Divya Parmar, Steffen Reinhold, Aurélia Souares, Germain Savadogo and Rainer Sauerborn

Does community-based health insurance protect household assets?: evidence from rural Africa

Conference Item

Original citation:

This version available at: http://eprints.lse.ac.uk/46666/

Available in LSE Research Online: October 2012

© 2011 The Authors

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.
Does community-based health insurance protect household assets?

Evidence from rural Burkina Faso, Africa

Divya Parmar, Steffen Reinhold, Aurélia Souares, Germain Savadogo, Rainer Sauerborn
Health financing through Community-based health insurance (CBHI)

Four major types of health financing

• Tax-based financing
 Taxes on financial transactions

• Social health insurance
 Workers, govt. employees etc

• Private health insurance
 E.g. CBHI

• Medical saving accounts
 Individual saving accounts

Increase in the # of CBHI Schemes in West Africa

References: WHO

Source: www.concertation.org
Link between CBHI and household assets

(Livestock + household goods)

Illness in the HH

- No treatment
- Self-treatment
- Traditional Healer
- Health facility

Delay in treatment + Costs

Increase severity
- lower productivity
- lower earnings

delay purchasing

sell

HH assets

Livestock produce

Costs

sell

Health facility
Link between CBHI and household assets

(Livestock + household goods)

CBHI

Illness in the HH

No treatment
Self-treatment
Traditional Healer
Health facility

Delay in treatment + Costs

Increase severity
lower productivity
lower earnings
delay purchasing

HH assets

Livestock produce

Costs

Sell

HH assets

Livestock produce
Burkina Faso

- Population: 15.8 million
- GDP per capita (PPP): $1200
- Occupation: 90% engaged in subsistence agriculture
- Literacy: 30% (men), 15% (females)
- Life expectancy: 53 years
- Infant mortality rate: 85 /1000 live births

Reference: https://www.cia.gov
The CBHI scheme in Nouna

- Introduced in 2004
- 41 villages and Nouna town (i.e. 7762 households)
- Benefit package: Consultation fee, essential and generic drugs, lab tests, hospital stay, x-rays, emergency surgery, ambulance transport
- Unit of enrolment: household
- Premium: 1500 CFA (2.29€) adult 500 CFA (0.76€) child p.a.
Data: Household Panel Survey (2004-07)

- 41 villages & Nouna town
- 15% of the population
 (Total population: 67,262)
- Panel survey
 (same households interviewed every year)
- Conducted every year

(0) Socio-demographic: ethnicity, religion, housing conditions, education...
(1) Socio-economic: ownership of livestock, goods...
(2) Self-reported morbidity: illness episodes, health-seeking behaviour...
(3) Preventive care
(4) Risk-sharing & perceptions on quality of health care
(5) CBHI: enrolment decisions, reasons for enrolling...
Model

\[\text{HH assets}_{it+1} = Z_{i} \cdot \beta_1 + X_{it} \cdot \beta_2 + \text{CBHI}_{it} \cdot \beta_3 + u_i + \varepsilon_{it} + \delta_t \]

**HH assets}_{it+1} : \ln(\text{Monetary value of livestock and HH goods})

\(Z_{i} \) : observable time-invariant factors e.g. religion, education

\(X_{it} \) : observable time varying factors e.g. age, HH size, chronic

\(\text{CBHI}_{it} \) : number of insured people in the household

\(u_i \) : unobservable time-invariant factors e.g. ability

\(\varepsilon_{it} \) : household-specific time shock e.g. death in the household

\(\delta_t \) : year shocks

Reverse causality

Selection bias
1. Instrumental Variable (IV) Model

- Study area divided into 31 clusters
- CBHI offered randomly
 - 2004: 11 clusters
 - 2005: +9 clusters (11+9=20)
 - 2006: +11 clusters (20+11=31)

(Exclusion restriction)

Eligibility ➔ CBHI ➔ HH assets

(Relevance)

