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Abstract. This paper sheds new light on the subtle relation between

probability and logic by (i) providing a logical development of Bruno

de Finetti’s conception of events and (ii) suggesting that the subjective

nature of de Finetti’s interpretation of probability emerges in a clearer

form against such a logical background. By making explicit the epis-

temic structure which underlies what we call Choice-based probability we

show that whilst all rational degrees of belief must be probabilities, the

converse doesn’t hold: some probability values don’t represent decision-

relevant quantifications of uncertainty.

1. Introduction and motivation

This paper tackles the question as to whether the measure-theoretic concept

of probability provides a satisfactory quantification of the uncertainty faced

by an idealised “rational” agent who is presented with a well-defined choice

problem. This is one of the most fundamental questions in the field of

uncertain reasoning and as such it has been the focus of heated debates in

various disciplines, from the foundations of probability and economic theory,

to artificial intelligence. We do not aim at reproducing the many facets of

this debate here. However, for the sake of putting our contribution into

perspective, we begin by recalling briefly the relevant (to our purposes)

interpretations of the concept of “probability” and the decision-theoretic

argument supporting its use as a measure of “uncertainty”.1

1.1. Probability and uncertainty. Frequenstist interpretations of proba-

bility take the notion of uncertainty as a primitive, and spell it out through

the concept of random-mass phenomena (Pólya, 1954, Ch 14). The distin-

guishing feature of random-mass phenomena is that they are unpredictable

in specific details, but predictable in the aggregate. A typical example is the

sex ratio of newly born babies. The sex of the next baby to be born at a given

hospital is unpredictable, but the country’s ratio of males to females tends

1For a compact introduction to the interpretations of probability and the justification

of its use in quantifying uncertainty, readers are referred to Williamson (2009).
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to be very stable. The focus on random-mass phenomena leads naturally to

defining probability as a theoretical limiting frequency. Under this interpre-

tation, probability measures uncertainty as an objective, agent-independent,

feature of the world. Subjective interpretations also take uncertainty to be a

primitive notion, but refrain from assuming that uncertainty is an objective

feature of the world. Hence uncertainty emerges as the psychological state

of an agent who is facing a well-defined choice problem, say wether to buy or

not an additional travel insurance prior to flying. Under this interpretation,

probability is justified as a measure of a rational agent’s degrees of belief by

making reference to the agent’s hypothetical choice behaviour (more on this

in the next Section).

Measure-theoretic probability, on the other hand, introduces the concept of

a probability measure from first principles –Kolmogorov’s axioms– which do

not refer directly to any underlying interpretation of uncertainty. Standard

presentations of the subject (like, e.g. Billingsley, 1995; Ash, 1972) take the

probability space Ω to contain all the possible outcomes of some unspecified

experiment or observation, but insist that Ω is nothing but a set of points.

It is therefore immaterial whether subsets of such points are interpreted as

“repetitions” in a random-mass phenomenon (e.g. the sex ratio of newly

born babies) or single cases (e.g. getting ill whilst abroad). This neutrality

to interpretation may naturally suggest that measure-theoretic probability

should be regarded as the unquestionable core of the mathematical rep-

resentation of uncertainty, for it captures what two otherwise orthogonal

interpretations of probability have in common. A consequence of this line of

reasoning would then be that any remaining differences are not really of sub-

stantial consequence, but merely reflect personal philosophical taste. Whilst

a mathematically unified perspective on uncertainty is no doubt appealing,

we do believe that the interpretations of uncertainty are of substantial con-

sequence for our formal models. Hence the main purpose of this paper is to

show that a logical analysis of the foundations leads to discriminating among

formal properties of probability functions as measures of uncertainty. Our

conclusion will be that not all probability functions serve the purposes of

quantifying decision-relevant uncertainty equally well. By articulating this

in detail we will put ourselves in the footsteps of the subjective Bayesian

tradition, especially Bruno de Finetti’s.

From the point of view of de Finetti (1974), measure-theoretic probability

offers no general justification for applying the calculus of probability to rea-

soning about the uncertainty of single, non-repeatable events. In addition,

our ignorance of the boundary conditions of elementary “experiments” or

“observations” make the very notion of a “repeatable event” dubious in the
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least.2 In reaction to this, de Finetti points out that probability need not

arise by making assumptions about the repetition of (independent) events,

but is justified by imposing coherence to the degrees of belief of an agent who

is in a state of uncertainty. Coherence captures all the logico-mathematical

properties –essentially, additivity– that a probability function should satisfy

to allow for an adequate representation of decision-relevant uncertainty, i.e.

rational degrees of belief.3 In short, subjective Bayesianism effectively re-

duces the meaning of probability to rational choice under uncertainty. This

is a central point, which deserves further development.

1.2. De Finetti’s choice problem. Throughout the paper we shall work

with a finite propositional language L. S(L) will denote the set of sentences

recursively built up, as usual, from L.

Suppose Γ ⊆ S(L). De Finetti’s starting point is that (classical) logic can

only help us distinguishing the conclusions which certainly (do not) follow

from Γ from those which Γ licenses as possible. Uncertainty, in this picture,

applies only to the domain of possibility. The quantification of uncertainty

(i.e. the degree of belief that we attach to some relevant possibility being

true) is motivated primarily by our need to make rational decisions in the

face of such possibilities. Take again the travel insurance example. After

careful reflection we all know that we might be in need of medical assistance

abroad and our decision whether to buy the insurance that would cover for

it clearly must depend on our estimate of “how serious” such a possibility

is, for us, in that specific trip, etc..

In an abstract (as we shall shortly see) framework in which rational degrees

of belief are linked seamlessly to decision-making, a blatantly irrational deci-

sion must reveal irrational degrees of belief. This is the fulcrum de Finetti’s

justification for measuring uncertainty with probability, an argument antici-

pated (independently and with important differences) by Borel and Ramsey

and brought to its full-fledged decision-theoretic representation by Savage

(1972). Whilst de Finetti and Savage’s theorems are clearly beyond dis-

pute, the argument which rests on them –often referred to as the Dutch

2In the sex ratio example, for instance, it is very difficult to isolate the appropriate

reference class for the ratio. The fact that we are observing one hospital gives us only

partial information about the population.
3In addition, a simple condition like exchangeability would suffice to recover the math-

ematics of probability which naturally springs out of the frequentist definition. This is, in

a nutshell, the import of de Finetti’s celebrated Representation Theorem – see (Paris and

Vencovská, 2014, Ch 9) for a probability logic version of the result and (Savage, 1972, Ch

4) for its decision-theoretic interpretation.
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Book Argument– is not. To avoid unnecessary confusion, we will now re-

call the details of the set up which leads to identifying rational choice in de

Finetti’s choice problem, with rational degrees of belief. Our presentation

follows closely Paris and Vencovská (2014), whilst making explicit all the

assumptions originally made by de Finetti (1931).

The Argument consists of two parts. The first links the informal notion of

degrees of belief to a numerical representation by identifying degrees of belief

with willingness to bet on a suitably defined problem. The second step is

the (formal) result to the effect that irrational degrees of belief (i.e. those

leading to sure loss in the betting problem) are avoided exactly if degrees of

belief are represented by probabilities.

1.2.1. Belief as willingness to bet. Let θ ∈ S(L), p ∈ [0, 1] and S ∈ R+.

A gamble is a real-valued function on S(L), that is to say a random vari-

able which depends on how the elements of S(L) are decided.4 The choice

between two gambles, F (·), and A(·) will play a central role in what follows.

The choice problem constructed by de Finetti for the purposes of his ar-

gument possesses the structure of a zero-sum game played by Bookmaker

and Gambler. Bookmaker starts by choosing, for each sentence θ in a set

Γ ⊆ S(L), a number p ∈ [0, 1]. Then, for a given sentence θ, Gambler must

choose S ∈ R and one between Fp(θ) and Ap(θ), i.e. whether to “bet For

or Against” θ. This leads to the payoff matrix for Gambler illustrated in

Figure 1, where v(θ) = 1 (resp. v(θ) = 0) denotes the case where θ turns

out to be true (resp. false).

v(θ) = 1 v(θ) = 0

Fp(θ) S(1− p) −Sp
Ap(θ) −S(1− p) Sp

Figure 1. Gambler’s payoff matrix.

Thus Fp(θ) is the payoff that Gambler secures by betting S on θ at “odds”

p. Similarly, Ap(θ) is the payoff for betting S against θ at “odds” p.5

4This might give to some readers the impression of being unnecessarily general. This

worry will be cleared as we keep laying down the details of de Finetti’s choice problem.

