equilibrium, i.e. pA

Mk = p∗
Mk , for all k.

Consequently limN→∞ q̂
k = E[dkp∗].

4 Intermediation and Liquidity

Now that we are armed with a model with a closed form solution of the unique
equilibrium, we can explicitly characterize the properties of the liquidity measure
defined in Section 2. In our model, the natural choice of the preference parameter
νk,i is 1/βk,i. Then the liquidity measure for exchange k is

Lk =
∑
i∈Ik

1

βk,i
E[(pk,i

Mk − p̂kMk)
2], (11)

with economy-wide liquidity

L =
∑
k∈K

Lk. (12)

For a clientele economy (pk,i = pk, all k), liquidity on exchange k is

Lk =
1

βk
E[(pkMk − p̂kMk)

2]. (13)

We shall henceforth restrict ourselves to a clientele economy. The intuition for
the general case where investors can trade among themselves on their own exchange
and also across exchanges via intermediaries is very similar. The only difference is
that, in general, liquidity has two components, one coming from the batch auctions
on individual exchanges and the other one coming from intermediation, as explained
in Section 2. Our primary focus in this paper is on intermediation. The relevant
extensions of the main results to the general case are gathered in Section 11.

So how does intermediation create liquidity? Intermediation does not affect the
spans {Mk}k∈K , as there is no asset with a new dimension of spanning that becomes
available due to pure intermediation.9 What is achieved through intermediation is
that the existing assets can be used more fruitfully. Intermediaries provide liquidity in
the very direct sense of being the counterparties to trades made possible due to their

9The case where intermediaries can issue assets to optimally intermediate is studied in Section
10.
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diverse customer base that reaches across various clienteles. Without intermediaries,
no gains from trade can be reaped.

Thanks to intermediation investors can trade on better terms. Suppose, for exam-
ple, there are two exchanges, 1 and 2, with the same asset structure. Suppose there
is an asset with payoff d for which the autarky price on exchange 1, q1 := E[dp1],
is lower than the autarky price on exchange 2, q2 := E[dp2]. Investors on 1 want to
short the asset, while investors on 2 want to go long. By Proposition 3.3, we can
choose pA = p∗, which is a convex combination of p1 and p2. Hence the arbitrageurs’
valuation of this asset, qA := E[dpA], lies between p1 and p2. In the intermediated
equilibrium, q1 is pushed up and q2 is pulled down (due to (7), p̂k is closer to pA than
is pk, for both exchanges). Intermediaries allow investors on exchange 1 to sell on
better terms, while investors on exchange 2 can buy on better terms, with the spread
narrowing. The welfare of investors increases even though intermediaries take home
some profits.

Notice that liquidity for clientele k is scaled by 1/βk. From (5) it is clear that βk

is the price impact of a unit of arbitrageur trading on exchange k: the state s value
of the state-price deflator pk−βk(dk ·yk) falls by βk for a unit increase in arbitrageur
supply of s-contingent consumption. Thus 1/βk is the depth of exchange k.

The equilibrium arbitrageur supply, given by (6), is very intuitive. Assuming for
the moment that markets are complete on all exchanges, an arbitrageur supplies state
s consumption to those exchanges which value it more than he does (pks − pAs > 0).
How much he supplies to exchange k depends on the size of the mispricing |pks−pAs |, on
the depth 1/βk, with more consumption supplied the deeper the exchange, and finally
on the degree of competition N . If markets are incomplete, however, the difference
between state prices may not be marketable. The arbitrageur would then supply
state-dependent consumption as close to pk−pA as permissible by the available assets
dk. The closest such choice turns out to be the projection (pk− pA)Mk = pk

Mk − pAMk .
The greater the number of arbitrageurs competing for the given opportunities, the
smaller is each arbitrageur’s residual demand, and so the less each one supplies.
In the limiting equilibrium, as N goes to infinity, arbitrageurs virtually disappear
in that individual arbitrageur trades vanish, as does their aggregate consumption,∑

k Φk, and they perform the reallocative job of the Walrasian auctioneer at no cost
to society (as formalized in Proposition 3.2).

