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Abstract 
 
 

Empirical evidence has emerged of the possibility of fractional cointegration such that the 
gap, β, between the integration order δ of observable time series, and the integration 
order  γ of cointegrating errors, is less than 0.5. This includes circumstances when 
observables are stationary or asymptotically stationary with long memory (so δ < 1/2), 
and when they are nonstationary (so δ 1/2). This “weak cointegration” contrasts 
strongly with the traditional econometric prescription of unit root observables and short 
memory cointegrating errors, where β = 1. Asymptotic inferential theory also differs from 
this case, and from other members of the class β > 1/2, in particular 

≥

consistent-n  and 
asymptotically normal estimation of the cointegrating vector ν  is possible when β < 1/2, 
as we explore in a simple bivariate model. The estimate depends on γ and δ or, more 
realistically, on estimates of unknown γ and δ. These latter estimates need to be 

consistent-n , and the asymptotic distribution of the estimate of ν  is sensitive to their 
precise form. We propose estimates of γ  and δ that are computationally relatively 
convenient, relying on only univariate nonlinear optimization. Finite sample performance 
of the methods is examined by means of Monte Carlo simulations, and several 
applications to empirical data included. 
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1. Introduction
Cointegration analysis has usually proceeded under the assumption of unit

root (I(1)) observable series and short-memory stationary (I(0)) cointegrating
errors. Here, the least squares estimate (LSE) of the cointegrating vector is not
only consistent, but super-consistent (with convergence rate equal to sample
size, n) (Stock, 1987) despite contemporaneous correlation between regressors
and cointegrating errors; optimal estimates, which account for this correlation,
enjoy no better rate of convergence (Phillips, 1991).
It is also possible to consider cointegration in a fractional context. To be

speci�c, we consider the model

�
(yt � �xt) = u#1t; t � 1; yt = 0; t � 0;
��xt = u

#
2t; t � 1; xt = 0; t � 0;

�
(1)

for the bivariate observable sequence fyt; xtg. Here � = 1 � L; where L is the
lag operator;

(1� L)�� =
1X
j=0

aj(�)L
j ; aj(�) =

�(j + �)

�(�)�(j + 1)
; (2)

taking �(�) = 1 for � = 0;�1;�2; :::; and � (0) =� (0) = 1; the # superscript
attached to a scalar or vector sequence vt has the meaning

v#t = vt1(t > 0); (3)

where 1(�) is the indicator function; f(u1t; u2t); t = 0;�1; :::g is an unobservable
covariance stationary bivariate sequence having zero mean and spectral density
matrix that is nonsingular and bounded at all frequencies; and the real numbers

 and � satisfy

0 � 
 < �: (4)

On this basis, we refer to ut = (u1t; u2t)
0 as I(0), xt as I(�) and yt � �xt as

I(
), while for
� 6= 0; (5)

(4) implies that yt is also I(�); under (1), (4) and (5), yt and xt are said to
be cointegrated CI(�; 
) (Engle and Granger, 1987), for which it is necessary
that yt and xt share the same integration order (the argument of I(�)). The
truncations on the right hand side in (1) ensure that the model is well-de�ned
in the mean square sense, whereas, for example, ���u2t does not have �nite
variance when � � 1=2.
We anticipate

Cov(u1t; u2t) 6= 0; (6)

when, rewriting the �rst equation of (1) as the regression

yt = �xt + v1t, v1t = ��
u
#
1t; (7)
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the xt and v1t are contemporaneously correlated. When

� < 1=2 (8)

(6) leads to inconsistency of the LSE due to the fact that xt is asymptotically
stationary and so its sum of squares does not asymptotically dominate that of
v1t. To overcome this problem, Robinson (1994a) showed that a narrow-band
frequency-domain least squares estimate (NBLSE) is consistent, due to dom-
inance near zero frequency of an I(
) spectral density by an I(�) one. (He
considered the purely stationary situation, where there is no truncation in (1),
but our modi�cation does not a¤ect such basic asymptotic properties.) Robin-
son and Marinucci (2003) gave a rate of convergence for this latter estimate,
conjecturing its sharpness. Assuming (4), (8) and 
+ � < 1=2, Christensen and
Nielsen (2004) obtained the asymptotic distribution of the NBLSE when u1t
and u2t are incoherent at frequency 0 (cf. (6)).
Properties of the LSE and NBLSE were also studied by Robinson and Mar-

inucci (2001, 2003) in case
� > 1=2; (9)

where there is trending nonstationarity. Here, the LSE is consistent, with con-
vergence rate depending on the location of 
 and � in the non-negative quadrant,
but the NBLSE still sometimes converges faster, and never converges slower, de-
spite dropping high frequency information. Referring to a sequence m used in
the NBLSE such that m�1 + m=n ! 0 as n ! 1, the respective rates are:
for 
 + � < 1, n2��1 (LSE) and n2��1(n=m)1�
�� (NBLSE); for 
 + � = 1 but
� < 1, n2��1= log n (LSE) and n2��1= logm (NBLSE); for 
 = 0, � = 1, both
estimates have rate n but the NBLSE enjoys less �second-order bias�; and for

 + � > 1, both have rate n��
 .
The question which then arises is whether these rates are optimal, by which

we mean whether they match the rates achieved by the Gaussian maximum like-
lihood estimate (MLE) under suitable regularity conditions. They are optimal
for the combination 
 + � > 1, � � 
 > 1=2, but otherwise not. In particular,
the n��
 rate is optimal for � � 
 > 1=2 without the restriction 
 + � > 1, and
Robinson and Hualde (2003) have established it for estimates asymptotically
equivalent to the MLE, allowing for consistent estimation of unknown 
 and �
and a vector � of unknown parameters describing the autocovariance structure
of ut; these estimates of � have mixed normal asymptotics, and a Wald test
statistic with an asymptotic null �2 distribution, as established earlier in the
CI(1; 0) case by Phillips (1991), Johansen (1991). Indeed, Robinson and Hualde
(2003) found the limit distribution una¤ected by the question of whether �, 

and � are known or unknown.
The present paper focuses on the case of �weak fractional cointegration�

�
def
= � � 
 < 1=2; (10)

where substantially di¤erent asymptotics prevail, impacting also on the question
of how � and 
 should be estimated. Under (10), since �
yt and �
xt are
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I(�), they are asymptotically stationary, and one anticipates the existence ofp
n-consistent and asymptotically normal estimates of �; the LSE and NBLSE

converge slower than this owing to the dominance of bias due to (6). Under
(10), the gain of a cointegration analysis is clearly less than when � � 1=2, for
example in the CI(1; 0) case. Nevertheless the identi�cation of such structure
is useful, and a variety of empirical evidence appears to support (10).
When cointegrated observables are stationary, and cointegrating errors are

not antipersistent (so (4), (8) hold), (10) is inevitable. Andersen et al (2001)
detected stationary long memory and co-movement in statistics derived from
high-frequency transaction prices. Christensen and Prabhala (1998), Chris-
tensen and Nielsen (2004) found integration orders between 0.35 and 0.4 in
implied and realized volatilities, and I(0) cointegrating errors. In Robinson
and Yajima�s (2002) cointegration analysis of spot closing prices of crude oil,
most estimated integration orders were less than 0.5. More generally, interest in
the possibility of cointegration between stationary �nancial series is developing,
and Robinson and Marinucci (2003) argued that it can be di¢ cult to distinguish
between a unit root process and some stationary long memory ones.
In other cases of (10), observables are nonstationary. When they have a unit

