

Ron Peretz
Learning cycle length through finite
automata

Article (Published version)

Original citation:
Peretz, Ron Learning cycle length through finite automata. Mathematics of operations research .
ISSN 0364-765X (In Press)

© INFORMS

This version available at: http://eprints.lse.ac.uk/47511/
Available in LSE Research Online: November 2012

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=r.perez@lse.ac.uk
http://mor.journal.informs.org/content/by/year
http://www.informs.org/
http://eprints.lse.ac.uk/47511/

Learning Cycle Length through Finite
Automata

Ron Peretz∗

November 8, 2012

Abstract

We study the space-and-time automaton-complexity of two related
problems concerning the cycle length of a periodic stream of input
bits. One problem is to find the exact cycle length of a periodic
stream of input bits provided that the cycle length is bounded by a
known parameter n. The other problem is to find a large number k
that divides the cycle length. By “large” we mean that there is an
unbounded increasing function f(n), such that either k is greater than
f(n) or k is the exact cycle length.

Our main results include that finding a large divisor of the cycle
length can be solved in deterministic SPACE o(n) and TIME O(n),
whereas finding the exact cycle length cannot be solved in determinis-
tic TIME × SPACE smaller than Ω(n2). Results involving probabilis-
tic automata and applications to rate-distortion theory and repeated
games are also discussed.

1 Introduction

We study two related problems, CYCLE-LENGTH and CYCLE-DIVISOR.
The input of these problems is a periodic stream of bits whose cycle length
is bounded by a known parameter n. In the CYCLE-LENGTH problem

∗Department of Mathematics, London School of Economics, London WC2A 2AE,
United Kingdom. Email: ronprtz@gmail.com.
This work is based on the author’s PhD Thesis done at the Center for the Study of Ra-
tionality, Hebrew University. It was supported in part by grant #212/09 of the Israel
Science Foundation and by the Google Inter-university center for Electronic Markets and
Auctions and by the European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agreement #249159.

1

the output is the exact cycle length. In the CYCLE-DIVISOR problem,
the output is either the exact cycle length or a large divisor of the cycle
length, a number greater than some function of n that diverges to infinity as
n grows. The complexity is measured in terms of the SPACE, the logarithm
of the number of states in an automaton that solves the problem and the
TIME required to reach a terminal state. We also consider the SPACE ×
TIME complexity which is the minimum of the function SPACE·TIME over
all finite automata that solve the problem. We analyze the worst input
against a deterministic automaton, and against a probabilistic automaton (a
probability measure over deterministic automata). In the probabilistic case
we require that the probability of computing a correct output is arbitrarily
close to one.

Our findings can be summarized as follows:

• CYCLE-DIVISOR can be solved in deterministic SPACE o(n), and
TIME O(n).

• CYCLE-LENGTH cannot be solved in deterministic SPACE × TIME
smaller than Ω(n2).

• CYCLE-LENGTH can be solved in probabilistic SPACE o(n), and
TIME O(n).

• CYCLE-LENGTH can be solved in deterministic SPACE O(nL), and
TIME O(n/L), for any positive L ≤ 1.

The above says that CYCLE-DIVISOR is strictly easier than CYCLE-
LENGTH. In fact, our positive results are all reductions to the CYCLE-
DIVISOR problem. Our first theorem provides an upper bound for the de-
terministic complexity of CYCLE-DIVISOR. We don’t know if this bound
is tight. We are also unaware of a better upper bound for probabilistic
CYCLE-DIVISOR.

Section 4 contains an application of the CYCLE-DIVISOR upper bound
to the automaton-complexity of minimal distortion functions, a topic in in-
formation theory. In Section 5 we discuss the motivation behind this work,
repeated games with finite automata.

2 Results

A deterministic finite automaton is a tuple 〈Σ, S, s∗, f,H,O, g〉, where

• Σ is a finite set of two or more elements, the input alphabet;

2

• S is a finite set, the states;

• s∗ ∈ S is the initial state;

• f : S × Σ→ S is the transition function;

• H ⊂ S is the set of terminal states;

• O is the output domain;

• g : H → O is the output function.

Given a sequence of input letters a1, a2, . . ., the run of the automaton is
a sequence of states s1, s2, . . . defined recursively by

s1 = s∗,

st+1 = f(st, at).

We say that an automaton halts at time t given the input a, if t is the first
time the run visits a terminal state. That is, t =
min {t′ : st′ ∈ H}. In this case, we say that, given a, the automaton halts in
t steps outputting g(st).

Let Σ be a finite alphabet. The set of n-periodic sequences is denoted
Σ(n) =

{
(at) ∈ ΣN : ∀t ∈ N at = at+n

}
. The set of periodic sequences whose

cycle length is at most n is denoted Σ(≤n) =
⋃n
k=1 Σ(k). The exact cycle

length of a periodic sequence a, denoted ρ(a), is the smallest integer n such
that a is n-periodic. Formally, for a ∈

⋃∞
k=1 Σ(k), ρ(a) = min

{
k : a ∈ Σ(k)

}
=

gcd
{
k : a ∈ Σ(k)

}
.