Another way to see this is to compare realized and potential gains from trade.
Since arbitrageur valuations are Walrasian (Proposition 3.2), we can define the po-
tentially achievable or total gains from trade as

L :=
∑
k∈K

Lk, (14)

where

Lk :=
1

βk
E[(pkMk − pAMk)

2]. (15)

L measures the gains from trade that can be reaped if the economy moves from the
autarky equilibrium to a perfectly intermediated, Walrasian, equilibrium, with the
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asset spans remaining unchanged. Lk measures the total gains from trade between
k and the rest of the economy. These gains ultimately arise from differences in
preferences (e.g. risk aversion) and endowments. In that sense, one can interpret
date zero as the time when investors learn about their preferences and endowments,
i.e. about their idiosyncratic “liquidity shocks.”

Proposition 4.1 (Competition and liquidity) In a clientele economy,

Lk =

(
N

1 +N

)2

Lk, k ∈ K. (16)

In particular, Lk is strictly increasing in N , Lk = 0 at N = 0, and limN→∞ Lk =

Lk. Consequently, aggregate liquidity L is increasing in N , L = 0 at N = 0, and
limN→∞ L = L.

This result follows from the fact that pk − p̂k = N
1+N

(pk − pA), due to (7). The
expression (16) shows how our liquidity measure captures the general costs of trading
due to the noncompetitive nature of the intermediation business. More competition
improves upon the extent of gains from trade realized in the markets. In the limit
as competition becomes perfect, all potential gains from trade are exploited.

One of the advantages of our setup is that it is straightforward to endogenize the
number of intermediaries as a function of the cost of entry into the intermediation
business. While there are a number of related concepts of entry, the following is
simple and sensible. Suppose each arbitrageur must bear a fixed cost c in order to
set up shop and intermediate across all markets. First we determine the number
of arbitrageurs N ′, not necessarily a natural number, so that each one of the N ′

arbitrageurs makes a profit of 0 after having borne the fixed costs. Using (8), (14)
and (15), N ′ solves

c =
1

N ′

∑
k

Φk(N ′) =
L

(1 +N ′)2
.

Second, this number is rounded down to the nearest natural number:

N = rd
(√

c−1L − 1
)
,

where the operator “rd” rounds the real number in parenthesis down to the next nat-
ural number. In particular, arbitrageurs are allowed to make profits in equilibrium,
but not enough to attract one further arbitrageur. We must have c ≤ L/4 in order
for intermediation to arise. N increases as c falls, with limc→0N =∞.

The assumption of unrestricted but costly entry provides us with a simple proxy
for liquidity:

Proposition 4.2 In a clientele economy,

L =

(
N

1 +N

)2

(1 +N ′)2c, N = rd(N ′).

16



This is immediate from Proposition 4.1. If we ignore integer constraints, then

L = cN2. (17)

With estimates of c and N , an estimate of liquidity is then simply the cost of entry
times the square of the number of intermediaries, or equivalently the total cost borne
by the intermediation sector times the number of intermediaries. Notice that even
though depth is a crucial ingredient in liquidity, it appears only in as far as depth
affects the endogenous number of intermediaries N . An added bonus is that N
is a variable which can in principle be observed directly rather than having to be
estimated.

5 Depth and Spreads

Depth, 1/βk, enters directly into the liquidity measure Lk, as one would expect. It is
constant, and in particular independent of arbitrage trades. This is a very convenient
feature of our model, for it allows us to show the endogenous nature of liquidity, even
though depth is constant.

While depth is constant, the supply of an asset on exchange k has a differential
impact on the prices of other assets on k depending on the payoff structure dk. From
(5),

∂qkj (yk)

∂ykj′
= −βkE[dkjd

k
j′ ]. (18)

The price impact of one unit of trade in asset j′ on exchange k affects those assets
on exchange k most which are closer substitutes in the sense of having a higher
noncentral comovement with j′. For normalized payoffs d, with E[d2], βk measures
the own-price effect.

Since arbitrageur supply is scaled by depth, there is a natural connection between
depth and volume of trade. We will return to this in Section 7 where we discuss the
relationship between volume and liquidity.

Turning now to spreads, we define Sk := E[(p̂k
Mk − pA

Mk)
2] as the generalized

“bid-ask spread” on exchange k. It is the spread between the valuation on k and
the average valuation in the whole economy as measured by pA (which is also the
Walrasian valuation pRC). As the number of arbitrageurs grows without bound, p̂k

converges to pA, so that the spread Sk converges to zero. There is a close relationship
between spreads and liquidity as we have defined them:

Proposition 5.1 (Spreads and liquidity) In a clientele economy,

Lk =
1

βk
N2Sk. (19)
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If the spanning condition S holds, then

Sk = E

(∑
`∈K

λ`(p̂kMk − p̂`Mk)

)2
 (20)

=
1

1 +N
· E

(∑
`∈K

λ`(pkMk − p`Mk)

)2
 . (21)

Under S (for example if the same assets are traded on all exchanges), the spread
Sk is the squared pricing error between k and the rest of the economy, with the
pricing error relative to another exchange being weighted by its relative depth. This
equilibrium spread is in fact the same as the autarky spread scaled by the number
of intermediaries.