root, so � = 1, it is implied that cointegrating errors are also nonstationary,
albeit mean-reverting, in which case the cointegrating relation does not have
the usual kind of �equilibrium� interpretation. Nevertheless a dimensionality
reduction still occurs, empirical evidence for the phenomenon can be found, and
the case 
 > 1=2 has been stressed by Mármol and Velasco (2004). Diebold,
Husted and Rush (1991) represented real exchange rates as errors in cointe-
grated, and apparently unit-root, nominal exchange rates and prices, and found
them in some cases to be nonstationary. Similar mixed outcomes can be found
in work of Cheung and Lai (1993) (investigating the PPP hypothesis), Bail-
lie and Bollerslev (1994a) and Kim and Phillips (2000) (cointegration between
spot exchange rates), Baillie and Bollerslev (1994b) (analyzing the forward pre-
mium) and Crato and Rothman (1994) (cointegration between exchange rates).
On the other hand, there may be no strong reason to focus on � = 1 in a
fractional context; autoregression-based unit root tests, such as those of Dickey
and Fuller (1979), do not have good power against fractional alternatives, and
though fractional-based tests have been developed (see e.g. Robinson, 1994b,
Dolado, Gonzalo and Mayoral, 2002) one can treat � as unknown. In this case,
empirical evidence of � > 1=2 with � < 1=2 was found by Dueker and Startz
(1998) (cointegration between US and Canadian bond rates) and Robinson and
Marinucci (2003) (cointegration between stock prices and dividends, and be-
tween monetary aggregates), with estimates of � variously less than and greater
than 1.
Here we are principally concerned with estimating �; under (10). Most of the

empirical studies reported above employ semiparametric estimates of integration
orders, with convergence rates slower than

p
n, so estimates of � depending on

them will, like the LSE and NBLSE, be less than
p
n-consistent. Achieving

p
n-

consistency requires a parametric approach. Under both � < 1=2 and � > 1=2
the Gaussian MLE appears to have optimality properties and to provide Wald
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test statistics with null �2 limit distributions, and so should handle multivariate
systems containing more than one cointegrating relation, where both � < 1=2
and � > 1=2 might occur. However, asymptotic properties of the MLE have yet
to be developed, in case of autocorrelated ut, and in (1) they can be achieved by
a computationally simpler approach when � > 1=2, as described by Robinson
and Hualde (2003), whereas this is not the case when � < 1=2.
To describe the theoretical background to inference when � < 1=2, note �rst

that if 
 and � are known, while ut is known to be white noise with unknown
covariance matrix 
, then the MLE of � is given in closed form, and may be
computed as an added-variable LSE, as pursued in the following section. When 

and/or � are unknown, and ut has parametric autocorrelation (such as following
a vector autoregression (VAR)), then the Gaussian MLE of all the unknowns
is again

p
n-consistent and asymptotically normal, but with limit covariance

matrix that is not block-diagonal, so the asymptotic variance of the estimate of
� di¤ers from that when 
 and � are known. If � < 1=2, a priori, conveying
the implication that � and 
 are both estimated by optimizing over subsets of
the intersection of (4) and (8), asymptotic theory would largely follow the lines
of authors such as Fox and Taqqu (1986) and Hosoya (1997), who were the
�rst to develop such theory for standard scalar and vector long memory time
series models respectively, the most notable di¤erence being the fact that in
our setting xt and yt would be only asymptotically stationary. If the possibility
that � � 1=2 is admitted, and possibly 
 � 1=2 also, then the situation is more
delicate, as discussed in Section 4.
The preceding discussion makes it apparent that when 
 and � are unknown

the issue of how they are estimated is of greater signi�cance when � < 1=2
than when � > 1=2. It is essential here (due to correlation between xt and u1t)
that they be estimated

p
n-consistently. Closed-form

p
n-consistent estimates

of integration orders are available (see Kashyap and Eom, 1988, Moulines and
Soulier, 1999), but these do not cover our bivariate situation, and also entail
logging the periodogram, which raises technical di¢ culties not present in esti-
mates based on quadratic forms, such as the MLE. In our setting some degree of
numerical optimization seems inevitable. Since this is likely to entail an initial
search of the parameter space to locate the vicinity of a global optimum, it is
desirable if the computations can be arranged so that only univariate optimiza-
tions are involved. Even after concentrating out parameters, when both 
 and �
are unknown the Gaussian MLE requires a bivariate optimization under white
noise ut, and at least a trivariate optimization when ut is a VAR, which we
allow for. We propose

p
n-consistent and asymptotically normal estimates that

require only univariate optimizations.
We mention �nally other work on developing asymptotic inference on frac-

tional cointegration, which employs a di¤erent de�nition of I(d) processes for
d 6= 0: for vt � I(0), we have ��dvt � I(d) for jdj < 1=2 and

Pt
s=1�

1�dvs �
I(d) for 1=2 < d < 3=2. This kind of fractional process has been called �Type
I�, and ours �Type II�. Jeganathan (1999, 2001) considered such a �Type I�
version of (1), for j
j < 1=2 and �1=2 < � < 3=2; in a purely fractional context,
such that vt in the above de�nition is a white noise sequence. Assuming the
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distribution of the white noise inputs is of completely known (not necessarily
Gaussian) form, Jeganathan (1999, 2001) considered limit distribution theory of
optimal estimates of �, including the mixed normal limit �nding when � > 1=2,
and Jeganathan (2001), using rates suggested by Robinson (2000), derived

p
n-

consistency and asymptotic normality when � < 1=2; Jeganathan (2001) also
covered the case � = 1=2. Though including some discussion of estimation of

 and �, Jeganathan (1999, 2001) assumed them known in his theory. Aside
from this, the Gaussian version of his estimates is the same as ours in case our
ut is white noise, though we do not assume Gaussianity. For the same, �Type
I�, de�nition of fractional processes, but with I(0) inputs having nonparametric
autocorrelation (implying a semiparametric model) Dolado and Mármol (1996),
Kim and Phillips (2000) developed methods and theory in cases when � > 1=2.
The basic structure of our estimates of � is described in the following section.

Section 3 provides asymptotic theory in case 
 and � are known, with proofs
and some technical details left to appendices. Section 4 considers estimation of

 and � and the e¤ect on estimating �. Section 5 contains Monte Carlo evidence
of �nite sample behaviour, and Section 6 several empirical applications.

2. Estimation of �
Write (1) as

zt(
; �) = �xt(
)� + u
#
t ; (11)

where we introduce the notation

vt(c) = �
cv#t (12)

for a generic sequence vt, and de�ne

zt(c; d) = (yt(c); xt(d))
0; � = (1; 0)0: (13)

We take ut to be generated by the VAR

ut =

pX
j=1

Bjut�j + "t; (14)

where all zeros of detfI2 �
Pp

j=1Bjz
jg lie outside the unit circle, the Bj being

2�2 matrices, and Ir the r� r identity matrix, while "t is a bivariate sequence,
uncorrelated and homoscedastic over t, with mean zero and covariance matrix

. We take (14) to mean white noise ut when p = 0.
From (11) and (14) we have

zt(
; �)�
pP
j=1

Bjzt�j(
; �) = �

(
�xt(
)�

pP
j=1

Bj�xt�j(
)

)
+ "+t ; t � 1; (15)

where

"+t = u11 (t = 1) +

(
ut �

t�1P
j=1

Bjut�j

)
1 (t = 2; :::; p) + "t1 (t > p) : (16)
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Denote by Bij the ith row of Bj . Writing "it for the ith element of "t; for t > p
the second equation of (15) can be written as

xt(�)�
pP
j=1

B2jzt�j(
; �) = ��
pP
j=1

B2j�xt�j(
) + "2t; (17)

whence the �rst equation can be written as

yt(
) = �xt(
)+�xt(�)+
pP
j=1

(B1j � �B2j) zt�j(
; �)��
pP
j=1

(B1j � �B2j) �xt�j(
)+"1:2;t;

(18)
where "1:2;t = "1t��"2t, � = E("1t"2t)=E("22t); (18) is a form of error-correction
representation.
We wish to cater for the possibility of prior zero restrictions on the Bj which

serve to eliminate some yt�j(
), xt�j(
), xt�j(�), as this will improve e¢ ciency.
Thus we introduce a q�(3p+2) matrix Q, which is I3p+2 when there are no such
restrictions, but for q < 3p+ 2, Q is formed by dropping rows corresponding to
the restrictions. Thus we can write (18) as

yt(
) = �
0QZt(
; �) + "1:2;t; (19)

where
Zt(c; d) =

�
xt(c); xt(d); w

0
t�1(c; d); :::; w

0
t�p(c; d)