We refer to the cardinality of the input alphabet |Σ| as a constant number
in our asymptotic analysis.

Our first theorem provides an upper bound for the complexity of the
CYCLE-DIVISOR problem. This is the main result. Theorems 3, 4 and 8,
as well as the solution to Neyman’s problem in repeated games, involve the
use of Theorem 1.

Theorem 1. There exists a deterministic finite automaton with
2O(
√
n logn) states such that, for any input a ∈ Σ(≤n), the automaton halts

in 2(n +
√
n log n) steps outputting a number k that divides ρ(a), and if

k <
√
n log n, then k = ρ(a).

The next theorem shows that the CYCLE-LENGTH problem is strictly
harder than the CYCLE-DIVISOR problem.

Theorem 2. The deterministic TIME × SPACE complexity of
CYCLE-LENGTH is Ω(n2).

3

Randomization, however, can speed up the solution. For a fixed size
m, a probabilistic finite automaton with m states is a random variable that
assumes values in the class of deterministic finite automata of m states.

Theorem 3. There exists a probabilistic finite automaton with 2O(
√
n logn)

states that finds the exact cycle length in (4 + o(1))n steps with probability
greater than 1− 1

n
.

Finally, we show that the lower bound provided by Theorem 2 is tight up
to a constant factor.

Theorem 4. For every 0 < L ≤ 1 there exists a deterministic finite automa-
ton with 2O(nL) states that finds the exact cycle length in O(n/L) steps.

3 Proofs

We begin with two simple observations that refer to an arbitrary finite al-
phabet Σ.

Claim 5. The number of elements in Σ(≤n) is less than 2 |Σ|n.

Proof.

∣∣Σ(≤n)
∣∣ =

∣∣∣∣∣
n⋃
k=1

Σ(k)

∣∣∣∣∣ ≤
n∑
k=1

∣∣Σ(k)
∣∣ =

n∑
k=1

|Σ|k =
|Σ|
|Σ| − 1

(|Σ|n − 1)

Claim 6. For any finite alphabet Σ, the map a 7→ (a1, . . . , a2n), from Σ(≤n)

to Σ2n, is injective.

Proof. Suppose a, b are in Σ(≤n) and (a1, . . . , a2n) = (b1, . . . , b2n). Let 1 ≤
k ≤ n. If a 6∈ Σ(k), then there exists 1 ≤ i ≤ n such that ai 6= ai+k; so
bi 6= bi+k; so b 6∈ Σ(k). Similarly, if b 6∈ Σ(k) then a 6∈ Σ(k); so ρ(a) = ρ(b).
Since (a1, . . . , aρ(a)) = (b1, . . . , bρ(b)), a = b.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let m = [
√
n log n]. For every input sequence a =

(at)
∞
t=1 ∈ Σ(≤n), we define a set of positive integers T0(a) by

T0(a) =
{
t ≥ 2m : (at−2m+1, . . . , at) 6∈ pref Σ(≤m)

}
,

4

where “pref X” denotes the set of all finite prefixes of sequences in X. Let

t0(a) =

{
minT0(a) if T0(a) 6= ∅,
∞ otherwise.

We use T0 and t0 for T0(a) and t0(a) when it causes no confusion.
Note that T0(a) is a ρ(a)-periodic set. Namely, t ∈ T0(a) iff t + ρ(a) ∈

T0(a), for every t ≥ 2m. Since ρ(a) ≤ n, we have either t0(a) = ∞ or
t0(a) < n + 2m. Note, too, that t0(a) is a stopping time. Namely, the
question if t < t0(a) can be answered by looking at a1, . . . , at.

We describe an automaton 〈Σ, S, s∗, f,H,N, g〉. The states are partitioned
into two disjoint sets S = S1∪̇S2. The states in S1 are visited during time
t < t0 and the states in S2 are visited during time t ≥ t0. Given an input
sequence a, we shall first describe the state visited at any time t, st, as a
function of (a1, . . . , at), and then argue that st is, indeed, a function of st−1

and at.

Before time t0

Define the set of states S1 as follows:

S1 = {(a1, . . . , at) ∈ pref Σ(≤n) :

0 ≤ t ≤ 2n,∀t′ = 2m, . . . , t (at′−2m+1, . . . , at′) ∈ pref Σ(≤m)}.

Note that the set of states S1 consists of all the possible histories that may
occur before time t0(a) and no later than time 2n, for any input a.

