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Privacy Protection from Sampling and

Perturbation in Survey Microdata

Natalie Shlomo∗ and Chris Skinner†

Abstract

Statistical agencies release microdata from social surveys as public-use files after
applying statistical disclosure limitation (SDL) techniques. Disclosure risk is typically
assessed in terms of identification risk, where it is supposed that small counts on cross-
classified identifying key variables, i.e. a key, could be used to make an identification
and confidential information may be learnt. In this paper we explore the application of
definitions of privacy from the computer science literature to the same problem, with
a focus on sampling and a form of perturbation which can be represented as misclas-
sification. We consider two privacy definitions: differential privacy and probabilistic
differential privacy. Chaudhuri and Mishra (2006) have shown that sampling does not
guarantee differential privacy, but that, under certain conditions, it may ensure prob-
abilistic differential privacy. We discuss these definitions and conditions in the context
of survey microdata. We then extend this discussion to the case of perturbation. We
show that differential privacy can be ensured if and only if the perturbation employs
a misclassification matrix with no zero entries. We also show that probabilistic differ-
ential privacy is a viable alternative to differential privacy when there are zeros in the
misclassification matrix. We discuss some common examples of SDL methods where
in some cases zeros may be prevalent in the misclassification matrix.

Keywords: Identification Disclosure, Attribute Disclosure, Differential Privacy, Misclassi-
fication.

1 Introduction

Statistical agencies release microdata from social surveys, such as a labour force survey or
a survey of incomes, where the units of investigation (households or individuals) have small
inclusion probabilities. Provisions for releasing these microdata range from public-use files
where the microdata is heavily protected against disclosure risk, microdata-under-contract
and special licensed data typically delivered through data archives. In addition, many sta-
tistical agencies have facilities for visiting researchers to access unprotected microdata in a
safe setting. Microdata from business surveys are generally not released because of their dis-
closive nature arising from high sampling fractions and skewed distributions. Other types of
microdata are also not released in their original form, such as data from a population census.
These datasets are typically protected through tabulation and high level aggregation which
are released in the form of tables. Alternatively, some statistical agencies have taken the
approach of producing synthetically generated multiple datasets of the microdata which re-
tain some of the analytical properties of the original microdata (Rubin, 1993; Reiter, 2005a).
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We consider here microdata from social surveys released as public-use files. In order to
preserve the privacy and confidentiality of individuals responding to social surveys, statis-
tical agencies assess disclosure risk and if required choose appropriate statistical disclosure
limitation (SDL) methods to apply to the data. Disclosure risk is usually assessed in terms
of the potential for re-identifying statistical units. SDL methods perturb, modify, or sum-
marize the data in order to prevent re-identification by a potential attacker. Higher levels of
protection through SDL methods however impact negatively on the utility and quality of the
data. The SDL decision problem therefore is based on finding the optimal balance between
managing disclosure risk to tolerable thresholds depending on the mode for accessing the
data and ensuring high utility in the data.

SDL techniques for microdata include perturbative methods which alter the data and
non-perturbative methods which limit the amount of information released in the microdata.
Examples of non-perturbative SDL techniques are global recoding, suppression and sub-
sampling (see Willenborg and De Waal, 2001). These methods are the most common for
the protection of microdata arising from social surveys. Perturbative methods might be
used, either for all records in the microdata or for only those deemed to be at high risk.
Perturbative methods for continuous varaibles include adding random noise (Fuller, 1993;
Yancey et al., 2002), micro-aggregation (replacing values with their average within groups of
records) (Defays and Nanopoulos, 1992), random rounding, and rank swapping (swapping
values between pairs of records within small groups) (Dalenius and Reiss, 1982; Fienberg
and McIntyre, 2005). Perturbative methods for categorical variables include record swap-
ping (typically swapping geography variables) and post-randomization probability mech-
anism (PRAM) where categories of variables are changed or not changed according to a
prescribed probability matrix and a stochastic selection process (Gouweleeuw et al., 1998).
For more information on these methods see also: Willenborg and De Waal (2001), Gomatam
and Karr (2003), Domingo-Ferrer et al. (2001), Winkler (2004) and references therein.