�0
; (20)

wt(c; d) = (xt(c); xt(d); yt(c))
0
; (21)

and the q � 1 vector � consists of coe¢ cients that are not a priori zero, being
(in some cases nonlinear) functions of �, �, and the Bij .
Since E("1:2;tZt(
; �)) = 0, we consider the (possibly constrained) LSEb�(c; d) = G(c; d)�1g(c; d); (22)

taking (c; d) = (
; �), (
;e�), (e
; �) or (e
;e�), depending on whether 
 and/or �
are known or estimated by e
;e�, and
G(c; d) = Q

1

n

nP
t=p+1

Zt(c; d)Z
0
t(c; d)Q

0; g(c; d) = Q
1

n

nP
t=p+1

Zt(c; d)yt(c): (23)

For example, in case p = 1, if u1t is white noise while u2t is AR(1), then q = 3
and (18) becomes

yt(
) = �xt(
) + �xt(�)� �B221xt�1(�) + "1:2;t; (24)

where B22j is the second element of B2j . Notice that �, � and B221 are all
identi�ed in (24), but it is apparent from comparison of (18) with (19) that in
general, while � and � are expected to be identi�ed, only some elements of the
Bj are. However, we are treating the Bj as nuisance parameters, indeed it is
principally � that is of interest, so we stress

b�(c; d) = 10G(c; d)�1g(c; d); (25)
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where 1 = (1; 0; :::; 0)0.
In case p = 0, b�(
; �) actually provides the Gaussian MLE of �, given knowl-

edge of 
; � but lack of knowledge of 
. For p � 1, it is less e¢ cient than
the MLE for this case, but still

p
n-consistent and computationally consider-

ably simpler. Notice that over-speci�cation of p results in a further e¢ ciency
loss, but under-speci�cation produces inconsistency. In moderate sample sizes,
a modest choice of p, even p = 1, might thus be a wise precaution. On the other
hand, one could also regard (14) as approximating a more general in�nite AR
process with nonparametric I(0) autocorrelation.

3. Asymptotic Theory with Known 
; �
The present section establishes the

p
n-consistency and asymptotic normal-

ity of b�(
; �), and hence of b�(
; �). We assume in addition to the description of
(14) that the "t are stationary and ergodic with �nite fourth moment, satisfying
also

E ("tj Ft�1) = 0; E ("t"
0
tj Ft�1) = 
 (26)

almost surely, where Ft is the �-�eld of events generated by "s, s � t, and also
assume that conditional (on Ft�1) third and fourth moments and cross-moments
of elements of "t equal the corresponding unconditional moments. Thus, the "t
essentially behave like an iid sequence up to 4th moments. Noting from (1) that

xt(
) =
t�1P
j=0

aj(�)u2;t�j ; t > 0; = 0; t � 0; (27)

de�ne �

xt(
) =
1P

j=max(t;0)

aj(�)u2;t�j ; ext(
) = xt(
) + xt(
); (28)

so that because of (10), ext(
), t = 0;�1; :::, is a covariance stationary sequence.
Likewise, so is eyt(
) = �ext(
) + u1t; (29)

as is u2t. Now de�ne

ewt = (ext(
); u2t; eyt(
))0 ; eZt = �ext(
); u2t; ew0t�1; :::; ew0t�p�0 ; (30)

� = E( eZt eZ 0t); 	 = E
�
"21:2;t

eZt eZ 0t� : (31)

The proof of the following theorem is left to Appendix A.

Theorem 3.1 Under (1), (4), (5), (10) and the conditions in the sentence
containing (26), if 
 and � are known

n1=2
nb�(
; �)� �o!d N

�
0; (Q�Q0)�1Q	Q0(Q�Q0)�1

�
; (32)
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as n ! 1, and the covariance matrix on the right hand side is consistently
estimated by

G(
; �)�1K(
; �)G(
; �)�1; (33)

where

K(c; d) = Q
1

n

nP
t=p+1

b"21:2;t(c; d)Zt(c; d)Z 0t(c; d)Q0; (34)

in which b"1:2;t(c; d) = yt(c)� b�(c; d)0QZt(c; d): (35)

Remark 3.1 As anticipated, for p � 1, b�(
; �) is ine¢ cient relative to the
Gaussian MLE, because it ignores the nonlinear restrictions on �.

Remark 3.2 Over-parameterization in the Bj results in further loss of ef-
�ciency. Consider the case where, in the estimation, the Bj are taken to be
diagonal, with also u1t white noise and u2t AR(p), to extend (24). Then if in
fact u2t is also white noise the limiting variance of n1=2fb�(
; �)� �g is

!21:2=f!22
1P

j=p+1

a2j (�)g; (36)

where !22 = E("22t); !
2
1:2 = E("21:2;t); (36) is increasing in p. As a simpler

alternative to (33), (34), we can consistently estimate (36) by

b!21:2(
; �) (10G(
; �)1)�1 ; (37)

where b!21:2(
; �) = 1

n

nP
t=p+1

b"21:2;t(
; �): (38)

Note that (36) and (37) also apply in case p = 0 is correctly taken in the
estimation, when b�(
; �) is equivalent to the Gaussian MLE, and (36) becomes

!21:2=

�
2�4�!22
�

B (1=2� �; 1=2� �)� 1
�
: (39)

Note also that (36) and (39) do not depend on fourth cumulants of "t. If ut is not
white noise, the limiting variance of n1=2fb�(
; �)��g, namely 10(Q�Q0)�1Q	Q0(Q�Q0)�11
(see (32)), in general depends on the fourth cumulant of "1:2;t, "1:2;t, "2t and
"2t, though of course the latter is zero under Gaussianity.

Remark 3.3 On the other hand, under-parameterization of the Bj produces
inconsistency of b�(
; �), as when ut is actually AR(p + 1). Our AR approach
is computationally convenient, and is in a long tradition of macroeconomet-
ric estimation of linear simultaneous equations systems, as well as relating to
Johansen�s (1991) approach to CI(1; 0) cointegration. In case of ARMA mod-
els, over-parameterization of both AR and MA orders can have more serious
consequences than those discussed in Remark 3.2.
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Remark 3.4 So long as p � 1 and some Bj are non-diagonal, the endogeneity
property (6) holds even when 
 is diagonal, i.e. � = 0.

Remark 3.5 Though we assume (10) throughout, when in fact � > 1=2,
�̂(
; �) is as e¢ cient as the Gaussian MLE. In particular, it can be shown to
approximate the estimate of Robinson and Hualde (2003), which for � > 1

2 has
a limiting mixed normal distribution when the estimates of the parameters
describing the short memory process ut converge suitably fast, but need not
themselves be asymptotically e¢ cient.

