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Estimating Frequencies of Frequencies in
Finite Populations

C. J. Skinner and N.Shlomo

28 July 2012

Abstract

Given a sample from a finite population partitioned into classes,
we consider estimating the distribution of the class frequencies. We
propose first to estimate certain moments of this distribution, assum-
ing Poisson sampling with unequal inclusion probabilities, and then
to adapt these estimates using modelling assumptions. A simulation
study illustrates the bias-robustness of the approach to departures
from these assumptions.

1 Introduction

If a finite population is partitioned into classes, the frequency distribution of

the class frequencies is sometimes called the frequency of frequencies distri-

bution (Good, 1953; Bishop et al., 1975, sect. 9.8). If class membership is

only observed for a sample from the population, various inferential problems

arise. We focus on the case when the number of classes is large and where the

frequencies of many of these classes may be small. A widely studied inferen-

tial problem in this setting is how to estimate the number of classes when this

is unknown (Goodman, 1949; Bunge and Fitzpatrick, 1993). In this paper

we consider the different problem of estimating the frequencies of frequencies
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from a sample when the number of classes is known, as for the case when the

classes are formed by cross-classifying several discrete variables, each with a

known number of categories.

Motivation for this estimation problem comes from statistical disclosure

risk assessment in the release of survey microdata, where there is concern

about the possible identification of individuals through rare combinations of

discrete variables which could be used to link microdata records to external

information (Bethlehem et al., 1990; Skinner and Shlomo, 2008). In this

setting, classes are defined by the combinations of values of the variables.

The single individual in a class with frequency one is unique in the population

and the survey record for this individual could be identified with certainty

if matched exactly to a known individual using these variables, assuming no

misclassification of the variables. An individual in a class with frequency r

could also be identified with probability 1/r from such a match. The more

classes there are with such small counts the greater is likely to be the concern.

The numbers of classes in the population with small frequencies of 1, 2 or

3, say, are sometimes therefore used to measure the ’risk’ of identification.

Since these numbers are generally unobserved, there is interest in estimating

them from sample-based data from the survey.

Standard design-based estimators of population totals from survey sam-

pling may be used to estimate population frequencies when the number of

classes is small. However, the application of such approaches to estimating

frequencies of frequencies breaks down as the number of classes increases

relative to the sample size and when increasingly many of the sample class

frequencies become small. Under simple random sampling without replace-
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ment, Goodman (1949, Theorem 4) showed that it is possible to obtain a

unique design-unbiased estimator of the population frequencies of frequen-

cies even in this case, provided that the sample size is at least as large as

the maximum population class frequency. However, he and subsequent au-

thors (Bunge and Fitzpatrick, 1993) found that the sum of these estimators,

which estimates the total number of classes, tends to have a very high vari-

ance. Such a purely design-based approach to our problem does not seem

promising and we shall not pursue it further.

A purely model-based approach is more straightforward, at least if we

may assume the population class frequencies obey a compound Poisson dis-

tribution of known parametric form and Bernoulli sampling is employed so

that the sample class frequencies also obey a compound Poisson distribution

with the mixing distribution rescaled by the sampling probability. Bethle-

hem et al. (1990) proposed to estimate the number of population uniques

under a Poisson-gamma model in the context of statistical disclosure con-

trol. They expressed the expected number of population uniques under the

model in terms of the model parameters and then estimated these by the

method of moments. Their approach may be extended to the estimation of

the frequencies of other population frequencies. It is of concern, however,

that such an approach will be sensitive to the assumption about the mixing

distribution.

In this paper we propose a hybrid model/design-based approach. We

show that features of the frequency of frequencies distribution can be esti-

mated robustly in a design-based way. We then propose to use the model

for estimating the residual aspects of the distribution not captured by these
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features. Our approach still depends on the specification of a parametric

mixing distribution, judged to be realistic, but aims to be more robust to

departures from this assumption than a purely parametric model-based ap-

proach. Another new feature of our approach is that it handles unequal

probability sampling. We present simulation evidence regarding the relative

robustness of the proposed approach.