In this paper we focus on the assessment of disclosure risk. We explore how definitions of
privacy introduced in the computer science literature (Dinur and Nissim, 2003; Dwork et al.,
2006) may be applied to the case of survey microdata and discuss their use in comparison
to some traditional approaches in the SDL literature.

The traditional SDL literature emphasizes the distinction between an identifying or key
variable, the value of which an adversary is assumed to know (perhaps from public sources)
for a target unit, and a sensitive variable, the value of which an adversary wishes to learn for
the target unit. It is assumed that in any released microdata, directly identifying variables,
such as name, address or identification numbers, are removed. Disclosure risk typically arises
when small counts on cross-classified indirect identifying key variables (such as: age, sex,
place of residence, marital status, occupation, etc.) can be used to identify an individual
and confidential information on a sensitive variable may be learnt. Identifying variables are
typically categorical since statistical agencies will often coarsen the data before its release.
Therefore, even a variable such as age will often be grouped into categories. Sensitive vari-
ables can be continuous (e.g., income) or categorical (e.g., health status).

In contrast, there is usually no distinction between key variables and sensitive variables
in the computer science literature on privacy. A ’worst case’ scenario is allowed for, in
which the adversary has complete information about all units in the database other than
the target unit. Definitions from both literatures will be discussed in Section 2. The main
contributions of the paper are in Sections 3 and 4 where we discuss the application of
computer science definitions of privacy in two common settings, one where sampling takes
place and one where a perturbative SDL method is employed which can be represented as
misclassification. Our discussion of sampling draws on the work of Chaudhuri and Mishra
(2006) who obtained some fundamental results on how sampling may or may not preserve
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privacy. Our discussion of misclassification refers to similar privacy notions and contrasts
cases when there may or may not be zeros in the misclassification matrix. We illustrate
these situations with some commonly used SDL methods. We conclude with a discussion in
Section 6.

2 Defining Disclosure Risk

In the statistical literature, two broad notions of disclosure risk are used: identification dis-
closure, which refers to the possibility that an adversary can link a microdata record to a
known unit in the population, and attribute (or inferential) disclosure, which refers to the
possibility that an adversary can learn new information about a target unit in the popula-
tion (Duncan and Lambert, 1989; Skinner, 1992). The first notion is particularly relevant
to survey microdata, since it is often referred to in relevant legislation or professional codes
of practice. The fact that identification disclosure does not refer to any particular survey
variable also has practical advantages in social surveys where there may be a large number
of survey variables. The notion of differential privacy in the computer science literature
is most closely related to the concept of attribute (inferential) disclosure, by referring to
what new information an adversary could learn about a target unit. We now discuss these
different notions in more detail.

2.1 Identification Risk

We suppose that an adversary knows the values of some key variables for a target unit
and seeks to use these values to link the unit to a record in the microdata, which contains
values of these variables, after SDL has been applied, for n units in a sample s drawn from
a population U . For identification risk to be well-defined, we assume in this section that the
records in the released microdata can meaningfully be associated with units in the popula-
tion. For certain kinds of SDL methods, such as synthetic data or micro-aggregation, this
may not be the case.

Identification risk is defined in terms of the probability that such a link is correct (Beth-
lehem et al., 1990; Reiter, 2005b; Skinner and Shlomo, 2008). If it were the case that (i)
no sampling occurs; (ii) the combination of values of the key variables for the target unit is
unique in the population and (iii) the key values, as recorded in the microdata, are known
by the adversary for the target unit, then the adversary could deduce the correct link and
the probability of identification risk might be taken to be unity. The presence of sampling
and the use of perturbative methods, leading to departures from (i) and (iii) respectively,
are primary ways of reducing the identification risk.