4. The Case of Unknown 
; �
The main practical interest in fractional cointegration centres on the realistic

situation in which 
 and/or � are unknown. We shall focus on the case where
both 
 and � are unknown, as being the most di¢ cult both computationally
and theoretically.
First, suppose that ut is correctly taken to be white noise, with unknown

covariance matrix 
 satisfying (6). Considering the Gaussian log-likelihood,
both 
 and � can be concentrated out to leave an objective function of 
 and �.
The resulting estimates of 
 and � might then be plugged into (25). Instead, we
propose estimates of 
 and � that require two univariate nonlinear optimizations,
in place of one bivariate one. The computational advantage in this would be
intensi�ed in extensions to systems involving a greater number of integration
orders.
Write the second likelihood equation of (1) as

xt(�) = "2t; t � 1: (40)

We estimate � by e�0 = argmin
d2D

S0(d); (41)

for a closed interval D and (cf. Beran, 1995),

S0(d) =
nP
t=1
x2t (d): (42)

We then estimate 
 by e
0 = argmin
c2C

T0(c); (43)

for a closed interval C (presumably a subset of [0;e�0]) and
T0(c) =

nP
t=1

n
yt(c)� b�(c;e�0)xt(c)� b�(c;e�0)xt(e�0)o2 ; (44)

where b�(c; d) is given by (25), taking p = 0; and b�(c; d) is the second element ofb�(c; d) in this case. The presence of c as argument in yt(c), and indeed of d in
xt(d) of (42), presents no barrier to consistent estimation because, for example,
yt(c) involves c only in the coe¢ cients of lagged values yt�1; yt�2; :::; not yt.
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In case of VAR ut, we develop further the triangular structure of (1) by
assuming

Bj is upper-triangular, j = 1; :::; p: (45)

This corresponds to a kind of causal structure, with yt formed from yt�1; yt�2; :::
and xt; xt�1; :::, but xt being determined by

xt(�)� �0RXt(�) = "2t; (46)

with
Xt(d) = (xt�1(d); :::; xt�p(d))

0; (47)

and R an r� p matrix with R = Ip in case r = p; but for r < p; R is formed by
dropping speci�ed rows from Ip, in case B22j = 0 for some j, the r� 1 vector �
collecting the B22j that are not a priori zero. The prescription (46) includes the
case of diagonal Bj , does not seem an excessive requirement given the allowance
for non-diagonal 
, and introduces an element of parsimony.
De�ne b�(d) = H(d)�1h(d); (48)

where

H(d) = R
1

n

nP
t=p+1

Xt(d)X
0
t(d)R

0; h(d) = R
1

n

nP
t=p+1

Xt(d)xt(d): (49)

First estimate � by e�p = argmin
d2D

Sp(d); (50)

where

Sp(d) =
nP

t=p+1

n
xt(d)� b�(d)0RXt(d)o2 : (51)

Then estimate 
 by e
p = argmin
c2C

Tp(c); (52)

where

Tp(c) =
nP

t=p+1

n
yt(c)� b�(c;e�p)0QZt(c;e�p)o2 : (53)

As abbreviating notation, we denote throughout, for any p � 0, e� = e�p,e
 = e
p. The proof of the following theorem is omitted for the following reasons.

When � < 1=2 (and D � (0; 1=2)) the proof of limit behaviour of e� does not
greatly di¤er from proofs of Fox and Taqqu (1986), Giraitis and Surgailis (1990);
their xt is actually stationary, not just asymptotically, and their objective func-
tions di¤er from (42) and (51), though with p = 0 their estimates have equal
asymptotic e¢ ciency to our e�0. When the possibility that � > 1=2 is allowed
in the choice of D, there is a di¢ culty in proving consistency of e� if D includes
d � � � 1=2, due to a lack of uniform convergence of Sp(d) on D. Since � is
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unknown, there is no guarantee of avoiding this problem. Velasco and Robinson
(2000) established consistency, and thence asymptotic normality with

p
n rate,

of an alternative estimate of � allowing D to be arbitrarily large, but for �Type
I�processes and employing tapering (which tends to in�ate variance). Hualde
and Robinson (2004) have recently done the same for e� in our setting, with the
unimportant di¤erence that their linear process for xt has scalar innovation, and
is not nested in a non-diagonal bivariate system. In our setting, and whether or
not D � (0; 1=2), the proof of Theorem 4.1 proceeds by establishing consistency
of e�, following Hualde and Robinson (2004), then consistency of e
, allowing for
the extra complexity involved in working with residuals, and then employing
the Cramer-Wold device and relatively straightforward and tedious arguments.

Theorem 4.1 Under (1), (4), (5), (10), (45), the conditions in the sentence
containing (26) and 
 2 C, � 2 D,

n1=2

24 b�(e
;e�)� �e
 � 
e� � �
35!d N (0; ABA0) ; (54)

as n!1, where A is a 3� (q+2) matrix and B is a (q+2)� (q+2) matrix,
for which consistent estimates bA and bB are presented in Appendix B.

Remark 4.1 Analytic formulae, in either the time or frequency domain, for
A and B are excessively complicated, and thus omitted. The estimate bA bB bA0
provided by Appendix B is guaranteed non-negative de�nite.

Remark 4.2 As well as being useful in inference on �, the theorem could
also be applied in inference on 
 and �, for example to set a con�dence interval
for � which could be useful in judging the suitability of the weak cointegration
speci�cation (10).

Remark 4.3 On the other hand, our estimation procedure, though not our
asymptotic theory, can also be used when � > 1=2, though alternative, possibly
computationally more convenient, methods, are available here. In fact, Robinson
and Hualde (2003) showed that in this case the asymptotic distributions ofb� (
; �) and b�(e
;e�) are the same, due to e
, e� still being pn-consistent.
Remark 4.4 Robinson and Hualde (2003) suggest use of residuals from the
LSE or NBLSE of � in the estimation of 
 when � > 1=2. However, the LSE
and NBLSE are less-than-

p
n-consistent under (10), and so it appears that the

resulting estimates of 
 will not achieve the
p
n-consistency needed to provide

a
p
n-consistent estimate of �.

Remark 4.5 Even when ut is white noise, b�(e
;e�), e� and e
 are ine¢ cient
relative to the Gaussian MLE; intuitively, this is due to the estimation of �
from only the second equation of (1) (i.e. (41)), whereas the �rst equation

11



also contains relative information. However, the estimates can be updated to
e¢ ciency by a single Newton step.

Remark 4.6 The paper has taken existence of cointegration, and � < 1=2, for
granted. In practice these properties will have to be established, and our estima-
tion of � will form the �nal step. Some discussion of methodology has already
appeared in Marinucci and Robinson (2001), Robinson and Yajima (2002) and
Robinson and Marinucci (2003). This has stressed a semiparametric approach,
recognizing that a parametric model for ut (i.e. knowledge of p in our VAR
case) is unlikely to be known a priori. A natural starting point is to test the
necessary requirement of equality of integration orders of xt and yt. The litera-
ture on asymptotic inference for multivariate fractional models is rather small,
and some of it assumes lack of cointegration, but the approaches of Robinson
and Yajima (2002) and Hualde (2002) are available. Given a positive outcome,
a test for existence of cointegration, such as those of Marinucci and Robinson
(2001), Robinson and Yajima (2002), Mármol and Velasco (2004) can be con-
ducted. Given a positive outcome, one can reject � = 1=2 against the alternative
� < 1=2 if a suitably standardized �� � �
 � 1=2 is signi�cantly negative relative
to the standard normal distribution, �� and �
 being semiparametric estimates
of � and 
, employing residuals yt � ��xt based on an initial consistent ��, such
as the NBLSE. Then, using proxies yt(�
) � ��xt(�
) and xt(�
) for u1t and u2t
respectively, the AR order of ut can be identi�ed, for example as described in
the empirical examples of Section 6.