Our focus is on point estimation, viewing robustness primarily in terms of

limiting model misspecification bias. Given the importance of such bias rela-

tive to standard errors, we do not attempt in this paper to develop statistical

inference any further, such as to confidence interval estimation.

2 Preliminaries

Let U denote the set of units in a finite population, partitioned into mutually

exclusive classes C1, . . . , CJ with C1 ∪ . . . ∪ CJ = U . Let the population

frequency in class Cj and the size of the population be denoted Fj =| Cj |

and N =| U |, respectively. The frequency of frequency r is defined as

Nr =
∑J

j=1 I(Fj = r), for r = 0, 1, 2, . . ., where I(·) is the indicator function.

Note that
∞∑
r=0

Nr = J,

J∑
j=1

Fj =
∞∑
r=1

rNr = N. (1)

Suppose that a sample s ⊂ U of size n is drawn from U by a probability

sampling design, where unit i ∈ U is included in the sample with probability

πi. We shall mainly assume a Poisson design (Hájek, 1981). Let Cjs = Cj ∩s

and fj =| Cjs | denote the set of sample units and the sample frequency,

respectively, in class Cj and let nr =
∑J

j=1 I(fj = r) be the frequency of

4



sample frequency r. Corresponding to (1), we have

∞∑
r=0

nr = J,

J∑
j=1

fj =
∞∑
r=1

rnr = n. (2)

Suppose that class membership is observed for units i ∈ s and, thus, that

the values nr for r = 1, 2, . . . are known. As noted in the introduction, we

assume that J is known and so n0 is also known from the first equation in

(2). Since class membership is not observed for unsampled units, the values

Nr are generally unknown.

We take the primary problem to be the estimation of the frequencies of

frequencies Nr for small positive values of r, such as 1, 2, 3 or 4. As a prelim-

inary stage to constructing an estimator of Nr, we consider the estimation

of moments of the class frequencies Fj.

3 Design-Based Estimation of Moments of

Class Frequencies

We first consider estimation of the first two finite population moments of the

class frequencies J−1
∑J

j=1 Fj and J−1
∑J

j=1 F
2
j . Let the second order sample

inclusion probabilities be denoted πik = pr(i ∈ s, k ∈ s), where πik reduces to

πi if i = k. Design-unbiased estimators of J−1
∑J

j=1 Fj and J−1
∑J

j=1 F
2
j are

given in the following lemma, subject to multiplication by the known value

of J−1.

Lemma 3.1 The estimators
∑

i∈s π
−1
i and

∑
j (
∑

i∈Cjs

∑
k∈Cjs

π−1ik ) are

design-unbiased for
∑J

j=1 Fj and
∑J

j=1 F
2
j respectively.
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The proof is straightforward, following, for example, Result 2.8.3 of

Särndal et al. (1992). Note that under Poisson sampling πik = πiπk if i 6= k

and πik = πi if i = k so both estimators are well-defined for this design

provided πi > 0 for each i ∈ U . This condition will be assumed for the

remainder of this section.

We next consider estimating the first two conditional moments of the

population class frequencies Fj among classes with a given sample frequency

fj, that is we consider estimating n−1r
∑

j∈Ds,r
Fj and n−1r

∑
j∈Ds,r

F 2
j , where

Ds,r = {j : fj = r} is the set of indices of classes containing r sample

units, for r = 0, 1, 2, . . . and | Ds,r |= nr. For the first moment with r = 1,

the problem reduces to estimating the number of population units in classes

which are sample unique. This quantity is of some interest in disclosure risk

assessment and Skinner and Elliot (2002) and Skinner and Carter (2003)

showed that it may be estimated in a design-unbiased way for the cases of

Bernoulli and Poisson sampling respectively. We shall now generalize their

results. The notion of design-unbiasedness here is non-standard since the

conditional moments are sample-dependent. We say that an estimator θ̂(s)

of a sample-dependent estimand θ(s) is design-unbiased if E{θ̂(s)−θ(s)} = 0,

where the expectation is across samples generated by the probability design.