In the presence of sampling, definitions of identification risk will usually depend on pop-
ulation characteristics, which will, in general, be unknown and this creates a problem of
statistical inference, i.e. the risk measure must be estimated from sample data. In par-
ticular, sample frames that are used to draw the samples for social surveys are typically
area frames or address registers and will not include population-wide information on key
variables.

One approach to assessing the impact of a perturbative SDL method on identification
risk is to start with a record linkage method and a set of key variables, which an adversary
is assumed to use, and then to use these to match the protected microdata matched back to
the original dataset (Yancey et al., 2002; Domingo-Ferrer and Torra, 2003). It is less easy
to assess the impact of sampling, however.
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A different approach is through probabilistic models, as first proposed by Bethlehem et al.
(1990). Individual per-record risk measures are based on the probability of re-identification.
These per-record risk measures are aggregated to obtain global risk measures for the entire
file. As mentioned in Section 1, the key variables may be taken to be categorical, defin-
ing a contingency table. In this case, let k be the number of cells in the table and write
xi = j if unit i is in cell j, j ∈ {1, · · · , k}. The observed count in cell j in the sample
microdata is denoted fj =

∑
i∈s I(xi = j), where I(.) is the indicator function. The corre-

sponding count in the population is denoted Fj =
∑

i∈U I(xi = j). The identification risk
will depend on these population counts Fj , (j = 1, · · · , k) which will generally be unknown.
The probabilistic model makes the natural assumption in the contingency table literature
that: Fj ∼ Poisson(λj), where λj is the expected population count. If the sample is
drawn by Poisson or Bernoulli sampling with a known sampling fraction πj in cell j then
Fj |fj ∼ Poisson(λj(1 − πj)) provides a predictive distribution for inference about the un-
known Fj assuming conditional independence. Skinner and Holmes (1998) and Elamir and
Skinner (2006) propose using a log-linear model to estimate the parameters λj . The sample
frequencies fj are independent Poisson distributed with mean µj = πjλj . A log-linear model

for the µj is expressed as: log(µj) = zzz
′

jβββ where zzzj is a design vector which denotes the main
effects and interactions of the model for the key variables. The maximum likelihood (MLE)

estimator β̂ββ may be obtained by solving the score equations:
∑

j [fj − πjexp(zzz
′

jβββ)]zzzj = 0.
Skinner and Shlomo (2008) discuss goodness of fit criteria to ensure unbiased estimation of
µj .

The fitted values are calculated by: µ̂j = exp(zzz
′

jβ̂ββ) and λ̂j = µ̂j/πj . These are plugged

into the expressions: τ̂1 =
∑

j I(fj = 1)P̂ (Fj = 1|fj = 1) for the number of sample uniques

that are population uniques and τ̂2 =
∑

j I(fj = 1)Ê(1/Fj |fj = 1) the number of correct
matches from among the sample uniques. Under the Poisson model: P (Fj = 1|fj = 1) =
exp(−λj(1 − πj)) and E(1/Fj |fj = 1) = [1 − exp(λj(1 − πj))]/[λj(1 − πj)]. Shlomo and
Skinner (2010) extended this model to take into account misclassification either arising from
errors in the data collection and processing or introduced purposely into the data as an SDL
technique, for example PRAM to misclassify categories of categorical variables.

2.2 Attribute Disclosure

Let x denote again the cell value for the key variables, which an adversary is assumed to
know for a target unit, and let y denote a sensitive variable, the value of which an adversary
wishes to learn for the target unit. A measure of attribute disclosure may then be defined
in terms of the predictive probability distribution of y given x and the observable data from
the microdata.