Our usage of “gamble” conforms to that of Walley (1991).
5Choosing Fp(θ) means, in the intended interpretation, that Gambler pays out Sp to

Bookmaker. All monies, that is, are exchanged before (in an epistemic sense) the relevant

events in the book are decided. Therefore the intended interpretation of betting here is

that of horse races. We are grateful to Jon Williamson for drawing our attention to this

point.
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Remark 1.1. Note that if Gambler chooses to bet against θ, does so by

paying to Bookmaker the (negative) amount −S, if θ is true. Thus, for

given θ and p the choice between Fp(θ) and Ap(θ) amounts to choosing the

sign of stake S, that is to say the “side” of the bet. Since the combined

value of Fp(θ) and Ap(θ) is 0, Gambler’s choice of a negative S unilaterally

imposes a payoff-swap to Bookmaker.

De Finetti assumes that Bookmaker and Gambler are ‘economically ratio-

nal’, i.e. prefer higher to lower payoffs. In addition they are idealised agents

in the sense of not being subject to computational limitations. Under those

assumptions, the above choice problem is sufficient to reveal an agent’s will-

ingness to bet on θ.

Let p ∈ [0, 1]. Fp(θ) % Ap(θ) abbreviates the expression “Gambler (weakly)

prefers betting on θ to betting against it at odds p”. It is immediate to note

that if p = 0, betting on θ returns Gambler a gain of S if v(θ) = 1 and a

loss of 0 otherwise, so it must be that Fp(θ) % Ap(θ). Similarly, if p = 1,

Gambler will always choose to bet against θ, i.e. Ap(θ) % Fp(θ), for doing

otherwise would violate the assumption that she is ‘economically rational’.

Suppose now 0 ≤ p′ < p ≤ 1 and that Fp(θ) % Ap(θ). Then it must still be

the case that Fp′(θ) % Ap′(θ), for decreasing p can only increase Gambler’s

gain if θ is true, and decrease it otherwise. It follows that the values of p for

which Fp(θ) % Ap(θ) form an initial segment of [0, 1].

Let pθ be the sup of the set {p | Fp(θ) % Ap(θ)}. Note that p is fixed and pθ
can be read intuitively the highest price at which Gambler prefers betting

“on” θ. In other words if Gambler’s confidence in the occurrence of θ is

greater than the price assigned by Bookmaker to θ in the book (i.e. p), then

‘economically rational’ Gambler will bet on θ because it is to her advantage.

But if it is not, then Gambler will certainly find betting against θ to her

advantage. Then we are justified in identifying Gambler’s willingness to bet

on θ with pθ, for

• Fp(θ) % Ap(θ) if p < pθ
• Ap(θ) % Fp(θ) if pθ < p.

In the light of Remark 1.1 it is quite easy to anticipate that the only ‘econom-

ically rational’ solution to the interaction between Bookmaker and Gambler

takes place when Bookmaker sets p = pθ.

1.2.2. Coherence. So far θ has been kept fixed. We are now interested in

looking at how gambles on distinct events in S(L) and with distinct stakes

must (not) be combined. The leading intuition here is that a rational agent
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cannot accept a series of gambles which, taken jointly, may lead them to sure

loss, i.e. loss under all valuations on S(L). The goal is to show that confor-

mity to the axioms of probability are necessary and sufficient for Bookmaker

to guarantee that Gambler will not lead him into sure loss.

Let V = {v | v is a {0, 1}-valuation on S(L)} and let v ∈ V. Recall that

the game begins with Bookmaker choosing θ and p. Let pθ be as above. If

p < pθ then Gambler will choose a positive S and pay p to secure a payoff

S(v(θ)−p). If p > pθ, then Gambler will pick a negative S, thereby securing

a payoff of −S(v(θ)− p).

De Finetti’s choice problem is a device to define operationally Bookmaker ’s

degrees of belief in relevant uncertainties of interest. Let Γ be a finite subset

of S(L). A book is a map B : Γ → [0, 1] which we interpret as the choice

made by Bookmaker to assign a value in [0, 1] to every sentence in Γ.

Such values are often referred to as the “betting odds” for the events. The

identification of degrees of belief with willingness to bet in the choice problem

described in the previous section leads us to identifying the (ir)rationality of

Bookmaker with the properties of the books he writes. In the light of this,

the obvious property to be required is that the book B (on Γ) should not

be incoherent, i.e. it should not expose Bookmaker to the logical possibility

of sure loss. This is formalised by the following definition.

Definition 1.1. Let Γ = {θ1, . . . , θk} be a finite subset of S(L). A book

B : Γ→ [0, 1] is coherent iff for no S1, . . . , Sk ∈ R, Bookmaker’s balance∑k
i=1 Si(B(θi)− v(θi))

is negative for all valuations v ∈ V.

As shown by (de Finetti, 1931), this criterion is necessary and sufficient

for the existence of a finitely additive measure P on the boolean algebra of

formulas, such that P (θi) = B(θi) for all i = 1, . . . , k.

Under the assumption that Bookmaker is ‘economically rational’, an inco-

herent book reveals irrational degrees of belief because it exposes Bookmaker

(who chose it) to the possibility of sure loss. Under the modelling assump-

tion that the choice problem (writing the book) is an exhaustive description

of Bookmaker’s behaviour, willingness to incur sure loss is certainly to be

equated with irrationality.

Definition 1.2. Say that p is a fair price for gamble F if the Gambler is

indifferent between betting “on” or “against” θ at price p, i.e., if Fp(θ) %
Ap(θ) and Ap(θ) % Fp(θ). Equivalently, when p = pθ.
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This leads to the Dutch Book theorem:

Theorem 1.1 (de Finetti (1931)). Incoherent books are avoided if and only

if prices are fair.

The identification of the intuitive notion of irrationality with the mathe-

matically precise one of writing an incoherent book captured by Theorem

1.1 requires a number of abstractions on the nature of the choice problem.

Those abstractions mark a clear separation between de Finetti’s choice prob-

lem and real-world gambling. More specifically, de Finetti (1931) assumes

that the game takes place under the following contractual obligations

Completeness: The choice made by Bookmaker is forced for (boolean)

combinations of gambles and, after the book has been written, Book-

maker is forced to accept all of a potentially infinite number of trans-

actions with Gambler.

Swapping: After reading the published book, Gambler bets by paying

to Bookmaker a real-valued stake of her choice. Since Gambler, as re-

marked above, can choose negative stakes (betting negative money),

she can unilaterally impose a payoff-matrix swap to Bookmaker.

Rigidity: The transactions between Gambler and Bookmaker corre-

spond to a small amount of money (in some currency).

Completeness is justified by de Finetti (1931) on the grounds that it pro-

vides the following modelling constraints. Were Bookmaker allowed to refuse

selling certain bets, his choice behaviour (i.e. his choice of odds for a partic-

ular book) could not be claimed to reveal his sincere degrees of belief on the

relevant events, and as a consequence, the betting problem would fail its fun-

damental purpose of connecting a rational agent’s degrees of belief to their

willingness to bet. As he would retrospectively notice, the betting problem

is a “device to force the individual to make conscious choices, releasing him

from inertia, preserving him from whim” (de Finetti, 1974, p.76).

In the presence of Completeness, Swapping entails that Bookmaker’s de-

grees of belief should be fair betting odds. For suppose Bookmaker were

to publish a book with non-zero expectation. Then he could be forced into

sure loss by Gambler, who would put a negative stake on the book. Note

that the abstraction leading to fair betting odds is justified only if the agents

involved are idealised. This amounts to saying that Bookmaker confronts an

individual who will exploit every logical possibility of leading him to sure

loss, no matter how computationally demanding this might be.

Finally, Rigidity is a technical assumption which de Finetti endorses in order

to avoid the potential complications arising from the diminishing marginal
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utility of money (de Finetti, 1974, p.77-78). By requiring payments to be

small, he can effectively dispense with the notion of utility.

1.3. Events and the epistemic structure of the betting problem.

Besides the above contractual obligations, the Dutch Book Argument rests

on an epistemic structure which de Finetti mentions only in passing in his

major contributions to this topic de Finetti (1931, 1937, 1974). A more

direct, albeit very informal, reference to the point appears in de Finetti

(2008). For reasons that will be apparent in a short while, the underlying

epistemic structure of the betting problem is fundamental to understanding

the notion of event.

An event is, for de Finetti, any random variable which takes values in the

binary set and which, in addition, satisfies the properties of being a single

and well-defined case . Single is opposed to “repeatable”, and this marks the

clear separation between the subjectivist and the frequentist interpretations

of probability recalled above. The second requirement has attracted less

attention despite the crucial role it plays in making probability subjective.