To derive our results, it will be mathematically convenient to transform the

conditional moments to

µr1 =
∑
j∈Ds,r

(Fj − r), µr2 =
∑
j∈Ds,r

(Fj − r − 1)(Fj − r). (3)

We propose the following estimators of these quantities

µ̂r1 =
∑

j∈Ds,r+1

∑
i∈Cjs

(π−1i − 1), µ̂r2 =
∑

j∈Ds,r+2

∑
i∈Cjs

∑
k∈Cjs,k 6=i

(π−1i − 1)(π−1k − 1).
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Their design-unbiasedness is established in the following two theorems, the

proofs of which are given in Appendix A.

Theorem 3.1 Under Poisson sampling, E(µ̂r1) = E(µr1) for r = 1, 2, . . ..

Remark 3.1 To aid interpretation, µ̂r1 may be expressed as µ̂r1 = (d̄r+1 −

1)(r+1)nr+1, where d̄r+1 = (
∑

j∈Ds,r+1

∑
i∈Cjs

π−1i )/{(r+1)nr+1} is the mean

design weight across sample units in classes with sample frequency r + 1.

Remark 3.2 A curious feature of µ̂r1 is that it uses data from classes with

sample frequency r+1 to estimate a characteristic of a disjoint set of classes,

those with sample frequency r.

Remark 3.3 The estimator µ̂r1 respects the constraint that µr1 is bounded

below by zero since π−1i ≥ 1 for all i. Furthermore, µ̂r1 has the same aggre-

gation relationship with the Horvitz-Thompson estimator N̂ =
∑

i∈s π
−1
i of∑

Fj = N in Lemma 1, as µr1 has with N , that is, we may write:

∞∑
r=0

µ̂r1 = N̂ − n,
∞∑
r=0

µr1 = N − n. (4)

The first expression in (4) follows by straightforward derivation. The second

expression follows from (2) and (3).

Remark 3.4 In the case of Bernoulli sampling when πi = π, µ̂r1 reduces

to (π−1−1)(r+1)nr+1, which generalizes Proposition 2 of Skinner and Elliot

(2002). The implied estimator of n−1r
∑

j∈Ds,r
Fj is r+(π−1−1)(r+1)nr+1/nr.

Multiplying by π ≈ n/N , this is closely related to the formula (r+1)nr+1/nr

which (Good, 1953, equation (2)) presents as an approximate conditional

expectation of (n/N)Fj given fj = r. A difference, however, is that Good

(1953) defines the expectation with respect to a class j drawn with equal
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probability from all classes, whereas in our Bernoulli set-up it is the units

which are drawn with equal probabilities.

Remark 3.5 In the case of Poisson sampling, Theorem 3.1 generalizes a

result of Skinner and Carter (2003) for r = 1.

Theorem 3.1 Under Poisson sampling, E(µ̂r2) = E(µr2) for r = 0, 1, 2, . . ..

Remark 3.6 The analogy of the curious feature noted below Theorem 3.1, is

that µ̂r2 uses data from the classes with sample frequency r+2 to estimate a

characteristic of a disjoint set of classes, those with sample frequency r. The

estimator µ̂r2 also respects the constraint that µr2 is bounded below by zero

since π−1i ≥ 1.

Remark 3.7 Using the results of Theorems 3.1 and 3.2, it may be shown

that a design-unbiased estimator of
∑

j∈Ds,r
F 2
j is given by µ̂r2+(2r+1)µ̂r1−

r(r + 1)nr and that this estimator sums over r = 0, 1, 2, . . . to give the

estimator of
∑J

j=1 F
2
j in Lemma 1 for the case of Poisson sampling.