2.3 Privacy Measures

In the more recent computer science literature on privacy, there is usually no distinction
between key variables and sensitive variables. The starting point is the (original) database
of attribute values from which the microdata are generated via the SDL method. It is sup-
posed that an adversary wishes to learn about the attribute values for a specific (target)
unit in the database. A ’worst case’ scenario is allowed for, in which the adversary has com-
plete information about all other units represented in the database (Dwork et al., 2006).
Under this assumption, we again let x denote the cell value, taking possible values 1, · · · , k,
where the contingency table is now formed by cross-classifying all variables, whether key or
sensitive.

In our survey setting, there are two possible definitions of the database: the population
’database’ xU = (x1, · · · , xN ) and the sample ’database’ xs = (x1, · · · , xn), where N de-
notes the size of the population U = {1, · · · , N} and, without loss of generality, we write
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s = {1, · · · , n}. The sample database might be viewed from one perspective as more real-
istic, since it contains the data collected by the statistical agency, whereas the population
database would include values of survey variables for non-sampled units, which are unknown
to the agency. A problem with using the sample database in the privacy definition is that
it would assume that the adversary knows which units fall in the sample, an assumption
referred to as ’response knowledge’ by Bethlehem et al. (1990). As they argue, identifi-
cation can be achieved much more easily by an intruder under this assumption and so the
agency must take considerable care to avoid this situation, wherever possible. There may be
practical circumstances, when this is infeasible, but we suppose here that it is reasonable to
suppose that the adversary does not have response knowledge. We therefore use the popu-
lation database xU to define privacy. We treat the sampling as part of the SDL mechanism
and suppose that prior adversary knowledge relates to aspects of xU .

Let x̃i denote the cell value of unit i in the microdata after SDL has been applied and
let f̃j =

∑
i∈s I(x̃i = j) denote the corresponding observed count in cell j in the microdata.

Supposing that the SDL methods leads to an arbitrary ordering of the records in the mi-
crodata, we can view the released data as the vector of counts: f̃ff = (f̃1, f̃2, · · · , f̃k). Let

Pr(f̃ff |xU ) denote the probability of f̃ff with respect to an SDL mechanism, which includes
sampling and/or misclassification, and where xU is treated as fixed. There are different
definitions of privacy in the computer science literature. As a starting point, we consider
the following definition.

Definition (Dwork et al., 2006): ε- differential privacy holds if:

max

∣∣∣∣∣ln
(
Pr[f̃ff |x(1)

U ]

Pr[f̃ff |x(2)
U ]

)∣∣∣∣∣ ≤ ε (1)

for some ε > 0, where the maximum is over all pairs (x
(1)
U ,x

(2)
U ), which differ in only one

element and across all possible values of f̃ff .

We also consider an (ε, δ) - probabilistic differential privacy definition, as discussed by
Chaudhuri and Mishra (2006), here probabilistic differential privacy holds if (1) applies with
probability at least 1− δ for some ε, δ > 0. More precisely, this definition holds if the space
of possible outcomes f̃ff may be partitioned into ’good’ and other outcomes, if (1) holds
when the outcome is good and if the probability that the outcome is good is at least 1− δ.
This definition is essentially the same as the notion of probabilistic differential privacy in
Machanavajjhala et al. (2008) where the set of bad outcomes is referred to as the disclosure
set.

Based on these definitions, the next two sections consider the question of whether privacy
holds in two settings. In Section 3 we consider the effect of sampling but no further SDL
method. Section 4 considers whether privacy holds for microdata which have been perturbed
by a misclassification-based SDL technique.