For de Finetti an event is “well-defined” when it stands for a question for

which (a) neither Gambler nor Bookmaker have a definite answer –a ques-

tion which pertains to the domain of possibility– and (b) Gambler and Book-

maker agree on the conditions under which this question will be answered:

[T]he characteristic feature of what I refer to as an “event” is

that the circumstances under which the event will turn out

to be “verified” or “disproved” have been fixed in advance.

(de Finetti, 2008, p.150)

This very informal characterisation echoes the characterisation de Finetti

gives of random quantities –of which events are special cases. A random

quantity is a “well-determined” unknown, namely one which is so formulated

as “to rule out any possible disagreement on its actual value, for instance,

as it might arise when a bet is placed on it.” (de Finetti (1974), Section

2.10.4).

In addition to the above, de Finetti remarks that events must be the bearers

of “genuine” uncertainty:

I call “event” whatever is the object of an explicit question

or curiosity. In other words, an event is something which

has been previously figured out and subsequently checked in

order to see whether it took place or not. (de Finetti, 2008,

p. 151) (p. 151)
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The formalisation of this idea will be the main object of our investigation

for the rest of this paper.

In order to address the question as to whether a sentence θ ∈ S(L) is “well-

defined” in the above sense –and hence it can be said to represent an event–

we suppose that Gambler finds herself in a certain epistemic state w ∈ W
which is defined as a partial valuation on S(L). We assume that epistemic

states are dynamic in the sense that some propositional variables which are

not decided at w may be decided at future states, until all propositional

variables in L are eventually decided. Yet not all epistemic states in W may

be accessible to Gambler at w. This allows for the possibility that Gambler

may never be in a position to ascertain whether θ is decided positively or

negatively. Similarly for Bookmaker.

This background allows us to put forward a definition of events which is

relative to the state of information w of the individuals involved in the

choice problem. Let θ ∈ S(L). We say that θ is

• a w-fact if the truth value of θ is decided at w;

• a w-event if it is not a w-fact, and every w′ ∈ W which determines

the truth value of θ (up to redundancy) is w-accessible;

• w-inaccessible if no state w′ which decides θ is accessible from w.

Section 4 will be devoted to a formalisation of the above which in turn will

lead us to introduce choice-based probabilities, as partial functions

Cbp : S(L)→ [0, 1]

satisfying, among others, the following constraints

Cbp(θ) =


ε ∈ {0, 1}, if θ is a fact

0, if θ is inaccessible

x ∈ [0, 1], if θ is an event

undefined otherwise.

The epistemic structure implicit in the betting framework clearly builds on

the presupposition that at the time of betting, Bookmaker and Gambler

ignore the truth value of the event on which they are betting, i.e. they

agree that the truth value of θ is currently unknown. Hence the event

belongs to the domain of possibility. Yet, for the bet to be meaningful,

i.e. payable at all, the agents must also agree on the conditions which

will decide the truth value of θ. This implies that a betting interpretation

of probability is meaningful only for sentences which are undecided at the
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time of betting, but whose truth values will eventually be accessible to the

agents. Now, w-inaccessible sentences are certainly well-formed formulas

escaping this restriction, so probability functions defined on them cannot

have a decision-relevant interpretation.

Our central result is a refinement of the classical representation theorem

for probability functions (Theorem 2.1 below). Before doing that we show

that whilst all coherent choice-based probabilities are indeed probability

functions, probabilities which are defined on sentences which are not events

can coherently only be given trivial values. Trivial, in this context, means

one of two things. Either a sentence can (coherently) be given only its

truth value (and this characterises betting on facts), or it should be given

0. This means that, given an epistemic state, the “uncertainty mass” must

be concentrated only on events and on facts. Since events and facts are

defined relative to the agents’ own epistemic state, this determines to a

crucial extent the subjective nature of their rational degrees of belief.

As a conclusion to our introductory remarks, let us pause for a second to

appreciate that the epistemic structure of de Finetti’s choice problem leads

inevitably to a subjective interpretation of probability. For whether a sen-

tence qualifies as an event depends on the state of information of the in-

dividuals involved in the betting problem. Compare this with the logical,

measure-theory inspired, characterisation of probability functions which is

derived under the tacit assumptions that the agent’s state of information is

empty and that all future “states of information” will be accessible, that is

to say, that the set of events coincides with the algebra of sentences of a lan-

guage L. By relaxing both assumptions our framework will lead to isolating

the subset of all probability functions defined over a logical language that

bear a meaningful interpretation with respect to de Finetti’s choice problem.

2. Formal preliminaries

Recall that L = {p1, . . . , pn} is a finite set of propositional variables, and

S(L) = {θ, φ, . . .} denotes the set of sentences built as usual from L in

the language of classical propositional logic. Denote by ATL be the set of

maximally elementary conjunctions of L, that is the set of sentences of the

form α = pε11 ∧p
ε2
2 ∧. . .∧pεnn , with εi ∈ {0, 1} and where p1

i = pi and p0
i = ¬pi,

for i = 1, . . . , n.
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Since L is finite, the Lindenbaum algebra Lind(L)6 on L is a finite Boolean

algebra and hence it is atomic, with atoms corresponding to ATL. In addi-

tion, ATL is in 1-1 correspondence with the set V of (classical) valuations on

L. This implies that there is a unique valuation satisfying v(α) = 1 namely

vα(pεii ) = εi for 1 ≤ i ≤ n. Conversely, given a valuation v ∈ V there exists

a unique atom α ∈ ATL such that v(α) = 1. Now let

Mθ = {α ∈ ATL | α |= θ},

where |= denotes the classical Tarskian consequence. Since there exists a

unique valuation satisfying α, say vα, by definition of |= it must be the case

that vα(θ) = 1. Thus

Mθ = {α ∈ ATL | vα(θ) = 1}.

This framework is sufficient to provide a very general representation theorem

for probability functions.

Theorem 2.1 (Paris 1994).

(1) Let P be a probability function on S(L).7 Then the values of P are

completely determined by the values it takes on ATL = {α1, . . . , αJ},
as fixed by the vector

〈P (α1), P (α2), . . . , P (αJ)〉 ∈ DL = {~a ∈ RJ | ~a ≥ 0,
J∑
i=1

ai = 1}.

(2) Conversely, fix ~a = 〈a1, . . . , aJ〉 ∈ DL and let P ′ : S(L) → [0, 1] be

defined by

P ′(θ) =
∑

i:αi∈Mθ

ai.

Then P ′ is a probability function.

In words, Theorem 2.1 shows that every probability function arises from

distributing the unit mass of probability across the J = 2n atoms of the

Lindenbaum algebra generated by L = {p1, . . . , pn}.

Our goal is to refine this result by isolating a class of sentences on which, we

argue, there should be no distribution of “epistemically significant” mass.

6Recall that the Lindenbaum algebra Lind(L) over L is the quotient set S(L)/ ≡,

where ≡ is the logical equivalence relation (defined as θ1 ≡ θ2 iff |= θ1 ↔ θ2), with the

operations induced by the classical conjunction, disjunction and negation connectives.
7P : S(L)→ [0, 1] is a probability function on sentences if (i) P (>) = 1 where > denotes

any tautology, (ii) P (θ1 ∨ θ2) = P (θ1) + P (θ2) if |= ¬(θ1 ∧ θ2), and (iii) P (θ1) = P (θ2) if

|= θ1 ↔ θ2.
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More specifically, we aim at building a framework in which those probabili-

ties which bear a meaning as betting quotients can be formally distinguished

from those which do not. As illustrated informally in the previous section,

we will achieve this by providing a rigorous definition of de Finetti’s notion

of events, which will be distinguished from the related notion of facts and

inaccessible sentences.

3. Epistemic states and partial information

In what follows, we denote subsets of S(L) by capital Greek letters Γ,∆, . . .,

and the classical Tarskian consequence is denoted by either |= or Cn de-

pending on whether its relational or operational definition is more suited to

the specific context. Recall that a (total, classical) valuation is a function

v : L → {0, 1} which extends uniquely to the sentences in S(L) by truth-

functionality. A total valuation represents a fully specified epistemic state

since it allows agents to decide the truth-value (either 1 or 0) of any sentence

in S(L). However, an epistemic state determined by a set Γ of sentences

(the ones known to be true), permits an assignment of truth-values only

to some subset of sentences. More precisely, each Γ uniquely determines a

three-valued map on S(L), eΓ : S(L)→ {0, 1, u}, defined as

eΓ(θ) =


1 if θ ∈ Cn(Γ),

0 if ¬θ ∈ Cn(Γ),

u otherwise.