6 Individual Asset Liquidity

We have defined liquidity as the overall ease with which gains from trade can be
exploited. In this section we deduce asset-by-asset liquidity measures from the ag-
gregate measure. The main reason for doing so is to be able to contrast our theoretical
results with the existing empirical literature.

Intuitively, the empirical findings of Chordia et al. (2000) that liquidity can be
correlated between certain assets is not surprising from a theoretical point of view.
The assets held or supplied by arbitrageurs all share the characteristic of being
valuable to investors, and those assets will all see higher volumes and liquidity than
the remaining assets. Assets that do not contribute towards the satisfaction of gains
from trade will not see active trading. In other words, from an economic point of
view, the commonality in liquidity is the contribution to a portfolio mimicking the
gains from trade.

Recall that q̂k = E[dkp̂k] is the equilibrium asset price vector on exchange k. We
denote the autarky asset price vector on k by qk := E[dkpk]. We can then formally
disaggregate liquidity Lk into the diverse contributions of the Jk assets on exchange
k as follows:

Lemma 6.1 In a clientele economy,

Lk =
1

βk
bk · (qk − q̂k),

where bk := {bkj}j∈Jk is the regression coefficient of the multiple regression of pk − p̂k
on dk.

The coefficient bkj is the portion of the variation of pk− p̂k in the mimicking portfolio
that is explained by asset j on exchange k. Accordingly we define the liquidity of
this asset as

Lkj :=
1

βk
bkj (q

k
j − q̂kj ),
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so that indeed

Lk =
Jk∑
j=1

Lkj .

Thus the local liquidity of asset j on exchange k equals its depth times the usefulness
of asset j in generating overall gains from trade on k, bkj , times the gains from trade
directly reaped from trading j, qkj − q̂kj , regardless of the indirect gains from trade
reflected in the other assets. The term 1

βk
bkj is in fact equal to θkj , the equilibrium

holding of asset j by clientele k (see Rahi and Zigrand (2007b)). Liquidity of asset
j on exchange k can then be interpreted as follows:

Proposition 6.1 (Individual asset liquidity) In a clientele economy, liquidity of
asset j on exchange k equals the amount of resources saved due to the more favorable
equilibrium asset prices induced by intermediation:

Lkj = θkj (q
k
j − q̂kj ).

Note that Lkj is positive. The equilibrium holding θkj is equal to the arbitrageur
supply ykj . From (18) we can see that the own-price effect of arbitrageur supply is
negative. For example, if ykj > 0, then q̂kj < qkj .

Liquidity therefore has a purely pecuniary interpretation as the additional amount
of time zero consumption investors can enjoy due to more efficient pricing. This
benefit is larger the greater the degree of competition among intermediaries. The
proposition suggests a tight relationship between volume and liquidity, which is the
subject of the next section.

7 Liquidity and Volume

We define the inter-exchange volume originating from exchange k as

Ṽk := E[(dk · yk)2].

Using (6),

Ṽk =

[
N

(1 +N)βk

]2

E[(pkMk − pAMk)
2]. (22)

The following proposition justifies previous empirical work that uses the induced net
volume of intermediated contingent consumption as a proxy for liquidity:

Proposition 7.1 (Volume and liquidity) In a clientele economy, liquidity equals
volume per unit of depth: Lk = βkṼk.

The result follows (15), (16) and (22). This relationship between volume and liquidity
is what intuition would have suggested. For a given volume, more gains from trade
are realized the closer state prices move towards Walrasian ones. State prices do not
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move very much in deep markets. Therefore volume needs to be large relative to
depth to exploit and exhaust gains from trade, which are measured by liquidity. Of
course, volume is itself increasing in depth, and the net effect of depth on liquidity
is positive, indicating that the volume effect of depth dominates the direct depth
effect.