Remark 3.8 In the case of Bernoulli sampling when πi = π, the simpler

formula µ̂r2 = (r + 2)(r + 1)(1− π)2nr+2/π
2 is obtained.

4 Estimation of Frequencies of Frequencies

We now turn to estimation of the frequencies of frequencies Nr. For our

proposed method, we first express Nr as

Nr =
r∑
t=0

∑
j∈Ds,t

I(Fj = r) =
r∑
t=0

ntpt(r),

where pt(r) = n−1t
∑

j∈Ds,t
I(Fj = r) is the proportion of classes with popula-

tion frequency r among those classes with sample frequency t. Our proposed
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estimator of Nr is:

N̂r =
r∑
t=0

ntp̂t(r), (5)

where p̂t(r) is an estimator of pt(r), to be discussed.

To construct p̂t(r), note first that the distribution of Fj inDs,t is truncated

below by t so that pt(r) = 0 for r < t and we set, correspondingly, p̂t(r) = 0

for r < t. We now view pt(r) as a probability distribution on r = t, t+ 1, . . ..

Its first two moments may be expressed in terms of µt1 and µt2 defined in (3)

and, conversely, we may write:

µt1 = nt

∞∑
r=t

(r − t)pt(r), µt2 = nt

∞∑
r=t

(r − t− 1)(r − t)pt(r). (6)

In section 3 we derived design-unbiased estimators µ̂t1 and µ̂t2 of µt1 and

µt2, respectively. We now propose to estimate pt(r) by pt(r; θ̂t), where pt(r; θt)

is a parametric form assumed for pt(r), θt = (θt1, θt2) is a 2-dimensional vector

of parameters and θ̂t is obtained by solving:

µ̂t1 = nt

∞∑
r=t

(r − t)pt(r; θt), µ̂t2 = nt

∞∑
r=t

(r − t− 1)(r − t)pt(r; θt). (7)

For illustration, consider the case where pt(r; θt) is assumed to have the

Poisson-gamma or negative binomial form:

pt(r; θt) =
Γ(r − t+ θt2θt1)θ

θt2θt1
t2

(r − t)!Γ(θt2θt1)(1 + θt2)r−t+θt2θt1
, (8)

where the parameters θt1 and θt2 are such that the mean and variance of the

distribution of r− t are θt1 and θt1(1 + θt2)/θt2 respectively (McCullagh and

Nelder, 1989). Hence µt1 = ntθt1 and µt2 = nt[(θt1/θt2) + θ2t1]. The solutions

of (7) are thus given by

θ̂t1 = µ̂t1/nt, θ̂2t =
µ̂t1/nt

(µ̂t2/nt)− (µ̂t1/nt)2
,
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provided that nt > 0. We plug θ̂t1 and θ̂t2 into pt(r; θ) to obtain p̂t(r) =

pt(r; θ̂t). Note that the estimator in (5) does not require θ̂t to be defined if

nt = 0.

As a reference estimation method for comparison to the proposed method,

we consider a purely model-based approach of the kind proposed by Bethle-

hem et al. (1990), under the assumption of Bernoulli sampling. Suppose that

Fj | λj ∼ Poisson(λj) and that λj has a gamma distribution with E(λj) = θ1

and var(λj) = θ1/θ2 so that Fj has a negative binomial distribution with:

Pr(Fj = r) =
Γ(r + θ2θ1)θ

θ2θ1
2

r!Γ(θ2θ1)(1 + θr+θ2θ12 )
, r = 0, 1, 2, . . . (9)

Now if Bernoulli sampling with inclusion probability π is employed then

fj | λj ∼ Poisson(πλj) and fj has a negative binomial distribution, as in

(9), with the parameters (θ1, θ2) replaced by (θs1, θs2) = (πθ1, θ2/π). The

first two moments of fj are thus

µ1 = E(fj) = θs1 = πθ1, µ2 = E[fj(fj−1)] = (θs1/θs2)+θ
2
s1 = π2(θ1/θ2)+π

2θ21.