(1)

where the value u reads as unknown.

Notice that partial valuations are not truth-functional. Note also that, if

Γ ⊆ Γ′ then Cn(Γ) ⊆ Cn(Γ′). From now on, we will say that a mapping

e : S(L) → {0, 1, u} is a partial valuation whenever there exists Γ ⊆ S(L)

such that e = eΓ.

Given two partial valuations e, e′, we say that e′ extends e, written e ⊆ e′,

when the class of formulas which e sends into {0, 1} is included into that

one which e′ sends into {0, 1}. Note that if e = eΓ and e′ = eΓ′ then

e ⊆ e′ ⇔ Γ ⊆ Γ′. (2)

By a theory we mean a deductively closed subset of S(L). So, Γ is a theory

if and only if Cn(Γ) = Γ. We denote the set of theories on L by T. Let

us finally recall that a theory Γ ∈ T is maximally consistent iff for every

θ ∈ S(L), either Γ |= θ, or Γ |= ¬θ. Note also that for any maximally

consistent Γ ∈ T, there exists a (total) valuation v ∈ V such that for all

θ ∈ S(L), eΓ(θ) = v(θ).
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Definition 3.1 (Determined sentences). We say that Γ ⊆ S(L) determines

θ ∈ S(L), written Γ � θ, if and only if, for any propositional variable pi
appearing in θ, eΓ(pi) ∈ {0, 1}.

Definition 3.2 (Decided sentences). We say that Γ ⊆ S(L) decides θ ∈
S(L), written ΓB θ if and only if eΓ(θ) ∈ {0, 1}.

The difference between the two notions can be rephrased by noting that θ

may be decided even if not all of its propositional variables are determined

(for instance, if it is a disjunction with at least a true disjunct). Conversely,

it is immediate to see that for all Γ ⊆ S(L) and θ ∈ S(L), if Γ � θ then

Γ B θ. Furthermore, as remarked above, if Γ ∈ T is maximally consistent,

then Γ� θ ⇔ ΓB θ. The following are also immediate consequences of the

definitions.

Proposition 3.1. For all Γ ⊆ S(L), and for all θ, ϕ ∈ S(L), the following

hold:

(1) Γ� θ iff Γ� ¬θ; ΓB θ iff ΓB ¬θ.

(2) If ΓB θ, and ΓB ϕ, then ΓB θ ◦ ϕ for all ◦ ∈ {∧,∨,→}.
(3) If ΓBθ, Γ 7 ϕ, and eΓ(θ) = 0 then Γ 6� θ◦ϕ for every ◦ ∈ {∧,∨,→},

but Γ B θ ∧ ϕ and Γ B θ → ϕ, and in particular eΓ(θ ∧ ϕ) = 0,

eΓ(θ → ϕ) = 1.

(4) If ΓBθ, Γ 7 ϕ, and eΓ(θ) = 1 then Γ 6� θ ◦ϕ for every ◦ ∈ {∧,∨,→
}, but Γ B θ ∨ ϕ, Γ B ϕ → θ and Γ B θ → ϕ, and in particular

eΓ(θ ∨ ϕ) = eΓ(ϕ→ θ) = 1.

We can associate naturally an agent’s state of information with

(1) the sentences which are decided for the agent at that state

(2) those sentences which are undecided at the current state, but that

can be decided in a future, reachable (for that agent) state.

The formalisation of this is an attempt to capture de Finetti’s rather elusive

remark to the effect that the “conditions of verification” of an event are

known in advance to the agents. In doing this we will focus on decided

rather than on determined sentences.

4. Information frames: facts, events and inaccessible sentences

4.1. Information frames.

Definition 4.1 (Information frame). An information frame F is a pair

〈W,R〉 where W is a non-empty subset of partial valuations defined as in

Equation (1) and R is a binary transitive relation on W .
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Remark 4.1. Since each partial valuation is uniquely determined by a Γ ⊆
S(L), we can freely use w1, w2, . . . to denote either subsets of S(L) or their

associated partial valuations, depending on which interpretation suits best

the specific context. As a consequence of Equation (2) the inclusion w ⊆ w′
is always defined.

We interpret wi ∈W as the basic component of an agent’s state of informa-

tion, i.e. the sentences (equivalently, the partial valuation) which capture all

and only the information available to an agent who finds itself in state wi.

Under this interpretation the relation R models the agent’s possible tran-

sitions among information states. For reasons that will soon be apparent,

we always require R to be transitive. As more structure is needed, further

restrictions on R will be considered.

Definition 4.2. Let F = 〈W,R〉 be an information frame. We say that F
is

(1) Monotone if (w,w′) ∈ R implies w ⊆ w′.
(2) Complete if w ⊆ w′ implies (w,w′) ∈ R.

Under our interpretation, monotonicity captures the idea that agents can

only learn new information, but never “unlearn” the old one. In addition,

monotonicity implies that the dynamics of information is stable in the sense

that once a formula is either determined or decided at state w (i.e. it is given

a binary truth-value), this remains fixed at any information state accessible

from w. Hence if w B φ, there cannot exist (w,w′) ∈ R such that w′ 6 Bφ.

Moreover, by monotonicity, the truth-value of φ in w coincides with the

truth-value of φ in w′. Completeness ensures that the agent will learn all

the possible consistent refinements to its current information state. So, if

(w,w′) 6∈ R, there exists θ such that w′B θ and wB¬θ. Finally, note that if

F is monotonic and complete then obviously R coincides with set-inclusion

among states (equivalently, sets of sentences).

4.2. Facts, events and inaccessible sentences. We are now in a posi-

tion to give formal definitions of facts, events and inaccessible sentences in

monotone information frames.

Definition 4.3. Let 〈W,R〉 be a monotone information frame, let w ∈ W ,

and let θ ∈ S(L). We say that θ is a w-fact if w B θ.

On the other hand, if w 7 θ, we say that θ is:

• a w-event if for every (total) valuation v extending w there exists w′

with (w,w′) ∈ R such that w′ B θ and w′(θ) = v(θ).
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• w-inaccessible if for every (total) valuation v and every world w′ such

that w′(θ) = v(θ), (w,w′) 6∈ R.

We shall respectively denote by F(w), E(w) and I(w) the class of w-facts,

w-events, and w-inaccessible sentences, for some information frame 〈W,R〉
and some w ∈W .

In addition, we shall denote by C(w) the class F(w) ∪ E(w) ∪ I(w). The

class C(w) collects, for a given information frame F and a state w, all those

elements of S(L) which are well-defined in the choice-based sense illustrated

in Section 1.2 above.8 As we will shortly see C(w) is, in general, strictly

contained in S(L) and hence there exist elements of S(L) which do not

meet de Finetti’s criterion of being well-defined. The following example

clarifies the idea.

Example 4.1. Consider a Turing Machine TM and a finite input x. Let θ

to be the halting problem statement:

“TM(x) will stop”.

Let w be a state in which the agents know nothing about TM(x). Suppose

now that Bookmaker is writing a book involving θ. The undecidability of the

halting problem forces any information frame F which claims to be adequate

for this bet, to make inaccessible all those states in which ¬θ (i.e. “TM(x)

will run forever”) is true. Let us assume that Bookmaker and Gambler

consider those states in which θ is accessible. Let us call W↓ and W↑ the

disjoint sets of partial states in which, respectively, TM(x) stops and hence

w′(θ) = 1 for all w′ ∈W↓ and TM(x) does not stop, i.e. w′′(¬θ) = 1 for all

w′′ ∈W↑. Then θ 6∈ C(w). To see this note that

(1) Clearly θ is not a w-fact since w 7 θ,

(2) In order for θ to be a w-event, by definition, every partial state

deciding θ should be accessible from w. Yet every w′′ ∈ W↑ is not

accessible, hence θ is not a w-event.

(3) Finally, θ is not w-inaccessible either. In fact, in order for θ to be

w-inaccessible, every partial state deciding θ should be inaccessible,

whilst every w′ ∈W↓ is w-accessible in F .

Notice that if every w′ ∈W↓ were w-inaccessible, θ would be in I(w). �

8It proves to be particularly hard to provide natural conditions under which S(L) is

partitioned by facts, events and inaccessible formulas. We hope to succeed in doing this

in further work.
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The following proposition sums up some key properties of the sets F(w),

E(w) and I(w).

Proposition 4.1. Let 〈W,R〉 be a monotone information frame, and let

w ∈W . Then the following hold:

(1) The structure 〈F(w),∧,¬,⊥〉 is a Boolean algebra.