One of the interesting consequences of Proposition 7.1 is that, under the null
hypothesis that the model presented in this paper is an accurate description of ac-
tual markets, one can avoid measuring the multifaceted concept of liquidity directly
and infer its value from observed volume and market depth. In this respect the
overall equilibrium volume of state-contingent consumption implied by the volume
of asset trade does have a fundamental meaning over and above its direct meaning
as a yardstick of how busy markets are. Implicit in the number of transactions are
the motivations that gave rise to those transactions as well as the microstructure
considerations of asset spans and degree of competition in the intermediation sector.
Depth is an important determinant of liquidity, not only because it influences the
equilibrium volume of trade, but also because it scales volume to reflect liquidity.

8 Welfare

Equilibrium welfare of investors is given by (10). In a clientele economy we measure
the welfare of clientele k by Uk :=

∑
i∈Ik U

k,i and economy-wide welfare by U :=∑
k∈K U

k. Using (9) and (10),

Uk = Ūk +
1

2
Lk

and

U = Ū +
1

2
L,

where Ūk :=
∑

i∈Ik Ū
k,i and Ū :=

∑
k∈K Ū

k. Similarly, from (8), (15) and (16), total
arbitrageur profits originating from exchange k are

Φk =
N

(1 +N)2
Lk

=
1

N
Lk, (23)

so that aggregate economy-wide profits are∑
k∈K

Φk =
1

N
L. (24)

This leads us to the following result on the relationship between the various concepts:

Proposition 8.1 (Liquidity, welfare and volume) In a clientele economy, the
following concepts, local as well as global, are isomorphic: liquidity, investor welfare,
profits, social welfare and volume.
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As we have argued in the introduction, we feel that any measure or metric of
market liquidity would have to be tightly related to welfare and profits in order to be
economically meaningful. If the proposed model of intermediation is correct, one can
estimate welfare indirectly from the various depth parameters and from the volume
of trade.

9 Transmission of Liquidity Shocks

We now turn to the study of how liquidity shocks are transmitted across the economy.
Starting from an initial equilibrium, we perturb fundamentals on one of the exchanges
and analyze the economy-wide repurcussions of this local shock. For simplicity, this
is not a temporal shock that could have been anticipated. In this regard we follow
most of the literature on contagion.

In order to simplify the analysis, we shall assume that the spanning condition S
holds. Then we can choose pA = p∗ =

∑
k λ

kpk by Proposition 3.3. We shall also
continue to restrict ourselves to a clientele economy.

We consider a local shock on exchange `. There are a number of ways to model
this shock. The following turns out to be analytically tractable. Consider a shock to
the number of investors I`, while preserving the relative distribution of preferences
and endowments on `, {β`,i, ω`,i}i∈I` . A negative population shock on exchange `
lowers its depth 1/β` while keeping its autarky state-price deflator, p` = 1 − β`ω`,
constant. Consequently p` plays a less prominent role in pA, but without making the
economy more risk averse as would have happened had we simply lowered the depth
of exchange `.

Let

ϑk` :=
E[(pk

Mk − pAMk)(p
`
Mk − pAMk)]

E[(pk
Mk − pAMk)2]

.

Thus ϑk` is the regression coefficient of the (projected) mispricing on exchange `,
p`
Mk − pAMk , on the mispricing on exchange k, pk

Mk − pAMk ; this measure of covariation
is a noncentral “beta” in the language of the CAPM. Ignoring integer constraints on
N , we have the following result:

Proposition 9.1 (Contagion) Consider a clientele economy satisfying the span-
ning condition S. Then the effect on exchange k of a population shock on exchange
` is given by

d logLk

d log I`
= 1k=` − 2λ`ϑk`︸ ︷︷ ︸

d logLk
d log I`

∣∣
N

+
L`

NL
.

Effects can be split into two categories: direct effects for a given N , captured by the
term (1k=` − 2λ`ϑk`), and indirect effects via entry or exit which are represented by
the term L`/(NL).
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Consider first an exchange k 6= `, and suppose N is fixed. The effect on liquidity
on k is −2λ`ϑk`. If ϑk` < 0, exchanges k and ` are complements in the sense that
arbitrageurs tend to buy on one when they are selling to the other, i.e. there is in-
termediated trade between the two exchanges. If exchange ` experiences a reduction
in its investor base, and a consequent deterioration of its depth, these intermediated
trades become less valuable and less plentiful in equilibrium, thus reducing liquidity
on k.