The method of moments estimators of θ1 and θ2 are

θ̂ = µ̂1/π, θ̂2 = θ̂1/(π
−2µ̂2 − θ̂21) = (πµ̂1)/(µ̂2 − µ̂2

1) (10)

where

µ̂1 =
∑

fj/J = n/J, µ̂2 = J−1
∑

fj(fj − 1). (11)

The implied estimator of Nr is:

N̂r =
JΓ(r + θ̂2θ̂1)θ̂

θ̂2θ̂1
2

r!Γ(θ̂2θ̂1)(1 + θ̂2)r+θ̂2θ̂1
, r = 0, 1, 2, . . . .
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5 Simulation Study

We now present a simulation study designed to compare the properties of

the pure model-based point estimator of Nr, for small values of r, with our

proposed hybrid approach under departures from the basic parametric model,

which we take to be the Poisson-gamma model. We represent departures

using mixtures of the parametric model and a real population for which this

model clearly fails. The real population is obtained from data from the 2001

UK population census on one region with N = 632, 077 individuals aged

16-65. The classes are taken to be the cells in the six-way cross-classification

of (with numbers of categories in parentheses): area (2), sex (2), age group

(10), marital status (6), ethnicity (17) by economic activity (10), giving J =

40, 800 classes. See Skinner and Shlomo (2008) for discussion of the disclosure

risk assessment context of this example. We define the basic parametric

model which generates population frequencies for these 40, 800 classes as a

negative binomial distribution with parameters θ
(S)
1 = 0.000137 and θ

(S)
2 =

8, 928.6 in (9), obtained by equating E(Fj) for this distribution to N/J =

15.49 and equating the expected number of population uniques, E(N1), under

this distribution to the number in the real population, E(N
(R)
1 ). Comparison

of E(Nr) for this model with real population frequencies N
(R)
r for r 6= 1

shows clear evidence of lack of fit of the negative binomial. In particular,

N
(R)
0 = 29, 137 is seriously underfitted since E(N0) ≈ 16, 015 under the

model.

We consider a series of finite populations, which are mixtures of a popula-

tion generated from the negative binomial model NB(θ
(S)
1 , θ

(S)
2 ) and the real

population. Specifically, for each j = 1, . . . , J , we set Fj = F
(S,p)
j + F

(R,1−p)
j ,
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where F
(S,p)
j is generated from NB(pθ

(S)
1 , θ

(S)
2 /p), F

(R,1−p)
j is generated from

Bin{F (R)
j , (1 − p)}), p is the mixing proportion, 0 ≤ p ≤ 1, and F

(R)
j is the

frequency in the real population. The resulting Fj for j = 1, . . . , J are then

combined to give the finite population values Nr to be estimated. For simplic-

ity, we assume Bernoulli sampling with fixed inclusion probability π = 0.01.

We repeatedly draw 1000 samples from each of the finite populations. For

each sample we obtain estimates of the Nr using both the proposed and ref-

erence methods of estimation in Section 4. We focus on small values of r,

which are of primary interest in disclosure risk assessment.

The errors of the estimators N̂r of the Nr are summarised by the relative

root mean squared error, that is the root mean square of the N̂r −Nr across

the 1000 samples divided by Nr. Values of these relative root mean squared

errors are plotted in Figure ?? against the mixing proportion as line plots,

interpolating the points obtained for p = 0.0, 0.1, 0.2, . . . , 0.5 with straight

lines, separately for the two estimators and for r = 1, 2, 3 and 4.

A decomposition of the root mean squared errors displayed in Figure ??

into biases and standard errors reveals that the former dominate the latter

when p ≥ 0.1. Only when p = 0.0 does the bias become negligible for each

estimator, relative to the standard error. The principal message we draw

from Figure ?? is that the bias of the model-based estimator increasingly

exceeds that of the proposed estimator as p increases from 0.1, for each value

of r = 1, 2, 3 and 4. Only when p = 0.0 and the basic parametric model

holds does the model-based estimator tend to have smaller mean squared

error through its smaller standard error.
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Figure 1: Simulation relative root mean squared errors by proportion of
population derived from real population, separately for proposed and model-
based estimation methods and for frequencies r=1,2,3 and 4.