(2) If w is a total valuation, then S(L) = F(w), while if w = ∅ is the

empty valuation, then F(w) = ∅.
(3) If 〈W,R〉 is complete, then 〈E(w),∧,¬,⊥〉 is a Boolean algebra.

(4) If 〈W,R〉 is complete, then for all w ∈ W , S(L) = F(w) ∪ E(w).

Therefore, in particular, if 〈W,R〉 is complete, then I(w) = ∅.
(5) If I(w) 6= ∅, then for every w′ such that its corresponding valuation

is total, (w,w′) 6∈ R.

Proof. (1) follows by Proposition 3.1 (parts (1) and (2)). Also the claim (2)

is also immediate.

In order to show (3), let 〈W,R〉 be a complete and monotone information

frame, and let θ, ϕ ∈ E(w). Let us assume by way of contradiction, that

θ ∧ ϕ 6∈ E(w). Then, since clearly w 7 θ ∧ ϕ, it means that there exists a

total valuation V which extends w, and a w′ ⊇ w such that w′ B θ ∧ ϕ, but

(w,w′) 6∈ R, against the completeness of 〈W,R〉.

(4) Assume that 〈W,R〉 is complete, and let w be any state in W . Since

〈W,R〉 is monotone by hypothesis, R =⊆, and hence, for every w′ ∈ W ,

(w,w′) ∈ R iff w ⊆ w′. Then, for every θ ∈ S(L), either θ ∈ F(w), or

w 7 θ. In the latter case, for every total valuation V and each w′ such

that V (θ) = w′(θ), if w′ ⊇ w, then (w,w′) ∈ R (by monotonicity and

completeness). Hence θ ∈ E(w).

(5) Assume that θ ∈ I(w). Then, since every total valuation V B θ, by def-

inition of inaccessible formula, the world w′ whose corresponding valuation

is V cannot be accessible from w. And hence the claim holds. �

Note that, for an arbitrary information frame 〈W,R〉 and for a w ∈W , it is

not always the case that the class E(w) is closed under logical connectives

and hence, in particular, 〈E(w),∧,¬,⊥〉 may not be a Boolean algebra. For

this reason, within our framework, and in contrast with the classical setting,

we shall avoid, in general, to speak about the algebra of events, while we

shall more frequently refer to the class of events. The following example

illustrates the point.

Example 4.2. Let L = {p, q} with the following intuitive interpretation:
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w

w1

w2

w3

w4

w5

w6

w7

w8

Figure 2. In accord with Heisenberg’s principle the infor-

mation frame is such that states w1, w2, w3, w4 are accessible

from w, unlike those states in which both variables are de-

cided, namely w5, w6, w7 and w8.

• p reads “the electron ε has position π”;

• q reads “the electron ε has energy η”.

Suppose further that our agent is in a state w such that the truth value of

both p and q are unknown. In the usual quantum mechanics interpretation,

an agent in w may either learn the position of ε, or its energy, but not both.

This gives rise to the information frame depicted in Figure 2 where we may

assume the following conditions hold:

w1 B p, w1 7 q, and w1(p) = 0; w2 B p, w2 7 q, and w2(p) = 1;

w3 B q, w3 7 p, and w3(q) = 0; w4 B q, w4 7 p, and w4(q) = 1;

w5 B p, q, and w5(p) = w5(q) = 1 w6 B p, q, and w5(p) = w5(q) = 0.

w7 B p, q, and w7(p) = 0, w7(q) = 1 w8 B p, q, and w8(p) = 1, w8(q) = 0.

It is immediate to see that p and q are w-events, but p ∧ q is not. Indeed,

due to the inaccessibility of, say w5, the total valuation V mapping p and

q to 1 has no correspondence in the worlds which are accessible from w.

Analogously, ¬p ∧ q, p ∧ ¬q and ¬p ∧ ¬q are not w-events either. �

Examples 4.1 and 4.2 point out that in arbitrary monotone information

frames one cannot ensure that the sets F(w), E(w), I(w) form a partition

of S(L). As we will discuss in further detail in the concluding section, it is

surprisingly difficult to find natural properties on frames which ensure the

rather desirable property that S(L) = C(w). When the information frame

is also complete then we trivially get this condition since I(w) = ∅.

5. De Finetti’s choice problem revisited

We are now in a position to provide the epistemic refinement to the formal-

isation of de Finetti’s betting problem, as anticipated in Section 1.2 above.
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Definition 5.1. Let 〈W,R〉 be a monotone information frame, let Γ =

{θ1, . . . , θk} ⊆ S(L) and let B : Γ→ [0, 1] be a book.

(1) For w ∈W , the book B is said to be w-coherent iff

(a) θ1, . . . , θk ∈ C(w),

(b) there exist no S1, . . . , Sk ∈ R such that for every w′ ∈ W such

that (w,w′) ∈ R,

k∑
i=1

Bali < 0

where, for all i = 1, . . . , k,

Bali =

{
Si(B(θi)− w′(θi)), if w′ B θi
SiB(θi), otherwise.

(2) The book B is said to be w-Dutch if B is not w-coherent.

(3) The book B is said to be a w-book, if every θi is a w-event.

Note that part (1.b) implies that inaccessible sentences do not enter the

Bookmaker’s balance. Hence even if Gambler placed bets on elements of

I(w), Bookmaker would not be under a contractual obligation to pay any-

thing to Gambler. Moreover, for w-books, being w-coherent is a notion that

collapses to de Finetti’s own definition of coherence (Definition 1.1). In fact

if all the θi’s are w-events, by definition, every state accessible from w de-

cides θ and hence the book is w-coherent if and only if it is coherent. On

the other hand, a w-coherent w-book can be extended to coherent w-books,

as shown by the following result.

Theorem 5.1. Let (W,R) be a monotone information frame, let w ∈ W

and let B : θi ∈ Γ 7→ βi ∈ [0, 1] be a w-coherent w-book. Let ϕ be a sentence

in C(w) which is not a w-event and consider the book B′ = B ∪ {(ϕ, α)}.
Then:

(1) if ϕ is a w-fact, then B′ is w-coherent iff α = w(ϕ),

(2) if ϕ is w-inaccessible, B′ is w-coherent iff α = 0,

Proof: (1). (⇒). Suppose, to the contrary, that α 6= w(ϕ), and without loss

of generality suppose that w(ϕ) = 1, so that α < 1. Then, Gambler can

get sure profit by betting a positive S on ϕ. Since the information frame

is monotone, by the definition of w-book, w(ϕ) = 1 holds in every world

w′ accessible from w. Thus Gambler pays S · α in order to surely receive S

in any such w′. Conversely, suppose w(ϕ) = 0 and, for contradiction, that

α > 0. Then it is easy to see that Gambler can secure a win by swapping

payoffs with Bookmaker, i.e. by betting a negative amount of money on ϕ.
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(⇐). Since B is w-coherent, there exists a w′ accessible from w that decides

every θi, and such that, for every S1, . . . , Sn, S ∈ R,

n∑
i=1

Si(βi − w′(θi)) = 0.

Since ϕ is a w-fact and w′ is accessible from w, it follows that w′(ϕ) =

w(ϕ) = α. Therefore for S ∈ R, one also has(
n∑
i=1

Si(βi − w′(θi))

)
+ S(α− w′(ϕ)) = 0

and hence B′ is also w-coherent.

(2). (⇒). Suppose α > 0. By the “economic rationality” assumption

described in Section 1.2 Gambler is willing to bet S > 0 on ϕ, i.e. to pay

α · S to Bookmaker. But since ϕ is w-inaccessible, this means sure loss for

Gambler, contradicting her rationality.

(⇐). Since B is w-coherent and since by hypothesis α = 0, B′ extends B

in way which is trivial in the following sense: given any stakes S1, . . . , Sn, S

on B′, the amount paid to Bookmaker is
∑

i Siβi + Sα =
∑

i Siβi + 0.

Yet, since ϕ is w-inaccessible, in every world w′ accessible from w, she

will get
∑

i Siw
′(θi) + Sw′(ϕ). Now, since ϕ ∈ I(w), w′(ϕ) = u. The

interpretation of the choice problem detailed in Section 1.2 forces us to put

Sw′(ϕ) = Su = 0. For the Rigidity assumption (recalled at the end of

Section 1.2.1 above) requires Su to be the monetary amount Gambler gets

from Bookmaker after ϕ is decided. Hence the coherence of B′ follows from

the coherence of B. �

The following example illustrates that w-coherent w-books cannot be charac-

terised, in general, within the standard axiomatic framework for probability.