With endogenous N , this effect is exacerbated: fewer investors and lower depth
on ` lead to less trade and to lower liquidity, which in turn leads to lower profits
and thereby to fewer intermediaries, which in turn affects liquidities adversely and
so forth. It is this cascade of deteriorating liquidities that has received significant
attention in the contagion literature. The net effect of this feedback loop is repre-
sented by the term L`/(NL). The effect is more pronounced the larger is the role
of exchange ` in generating trades, as measured by its relative size L`/L, and the
smaller the initial N . A smaller initial N means that the feedback loop of liquidity
on N and again of N on liquidity etc. is stronger as each arbitrageur is more powerful
and holds a larger portfolio the less competition there is.

So far we have assumed k and ` to be complements. On the other hand, if ϑk` > 0,
then valuations on exchanges k and ` are similar in the sense of being on average
on the same side as the economy-wide valuation p∗. The two exchanges therefore
compete for trades, and can be said to be substitutes. In this case, a shallower `
induces intermediaries to migrate to k, thereby increasing liquidity on k, for given
N . The contagion effect operating through a lower N is however the same as in the
case of complementary exchanges.

Finally, consider the effect of a population shock on exchange ` on its own liq-
uidity. For fixed N , this effect is given by (1 − 2λ`). If λ` is small, this has the
straightforward interpretation of the direct loss of liquidity due to the flight of in-
vestors. This is compounded by the consequent flight of intermediaries in the same
way as for the rest of the economy. If λ` is non-negligible, however, there is a coun-
tervailing effect. Indeed, if λ` > 1/2, L` actually increases when the population
on ` falls, for given N . This might at first appear odd, but the effect stems from
the endogenous nature of Walrasian prices. Fewer investors on exchange ` lower the
depth of exchange `, and everything else constant, liquidity is lower. But the smaller
size of this clientele also means that it will now play a less prominent role in the
determination of the economy-wide valuation p∗. The valuation p∗ will become more
dissimilar from p`, thereby increasing the potential gains from trade between ` and
the rest of the economy, stimulating intermediated trades and increasing liquidity
on `. If λ` > 1/2, this effect is strong enough to compensate for the loss of depth,
before accounting for the knock-on effect on the number of intermediaries.

Evidently, in an economy with many exchanges, loss of liquidity is more likely to
go hand in hand with a decline of active investors. But there might be situations
where a dominant exchange optimally limits or rations participants. There may be
situations in which a lower number of investors can sustain a higher level of liquidity,
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or conversely where the arrival of more (identical) investors can hurt local liquidity.
The converse implication is that liquidity can suffer on an exchange that experiences
a rise in its investor population while substitute exchanges at the same time benefit
from higher liquidity. These various examples illustrate that there is a clear liquidity
externality in our economy that can go in either direction.

As an illustration of contagion, one such episode has been documented by Peek
and Rosengren (1997). They study the liquidity shock emanating from Japan at the
end of the 1980s and beginning of the 1990s. While Japan was a major financial
power, it is nevertheless safe to assume that it did not constitute more than half
the world’s financial depth. Given that the flow of capital was from Japan to the
US, Japan and the US were complements and on average assets were cheaper abroad
than in Japan. The adverse shock to Japanese liquidity caused by the drop in IJapan

depresses (and effectively depressed at the time) stock prices in Japan,

∂IJapanqJapan =
N

1 +N

λJapan

IJapan
(qJapan − qλ,Japan)

The authors documented that the result of this Japanese liquidity shock was a sharp
decline in Japanese investment in the US which in turn adversely affected liquidity
in the US, an instance of contagion along the lines suggested by our model.

10 Security Design

In this section we allow the intermediaries to innovate and add assets to the ones
already available for trade on the exchanges. We will see that the optimally innovated
assets not only augment intermediary profits, but also allow a better exploitation of
gains from trade, leading to higher liquidity, volume and welfare.

One might guess that any innovation would lead to more liquid markets. The
reasoning might be as follows: since intermediaries can always choose not to trade
the new assets, volumes, and therefore liquidity, cannot be lower than in the absence
of innovation. The reality is more complicated though, since liquidity as defined
here captures the extent to which markets allow the economy to move closer to the
ideal Walrasian equilibrium for the given asset structure. Since an asset innovation
perturbs the Walrasian equilibrium also (in particular the deflator pA), it is not
necessarily true that pricing at the new equilibrium is closer to the new Walrasian
equilibrium than the old pricing was to the old Walrasian equilibrium. It turns out,
however, that the aforementioned logic is correct if the innovations are optimal for
arbitrageurs.