3 Sampling and Privacy

In this section, we suppose that microdata are released for a sample obtained using a prob-
ability sampling design and that there is no perturbation, so that x̃s = xs and f̃ff = fff .
Two examples of a probability sampling design are (i) simple random sampling, where all
possible subsets of specified size n have an equal probability of selection, and (ii) Bernoulli
sampling, as considered by Chaudhuri and Mishra (2006), where each population element
is selected independently with probability p.
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For these designs Pr(f̃ff |xU ) = Pr(fff |xU ) in (1) may be expressed as:
(i) simple random sampling of size n

Pr(fff |xU ) =

k∏
j=1

(
Fj

fj

)/(
N
n

)
; (2)

(ii) Bernoulli sampling with selection probability p

Pr(fff |xU ) =

k∏
j=1

(
Fj

fj

)
pfj (1− p)Fj−fj ,

where, in each case, 0 ≤ fj ≤ Fj , j = 1, · · · , k. For each of these and many other sampling
schemes, fj may equal Fj with positive probability. In particular, it is usual, in order to
achieve unbiased statistical estimation, for an agency to require of any sampling scheme
that all population units have positive inclusion probability and so, if any unit is popula-
tion unique (Fj = 1) there is a positive probability that this unit is sampled in which case
fj = Fj = 1. Thus, for given fff and any sampling scheme where some element fj of fff may

equal Fj with positive probability, there exists a database x
(1)
U such that fj = F

(1)
j ≥ 1

for some j and Pr[fff |x(1)
U ] 6= 0. Now if we change an element of x

(1)
U which takes the value

j to construct x
(2)
U for which F

(2)
j = F

(1)
j − 1 < fj we obtain Pr[fff |x(2)

U ] = 0. Hence, ε-
differential privacy does not hold for a very broad class of sampling schemes, as discussed
by Chaudhuri and Mishra (2006) in the case of Bernoulli sampling.

There are at least three reasons why the disclosure implications of this finding might not
be considered a cause for concern by a statistical agency.

First, consider the threat that the event fj = Fj enables an adversary to disclose the
cell value of a target individual. Such a disclosure depends upon the adversary knowing the
count for the cell j across the whole of the population excluding the target individual. Given
this knowledge and the observation that this count equals fj − 1, the intruder could infer
that the target individual falls in this cell (and appears in the microdata). For the kinds of
large populations of individuals upon which social surveys in most countries are typically
based, it may be deemed unrealistic, however, for an intruder to have precise information
on all individuals in the population except one. The nearest realistic possibilities are that
there exist an external database which either (a) via full population information, enables the
population count Fj to be determined together with the identities of these Fj individuals or
(b) provides identities of an unknown subset of population individuals in the cell. In neither
of these cases would exact disclosure occur. In (a), the key variable value for the target in-
dividual would already be known to the intruder. In (b), there would be residual uncertainty.

Second, consider the threat of identification, where an adversary knows both that a tar-
get individual belongs to cell j and that the individual is population unique, i.e. Fj = 1.
In this case, the target individual is sampled (so that fj = 1 ) then the adversary would
be able to identify the individual in the microdata. This possibility is already well-known
to agencies as a threat and grounds for ensuring that no microdata are released for which
there are combinations of key variables for which an adversary could know that Fj = 1 or
some other small value, such as in the kind of external database mentioned above.

Third, for any given database, the possible values of fff where ε- differential privacy fails
may occur only with negligible probability. Therefore, the agency may consider it more ap-
propriate to adopt the (ε, δ)- probabilistic differential privacy definition referred to earlier.
Chaudhuri and Mishra (2006) show that, under a number of conditions, Bernoulli sampling
can meet this definition. They partition the possible samples s, and by implication the
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values fff , according to whether they are ’good’ and show that, ε- differential privacy holds
for good samples and that the probability of a good sample may be made greater than
1− δ. Bad samples may be referred to as ’leakage’. A basic requirement of a good sample
is that it includes no ’rare’ cases, that is that fj = 0 for any cells j for which Fj is below
2ε−1log(2k/δ). Chaudhuri and Mishra (2006) then show that the probability of a good
sample may be made greater than 1 − δ if the Bernoulli sample selection probability p is
sufficiently small.

The conditions required by Chaudhuri and Mishra (2006) to achieve probabilistic differ-
ential privacy are, however, severe in common settings considered in statistical disclosure
limitation. Consider the following example, for illustration.