Example 5.1. Let L = {r, d} which read as follows

r : “Tomorrow it will rain in Russell Square, London”,

d : “Last winter α raindrops fell on Russell Square, London”.

Let w0 represent the agents’ epistemic state in which neither r nor d are

decided, i.e. w0 6 Br, w0 6 Bd. Now, whilst they will certainly agree that

tomorrow r will be easily decided, Bookmaker and Gambler will probably

agree that d is impossible to decide. A suitable information frame to capture

this is as follows. Let W = {w0, . . . , w4} be such that

w1 B r, w1 6 Bd, w1(r) = 1 w2 B r, w2 6 Bd, w2(r) = 0

w3 B d, w3 6 Br, w3(d) = 1 w4 B d, w4 6 Br, w4(d) = 0,
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and let R be as in Figure 3.

w0

w1

w2

w3

w4

Figure 3. An information frame where, according to Exam-

ple 5.1, the two states w1 and w2 in which r is decided are

accessible from w0 (the present state), while the two states

w3 and w4 where d is decided are not.

Now, let B(X) be the Boolean algebra whose elements are Boolean combi-

nation of r and d and whose atoms are r ∧ d, ¬r ∧ d, r ∧ ¬d and ¬r ∧ ¬d.

Also, Let P be probability measure induced (for instance) by the uniform

distribution on the above atoms.

Therefore, in particular, we have P (r ∧ d) = 1/4, P (r) = P (d) = 1/2 and

hence, the book

B = {(d, 1/2), (r, 1/2)}

is coherent in the sense of de Finetti.

However, Theorem 5.1 shows that B is not w0-coherent since the unique

possible w0-coherent value for w0-inaccessible statement must be 0. �

The example illustrates that measure-theoretic probability is too wide a

framework to represent the kind of uncertainty which motivates de Finetti’s

choice problem. The remainder of this paper is devoted to fleshing out

a suitable refinement of probability functions –choice-based probabilities–

which are constrained by the notion of w-coherence.

6. Choice-based probability functions

Let 〈W,R〉 be a monotone information frame, and let w ∈ W and let

X ⊆ S(L). Abusing the notation, let S(X) denote the set of formulas

S(V ar(X)) built from the propositional variables appearing in the formulas

of X. Finally, let Tw = {ϕ ∈ S(X) | w(ϕ) = 1}.
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Definition 6.1. We say that a partial map

Cbpw : S(X)→ [0, 1]

is a w-choice based probability with respect to X, if the following conditions

are satisfied for any θ, ψ ∈ S(X):

C0. Cbpw is defined on θ iff θ ∈ C(w).

C1. if θ, ϕ, θ∨ϕ ∈ F(w)∪E(w), and Tw |= ¬(θ∧ϕ), then Cbpw(θ∨ϕ) =

Cbpw(θ) + Cbpw(ϕ).

C2. if θ ∈ F(w), Cbpw(θ) = w(θ).

C3. if θ ∈ I(w), Cbpw(θ) = 0.

C4. if θ, ψ ∈ C(w) and Tw |= θ ↔ ψ, then Cbpw(θ) = Cbpw(ψ).

Notice that although a w-choice based probability Cbp is defined over all

formulas in the set of C(w), the additivity property C1 is only required

on events and facts. Indeed, Cbp cannot be additive on I(w). To see

this assume ϕ ∈ I(w). Then ¬ϕ ∈ I(w) as well. Now, by C3, we have

Cbp(ϕ) = Cbp(¬ϕ) = 0, but ϕ∨¬ϕ ∈ F(w) which moreover is a tautology.

Hence by C2, it should be Cbp(ϕ ∨ ¬ϕ) = 1.

Definition 6.2. Let w,w′ be partial valuations and let X ⊆ S(L). We say

that w and w′ are incompatible w.r.t. X, written w⊥Xw′, if there exists

θ ∈ X such that w B θ, w′ B θ, and w(θ) 6= w′(θ). We write w>Xw′, to say

that w,w′ are not incompatible.

The intuition behind incompatible partial valuations is that, if w⊥w′, then

w cannot be a refinement of w′ since they do not assign the same truth value

to the same decided sentence.

For fixed w ∈W and X ⊆ S(L), let d(X,w) be the set of all those accessible

states w′ ∈W deciding every (w-fact and) w-event in X. Formally,

d(X,w) = {w′ ∈W : (w,w′) ∈ R and w′Bθ for all θ ∈ X ∩ (E(w)∪F(w))}.

Notice that we are excluding in the condition sentences of X which are

neither w-events, nor w-facts, nor w-inaccessible.9

Finally let D be a set of states obtained from d(X,w) in such a way that

the states in d(X,w) and those in D decide the same sentences, but for each

w′, w′′ ∈ D, w′⊥Xw′′. Sets D obtained in this way will be called w-decisive

for X. More formally:

9Notice that d(X,w) may be empty, see next Proposition 6.1.
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Definition 6.3. Let 〈W,R〉 be a monotone information frame, let w ∈ W
and let X ⊆ S(L) such that d(X,w) 6= ∅. A set D ⊆ d(X,w) is called a

w-decisive set for X whenever the following conditions hold:

• for all ϕ ∈ X, if w′Bϕ for all w′ ∈ D, then w′′Bϕ for all w′′ ∈ d(X,w).

• for all w′, w′′ ∈ D, w′⊥Xw′′.

We denote by D(X,w) the set of all the w-decisive sets for X.

Example 6.1. Let L = {p, q, r}, X = {p ∨ q} and let

W = {w,w1, w2, w3, w4, w5, w6, w7, w8}

be such that

(1) w(p) = w(q) = u, so w 6� p and w 6� q;

(2) w1(p) = 1, w1(q) = u, w1(r) = u so w1 B p and w1 6� q;

(3) w2(p) = 0, w2(q) = u, w2(r) = u, so w2 B p and w2 6� q;

(4) w3(p) = w3(q) = 1, w3(r) = u, so w3 B p and w3 B q;
(5) w4(p) = 1, w4(q) = 0, w4(r) = u, so w4 B p and w4 B q;
(6) w5(p) = 0, w5(q) = 1, w5(r) = u, so w5 B p and w5 B q;
(7) w6(p) = w6(q) = 0, w6(r) = u, so w6 B p and w6 B q;
(8) w7(p) = w7(q) = w7(r) = 0, so w7 B p, w7 B q, w7 B r;
(9) w8(p) = w8(q) = 0, w8(r) = 1, so w8 B p, w8 B q, w8 B r.

Let 〈W,R〉 be depicted as in Figure 4. Then p ∨ q is a w-event, because

w3, w4, w5, w6, w7, w8 are the states whose associated partial valuations co-

incide with the restriction to {p, q} of every total valuation V . Moreover

w3, w4, w5, w6, w7, w8 are accessible from w. For a similar reason p is a w1-

event, and q is a w2-event. Finally notice that whilst p ∨ q is a w2-event,

p ∨ q is a w1-fact.

Moreover the following hold

(1) D1 = {w3, w4, w5, w6} is w-decisive for X, while

(2) D2 = {w1, w5, w6} is not w-decisive for X because (w,w1) 6∈ R;

(3) D3 = {w2, w3, w4} is not w-decisive for X since w2 7 p ∨ q;
(4) D4 = {w1, w5, w7, w8} is again not w-decisive for X since (w,w1) 6∈

R;

(5) D5 = {w3, w4, w5, w6, w7, w8} is not w-decisive forX because w6>Xw7,

and w6>Xw8 as well;

(6) D6 = {w5, w7, w8} is w2-decisive for X.

(7) D7 = {w5, w6} is also w2-decisive for X.

�
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w

∅

w1

p

w2

¬p

w3 q

w4 ¬q

w5 q

w6

¬q w7 ¬r

w8 r

Figure 4. The information frame of Example 6.1. Note

that each node represents a partial valuation in W and it is

labelled (in various orientations) by the propositional vari-

ables it decides. Since the frame is transitive and monotone,

we only label a state with the propositional variables which

are decided at that state for the first time. A variable is

undecided at wi if it doesn’t label any wj with j ≤ i.

The following properties will turn out to be useful for a description of Choice-

based probability functions.

Proposition 6.1. Let 〈W,R〉 be a monotone information frame, let w ∈W
and let X ⊆ S(L). Then the following properties hold true:

(1) For all D ∈ D(X,w) the following holds:

(a) for all w′, w′′ ∈ D, w′⊥Xw′′,
(b) for every total valuation v, there exists w′ ∈ D, such that

w′(θ) = v(θ) for all θ ∈ X ∩ (F(w) ∪ E(w)).