The initial state, s∗, is the empty history. The terminal states in S1,
S1∩H, are the histories of length 2n in S1, S1∩Σ2n . For t < min {t0, 2n+ 1},
st = (a1, . . . , at) (here we use that t0 is a stopping time). Obviously, st is a
function of st−1 and at. For s ∈ S1 ∩H, s = (a1, . . . , a2n) ∈ pref Σ(≤n). By
Claim 6, (a1, . . . , a2n) determines a, as a ∈ Σ(≤n). We define g(s) = ρ(a),
and (for completeness only) f(s) = s.

It remains to claim that |S1| = 2O(
√
n logn). We shall prove the following

inequality:
|S1| ≤ 2n |Σ|2mm2n/m (3.1)

To see this, consider an element (a1, . . . , at) ∈ S1. Let l = [t/m]. Let
k1, . . . , kl−1 ≤ m be integers such that (am(i−1)+1, . . . , am(i+1)) ∈ pref Σ(ki).
Note that ki together with (a1, . . . , ami) determines
(a1, . . . , am(i+1)); therefore the entire sequence (a1, . . . , at) is determined by
the following data:

5

• t,

• a1, . . . , am,

• alm+1, . . . , at,

• k1, . . . , kl−1.

Counting the number of possible values for each data item concludes (3.1).

Time t0 until 2n+ 2m

The set of states visited during time t ≥ t0, S2, is defined by

B ={(b1, . . . , bl) ∈ {0, 1}≤2n :

m(i+1)∑
t=mi+1

bt ≤ 1, for every 0 ≤ i < [l/m]},

S2 =Σ2m × Σ2m ×B.

A straightforward calculation shows that |S2| = 2O(
√
n logn).

Assume t0 < ∞. Recall that this means that t0 < n + 2m. We would
like to describe st, for t ≥ t0, as a function of the input sequence (at)

∞
t=1.

Consider the following stationary coding of the input sequence:

bt =

{
1 if (at−2m+1, . . . , at) = (at0−2m+1, . . . , at0),

0 otherwise.

Note that1 there are at least m “zeros” between any two “ones” in (bt)
∞
t=1;

therefore (b2m, . . . , b2n+2m−1) ∈ B.
For t0 ≤ t < 2n+ 2m, st is defined by

st = 〈(at0−2m+1, . . . , at0),

(at−2m+1, . . . , at),

(b2m, . . . , bt)〉

Such a definition allows the automaton to compute the next bit, bt+1, in the
transition from time t to t + 1. Since st is a function of (a1, . . . , at), the
transition from time t0 − 1 to t0 is also well defined.

As a stationary coding of (at)
∞
t=1, ρ(b) divides ρ(a). Since ρ(b) ≤ n

the entire sequence (bt)
∞
t=1 can be deduced from b2m, . . . , b2n+2m−1. At time

2n + 2m − 1 the automaton outputs ρ(b). As mentioned, the sparseness of
(bt)

∞
t=1 guarantees that ρ(b) > m.

1 A (finite) sequence can overlap with itself by a shift of l places iff it is in pref Σ(l).
This brilliant argument was suggested by Prof. Benjamin Weiss.

6

The proof of Theorem 2 relies on a diagonal argument, called the “fooling
set,” commonly used in the theory of communication complexity. See, for
example, [Kushilevitz and Nisan, 1997, p.10]. The proof reduces the well-
studied string equality problem to the CYCLE-LENGTH problem. Conse-
quently, the well-known SPACE × TIME lower bound for string equality
applies here. For completeness, we present a self-contained proof.

Proof of Theorem 2. Assume by negation that there exists an automaton
with 2S states that solves CYCLE-LENGTH in T steps, and that S · T <
1
16
n2. Choose a prime number n/4 ≤ p ≤ n/2. Consider inputs of the form

x, x, . . ., where x ∈ Σp. Any such input yields a sequence of states of the
automaton, s1, . . . , s[T

p
], where sj is the state of the automaton at time pj.

By the pigeonhole principle, there must be two inputs x 6= y that yield the
same sequence of states s1, . . . , s[T

p
]; therefore the sequence x, y, x, y, . . . also

yields s1, s2, This is a contradiction2 since the cycle length of x, x, . . .
differs from the cycle length of x, y, x, y,

In the next proof we use the Rabin-Karp [Karp and Rabin, 1987] hash
function. Although any other hash function could be applied here, the Rabin-
Karp hash function has the advantage that it can be computed incrementally.
This fact simplifies the proof significantly.

Proof of Theorem 3. Assume Σ = {0, 1, . . . , |Σ| − 1}. Let a ∈ Σ(≤n). Let
m = [

√
n log n]. Apply Theorem 1 to find a number k that divides ρ(a) and

if k < m then k = ρ(a). This can be done with 2O(
√
n logn) states in 2(n+m)

steps. If k < m, output k. If k ≥ m, let p be a random prime number, chosen
uniformly from the set of prime numbers between 2 and n3. For t = 1, 2, . . .,
let bt =

∑k
l=1 akt+l |Σ|

k−l. Let ct be the element of {1, . . . , p} congruent to bt
modulo p.