Numerical Example: 16 dichotomous key variables generate a key with k = 216 = 65, 536
cells. In a population of size N = 1, 000, 000 the average cell size Fj in the population is
thus 15.3.

Such a combination of values of k and N seems realistic at statistical agencies. If the
agency specifies values δ = ε = 1/3 (any larger seems unlikely to be deemed much protec-
tion) then the threshold 2ε−1log(2k/δ) = 77.3 is well above the average cell size and the
requirement for ’good’ samples implies suppressing cells with Fj < 78 and this may be ex-
pected to lead to severe bias in statistical estimation for variables which bear some relation
to the key variables. Chaudhuri and Mishra (2006) recognize that they make the ’large
assumption’ that k is much smaller than N . This assumption is frequently not the case in
the kinds of applications often considered by statistical agencies. This questions therefore
whether even (ε, δ)- probabilistic differential privacy is achievable in situations commonly
considered by statistical agencies.

To explore the probabilistic nature of the threat to privacy further, consider the event
that fj = Fj , viewed here as the key threat to ε- differential privacy. By assumption, units
in social surveys have small inclusion probabilities and the probability that all population
units in a cell j will appear in the sample, i.e. fj = Fj = m, will be very small for m = 2
(doubles) and even smaller for m > 2 . The most realistic outcome is that a sample unique is
population unique, i.e. the case fj = Fj = 1 but, as we illustrate in the numerical example,
this will typically also be unlikely.

Numerical Example continued: Suppose two simple random samples are drawn from
the population of size N = 1, 000, 000. Sample 1 has size n = 5, 000. Sample 2 has size
n = 10, 000. The inclusion probabilities of population units are thus π = 0.005 and π = 0.01,
respectively. Let the 16 dichotomous key variables be generated independently, each as a
0-1 Bernoulli random variables with probability 0.2. We draw 1000 samples for each of the
sample sizes and examine the proportion of cases where Fj = fj among cells with a given
value of fj . The average proportion of sample uniques that are population uniques was
0.024 for Sample 1 and 0.035 for Sample 2. The proportions for doubles or triples in the
population were minuscule.

Thus, for any observed case in the released sample where fj is small, and in particu-
lar for the case fj = 1, the event that Fj = fj has a very small probability. Note that,
viewed as a probability, this uncertainty relates to Fj conditional on the value of fj . This
conditioning is in the opposite direction to that in the definition of probabilistic differential
privacy. There, fj is treated as the random variable and Fj as fixed. From a statisti-
cal disclosure point of view, the former direction captures better the ability of an adversary
to learn about unknown characteristics of a target individual given the information released.

Theoretical expressions for conditional probabilities of Fj given fj may be developed
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Figure 1: Probability that a sample unique is a population unique, Pr(PU |SU), according
to the probabilistic model in Section 2.1 for different values of the expected population count
λj in a cell j (with πj = 0.005 and πj = 0.010 )

under statistical models such as the Poisson models discussed in Section 2.1. For exam-
ple, the probability that a sample unique is a population unique is P (Fj = 1|fj = 1) =
exp[−λj(1 − πj)], where πj is assumed known and λj , the expected value of Fj , may be
estimated through log-linear modeling (Skinner and Shlomo, 2008). Figure 1 represents the
probability of a population unique for different values of λj for two known sampling frac-
tions: πj = 0.005 and πj = 0.010. As can be seen, when the expected population count is
less than one, the probability of a population unique may be high, but for larger values of
this count, as in the numerical example above where the average cell count is 15, the prob-
ability very quickly drops toward zero. There is little difference between the two sampling
fractions.