We have already seen, in Section 3, that there is a unique CWE for any given asset
structure {dk}k∈K . We now allow each arbitrageur to add assets to each exchange
before any trading takes place. This determines a new asset structure {dkinnov}k∈K .
The payoffs of the arbitrageurs in this security design game are the profits they
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earn in the ensuing CWE.10 Which asset(s) would arbitrageurs introduce at a Nash
equilibrium of this game? Rahi and Zigrand (2007b) show that there is a unique
asset added to each exchange (if not already present):

Proposition 10.1 (Optimal innovation: Rahi and Zigrand (2007b))
For a given {dk}k∈K, the asset structure

[dk (pk − p∗)] if pk − p∗ 6∈Mk;

dk if pk − p∗ ∈Mk;

is

1. a minimal optimal asset structure for arbitrageurs; and

2. a minimal Nash equilibrium of the security design game.

The reader is referred to Rahi and Zigrand (2007b) for a proof and a detailed dis-
cussion of this result. The term “minimal” refers to the fact that there are other
optimal (or equilibrium) configurations, but involving more assets—all of these con-
figurations spans an asset structure that is minimal. If there is an innovation cost,
howsoever small, the chosen structure would unambiguously be a minimal one.

Since arbitrageur profits are higher in the post-innovation economy (condition
1 of Proposition 10.1), so is liquidity due to the isomorphism between profits and
liquidity (Proposition 8.1)):

Proposition 10.2 (Innovation and liquidity) In a clientele economy, liquidity
L increases when intermediaries can innovate assets.

A clear distinction needs to be made between local and global liquidity. While
liquidity overall improves with optimal innovation, even though the intermediaries
act strategically, it is also shown in Rahi and Zigrand (2007b) that profits on any
particular exchange may fall. Invoking the isomorphism between local profits and
liquidity (Proposition 8.1), this means that innovation may hurt liquidity on some
exchanges. The intuition goes as follows. If due to the innovation one of the ex-
changes sees decreased volume due to decreased usefulness of trade, then liquidity
falls on that exchange. This occurs for instance if the exchange in question had an
initial asset structure that permitted intermediaries to execute some crucial trades,
say to borrow some state-contingent resources. When intermediaries can innovate
optimally, they build such trades into the assets they innovate, thereby reducing the
need to execute the trades on the exchange in question.

10Note that all arbitrageurs are able to trade the assets introduced by any one arbitrageur. Also,
due to the symmetry of the CWE (Proposition 3.1), all arbitrageurs have the same equilibrium
payoff.
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11 Heterogeneous Investors

In this section we allow a diversity of investors within each exchange. Liquidity is
then defined by (11) and (12). Most of our results continue to hold in this more
general setup, but we only mention those extensions which add to our understanding
of liquidity, in particular the relationship between liquidity on the one hand and
volume and welfare on the other.

The volume of trade originating from agent (k, i) is

Vk,i := E[(dk · θk,i)2].

The total volume of trade on exchange k is Vk :=
∑

i∈Ik Vk,i. This contrasts with the

inter-exchange volume originating from exchange k defined above as Ṽk := E[(dk ·
yk)2]. Evidently, Ṽk ≤ Vk since part of the trading volume on k arises from direct
trades among the local investors.

Plugging the expression for dk · θk,i, given by (9), into the definition of volume,
we get

Lk =
∑
i∈Ik

βk,iVk,i.

The intuition is the same as above. Since liquidity also considers the gains from trade
realized from intra-exchange trade, liquidity is related to total volume, not just to
the inter-exchange portion of volume as was the case in a clientele economy.

We now turn to the welfare properties of liquidity. If we give each investor (k, i)
the same welfare weight we see that the results derived above in the clientele case
again hold exactly:

Uk = Ūk +
1

2
Lk

and

U = Ū +
1

2
L.

We now summarize these results:

Proposition 11.1 (Liquidity, welfare and volume: general case) The follow-
ing concepts are isomorphic:

• liquidity, investor welfare and total volume, local as well as global,

• local profits and local inter-exchange volume.