The3 mapping (akt+1, . . . , ak(t+1)) 7→ ct can be computed incrementally
according to the rule

cit = |Σ| ci−1
t + akt+i mod p,

where c0
t = 0 and ct = ckt . Since cit and ct assume values in a set of at most

n3 elements and [n/k] = O(
√
n/ log n), the sequence c1, . . . , c2[n/k] can be

learned with 2O(
√
n logn) states in 2n steps.

2W.l.o.g., the output is given by the state at time T since we may assume that once
the automaton visits a terminal state it stays there forever.

3This is the Rabin-Karp hash function. See [Karp and Rabin, 1987].

7

The number bt encodes akt+1, . . . , ak(t+1); therefore ρ(a) = kρ(b). Ob-
viously, ρ(c)|ρ(b) and ρ(b) ≤ [n/k]; therefore ρ(c) can be deduced from
c1, . . . , c2[n/k]. The automaton outputs kρ(c).

In the event that ∀t, s[bt 6= bs → ct 6= cs], we also have ρ(b)|ρ(c), and
hence ρ(c) = ρ(b), and kρ(c) = ρ(a). It remains to estimate the probability
of this event. The prime numbers theorem4 and the fact that any integer
x > 2 has less than log(x) distinct prime divisors ensures that if bt 6= bs,
then Pr(bt = bs mod p) = O(n−3(log n)2). Since s and t range between 1
and [n/k], Pr(∀t, s[bt 6= bs → ct 6= cs]) = 1−O(n−2 log n).

Proof of Theorem 4. Let a ∈ Σ(≤n) be an input sequence. Letm = [
√
n log n].

Apply Theorem 1 to find a number k that divides ρ(a). If k < m, output
k. Let us assume that k ≥ m and describe, for each possible value of k, an
automaton whose initial state is the state where the automaton of Theorem
1 halts.

For a set A = {α1, . . . , αl} ⊂ {1, . . . , k}, consider the Σl-valued sequence
bA, defined by (bAt)i = akt+αi

. Note that kρ(b{1,...,k}) = ρ(a) and for every
A,B ⊂ {1, . . . , k} ,

ρ(bA∪B) = lcm(ρ(bA), ρ(bB)).

Let l = [kL]. Choose A1, . . . , AdL−1e ⊂ {1, . . . , k}, such that
⋃
iAi =

{1, . . . , k} and |Ai| = l, for every i. Let n′ = k[n/k]. In the first 2n′ steps the
automaton learns the sequence bA1 . This can be done since ρ(bA1) ≤ n′/k,
and the number of states required is 2O(nL). Assume that at time 2n′i the
automaton has learned ρ(bA1∪···∪Ai). In the next 2n′ steps it learns bAi+1

and computes lcm(ρ(bA1∪···∪Ai), ρ(bAi+1)) = ρ(bA1∪···∪Ai+1). In doing so, the
automaton computes ρ(a) = kρ(b{1,...,k}) after 2n′dL−1e steps.

4 Minimum distortion functions

Minimum distortion functions play a role in rate-distortion theory, a branch
of information theory (see [Cover and Thomas, 2006, Ch. 10]). In this sec-
tion we present an application of Theorem 1 to the implementation of mini-
mum distortion functions through finite automata.

4.1 General framework

We describe the general framework of minimum distortion functions. Let
〈Y, d〉 be a metric space, f : Y → Y a function and X a finite subset of Y .

4We only use the fact that the number of primes up to n is Ω(n/ log n).

8

The distortion of f on X is defined by

δX(f) = ‖d(x, f(x))x∈X‖ ,

for some norm on RX (which has to be specified). The rate of f on X is
defined by

RX(f) =
log |f(X)|

log |X|
.

For a fixed rate R, the infimum of δX(f) over all functions f whose rate on
X is at most R defines the distortion-rate function.

Now let {Xn}∞n=1 be a sequence of finite subsets of Y . The distortion-
rate function for a fixed rate R related to this sequence, which with abuse of
notation we denote by just δ(R), is defined by

δ(R) = lim inf
n→∞

inf
f :Y→Y

RXn (f)≤R

δXn(f).

We say that a class C of sequences of functions from Y to Y (equivalently,
functions from Y ×N to Y) obtains the distortion bound on {Xn}∞n=1 at rate
R > 0, if there exist a sequences of functions {fn : Y → Y }∞n=1 ∈ C, such
that RXn(fn) ≤ R and

lim sup
n→∞

δXn(fn) ≤ δ(R).

4.2 Implementation through finite automata

We now turn to discuss a special case of the general framework. The metric
space is the set of periodic sequences of bits Σ(<∞) =

⋃∞
k=1 Σ(k), Σ = {0, 1},

equipped with the Hamming metric

d(a, b) = lim
N→∞

1

N
|{1 ≤ n ≤ N : an 6= bn}| .