4 Perturbation and Privacy

Assuming now that there is no sampling (so that s = U and n = N ), we consider
misclassification-based SDL techniques which generate the n × 1 vector x̃s from xs. We
define the misclassification matrix as:

Pr(x̃i = j1|xi = j2) = Mj1j2 , i = 1, · · · , n, j1, j2 = 1, · · · , k (3)

where x̃i denotes the ith element of x̃s. Assuming independent misclassification for different
units, we can write the conditional distribution Pr(x̃s|xs) in terms of the matrix M.

Suppose first that x̃s can be treated as the released data. Then, using also the fact that
xs = xU , we may replace Pr[f̃ff |xU ] by Pr[x̃s|xs] in the definition of ε-differential privacy.
If we assume independent misclassification for different units then we can write

Pr[x̃s|x(1)
s ] =

∏
i∈s

Pr(x̃i|x(1)i ). (4)

Suppose that x
(1)
s differs from x

(2)
s only in the ith element, so that x

(1)
i 6= x

(2)
i , then

Pr[x̃s|x(1)
s ]

Pr[x̃s|x(2)
s ]

=
Pr(x̃i|x(1)i )

Pr(x̃i|x(2)i )
=

M
x̃ix

(1)
i

M
x̃ix

(2)
i

.
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It follows that there exists a finite ε for which ε-differential privacy holds iff all elements of
M are positive (i.e. none are zero).

Note that

max

∣∣∣∣∣ln
(
Pr[x̃s|x(1)

s ]

Pr[x̃s|x(2)
s ]

)∣∣∣∣∣ ≤ max
j̃,j(1) 6=j(2)

∣∣∣∣∣ln
(
Mj̃j(1)

Mj̃j(2)

)∣∣∣∣∣
= max

j̃
(max

j
ln(Mj̃j)−min

j
ln(Mj̃j))

= max
j̃

(ln[max
j

Mj̃j ]− ln[min
j

Mj̃j ]).

We assumed earlier that the elements of x̃s will be subject to an arbitrary ordering so that
it is more appropriate to write f̃ff as the released data. Let a be the k×k matrix with entries
aj̃j =

∑
i∈s I(x̃i = j̃, xi = j) and note that the vectors of row and column totals of a are

fff and f̃ff , respectively. Then assuming again independent misclassification as in (3) we may
write

Pr[f̃ff |xs] =
∑
a∈A

∏
j̃

∏
j

M
aj̃j

j̃j

where A is the set of possible values of a for which the vectors of row and column totals of
a are fff and f̃ff , respectively. Note that, under these assumptions, Pr[f̃ff |xs] depends on xs

only via fff so that we may write Pr[f̃ff |xs] = Pr[f̃ff |fff ].

If xs = xU is changed in just one element then fj will be increased by 1 for one value of
j and decreased by 1 for another value of j. If the values of fff before and after the change
are denoted fff (1) and fff (2) respectively we can write |fff (1) − fff (2)| = 2. This is sometimes
called the sensitivity of the vector of counts fff (Dwork et al., 2006). Abowd and Vilhuber

(2008) define ε-differential privacy, with Pr[f̃ff |fff ] replacing Pr[f̃ff |xU ], so that ε-differential

privacy holds if (1) holds for all pairs ( fff (1), fff (2)) where |fff (1) − fff (2)| = 2.

If all elements of M are positive then Pr[f̃ff |fff ] > 0 iff f̃ff
T

111k = fffT111k = n , where 111k is a
k × 1 vector of 1s.

If all elements of M are not positive, say Mj̃j = 0 ( j̃ 6= j), then f̃j̃ is bounded above by

n− fj . Let f̃ff be defined by n− f (1)j in cell j̃, f
(1)
j in cell j and 0 in the remaining cells and,

assuming independent misclassification and Mjj > 0, we have Pr[f̃ff |fff (1)] > 0 . Suppose

f
(2)
j = f

(1)
j +1. Then we must have Pr[f̃ff |fff (2)] = 0 since f̃j̃ is bounded above by n−f (1)j −1.

Hence, ε-differential privacy does not hold.