5. Monte Carlo Evidence
With the main aim of investigating the �nite sample performance of our

estimates of � and associated rules of inference, a Monte Carlo experiment
was carried out. There are two parts to our investigation, the �rst comparing
our proposed estimates (with known and unknown integration orders) with the
simplest one, the LSE, and the second evaluating in a simple framework the
ine¢ ciency of b�(
; �) mentioned in Remark 3.1 with respect to two asymptoti-
cally e¢ cient estimates of �. In data generation from (1), (14), we took p = 1
throughout, with

B1 = diag fb1; b2g ; (55)

where each bi took values 0, 0.5, 0.9. The case b1 = b2 = 0 actually corresponds
to p = 0 in (14), where ut is a white noise vector. Likewise, b1 = 0, b2 6= 0
corresponds to (24). We have employed in (55) abbreviating notation compared
to (24), so b2 = B221. The "t in (14) were generated as Gaussian with E("21t) =
E("22t) = 1 and E("1t"2t) = �, taking values -0.5, 0, 0.5, 0.75, via the g05ezf
routine of the Fortran NAG library. We varied � in order to assess possible
�simultaneous equation bias�, xt and u1t being orthogonal only when � = 0.
We employed four (
; �) combinations:

(
; �) = (0; 0:4) , (0:2; 0:4) , (0:4; 0:8) , (0:7; 1) ; (56)
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for all of which � < 1=2. Notice that variances of all estimates, both in �nite
samples and asymptotically, will inevitably vary across parameter values. For
example, because the E("2it) are �xed throughout, E("

2
1:2;t) will decrease in

j�j, while E(u2it) will increase in bi. Finite sample biases of our estimates will
doubtless also be a¤ected by such variation, though in a more subtle manner.
We took � = 1.
For each combination of parameter values, 1000 series of fyt; xtg of lengths

n = 64; 128; 256 were generated. Fractional series were generated as in (27),
using a0 (�) = 1, aj+1 (�) = ((j + �)=(j + 1))aj (�), j � 1, for � > 0. For each
series, in the �rst part of the experiment we computed estimates of the following
three types:
(i) The LSE,

�0 =
nP
t=1
xtyt=

nP
t=1
x2t : (57)

(ii) The Infeasible estimate �I = b�(
; �) based on correct speci�cation and mis-
speci�cation and/or over-speci�cation.
(iii) The Feasible estimate �F = b�(e
;e�) based on correct speci�cation and mis-
speci�cation and/or over-speci�cation.
By �correct speci�cation� we mean that all prior zero restrictions on B1

in (55), including the non-diagonal ones and any diagonal ones, are incorpo-
rated in the estimation, but not equality restrictions. By �mis-speci�cation�
we mean that for b1 6= 0 and b2 6= 0 we took Zt (c; d) = (xt (c) ; xt (d))

0.
By �over-speci�cation� we mean that for b1 = b2 = 0 we took Zt (c; d) =�
xt (c) ; xt (d) ; w

0
t�1 (c; d)

�0
. Knowledge of � = 0 was never used. Table 1 records

convergence rates of the LSE and, under the heading �optimal�, of �I , �F .

(Table 1 about here)

We now describe how e� and e
 in �F were computed. In estimating �, we
�xed D = [� � 1; � + 1] in (50). A D of length 2 may often be adequate. In
estimating 
, we �xed C =[e� � 2:05;e� � 0:05] in (52). The upper bound seems
reasonable since a very small � is unlikely to be detectable, indeed there is then
near loss of identi�ability and very poor behaviour of estimates of �.
The estimates �I , �F (but not �0) are invariant to (
; �) combinations with

the same �, provided the fractionally integrated processes are generated from
the same ut sequence. Thus we do not report results for (
; �) = (0:4; 0:8) in
tables where only �I and �F are involved. Similarly, e��� is invariant to �, so the
reported results apply to any �, whereas e
�
 is invariant to (
; �) combinations
with the same �, so we again omit results for (
; �) = (0:4; 0:8) :

(Tables 2-7 about here)

Tables 2-7 report Monte Carlo bias (de�ned as the estimate minus the true
value) of �0, �I and �F , each table referring to a particular (b1; b2) combination
with either correct speci�cation, mis-speci�cation or over-speci�cation. Only
some of the (b1; b2) combinations covered in the experiment are included, in
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order to conserve on space. Generally, �I performs best, followed by �F , with
�0 worst.
We discuss �rst the cases of correct speci�cation (Tables 2-5). The relative

performance of �0, �I and �F mentioned above is maintained in the full white
noise case b1 = b2 = 0 (Table 2), and in the AR case (Tables 3-5) when � 6= 0,
but not when � = 0 with b1 = b2 6= 0, where �0 is best. For b1 = b2 = 0:9,
� = 0:4 and small n, �0 usually beats �F even when � 6= 0 (Table 3). For
b1 = 0, b2 6= 0 (Table 4), we are close to the white noise outcome, but when
b1 6= 0, b2 = 0 the bias of �0 decays very slowly, and is unacceptably large when
b1 = 0:9 (Table 5). Focussing now more on variation across (
; �), the bias of
�I decreases in �, as is the case for �F when b1 = b2 = 0. With AR structure,
the worst performance of �F is generally found for (
; �) = (0:2; 0:4) or (0:7; 1).
As for �0, bias varies with collective memory 
+ � when � = 0, but when � 6= 0,
(0; 0:4) and (0:2; 0:4) are the worst cases, unsurprisingly in view of the LSE�s
inconsistency here. Generally, �F works best under � = 0:4. With respect to
variation in �, overall, the bias shares the sign of � in case of �0, �I , but is
opposite in case of �F , except for the case b1 = 0:9, b2 = 0. �I is relatively
insensitive to �, though for b1 = 0:9, b2 = 0 (Table 5), bias increases in j�j, as is
the case for �0, but no clear pattern can be found in the results for �F , though
there is evidence of increase in bias with j�j. Looking at variation across (b1; b2),
AR structure tends to reduce bias in �0 but increase it, and possibly change its
sign, in �I . For �F , the worst performances occur when b1 6= 0, but even here
bias decays rapidly as n increases, as it does also for �I .
Mis-speci�cation (Table 6) has surprisingly little e¤ect on �I , but seriously

damages �F , especially when � is small, (0:2; 0:4) being clearly the worst case,
though again bias decreases with n. As anticipated, over-speci�cation (Table
7) makes little di¤erence to �I , which does much better than �0, but �F is
damaged (especially for � = 0:4) by poor estimates of the integration orders.
However, small reductions on the optimizing intervals C, D, cause very signi�-
cant improvements in �F (and in fact in the estimates of 
, �):

(Tables 8-11 about here)

Tables 8-11 contain Monte Carlo standard deviations (SD) for only a sub-
set of the combinations for which bias results were displayed. As noted before,
variability is considerably a¤ected by parameter values, and the relative per-
formance of �0, �I and �F can be illustrated by focussing on only few cases.
In fact, �0 was superior to �I for most combinations, including those not dis-
played, with �F a poor third. With correct speci�cation, this was most notably
evident for small n and b1 = b2 6= 0 (Table 9), in part due to the proliferation
in regressors, �ve in �I and �F versus one in �0, with variability in e� and e

considerably in�ating SD of �F relative to �I . Precision also increases with
increasing n, and when one or both of the bi is zero (see Tables 8 and 10), the
performance of �I and �F improves relative to that of �0. On the other hand,
with over-speci�cation (Table 11), �I and �F unsurprisingly deteriorate further,
and generally larger sample sizes will be required in order for their faster con-
vergence rate to consistently deliver smaller SD than �0. Nevertheless, it must

14



be borne in mind that the paper�s motivation is not to minimize variance but
rather to achieve

p
n-consistency and asymptotic normality in a fairly general

context, which the LSE �0 does not provide.
We now examine the usefulness of the limit distributional properties of �I

and �F by examining the size of Wald tests. We computed

WI =
(�I � �)2 n

[G(
; �)�1K(
; �)G(
; �)�1](1)
, WF =

(�F � �)2 nh bA bB bA0i
(1)

; (58)

where [�](i) denotes ith diagonal element. Empirical sizes, with respect to nomi-
nal sizes � = 0:05 and 0:1, again across 1000 replications, are reported in Tables
12-17, for each of the (b1; b2) for which biases were given.