We consider two distortion variants defined with different norms. The “worst-
case distortion” uses the ‖·‖∞ norm, and the “average distortion” uses the
(normalized) ‖·‖1 norm. Formally, for a function f : Σ(<∞) → Σ(<∞) and a
finite set X ⊂ Σ(<∞), we define the worst-case distortion of f on X by

δX(f) = max
x∈X

d(x, f(x)),

and the average distortion of f on X by

DX(f) =
1

|X|
∑
x∈X

d(x, f(x)).

9

We consider two sequences of finite sets
{

Σ(n)
}∞
n=1

and
{

Σ(≤n)
}∞
n=1

. It is
shown below that the distortion-rate function remains the same for any one
of the considered sequences of finite sets and distortion variants. Neyman
[Neyman, 2008] has shown that the class of Σ(n) invariant functions that
can be implemented through deterministic finite automata with 2Rn states,
halting in O(n) steps, obtains the distortion bound on

{
Σ(n)

}∞
n=1

at rate R,
for every R > 0, with respect to worst-case distortion. It is also shown in
[Neyman, 2008] that, by enlarging the class of automata to those that halt
in n log n/o(1) steps, the same distortion bound is obtained on the larger
sets

{
Σ(≤n)

}
, but only with respect to average distortion. In Theorem 8 we

show that the former class of functions (linear time automata) obtains the
distortion bound on

{
Σ(≤n)

}∞
n=1

with respect to worst-case distortion.
We prepare the ground for the formal statement of Theorem 8. Through-

out this section we consider automata whose output domain is Σ(<∞). For
such an automaton A and an input sequence a, we denote the output of A
given a by A(a). We denote the number of states in A by |A|. We use the
notation δn, δ≤n and Dn for δΣ(n) , δΣ(≤n) and DΣ(n) , respectively.

Shannon’s entropy is the following function:

H(δ) = −δ log2(δ)− (1− δ) log2(1− δ),

for 0 ≤ δ ≤ 1.
The distortion-rate function δ(R) (in any one of the considered settings)

will later be shown to be the smallest solution of the equation

H(δ) = 1−R,

for 0 ≤ R ≤ 1. At the moment let us consider the above as the definition of
δ(R).

The next proposition says that δ(R) is the (worst-case) distortion-rate
function for

{
Σ(n)

}∞
n=1

and it is obtained by Σ(n) invariant functions.

Proposition 7. For every 0 < R ≤ 1,

δ(R) = lim
n→∞

inf
f :Σ(n)→Σ(<∞)

|f(Σ(n))|≤2Rn

δn(f) (7a)

= lim
n→∞

min
f :Σ(n)→Σ(n)

|f(Σ(n))|≤2Rn

δn(f). (7b)

We can ask ourselves what the automaton complexity of the functions
in Proposition 7 is. Neyman [Neyman, 2008] has shown that these functions
can be implemented through deterministic finite automata of the appropriate
size that halt in linear time.

10

Theorem (Neyman 2008). For every 0 < R ≤ 1, there exist deterministic
finite automata {An}∞n=1 satisfying, for every n,

1. An(Σ(n)) ⊂ Σ(n),

2. |An| ≤ 2Rn,

3. An halts in n steps,

and
δn(An) −−−→

n→∞
δ(R).

We extend the above theorem to the case where the exact cycle length is
unknown.

Theorem 8. For every 0 < R ≤ 1, there exist deterministic finite automata
{An}∞n=1 satisfying, for every m ≤ n,

1. An(Σ(≤m)) ⊂ Σ(≤m),

2. |An| ≤ 2Rn,

3. An halts in 4n+ 2
√
n log n steps,

and
δ≤n(An) −−−→

n→∞
δ(R).

4.3 Proofs

Proposition 7 estimates the minimal number of balls needed to cover the
n-dimensional Hamming space, Σ(n). The balls of radius δ(R) centered at
the points of f(Σ(n)) have to cover Σ(n). The question is how many balls of
radius δ are needed to cover Σ(n) and the answer is 2(1−H(δ))n+o(n).

This kind of problem often appears in the context of information theory.
The only difference from the standard theory is the fact that the center of
the balls need not lie in Σ(n) but rather lies in a larger space, Σ(<∞).

We would like to reduce Proposition 7 to statements about balls centered
in Σ(n). In order to do so we consider the average distortion, Dn(f), which
is, by definition, a lower bound of δn(f). Our plan is to prove the following

11

chain of inequalities:

δ(R)
(i)

≤ lim inf
n→∞

min
f :Σ(n)→Σ(n)

|f(Σ(n))|≤2Rn

Dn(f)

(ii)

≤ lim inf
n→∞

inf
f :Σ(n)→Σ(<∞)

|f(Σ(n))|≤2Rn

Dn(f)

(iii)

≤ lim inf
n→∞

inf
f :Σ(n)→Σ(<∞)

|f(Σ(n))|≤2Rn

δn(f)

(iv)

≤ lim sup
n→∞

min
f :Σ(n)→Σ(n)

|f(Σ(n))|≤2Rn

δn(f)
(v)

≤ δ(R).