(c) If θ ∈ X is w-inaccessible then {w′ ∈ D : w′Bθ, (w,w′) ∈ R} =

∅. In particular, if X ∩ I(w) 6= ∅ then D(X,w) = {∅}.
(2) Let X ′ = X ∩ (E(w) ∪ F(w)). Then D(X,w) = D(X ′, w).

Proof. The properties in (1) follow by definition of w-decisive sets for X.

Finally, (2) is a direct consequence of (c) of item (1) above. �

Remark 6.1. As we already stressed any decisive setD for a setX of formulas

is made of incompatible partial valuations w ∈ W deciding every formula

in X. Decisive sets are then suitable domains for probability distributions.

In particular, for X ⊆ E(w) ∪ F(w), although the information frame F
might not allow us to reach some total valuations, it is easy to see that

D(X,w) 6= ∅, and therefore we are allowed to distribute a probability mass
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on at least a decisive set D ∈ D(X,w). Our next result shows that Choice-

based probabilities arise in this way.

Theorem 6.1. Let 〈W,R〉 be a monotone information frame, let w ∈W and

let X ⊆ S(L). Let D ∈ D(X,w) be w-decisive for X and let π : D → [0, 1]

be a mapping satisfying ∑
w∈D

π(w) = 1.

Then the map Cbp : S(X)→ [0, 1] defined for all θ ∈ C(w) ∩ S(X) by

Cbp(θ) =
∑

w′∈D,w′Bθ

π(w′) · w′(θ), 10

is a w-choice based probability

Proof. Clearly Cbp ranges over [0, 1], and it is likewise clear that Cbp is

additive on E(w)∪F(w). Moreover, if |= θ ↔ ψ, then for all w′ ∈ D, w′B θ
iff w′Bψ. Therefore, Cbp(θ) = Cbp(ψ). Hence C0, C1 and C4 of Definition

6.1 are immediately seen to hold.

To check C2, suppose θ ∈ F(w). As we showed above, w(θ) = w′(θ) for each

w′ ∈ D. So it suffices to check two cases. If w(θ) = 1, then

Cbp(θ) =
∑
w′∈D

π(w′) · w′(θ) =
∑
w′∈D

π(w′) = 1 = w(θ); (3)

On the other hand, if w(θ) = 0, then

Cbp(θ) =
∑
w′∈D

π(w′) · 0 = 0 = w(θ). (4)

Therefore, Cbp(θ) = w(θ) for all θ ∈ F(w), giving us Cbp(>) = 1, as

required.

Finally C3. Let θ ∈ I(w). In this case, from Proposition 6.1 (2), it follows

that for no w′ ∈ D, w′Bθ, and hence Cbp(θ) = 0, completing the proof. �

The next result shows that Choice-based probability functions characterize

w-coherence.

Theorem 6.2. Let 〈W,R〉 be a monotone information frame. Let X ⊆
S(L), and let B : X → [0, 1] be a book. Then the following are equivalent:

(1) B is w-coherent,

(2) There exists a w-choice based probability Cbp on S(X) extending B.

10We assume the sum is 0 in case the set of partial valuations w′ satisfying the condi-

tions w′ ∈ D and w′ B θ is empty.
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Proof. (1) ⇒ (2). If B is w-coherent, then so is the book B− obtained by

restricting B to the formulas in X ′ = X ∩ (E(w)∪F(w)). Since X ′ does not

contain w-inaccessible formulas, B− is w-coherent and hence the obvious

adaptation of de Finetti’s Dutch Book theorem to our language shows that

B′ is w-coherent iff one can find a probability distribution π on D. Then

the map Cbpπ defined as in Theorem (6.1) satisfies (2).

(2)⇒ (1). Let Cbp′ the partial mapping on S(L) defined by restricting Cbp

to E(w). Then the claim easily follows from Theorem 5.1. �

The above Theorem, together with Proposition 4.1 (4), shows that de Finetti’s

notion of coherence is a special case of w-coherence, which arises by impos-

ing monotonicity and completeness to the information frame 〈W,R〉. More

precisely, the following holds:

Corollary 6.1. Let 〈W,R〉 be monotone and complete, with w ∈ W . Let

X ⊆ S(L), and let B : X → [0, 1]. Then the following are equivalent

(1) B is w-coherent,

(2) B is coherent,

(3) There exists a w-choice based probability Cbp on S(X) extending B,

(4) There exists a probability P on S(X) extending B.

Remark 6.2. In the light of the above Corollary 6.1, one can argue that

Choice-based probability collapses to the usual notion of a probability mea-

sure whenever the agents who are engaging in de Finetti’s betting problem

have ‘full access’ to the sort of complete information provided by classical

valuations on L. The fact that some valuations may not be accessible from

a given state of information (i.e. that some sentences may not be w-events,

for some w ∈ W of interest) is ultimately what distinguishes Choice-based

probability from its measure-theoretic counterpart. Consider again Example

4.1. Whilst it certainly makes “abstract” sense to ask the probability that

a Turing Machine TM will halt on a given input x11, there is no Choice-

based probability which, coherently with the information frame described

in the Example 4.1, will assign to the event “TM(x) will stop” a positive

value. Note that this does not lead to contradiction, but it clarifies how

Choice-based probabilities are, in general, a strict refinement of probability

measures. We will come back to a related point in the concluding section of

the paper.

11G. Chaitin (cf. for instance Calude (2002)) introduces, for any Turing Machine TM

the real number ΩTM which is meant to represent the halting probability of TM . The

number ΩTM is clearly not-computable. We refer the interested reader to Calude (2002)

for more details.
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7. Choice-based probabilities as probability measures on

quotient structures

We end this paper by comparing Choice-based probability functions, and

their characterisation of w-coherence with the standard representation the-

orem for probability functions (Theorem 2.1 above.) In what follows we will

always assume that the information frame we are working with is monotone

and complete. Recall from Section 4.2 and Proposition 4.1, that among

other things, this implies that (i) the accessibility relation R coincides with

set-inclusion ⊆ and that (ii) for all w ∈ W , I(w) = ∅. Finally, recall that

for monotone and complete frames, either θ ∈ E(w) or θ ∈ F(w), for all

θ ∈ S(L). For this reason, instead of S(L) as domain for a choice based

probability, we work directly with the Lindenbaum algebra Lind(L) of for-

mulas built up on the language L.

Let w ∈ W , and let F(w) be partitioned in F(w)+ and F(w)− where for

every θ ∈ F(w)+, w(θ) = 1 and for all ψ ∈ F(w)−, w(ψ) = 0. Then let

K(w) = F(w)+ ∪ {¬ψ : ψ ∈ F(w)−}.

Notice that the set K(w) can be regarded as encoding the knowledge con-

tained in the word w. By convention we identify each formula θ in S(L) with

its equivalence class (modulo equiprovability) [θ] ∈ Lind(L), and hence each

θi will be thought of as an element in the Lindenbaum algebra Lind(L).

Let us denote by I(K(w)) the ideal of Lind(L) generated by K(w). In other

words, let

I(K(w)) = {ϕ ∈ Lind(L) : ϕ ≤
∨
{θ : θ ∈ K(w)}}.

Since K(w) will be always clear, we simply write I instead of I(K(w)). Since

the quotient algebra Lind(L)/I is finite, we denote by At(Lind(L)/I) the

atoms of Lind(L)/I. More precisely, we denote the atoms of Lind(L)/I by

aI1, . . . , a
I
k. Finally, by identifying each ideal of Lind(L) with its associated

congruence (see (Burris et al., 1981, Theorem 3.5)), we denote by [θ]I the

generic element of the quotient structure Lind(L)/I.

Lemma 7.1. For every w ∈W , At(Lind(X)/I) ∈ D(Lind(L), w).

Proof. (Sketch). Clearly, for each ai, aj ∈ At(Lind(X)/I), ai⊥Lind(L)aj .

Moreover, to each atom ai ∈ At(Lind(X)/I) we can associate a complete

valuation as we explained in Section 2. Since the information frame we are

considering is complete, all (total) valuations are accessible and hence the

claim is settled. �

The following lemma is straightforward.



ON THE LOGICAL STRUCTURE OF DE FINETTI’S NOTION OF EVENT 27

Lemma 7.2. Let A be an atomic Boolean algebra with atoms α1, . . . , αk.

If I is an ideal of A, and αj ∈ I for some j, then, in the quotient structure

A/I, it holds [αj ]I = [0]I.