(Tables 12-17 about here)

With correct speci�cation, even for b1 = b2 = 0 (Table 12), sizes of the infea-
sible statistic WI are somewhat too large, and autocorrelation in ut exacerbates
this, with the case b1 6= 0, b2 = 0 again worse than b1 = 0, b2 6= 0, but not nec-
essarily worse than b1 = b2 6= 0 (Tables 13-15). Results for � = 0:1 are clearly
better than for � = 0:05. Overall, there is improvement as n increases, and
even for small n the performance of WI seems quite satisfactory. Predictably,
mis-speci�cation (Table 16) plays havoc, producing sizes that are unacceptably
high, especially for � = 0:05. With over-speci�cation, performance is again
good, though we would not expect high power.
For the feasible statistic WF , with correct speci�cation and no autocorrela-

tion in ut (Table 12), sizes are worse than for WI , with less evidence of settling
down as n increases and more variation across parameter values, and they are
sometimes actually less than nominal values. With autocorrelation (Tables 13-
15), sizes are emphatically too small and mostly further from the nominal values
than the corresponding WI are in the opposite direction, though this is by no
means always the case, and sometimes the results are extraordinarily good. As
expected, the e¤ect of mis-speci�cation is more dramatic than for WI . With
over-speci�cation (Table 17), sizes are mainly less than nominal values, but in
general approximate them as n increases. Our overall experience with WF is
quite encouraging.
While we have stressed estimation of �, estimates of � and 
 would also be

of interest in an empirical analysis of fractional cointegration, and so we also
give some space to the performance of e� and e
, and to Wald tests for � and 

based on Theorem 4.1.

(Tables 18 and 19 about here)

Tables 18 and 19 report Monte Carlo bias and SD of e� for the same values of
b2 (0, 0.5, 0.9) and n (64, 128, 256) as before, again based on 1000 replications.
However, we �x � = 0:5 here, using the same estimates of e� computed in this
case for the feasible estimates �F and Wald statistics WF discussed previously.

15



We report results for minimization of both S0 (d) and S1 (d) (see (42), (51)),
so that S0 (d) with b2 = 0 and S1 (d) with b2 6= 0 both correspond to correct
speci�cation, S1 (d) with b2 = 0 to over-speci�cation, and S0 (d) with b2 6= 0 to
mis-speci�cation.
Biases from S0 (d) with b2 = 0 look satisfactory even for n = 64, and decrease

in n. For S1 (d) with b2 = 0:5, 0:9, there is some deterioration, but performance
is still acceptable. For S1 (d) with b2 = 0 results are worse, but small reductions
in D have a large positive impact on e�. In this case the negative bias of e�
is somehow expected, as the estimated (non-existent) AR component in u2t
accounts for some of the autocorrelation structure. Unsurprisingly, there is
severe bias, increasing with b2, when S0 (d) is used with b2 6= 0. SD in the
correctly speci�ed and over-speci�ed cases is, as expected, worse for AR ut.

(Tables 20 and 21 about here)

Tables 20 and 21 report Monte Carlo sizes of Wald statistics for �;

W� =
(e� � �)2nh bA bB bA0i

(3)

; (59)

based on Theorem 4.1, with respect to nominal sizes � = 0:05, 0:1 respectively.
As expected, under mis-speci�cation they are far too large. Otherwise, while
still too large (especially for over-speci�cation) in some cases they are not bad,
and decrease in n, ones for � = 0:1 being best.

(Tables 22-25 about here)

Tables 22-25 give corresponding results for e
, with b1 = b2 = b taking
values 0, 0.5, 0.9. Our estimation procedure being sequential, we consider two
categories, S0 (d) followed by T0 (c) (44), and S1 (d) followed by T1 (c) (53),
so that in the former case there is correct speci�cation for b = 0 and mis-
speci�cation for b 6= 0, and in the latter, over-speci�cation for b = 0 and correct
speci�cation for b 6= 0. The bias and SD results of Tables 22 and 23 exhibit
some variation across (
; �), and surprisingly biases are much less for b = 0:9
than for b = 0:5, possibly due to cancellation. For the Wald statistic

W
 =
(e
 � 
)2nh bA bB bA0i

(2)

; (60)

more size variation is also found, in Tables 24 and 25, than for W�, with re-
sults for b = 0:9 being substantially better than for other cases under correct
speci�cation.

(Table 26 about here)
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For the second part of the study, we focus on a situation where it is straight-
forward to derive asymptotically e¢ cient estimates of �, and we compare their
Monte Carlo variance with that of �I . We consider only the case where in (55),
b1 = 0:5; 0:9, b2 = 0. The �rst e¢ cient estimate we calculate is the Gaussian
MLE with known b1, which, in view of (18) is identical to the LSE of � in the
equation

yt (
)� b1yt�1 (
) = � (xt (
)� b1xt�1 (
)) + �xt (�) + "1:2t: (61)

We also consider a two-stage approach where in the �rst step we estimate b1 by

bb1 = Pn
t=2 bu1tbu1;t�1Pn
t=2 bu21;t�1 , bu1t = yt (
)� �Ixt (
) ; (62)

and in the second compute the estimate of � as in the infeasible situation but
replacing b1 by bb1. We report in Table 26 the �e¢ ciency ratios�r1 and r2, which
are the Monte Carlo variance of �I divided by either that of the Gaussian MLE
with known b1 (r1) or that of the feasible estimate (r2). Note that r1 and r2
are invariant to the value of E("22t), provided the estimates are computed from
the same ut sequence. In general, results are little a¤ected by changes in �, and
the loss of e¢ ciency of �I is larger for smaller � and larger b1. As expected,
�I is more ine¢ cient relative to the infeasible MLE, and this is accentuated
the larger and smaller b1 and � are respectively. In the comparison with the
infeasible MLE, the e¢ ciency loss is reduced as n increases, the reverse happen-
ing for the feasible estimate. On the limited evidence provided by our simple
experiment, it seems worth improving e¢ ciency by incorporating restrictions on
�. Undoubtedly more iterations could further improve matters.

6. Empirical Examples
Using a methodology involving the LSE and NBLSE of �, and semiparamet-

ric estimates of �, Robinson and Marinucci (2003) found evidence that � < 1=2
in some of the bivariate macroeconomic series originally examined by Engle and
Granger (1987), Campbell and Shiller (1987), who investigated only the possi-
bility of CI (1; 0) cointegration. This experience motivates application of our
present approach to the same data.
The main departure from the methodology of the previous section was an

attempt at greater realism by determining p in (14) from the data, rather than
assuming its value a priori. For this purpose, we need proxies for the uit,
which can only be obtained by operating on the observed yt, xt, series with
preliminary estimates of �, 
 and �. To estimate � here we used the LSE �0,
given by (57) (and computed by Robinson and Marinucci, 2003). To estimate 

and �, we used semiparametric estimates (already computed by Marinucci and
Robinson, 2001, Robinson and Marinucci, 2003) in order to provide robustness
against a range of short-memory speci�cations for ut. Speci�cally, the estimates
of 
 and � computed by these authors were of log periodogram (LP) and semi-
parametric Gaussian (SG) type (of the precise form considered by Robinson,
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1995a,b), using various bandwidths and based either on raw data/residuals or
on �rst di¤erenced ones followed by adding back 1. For asymptotic theory un-
der stationarity we appeal to Robinson (1995a,b), and under nonstationarity, to
Velasco (1999a,b). Using preliminary estimates of 
, �, �, sample correlograms
and partial correlograms were computed (to lag length 36) in order to identify,
in the spirit of Box and Jenkins (1971), the AR orders of the uit. For each data
set, this was done for both the smallest and largest of the various univariate
estimates of memory parameters based on the xt/residuals provided by Marin-
ucci and Robinson (2001), Robinson and Marinucci (2003). When this led to
contradictory models for the uit the analysis was continued with both.
We also took this opportunity to examine the matter of truncation, which

in one form or another always arises with fractional models, and perhaps most
acutely when nonstationary data are involved. When estimated innovations
from a stationary fractional model are computed, the (in�nite) AR representa-
tion has to be truncated because the data begin at time �1�, not at time ��1�.
In our model (1) for nonstationary data, the truncation is actually inherent in
the model, so strictly speaking there is no �error�associated with it. However,
the model re�ects the time when the data begin, and if we were to drop the �rst
observation, say, and start at the next one, the degree of �ltering applied to
all subsequent observations would change, and this could have a marked e¤ect,
especially with nonstationary data, even though �ltering is here applied after
de-meaning. To check for stability with respect to this phenomenon, we thus
report computations based on the last n0 = n�j observations, for j = 0; 1; :::; 10.
We look �rst at Engle and Granger�s (1987) quarterly consumption and

income data, 1947Q1-1981Q2 (n = 138). They found evidence of CI (1; 0)
cointegration, but did not investigate fractional possibilities. Marinucci and
Robinson�s (2001) analysis tends to support the notion of � = 1, but not of