Since arbitrageur profits on exchange k only depend on inter-exchange trade,
the expression for Φk given by (23) is still valid here, i.e. Φk = Lk/N , where Lk is
the liquidity measure for a clientele economy. Thus there is a wedge between the
objectives of arbitrageurs and investors. Investors consider trades among themselves
as valuable, whereas arbitrageurs do not. This will have obvious repercussions if
intermediaries design securities. As shown in Rahi and Zigrand (2007b), while the
designed securities are socially optimal in a clientele economy, this is no longer true
in a more general economy.
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12 Conclusion

In this paper we have attempted to provide an equilibrium notion of liquidity that
encompasses the disparate attributes commonly attached to the word “liquidity”:
depth, ease of trade, volume, low transaction costs and so forth. The definition
provided here is the extent to which gains from trade are realized in equilibrium.
The more gains from trade are realized, the more liquid we call markets. Liquidity
originates both from local batch auctions as well as from intermediation.

This simple definition has a number of pleasant characteristics. We show that
the definition is welfare-grounded: liquidity equals social welfare. But it also pro-
vides a number of operational forms which can in principle be tested and estimated,
and which coincide with some of the intuitive attributes of liquidity. For instance,
liquidity on exchange k is shown to equal volume per unit of depth. Alternatively,
overall liquidity is equal to the total cost of intermediation times the number of inter-
mediaries. Liquidity can also be disaggregated into individual asset liquidity, which
equals the amount of resources saved due to the more favorable asset prices induced
in equilibrium by the intermediaries. Some of the standard liquidity measures, on the
other hand, such as individual asset bid-ask spreads, have only a tenuous connection
to welfare—they fail to take the bigger picture into account wherein investors can
use substitute assets to satisfy their portfolio needs.

Having defined and characterized the relevant concepts, the paper studies the
transmission of liquidity shocks originating in one sector of the economy. The signs
of the “contagion” effects are shown to depend on the degree of substitutability of
exchanges or on the degree of overpricing of the market portfolio, while the intensity
is shown to depend on the number of intermediaries as well as the local depths.

Our analysis also does not require us to assume that assets are exogenously given.
In fact, we show that if intermediaries innovate assets with the sole aim of augmenting
their own private profits, the equilibrium innovation improves liquidity, and therefore
welfare, at least in a clientele economy.
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A Appendix

In the Appendix we adopt matrix notation that simplifies the proofs considerably.
Rather than viewing asset payoffs on exchange k as random variables dk, we stack
them into an S×Jk matrix Rk. The j’th column of Rk corresponds to the j’th asset,
listing its payoffs in each state s ∈ S. In this notation the set of marketable payoffs
Mk is the column space of Rk.

Let πs be the probability of state s, and denote by Π the S × S diagonal matrix
with diagonal elements (π1, . . . , πS). A state-price deflator for (q, R) is a vector
p ∈ RS such that q = R>Πp.11 In other words, it is convenient to think of state-price
deflators as vectors instead of random variables. Similarly, the expression E[xy] can
be written as x>Πy, where the random variables x and y are viewed as vectors in
RS. In our finite-dimensional setting, the inner product space L2 is the space RS

endowed with the inner product 〈x, y〉2 := x>Πy. Then xMk = P kx, where P k is the
orthogonal projection operator in L2 onto Mk, given by the idempotent matrix

P k := Rk(Rk>ΠRk)−1Rk>Π. (25)

An explicit derivation of P k can be found in Rahi and Zigrand (2007b). P k depends
on Rk only through the span Mk. The notation ‖ · ‖2 stands for the L2-norm defined

by ‖x‖2 := (x>Πx)
1
2 , for x ∈ RS.

We now write pk as 1− βkωk, where 1 is the S × 1 vector each element of which
is 1. Liquidity for exchange k, in the general case, is

Lk =
∑
k∈K

1

βk,i
‖P k(pk,i − p̂k‖22.

For a clientele economy,

Lk =
1

βk
‖P k(pk − p̂k‖22.

Proof of Lemma 2.1 Let the asset payoff matrix be R with marketed subspace
M and corresponding projection matrix P .

The first statement says that P (p − p′) = 0 if and only if R>Π(p − p′) = 0. If
P (p−p′) = 0, then R>ΠP (p−p′) = 0. But R>ΠP = R>Π, so that R>Π(p−p′) = 0.
Conversely, R>Π(p− p′) = 0 implies that (p− p′) ∈M⊥. Hence P (p− p′) = 0.