In analogy with Theorem 2.1, let us define:

DLind(L)/I = {~a ∈ Rk : k = |At(Lind(L)/I)|, ai ≥ 0,
k∑
i=1

ai = 1}.

The following result offers a representation of Choice-based probabilities in

terms of probability distributions on the atoms of suitably defined quotient

structures.

Theorem 7.1. For every w ∈ W , for every ~a ∈ DLind(L)/I, and for every

θ ∈ Lind(L), the map Cbp defined as

Cbp(θ) =

k∑
i: αi∈Mθ

ai (5)

is a Choice-based probability.

Conversely, for every Choice-based probability Cbp, there exists a unique

~a ∈ DLind(L)/I such that Cbp is defined by ~a through (5).

Before proving the above theorem, let us notice that the function Cbp de-

fined through (5) can be easily regarded as a probability measure PBet on

the quotient structure Lind(L)/I, by setting Cbp(θ) = PBet([θ]I).

Proof. Fix w ∈ W , let as usual k = |At(Lind(L)/I)|, and, for the sake of a

simpler notation, let us denote by α1, . . . , αk the atoms of Lind(L)/I. Let

hence ~a ∈ DLind(L)/I, and let Cbp be defined as in (5). Then Cbp satisfies

the following:

(1) If θ ∈ F(w), then θ ∈ I, and hence from Lemma 7.2, [θ]I = [0]I.

Therefore, since Cbp is defined as a probability measure on the quo-

tient structure Lind(L)/I, Cbp(θ) = 0.

(2) Clearly, if θ ∈ E(w), by definition of Cbp, Cbp(θ) ∈ [0, 1].

It follows from the monotonicity and completeness of 〈W,R〉 that I(w) = ∅,
and hence Cbp is a Choice-based probability.

Conversely, take any Cbp and let ~a = 〈a1, . . . , ak〉 ∈ Rk be such that

ai = Cbp(αi), i = 1, . . . , k

where k denotes, as usual, the cardinality ofAt(Lind(L)/I). Then ai ∈ [0, 1],

for i = 1, . . . , k. Then the claim follows from Theorem 2.1 by observing that
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Cbp(αi) = PBet([αi]I), and that PBet is a probability measure on Lind(L)/I.
�

Theorem 7.1 then generalises Theorem 2.1, which is recovered by adding the

extra assumption that w corresponds to the empty valuation, i.e. νw is such

that νw(p) undetermined for all p ∈ V .

Conversely it is easy to prove that, whenever w is such that its correspond-

ing valuation νw is total (i.e. νw(p) ∈ {0, 1} for each p ∈ V ), the unique

possible w-choice based probability on Lind(L) is trivial and coincides with

the canonical homomorphism hw : Lind(L) → Lind(L)/I since, in this

particular case Lind(L)/I is the two-element Boolean algebra 2.

8. Conclusions and future work

We fleshed out a logical framework which enabled us to show that some

measure-theoretically sound probability values are trivial in the choice-based

setting of subjective Bayesianism, as described in Section 1.2. We then ar-

gued that the restriction to the subclass of Choice-based probability func-

tions developed in Section 6 arises naturally from the epistemic structure

of events implicitly assumed by de Finetti (1931) in his operational def-

inition of subjective probability. In addition, our formalisation of events

(Definition 4.3) captures de Finetti’s epistemological analysis to the effect

that probability is the quantification of one’s state of mind concerning gen-

uine uncertainty, i.e. what pertains to the domain of what one coherently

considers to be possible.

Whilst we focussed on the choice problem leading to the Dutch Book ar-

gument, it is interesting to ask if our framework can be applied also to

the method of scoring rules.12 Let us first recall a central observation by

de Finetti (1981):

it is clear that the condition of rejecting any Dutch Book

cannot be violated in any fair betting situation, but both com-

petitors may be misled about the state of information of the

other.13 For this reason betting, strictly speaking, does not

pertain to probability but to the Theory of Games. Only

under such a proviso can the argument be accepted.

In an attempt to keep the foundations of probability within the scope of

Decision, rather than Game Theory, de Finetti developed the method of

12We are grateful to Gregory Wheeler for raising this point.
13Our emphasis.
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“proper scoring rules”. In a nutshell, the framework features a single agent

who must assign probabilities to events of interest. In terms of the analysis

put forward in this paper, it is natural to identify the agent with Bookmaker,

whose task is to choose a point in [0, 1] representing his degree of subjective

belief in, say θ. Call this pθ. The idea is to set up a device which gives

Bookmaker an incentive to choose pθ in such a way that this reflects his

sincere degree of belief in θ, call this psθ. In order to achieve this, de Finetti

suggests that Bookmaker should be subject to a loss which amounts to the

square of the (Euclidean) distance between his probabilistic forecast for θ

and the truth-value that θ will eventually get in some w ∈ W . This loss

function is also known as Brier’s rule or score. A simple geometric argument

shows that the expectation of loss under Brier’s score is minimised when

pθ = psθ. As shown in (de Finetti, 1974, Ch.3) the minimisation of loss

under Brier’s rule is equivalent to the criterion of avoiding sure loss in the

Dutch Book setting recalled above. Now, it is intuitively clear that our

restriction of events to the class of sentences that can be decided in all future

developments of an agent’s information states applies to Brier’s scoring rule

as well. To see this informally, note that if the forecast is not on an event (in

the sense of Definition 4.3 above ), Bookmaker is not effectively facing the

prospect of an enforceable penalisation. For forecasting on an inaccessible

sentence will make it impossible to compute the loss. Hence the restriction

to elements of E(w) appears to be implicit in the method of scoring rules

and appears not to depend on a particular choice of loss function. Further

work is needed to turn this intuitive observation into a mathematical fact.

Besides putting de Finetti’s analysis on a firm logical footing, we believe

that the framework of Choice-based probabilities introduced in this paper

will prove to be a fruitful tool for foundational clarification as well as formal

advance in uncertain reasoning, broadly construed. We end the paper by

sketching our vision for future research in this direction.

As our key motivation was to capture formally the informal characterisa-

tion of events put forward by de Finetti, we made a number of assumptions

concerning the idealisation of the agents and the abstraction of the choice

problem in accord with his version of the Dutch Book Argument. In ad-

dition, our refinement of the Argument investigated in detail in Section 5,

depended on two assumptions on information frames, namely transitivity

and monotonicity, reflecting two important idealisations on the nature of

the agents. Further work will be devoted to exploring the significance, in

terms of modelling uncertainty, of relaxing those assumptions. Relaxing

transitivity amounts to making our agents capable of accessing only states
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which are immediately accessible from w0. Modelling this sort of “short-

sightedness” will shed interesting light on those problems in which accuracy

is to be traded-off with speed. Reasoning based on heuristics and case-based

reasoning are certainly cases in point. The relaxation of monotonicity would

allow us to model cognitively limited agents who are subject to potentially

imperfect recall. This strand of research could open fruitful interactions

with the experimental literature on the effect of limited memory on logical

inference.

In addition we will focus our future research on a slightly more general

notion of information frame that we are now going to describe. Recall,

that we defined the relation R featuring in information frames 〈W,R〉 in a

binary way: either w∗ is accessible from a state w, or it is not. In realistic

scenarios however, it certainly makes sense to consider cases in which agents

may attach a degree to w∗ being accessible from w. This leads to defining

(w,w∗) ∈ Rα (where α ∈ [0, 1]) if they believe that the probability of reaching

w∗ from w is α. Notice that such a probability α would measure a higher

order of uncertainty than the degree of belief the agent attaches to a w-event.

This second-order uncertainty could be interpreted fruitfully as a measure

of the reliability of the model, along the lines described in Hosni (2014).

Finally a glimpse at the applicability of our framework in the wider field of

uncertain reasoning. We proved that whilst all Choice-based probabilities

are normalised, monotonic and additive set-functions, the converse doesn’t

hold. Hence, the currently heated debate concerning the (in)adequacy of

“probability” as a measure of rational belief under uncertainty, may greatly

benefit from being framed in the context of Cbps. We claim that under the

restrictions provided by w-coherence, the identification of “rational belief”

with “probability” is beyond reasonable dispute. Normative shortcomings

of Cbp’s are thus to be found in the severe restrictions imposed by the

abstraction of the underlying choice problem discussed in detail in Section

1.2 above. In future research we will investigate the relaxation of some of the

abstraction of de Finetti’s choice problem and its consequences for Cbp. The

first such relaxation will follow the footsteps of Fedel et al. (2011) and drop

the Swapping assumption recalled above. This will open to the investigation

of interval-valued Choice-based probabilities.
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