6 Discussion

In this paper we have derived design-unbiased estimators for certain moments

of the frequency of frequency distribution. We have made modelling assump-

tions to extend these estimators to estimators of the frequency of frequencies

distribution. Our simulation study illustrates how our hybrid approach can

be more robust than parametric model-based estimation in terms of bias and

mean squared error under departures from the model.

The main results in this paper assume Poisson sampling, which reduces to

Bernoulli sampling in the case of equal probabilities of selection. These de-

signs, which lead to random sample sizes, may be viewed as approximations

to the kinds of fixed sample size designs more commonly used in practice.
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We did repeat our simulation study replacing Bernoulli sampling by simple

random sampling without replacement, where the sampling fraction was set

equal to Bernoulli sampling probability, and obtained results visually indis-

tinguishable from those in Figure 1. This suggests that the bias properties

of the proposed estimators under Poisson sampling are similar, in practice,

for corresponding fixed sample size designs, at least for the kind of sampling

fraction we considered in our simulation study.

This paper has only considered point estimation. Our justification is that

model misspecification bias can be more important than standard errors in

the kinds of large survey samples we are interested in, as illustrated in the

simulation study. Nevertheless, it would be desirable in practice to have at

least variance estimators to accompany our point estimators. The bootstrap

may be the most natural approach.
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Appendix A

Proof of Theorem 3.1 Let Zi = 1 if i ∈ s and Zi = 0 otherwise and note

that under Poisson sampling the Zi are independent B(1, πi). Let xji = 1 if
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i ∈ Cj and xji = 0 otherwise. Using the fact that fj =
∑

l∈U xjlZl we have

E(µ̂r1) =
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r + 1

)
N∑
i=1

xjiZi
(
π−1i − 1

)]

=
J∑
j=1

N∑
i=1

E

[
I

(
N∑
l 6=i

xjlZl = r

)]
E
[
xjiZi

(
π−1i − 1

)]
=

J∑
j=1

N∑
i=1

E

[
I

(
N∑
l 6=i

xjlZl = r

)]
E [xji (1− Zi)]

=
J∑
j=1

N∑
i=1

E

[
I

(
N∑
l 6=i

xjlZl = r

)
xji (1− xjiZi)

]

=
J∑
j=1

N∑
i=1

E

[
I

(
N∑
l=1

xjlZl = r

)
xji (1− xjiZi)

]

=
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r

)
(Fj − r)

]
= E(µr1), as required.

15



Proof of Theorem 3.2

E(µ̂r2) =
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r + 2

)∑
i 6=k

xjixjkZiZk
(
π−1i − 1

) (
π−1k − 1

)]

=
J∑
j=1

∑
i 6=k

E

[
I

(
N∑

l 6=i,k

xjlZl = r

)
xjixjkZiZk

(
π−1i − 1

) (
π−1k − 1

)]

=
J∑
j=1

∑
i 6=k

E

[
I

(
N∑

l 6=i,k

xjlZl = r

)
xjixjk (1− Zi) (1− Zk)

]

=
J∑
j=1

∑
i 6=k

E

[
I

(
N∑

l 6=i,k

xjlZl = r

)
xjixjk (1− xjiZi) (1− xjkZk)

]

=
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r

)∑
i 6=k

xjixjk (1− xjiZi) (1− xjkZk)

]

=
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r

)
{Fj(Fj − 1)− 2r(Fj − 1) + r(r − 1)}

]

=
J∑
j=1

E

[
I

(
N∑
l=1

xjlZl = r

)
(Fj − r − 1) (Fj − r)

]
= E(µr2), as required.
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