As to the second statement, consider a payoff d, not necessarily in M . The
mispricing of d using Pp versus Pp′ is m(d) := d>ΠP (p − p′). Since ΠP = P>ΠP ,
by the Cauchy-Schwartz inequality we have m(d) ≤ ‖Pd‖2‖P (p − p′)‖2; equality
occurs if and only if Pd and P (p− p′) are collinear. It follows that

‖P (p− p′)‖2 = max
d:‖Pd‖2=1

d>ΠP (p− p′). (26)

11The symbol > denotes “transpose.” We adopt the convention of taking all vectors to be column
vectors by default, unless transposed.
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For the last statement, consider a payoff d ∈ M . Then d = Rθ for some θ ∈ RN .
Using again the fact that R>ΠP = R>Π, we see that m(d) = d>Π(p − p′). Hence,
(26) can be written as

‖P (p− p′)‖2 = max
d∈M :‖d‖2=1

d>Π(p− p′).

Proof of Proposition 5.1 The relationship (19) is immediate from (7) which
implies that pk− p̂k = N(p̂k− pA). If S holds, then we can choose pA = p∗ =

∑
λkpk

by Proposition 3.3. Using (7) once again, it is easy to check that pA =
∑

k λ
kp̂k. This

gives us the first expression for Sk, (20). Another consequence of (7) is p̂k − p̂` =
1

1+N
(pk − p`). This gives us (21).

Proof of Lemma 6.1

Lk =
1

βk
‖P k(pk − p̂k)‖22

=
1

βk
(pk − p̂k)>P k>ΠP k(pk − p̂k)

=
1

βk
(pk − p̂k)>ΠRk(Rk>ΠRk)−1︸ ︷︷ ︸

bk>

Rk>Π(pk − p̂k)︸ ︷︷ ︸
qk−q̂k

.

Proof of Proposition 9.1 In order to calculate the effect of a proportional change
in I`, d log I`, it is convenient to write the population of exchange ` as αI`, with
corresponding depth α/β`, and compute derivatives with respect to α evaluated at
α = 1. Using (16), we can write Lk as a function of α, pA and N :

Lk(α, pA(α), N(α)) =
αk

βk

(
N

1 +N

)2

‖P k(pk − pA)‖22

=
αk

βk

(
N

1 +N

)2

(pk − pA)>ΠP k(pk − pA),

where αk = α for k = `, and αk = 1 for k 6= `. The total derivative of Lk with
respect to α is

dLk

dα
=
∂Lk

∂α
+
∂Lk

∂pA
· pA′(α)︸ ︷︷ ︸

dLk
dα

˛̨̨
N

+
∂Lk

∂N
N ′(α). (27)

Noting that

pA(α) =

α
β`
p` +

∑
k 6=`

1
βk
pk

α
β`

+
∑

k 6=`
1
βk

,
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we have

∂Lk

∂α
= L`1k=`

∂Lk

∂pA
= − 2

βk

(
N

1 +N

)2

ΠP k(pk − pA)

pA
′
(α) = λ`(p` − pA) =

βkλk

β`
(p` − pA),

where all the derivatives are evaluated at α = 1. Hence the effect on Lk for given N
is

dLk

dα

∣∣∣∣
N

= L`1k=` −
2λk

β`

(
N

1 +N

)2

ϕk`, (28)

where
ϕk` := (pk − pA)>ΠP k(p` − pA).

We now solve for N ′(α). With free entry, L = cN2 (equation (17)). Therefore, the
function N(α) is defined by the identity∑

k

Lk(α, pA(α), N(α))− c[N(α)]2 ≡ 0.

Implicit differentiation gives us

N ′(α) =

∑
k
dLk
dα

∣∣∣
N

2cN −
∑

k
∂Lk
∂N

.

Now
∂Lk

∂N
=

2

N(1 +N)
Lk, (29)

so that ∑
k

∂Lk

∂N
=

2

N(1 +N)
L =

2cN

1 +N
,

where we have once again used the result that L = cN2.
Under the spanning condition S, either P k = P or P k(pk − pA) = pk − pA. In

both cases
∑

k λ
kϕk` = 0, since pA = p∗. Therefore, from (28),

∑
k

dLk

dI`

∣∣∣∣
N

= L`.

Altogether, this yields

N ′(α) =
(1 +N)L`

2cN2
=

(1 +N)L`

2L
. (30)
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Substituting (28), (29) and (30) into (27) gives us

dLk

dα
= L`1k=` −

2λk

β`

(
N

1 +N

)2

ϕk` +
LkL`

NL
.

Dividing through by Lk we get the desired result (note that ϑk` = ϕk`

ϕk,k
).
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