Inequalities (iii) and (iv) are obvious. Inequality (ii) stems from the fact that
for every f : Σ(n) → Σ(<∞),

Dn(f) = lim
T→∞

average
a∈Σ(n)

t∈{1,...,T}

1{f(a)t 6=at} = lim
T→∞

average
t∈{1,...,T}

average
a∈Σ(n)

i∈{1,...,n}

1{f(a)t+i 6=at+i}

and for every t ∈ N there exists a (unique) function ft : Σ(n) → Σ(n) that
agrees with f in the coordinates t+ 1, . . . , t+ n; thus,

average
a∈Σ(n)

i∈{1,...,n}

1{f(a)t+i 6=at+i} = Dn(ft) ≥ min
f ′:Σ(n)→Σ(n)

|f ′(Σ(n))|≤2Rn

Dn(f ′).

The inequalities (i) and (v) refer to functions from Σ(n) to Σ(n) or equiva-
lently to ball coverings of Σ(n). Let R : [0, 1

2
]→ [0, 1] be the inverse function

of δ. That is,
R(δ) = 1−H(δ).

By continuity, (i) and (v) are equivalent to the inequalities

lim inf
n→∞

min

{
log2 |F |

n
: F ⊂ Σ(n), average

a∈Σ(n)

d(a, F) ≤ δ

}
(i’)

≥ R(δ)

(v’)

≥ lim sup
n→∞

min

{
log2 |F |

n
: F ⊂ Σ(n), max

a∈Σ(n)
d(a, F) ≤ δ

}
,

for every 0 ≤ δ ≤ 1
2
.

12

For the proof of (i’) and (v’) we will need an estimate of the size of
the Hamming ball of radius δ in Σ(n), Bn(δ) =

∑
0≤k≤δn

(
n
k

)
. The following

asymptotic estimation will suffice (see [Cover and Thomas, 2006, p. 353]):

lim
n→∞

1

n
log2Bn(δ) = H(δ), (4.1)

for every 0 ≤ δ ≤ 1
2
.

In the subsequent proofs of (i’) and (v’) we assume without loss of gen-
erality that 0 < δ < 1

2
. The cases δ = 0 and δ = 1

2
hold trivially.

Proof of (i’). Let

Fn(δ) ∈ arg min

{
log2 |F |

n
: F ⊂ Σ(n), average

a∈Σ(n)

d(a, F) ≤ δ

}
.

Let 0 < ε < 1
2
− δ. Choose a ∈ Σ(n) uniformly at random. On the one hand,

by Markov’s inequality,

Pr(d(a, Fn(δ)) > δ + ε) ≤ δ

δ + ε
≤ 1− ε.

On the other hand,

Pr(d(a, Fn(δ)) ≤ δ + ε) ≤ |Fn(δ)|Bn(δ + ε)

|Σ(n)|
.

Combining the above inequalities gives

|Fn(δ)| ≥
ε
∣∣Σ(n)

∣∣
Bn(δ + ε)

.

By taking log2 of both sides, dividing it by n, letting n grow infinitely and
applying (4.1) we obtain

lim inf
n→∞

log2 |Fn(δ)|
n

≥ R(δ + ε).

The proof is concluded with the observation that the above holds for every
ε > 0 sufficiently small and the function R is continuous.

Proof of (v’). Let mn =
∣∣Σ(n)

∣∣ ln ∣∣Σ(n)
∣∣ /Bn(δ). By (4.1), it is sufficient to

prove the existence of sets Fn(δ) ⊂ Σ(n) of size |Fn(δ)| ≤ mn + 1 such that
d(a, Fn(δ)) ≤ δ, for every a ∈ Σ(n).

13

Let x1, . . . , xdmne be independent random variables that take values uni-
formly in Σ(n) and let Fn(δ) =

{
x1, . . . , xdmne

}
. It suffices to prove that

Pr
(
∃a ∈ Σ(n) d(a, Fn(δ)) > δ

)
< 1.

Using the fact that (1−m−1)m < e−1 for every m ≥ 1, we have

Pr (d(a, Fn(δ) > δ)) ≤
(

1− Bn(δ)

|Σ(n)|

)mn

<
1

|Σ(n)|
,

for every a ∈ Σ(n). Summing over every a ∈ Σ(n) concludes the proofs of (v’)
and Proposition 7.

The first step in the proof of Theorem 8 is a simple generalization of
Neyman’s theorem. Let Xk,n =

⋃
1≤l≤n/k Σ(lk).

Lemma 9. For every 0 < R ≤ 1, there exist deterministic finite automata
{Ak,n}∞k,n=1 satisfying, for every k ≤ n,

1. Ak,n(Σ(lk)) ⊂ Σ(lk), for every 1 ≤ l ≤ [n/k],

2. |Ak,n| ≤ 2Rn,

3. Ak,n halts in 2n steps,

and
δXk,n

(Ak,n) −−−−→
k,n→∞

δ(R).