Controls for both selection bias + reverse causation

2. Fixed Effects (FE) Model

- Does not control for 2-way causality

Controls for selection bias only due to time constant variables e.g. ethnicity, religion
RESULTS
Descriptive statistics

HH assets and CBHI enrolment
2004-2007

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean value of HH assets (CFA)</th>
<th>Enrolment rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>N=835</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>N=782</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>N=776</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>N=751</td>
<td></td>
</tr>
</tbody>
</table>

- **Drought & locust invasion**
- **High prices**
- **Subsidy to poor**
Results: Instrumental Variable (IV) 2004-2005

<table>
<thead>
<tr>
<th>Variables</th>
<th>Co-efficient</th>
<th>Robust SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBHI</td>
<td>0.220</td>
<td>0.121</td>
<td>0.070</td>
</tr>
<tr>
<td>Literate</td>
<td>0.273</td>
<td>0.082</td>
<td>0.001</td>
</tr>
<tr>
<td>Male</td>
<td>-0.374</td>
<td>0.106</td>
<td>0.000</td>
</tr>
<tr>
<td>Year_2005</td>
<td>-0.192</td>
<td>0.035</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- No. of clusters: 31
- No. of observations: 1,588

Angrist-Pischke 1st stage chi\(^2\): 17.33 (p=0.00)

Angrist-Pischke 1st stage F statistic: 16.47 (p=0.00) \(\text{IV is relevant}\)

Notes:
1. Only variables significant at 10% significant or less are shown here.
2. Model controls for:
 - Household head characteristics: Ethnicity, Literate, Gender, Age, Occupation
 - Household characteristics: Size, Chronic, Eligible
 - Village characteristics: Town, Literacy, Water source, Distance, Health facility
 - Year dummies
Results: Fixed Effects (FE)
2004-2007

<table>
<thead>
<tr>
<th>Variables</th>
<th>Co-efficient</th>
<th>Robust SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBHI</td>
<td>0.009</td>
<td>0.005</td>
<td>0.082</td>
</tr>
<tr>
<td>Size</td>
<td>-0.125</td>
<td>0.049</td>
<td>0.010</td>
</tr>
<tr>
<td>Year_2005</td>
<td>-0.157</td>
<td>0.027</td>
<td>0.000</td>
</tr>
<tr>
<td>Year_2006</td>
<td>-0.085</td>
<td>0.031</td>
<td>0.006</td>
</tr>
<tr>
<td>Year_2007</td>
<td>0.124</td>
<td>0.034</td>
<td>0.000</td>
</tr>
</tbody>
</table>

No. of clusters: 890
No. of observations: 3,144

Notes:
1. Only variables significant at 10% significant or less are shown here
2. Only time varying variables are included
 - Household head characteristics: Age
 - Household characteristics: Size, Chronic
 - Village characteristics: Town, Water source, Distance
 - Year dummies
Conclusion

Both models: CBHI protects household assets

HH assets and CBHI enrolment
2004-2007

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>Mean value of HH assets (CFA)</th>
<th>Enrolment rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>835</td>
<td>70,000</td>
<td>IV: 24.6%</td>
</tr>
<tr>
<td>2005</td>
<td>782</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>776</td>
<td>55,000</td>
<td>FE: 1%</td>
</tr>
<tr>
<td>2007</td>
<td>751</td>
<td>70,000</td>
<td></td>
</tr>
</tbody>
</table>

N=835, N=782, N=776, N=751
Main Conclusions

• CBHI has the potential to protect household assets
• CBHI, in some circumstances, can also increase household assets by breaking the cycle of ill health and poverty – poverty reduction tool
• Depends on local context – the scheme, benefit package, quality of care, trust....
• Shift from small-scale CBHI towards universal SHI?
• CBHI - an interim solution
• Sustainability?
Thank you

Divya Parmar
Parmar@uni-heidelberg.de
Institute of Public Health
Heidelberg University
Germany