 = 0, with positive estimates of 
 that sometimes fall in the nonstationary
region, thereby hinting that � < 1=2 is possible.
Taking y=consumption, x=income, the LSE of �, from Robinson and Mar-

inucci (2003), is 0:229. The two preliminary estimates of � taken from Marinucci
and Robinson (2001) were 0.89 (LP applied to �rst di¤erences of x and adding
back 1, with bandwidth 22) and 1.08 (SG applied to �rst di¤erences of x and
adding back 1, with bandwidth 40). In each case, the corresponding correlo-
grams and partial correlograms suggested modelling u2t as white noise. The
preliminary estimates of 
 were 0.19 (LP applied to raw residuals with band-
width 22) and 0.87 (SG applied to �rst di¤erenced residuals and adding back 1,
with bandwidth 40). This large gap results in identi�cation of an AR(1) u1t in
the �rst case, and white noise u1t in the second. In view of these investigations,
we carried out two distinct cointegration analyses, one with p = 0 in (14), the
other with p = 1 in (14) with B1 = diag (b1; 0).

(Table 27 about here)

In case u1t and u2t are both white noise, Table 27 reports values of the
following statistics with n replaced by n0 = n� j, j = 0; :::; 10: b� = b�(e
;e�), e�, e
,
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and their estimated standard errors SE(b�), SE(e�), SE(e
) from Theorem 4.1,b� = b�(e
;e�), which is the estimated coe¢ cient of xt(e�) in (18) for p = 0 with e
,e�, replacing 
, �, and the correlation Corr ("1t; "2t) is estimated by
r = b�(e
;e�)(b�22=b�11) 12 ; (63)

where

b�11 = n�1X0

t

�
yt(e
)� b�(e
;e�)xt(e
)�2 ; b�22 = n�1X0

t
x2t (
e�); (64)

with
P0

t meaning summation over the last n
0 observations.

As n0 falls, b� and e� tend to increase, and e
 to decrease, but there is high
stability for n0 � 133, and generally the changes are insigni�cant relative to
standard errors, b� for n0 = 128 being one standard error larger than b� for
n0 = 138 (and also somewhat larger than the LSE). The estimates of � and 

are certainly consistent with � < 1=2. More especially, exploiting the standard
errors provided by our approach, the hypothesis that � = 1 seems rejectable
against � > 1, but (though we do not report standard errors of e� = e� � e
,
which could be computed using Theorem 4.1) there is no evidence against � <
1=2. Substantial negative contemporaneous correlation between u1t and u2t is
suggested. Dropping the �rst observation does not a¤ect e�, since x1 (d) = x1
for any d.

(Table 28 about here)

The analysis with AR(1) u1t in Table 28 presents a very di¤erent picture.
Here, we also report bb1 and c�b1, which are estimated coe¢ cients of yt�1(e
)
and �xt�1(e
) in the regression (cf. (18)) used to compute b� and b�, and b�11
in r is now the sample average of the squared residuals from the regression of
yt(e
) � b�(e
;e�)xt(e
) on yt�1(e
) � b�(e
;e�)xt�1(e
). In view of the AR(1) compo-
nent, we e¤ectively lose one observation, so n0 goes from 127 to 137, the e¤ect of
then dropping the �rst observation being very striking, but the estimates subse-
quently exhibiting little variation across n0. As u2t is still supposed to be white
noise, the estimates of � are identical to those in Table 27, but those of 
 are
all now less than zero, although not signi�cantly, Engle and Granger�s (1987)
CI (1; 0) conclusion now being supported. The AR component in u1t clearly
accounts for the bulk of the autocorrelation in cointegrating errors, resulting in
the small estimates of 
, which are based on AR-transformed data. The MLE,
which estimates 
 simultaneously with b1 and the other parameters, would allow
AR and fractional features to compete more favourably, though, as discussed
in Section 1, it would require much heavier computation. Notice that c�b1 looks
quite consistent with b� and bb1, possibly providing some support for the present
speci�cation. Note also that the various b� are larger than before, but that, if
indeed � > 1=2, their standard errors have to be interpreted with caution, as b�
is then no longer asymptotically normal.
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Engle and Granger (1987) found no evidence of CI (1; 0) cointegration be-
tween logM1 (y) and logGNP (x), on the basis of 90 quarterly observations,
1959Q1-1981Q2. Marinucci and Robinson�s (2001) fractional analysis admitted
the possibility of cointegration, with � < 1=2. In our preliminary analysis of
autocorrelation in ut, we took from their estimates of � the values 1.22 (SG
applied to �rst di¤erences of x and adding back 1, using bandwidth 30) and
1.36 (LP applied to �rst di¤erences of x and adding back 1, using bandwidth
22), and from their estimates of 
 the values 0.76, 1.2, both LP estimates but
applied respectively to raw residuals using bandwidth 22, and �rst di¤erences
of residuals and adding back 1, using bandwidth 16. Employing also the LSE
of �, 0.643, we found no evidence of autocorrelation in ut, so proceeded to a
cointegration analysis on the basis of p = 0 in (14). The results are reported
in Table 29. We found large variation across the largest n0, but a good degree
of stability is then achieved, with substantially larger values of e� and e
 (and of
their standard errors). Clearly, e� signi�cantly exceeds 1, while e
 does not, and
the resulting e� = e�� e
 are extremely close to the threshold value of 1/2. There
is considerable negative correlation between u1t and u2t, and for the smaller n0,b� is close to the LSE.

(Tables 29 and 30 about here)

Finally, we looked at the n = 116 annual observations, 1871-1986, on stock
prices (y) and dividends (x), analysed by Campbell and Shiller (1987). Their
�ndings with respect to CI (1; 0) cointegration were inconclusive, but Marinucci
and Robinson�s (2001) and Robinson and Marinucci�s (2003) analyses again sug-
gested the possibility of cointegration with � < 1=2. The preliminary estimates
of � taken from Marinucci and Robinson (2001) were 0.86 and 0.95, being SG
based on �rst di¤erences of x and adding back 1, with bandwidths respectively
30 and 40. The preliminary estimates of 
 were 0.57, 0.77, being LP on �rst
di¤erences of residuals and adding back one, with bandwidth 30, and SG on
raw residuals with bandwidth 22, respectively. We also used the LSE of �, 31.
In this case, both 
 estimates suggested white noise u1t, while the � estimates
variously suggested white noise and AR(1) u2t, but our subsequent fractional
cointegration analysis produced e
 and e� that were too close to admit the likeli-
hood of any cointegration. Thus, we report, in Table 30, only the results with
both u1t and u2t white noise. There is little variation with n0, and strong sup-
port for the unit root hypothesis on �, and, since e
 is signi�cantly larger than
1/2 at the 5% level, cointegration with � < 1=2 is certainly a possibility. We
�nd that b� is somewhat larger than the LSE value, though not signi�cantly so.
Appendix A: Proof of Theorem 3.1
We prove �rst that � is nonsingular, which ensures existence of the inverses

in (32). De�ne

�+ = E
� eZ+t eZ+0t � ; eZ+t = � ew0t; ew0t�1; :::; ew0t�p�0 : (A.1)
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It clearly su¢ ces to show that �+ is positive de�nite. De�ning

�
+
= E

�
ZtZ

0
t

�
; Zt =

�
w0t; w

0
t�1; :::; w

0
t�p
�0
; (A.2)

for wt = (ext(
); u2t; u1t)0, from (29) it su¢ ces to show that �
+
is positive

de�nite, and similarly, de�ning

�
++

= E
�
RZtZ

0
tR

0
�
; (A.3)

where R is a full rank 3 (p+ 1)�3 (p+ 1)matrix whose columns are orthonormal
vectors such that