Proof of Theorem 8 assuming Theorem 1 and Lemma 9. Since the function
δ is continuous, it is sufficient to construct automata {An} with 2Rn+o(n)

states.
We describe An. Consider an input stream a ∈ Σ(≤n). Use the automa-

ton provided by Theorem 1 to compute a number k ≥
√
n log n such that

lcm(k, ρ(a)) ≤ n; hence a ∈ Xk,n. Proceed with the automaton Ak,n provided
by Lemma 9.

The running time is at most 2(n+
√
n log n) + 2n. The number of states

needed is at most 2O(
√
n logn) +n2Rn, counting the states that compute k plus

the states of Ak,n, for every possible value of k.

The proof of Lemma 9 is a simple modification of Neyman’s original proof
[Neyman, 2008, p. 24]. For completeness, we present a self-contained proof.

Proof of Lemma 9. For k ≤ n, we shall first describe the function induced
by Ak,n, and then construct the automaton itself and claim its properties.

Consider a sequence of functions
{
fn : Σ(n) → Σ(n)

}
provided by Propo-

sition 7b. Denote Σ<∞ =
⋃∞
n=0 Σn and define ϕ : Σ<∞ → Σ<∞ by

14

• ϕ(∅) = ∅,

• ϕ(x) = (fn(x, x, . . .)t)
n
t=1, for every n ≥ 1 and x ∈ Σn.

Let L = min {k, [
√
n]} and l = dk/Le. Define k1, . . . , kl by ki = [k/l] +

1{i≤k−l[k/l]}. It should be noted that

• k1 + · · ·+ kl = k and

• L/2 ≤ ki ≤ L, for every i.

For t ∈ Z+, define

r(t) = min {r ∈ Z+ : ∃1 ≤ i ≤ l s.t. t = k1 + · · ·+ ki + r mod k} ,

and

b(t) = max {b ≤ t : ∃1 ≤ i ≤ l s.t. b = k1 + · · ·+ ki mod k} .

Note that, for every t ∈ Z+,

• t = b(t) + r(t),

• r(t) ≤ L,

• b(t+ 1)− b(t) ∈ {0, k1, . . . , kl},

• b(t+ 1) ∈ {b(t), t+ 1}.

We define an operator on infinite sequences:

A : Σ∞ → Σ∞,

A(x1, x2 . . .) = (ϕ(xb(0)+1, . . . , xb(1)), . . . , ϕ(xb(t−1)+1, . . . , ab(t)), . . .).

In other words: A(x) is the concatenation of the finite sequences ϕ(xb(t−1)+1, . . . , ab(t)),
t = 1, 2,

Now we construct the automaton Ak,n = 〈Σ, S, ∅, f,H,Xk,n, g〉, such that
Ak,n(a) = A(a), for every a ∈ Xk,n. Since the function δ is continuous, it is
sufficient to have |Ak,n| = 2Rn+o(n).

The states are finite sequences of bits.

S = {∅} ∪ {(A(a)1, . . . , A(a)b(t), ab(t)+1, . . . , ab(t)+r(t)) :

1 ≤ t ≤ 2k[n/k], a ∈ Xk,n}.

The initial state is the empty sequence,

s∗ = ∅.

15

The terminal states are the longest sequences in S,

H = S ∩ Σ2k[n/k] =
{

(A(a)1, . . . , A(a)2k[n/k]) : a ∈ Xk,n

}
.

The transition function is defined on non-terminal states and input streams
in Xk,n,

f((x1, . . . , xt), a) =

{
(x1, . . . , xt, a), if r(t+ 1) > 0;

(x1, . . . , xb(t), ϕ(xb(t)+1, . . . , xt, a)), if r(t+ 1) = 0.

Note that, for every a ∈ Xk,n and 1 ≤ t ≤ 2k[n/k], the state of the automaton
at time t given a, st(a), is given by the expression in the definition of S,

st(a) = (A(a)1, . . . , A(a)b(t), ab(t)+1, . . . , ab(t)+r(t)).

For completeness, we arbitrarily define the transition in the case that the
above expression does not yield an element of S (it may happen only if
either t ≥ k[n/k] or a 6∈ Xk,n).

For every a ∈ Xk,n, the run of the automaton on a halts in the state
(A(a)1, . . . , A(a)2k[n/k]). The operator A commutes with the k-places shift
operator. Namely, A(x1, x2 . . .)t+k = A(xk+1, xk+2, . . .)t, for every x ∈ Σ∞

and t ∈ N. Therefore, A(Σ(km)) ⊂ Σ(km), for every m ≥ 1. By Claim 6, the
following equation well defines the output function on Xk,n:

g(A(a)1, . . . , A(a)2k[n/k]) = A(a).