As before, ε-differential privacy holds iff all elements of M are positive if we treat the
released data as f̃ff rather than x̃s.

To consider the possible use of probabilistic differential privacy when not all elements of

M are positive, we define an outcome f̃ff which could arise from f̃ff
(1)

to be bad if, for some

j̃, f̃j̃ = n −
∑

j∈Aj
f
(1)
j where Aj = {j|Mj̃j = 0}. Following a similar argument to that

above, ε-differential privacy does not hold for any bad outcome. If the outcome is not bad
and fff (2) is defined such that |fff (1)−fff (2)| = 2 then Pr[f̃ff |fff (2)] 6= 0. Thus, (ε, δ)- probabilistic
differential privacy will hold for some (ε, δ) with ε < 1, δ < 1. For many choices of M and
large values of n, bad samples will be unlikely, although we do not attempt here to quantify
this.

We simply illustrate possible choices of the misclassification matrix M for some common
SDL techniques on categorical variables and comment on whether all elements are positive.
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Recoding: For the non-perturbative method of recoding, which is the most common
SDL technique for microdata arising from social surveys, assume a variable where categories
1 to a are changed to category 1.The misclassification matrix is:

Mj1j2 =

{
1 j2 = 1, · · · , a and j1 = 1, or j2 = a+ 1, · · · , k and j1 = j2 − a+ 1
0 otherwise

It is clear that with elements equal to zero, ε-differential privacy will not be guaranteed.

Categories above a are not changed so increasing a cell count f
(2)
j = f

(1)
j + 1 for one value

of j will set the probability in the denominator in (1) equal to zero because of the bounds
on the cell counts.

Random Data Swapping: For the perturbative method of random data swapping, the

probability of selecting any 2 records for swapping data is

(
n
2

)−1
. Let fj be the number

of records taking value j, as before, and assume counts fj1 and fj2 are positive, then:

Mj1j2 = Mj2j1 =
fj1fj2(
n
2

) , Mjj =

(
fj
2

)
(
n
2

)
and, provided there are no zero counts of categories, there are no zero elements in the mis-
classification matrix. This strategy will guarantee ε-differential privacy as the denominator
in (1) will now be positive.

PRAM: The SDL technique of PRAM uses a misclassification (probability) matrix M
to make random changes across categories of a variable. We can also require the property
of invariance of the misclassification matrix: vM = v where v is the vector of sample pro-

portions: v =
(

f1
n , · · · ,

fk
n

)
. This ensures that the perturbed marginal distribution will be

similar to the original marginal distribution in the microdata. The misclassification matrix
should be defined to have no zero elements in order to ensure differential privacy. Note
that in practice, there may be zero elements in the misclassification matrix which represent
structural zeros in the population, i.e. impossible combinations of categories such as children
having an occupation as a ’doctor’. For these cases, differential privacy is not applicable.

In general, non-perturbative methods for SDL will not guarantee ε-differential privacy
but may under some circumstances uphold (ε, δ)- probabilistic differential privacy whereas
perturbative methods which ensure no zero elements in the misclassification matrix will
guarantee ε-differential privacy.

5 Conclusion

This paper has focused on microdata from surveys, where sampling is almost always em-
ployed. While sampling does not guarantee differential privacy, it does provide probabilistic
differential privacy under certain conditions. Through numerical illustration, we have seen
that these conditions can be quite severe and so we have also discussed other probabilistic
ways of assessing the threat to privacy.

SDL techniques may be used to provide additional protection to sampling. In this paper
we have examined perturbation techniques which may be viewed as a form of misclassifi-
cation. Such perturbation does ensure a form of differential privacy provided the misclas-
sification matrix contains no zeroes. Even if there are zeroes it may provide probabilistic

x



differential privacy. Further research is needed to establish what conditions on the misclassi-
fication mechanism are required to meet specified levels of probabilistic differential privacy.
Further work is also needed to assess the combined impact of sampling and perturbation.
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