For every input stream a,

d(a,A(a)) ≤ max
1≤i≤l
x∈Σki

d(x, ϕ(x)) ≤ sup
m≥L/2

δm(fm) −−−−→
k,n→∞

δ(R).

Since Ak,n(a) = A(a), for every a ∈ Xk,n, we have lim supk,n δXk,n
(Ak,n) ≤

δ(R).
It remains to verify that |S| = 2Rn+o(n). The mapping (x1, . . . , xt) 7→

((x1, . . . , xb(t)), (xb(t)+1, . . . , xt)) maps S into a product of two sets, S1 × S2,
where

S1 = {(A(a)s)
t
s=1 : 0 ≤ t ≤ 2k[n/k], a ∈ Xk,n},

S2 =
L⋃
t=0

Σt.

The cardinality of S2 is
∑L

t=0 |Σ|
t ≤ 2 |Σ|

√
n. Consider the alphabet Γ =[

ϕ(Σk1)× · · · × ϕ(Σkl)
]
. The definition of ϕ ensures that |Γ| ≤ 2Rk. The set

A(Xk,n) maps into Γ(≤[n/k]); therefore |S2| ≤ (2n+1)
∣∣Γ(≤[n/k])

∣∣ ≤ 2Rn+log2 n+3.

16

5 Game theoretic background

In this section we discuss the relevance of our results to the study of repeated
games with finite automata.

Neyman [Neyman, 2008] studies repeated two-person zero-sum games
where each player is restricted to strategies that can be implemented through
finite automata whose size is commonly known. In particular, he focuses on
the case where one of the players is oblivious. An oblivious automaton with
n states is equivalent to a periodic sequence whose cycle length is at most n.
Neyman shows that if player 1 is oblivious and the game is repeated often
enough, the asymptotic value of the game is given by a function v(logn2

n1
),

where ni is the number of states in player i’s automata.
Neyman constructs an automaton for player 2. In the first stage the

automaton probabilistically learns the exact cycle length. In order to succeed
with probability 1 − ε, Neyman’s automaton requires C(ε)n log n steps of
computation. In the second stage the automaton uses the cycle length to
devise5 a number 1� k ≤ n, such that k is a multiple of the cycle length. I.e.,
the input is k-periodic. Using the multiple of the cycle length, the automaton
deterministically computes a “best reply” sequence in O(n) (actually k) steps.

Theorem 8 improves Neyman’s result (in the special case of the matching
pennies game) by showing that the asymptotic value can be obtained using a
deterministic automaton (pure strategy), guaranteeing that the play enters a
cycle within O(n) steps. The first stage in Neyman’s construction is replaced
by the automaton of Theorem 1. The second stage is modified so as to
replace the requirement that k is divisible by the cycle length by the weaker
requirement that the least common multiple of k and the cycle length is at
most n. The requirement that k � 1 remains.

Neyman’s function v is a generalization of the distortion-rate function, δ,
described in Section 4. Proposition 7 says that δ(R) is the asymptotic value
of a repeated matching pennies game in which player 1 chooses a sequence
a ∈ Σ(n) and player 2 chooses a function f : Σ(n) → Σ(n) whose image
contains at most 2Rn points. For a general finite two-person zero-sum game,
the asymptotic value is given by v(R). By appropriately replacing δ(R)
with v(R) in Section 4, one can essentially recover and extend the results
of [Neyman, 2008], showing that a deterministic automaton of 2Rn states
can guarantee a payoff of at most v(R) + o(1), and at the same time make
sure that the play enters a loop in the first (4 + o(1))n steps against any
(≤ n)-periodic sequence of actions of player 1.

5In Neyman’s construction k is at least n/2, but any lower bound that diverges to
infinity as n grows would do. This is what “1� k” means.

17

6 Acknowledgments

We thank Professor Benjamin Weiss for his significant contribution to the
proof of Theorem 1. See footnote 1. The author would like to thank Professor
Michael O. Rabin for a fruitful conversation, Professor Eilon Solan for his
comments, Professor Ehud Lehrer, and last but not least Professor Abraham
Neyman for many helpful comments.

References

[Cover and Thomas, 2006] Cover, T. M. and Thomas, J. A. (2006). Elements
of Information Theory. Wiley Interscience, New York, 2nd edition.

[Karp and Rabin, 1987] Karp, R. M. and Rabin, M. O. (1987). Efficient
randomized pattern-matching algorithms. IBM Journal of Research and
Development, 31(2):249–260.

[Kushilevitz and Nisan, 1997] Kushilevitz, E. and Nisan, N. (1997). Com-
munication Complexity. Cambridge University Press, New York.

[Neyman, 2008] Neyman, A. (2008). Learning effectiveness and memory size.
Discussion Paper 476, Center for the Study of Rationality, Hebrew Uni-
versity, Jerusalem.

18

	Learning cycle length through finite automata(cover)
	Learning Cycle Length through Finite(published)