RZt = [x(
)
0; u02; u

0
1]
0
; (A.4)

where x(
) = (ext(
); :::; ext�p(
))0, u2 = (u2t; :::; u2;t�p)0, u1 = (u1t; :::; u1;t�p)0,
it su¢ ces to show that �

++
is positive de�nite. De�ne the vectors

e(�) =
�
1; ei�; :::; eip�

�0
; d(�) = (1� ei�)��e(�); (A.5)

and the 3(p+ 1)� 2 matrix

E(�) =

�
00 00 e(�)0

d(�)0 e(�)0 00

�0
; (A.6)

where 00 is a 1 � (p + 1) vector of zeros. De�ne by f(�) the spectral density
matrix of ut, and note from positive de�niteness of 
 and �niteness of the Bj
that the smallest eigenvalue of the Hermitian matrix f(�) is bounded from below
by a positive constant c, uniformly in �. Then we can write

�
++

=

Z �

��
E(�)f(�)E(��)0d�; (A.7)

which for some c > 0 exceeds

c

Z �

��
E(�)E(��)0d� = c

24 C D 0
D0 Ip+1 0
0 0 Ip+1

35 (A.8)

by a non-negative de�nite matrix, where 0, C andD are (p+1)�(p+1)matrices,
having (i; j)th elements 0,

P1
`=0 a`a`+ji�jj and aj�i1(j � i) respectively, with

aj = aj(�). It thus su¢ ces to show that C �DD0 is positive de�nite. But for
a (p+ 1)� 1 vector � = (�i),

� 0(C �DD0)� =
1P̀
=1

�
a`�p+1 + :::+ a`+p�1

�2
; (A.9)

which is positive unless � = 0 because a`=a`�1 = (` + � � 1)=` is strictly
increasing in ` � 1 for � < 1.
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We now have to show that

1

n

P 0Zt(
; �)Z
0
t(
; �)!p �; (A.10)

n�1=2
P 0Zt(
; �)"1:2;t !d N(0;	); (A.11)

writing
P 0 =

Pn
t=p+1. To prove (A.11), note �rst that it su¢ ces to show

n�1=2
P 0 eZt"1:2;t !d N(0;	); (A.12)

because

E



n�1=2P 0

n
Zt(
; �)� eZto "1:2;t


2 � K

n

P 0E



Zt(
; �)� eZt


2

� K

n

P 0
pP
j=1

Ex2t�j(
)

� K

n

P 0
pP
j=1

Z �

��

����� 1P
s=t�j

ase
�is�

�����
2

kf(�)k d�

� K

n

nP
t=1

1P
s=t
a2s ! 0; (A.13)

as n ! 1; by the Toeplitz lemma, the last inequality following because f(�)
is bounded due to the assumption on the B`. Write eZt = Zat + Zbt, where the
�rst two elements of Zat, and the last 3p elements of Zbt, equal corresponding
ones of eZt. Thus Zbt is Ft�1-measurable and

E
�
"1:2;t eZt) jFt�1� = E ("1:2;tZat) + ZbtE ("1:2;t jFt�1 ) = 0; a:s: (A.14)

Further,

E
�
"21:2;t

eZt eZ 0

t jFt�1
�

= E
�
"21:2;tZatZ

0
at

�
+ E

�
"21:2;tZat

�
Z 0bt

+ZbtE
�
"21:2;tZ

0
at

�
+ E("21:2;t)ZbtZ

0
bt; a:s:;(A.15)

and so
1

n

P 0
h
E
n
"21:2;t

eZt eZ 0t jFt�1o� E n"21:2;t eZt eZ 0toi!p 0; (A.16)

because Zbt and ZbtZ 0bt�E(ZbtZ 0bt) are stationary and ergodic with zero means.
Since (A.15) has expectation 	, (A.12) then follows from the Cramer-Wold
device and Theorem 1 of Brown (1971), noting that the Lindeberg condition in
the latter reference is trivially satis�ed because "1:2;t eZt is stationary with �nite
variance. Thus (A.11) is proved. The proof of (A.10) follows from (A.13) and
elementary inequalities. This concludes the proof of (32). The proof of the �nal
statement of the theorem is omitted as it is standard given (32) and its proof.

Appendix B: De�nition of Â and B̂
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For brevity we write ~G = G(~
; ~�), ~� = �̂(~
; ~�), ~H = H(~�), ~� = �̂(~�).
We have

bA =
24 â01 â2 â3
00 â4 â5
00 0 â6

35 ; (B.1)

where

â01 = 10 ~G�1; â2 = �10~�c~s�1cc ; (B.2)

â3 = 10~�c~s
�1
cc ~scd~s

�1
dd � 1

0~�d~s
�1
dd ; â4 = �~s�1cc ; (B.3)

â5 = ~s�1cc ~scd~s
�1
dd ; â6 = �~s�1dd ; (B.4)

in which

~�c = ~G�1
�
~gc � ~Gc~�

�
; ~�d = ~G�1

�
~gd � ~Gd~�

�
; (B.5)

~gc = Q
1

n

P 0
n
Ztc(~
)yt(~
) + Zt(~
; ~�)ytc(~
)

o
; (B.6)

~Gc = Q
1

n

P 0
n
Ztc(~
)Z

0
t(~
;

~�) + Zt(~
; ~�)Z
0
tc(~
)

o
Q0; (B.7)

~gd = Q
1

n

P 0Ztd(~�)yt(~
); (B.8)

~Gd = Q
1

n

P 0
n
Ztd(~�)Z

0
t(~
;

~�) + Zt(~
; ~�)Z
0
td(
~�)
o
Q0; (B.9)

with

ytc(~
) = log(1� L)yt(~
); (B.10)

Ztc(~
) = log(1� L) fxt(~
); 0; xt�1(~
); 0; yt�1(~
); :::; xt�p(~
); 0; yt�p(~
)g0 ;
(B.11)

Ztd(e�) = log(1� L)
n
0; xt(e�); 0; xt�1(e�); 0; :::; 0; xt�p(e�); 0o0 ; (B.12)

and where

escc = 1

n

P 0~v2tc; escd = 1

n

P 0~vtc~vtd; esdd = 1

n

P 0 ~w2td; (B.13)

with

~vtc = ytc(~
)� ~�
0
cQZt(~
;

~�)� ~�0QZtc(~
); (B.14)

~vtd = �~�0dQZt(~
; ~�)� ~�
0
QZtd(~�); (B.15)

~wtd = xtd(~�)� ~�
0
dRXt(

~�)� ~�0RXtd(~�); (B.16)

xtd(~�) = log(1� L)xt(~�); (B.17)

Xtd(~�) = log(1� L)Xt( ~d); (B.18)
~�d = ~H�1(~hd � ~Hd~�); (B.19)

~hd = R
1

n

P 0
n
Xtd(~�)xt(~�) +Xt(~�)xtd(~�)

o
; (B.20)

~Hd = R
1

n

P 0
n
Xtd(~�)X

0
t(
~�) +Xt(~�)X

0
td(
~�)
o
R0: (B.21)
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We also have

bB = 1

n

P 0

24 "̂1:2;t(~
; ~�)QZt(~
; ~�)

"̂1:2;t(~
; ~�)~vtc
"̂2t(~�) ~wtd

3524 "̂1:2;t(~
; ~�)QZt(~
; ~�)

"̂1:2;t(~
; ~�)~vtc
"̂2t(~�) ~wtd

350 ; (B.22)

where
"̂2t(d) = xt(d)� ~�

0
RXt(d): (B.23)
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TABLE 1
CONVERGENCE RATES

(
; �) (0; 0:4) (0:2; 0:4) (0:4; 0:8) (0:7; 1)
Optimal n:5 n:5 n:5 n:5

LSE, � 6= 0 inconsistent inconsistent n:4 n:3

LSE, � = 0 n:5 n:5 n:4 n:3

TABLE 2
MONTE CARLO BIAS, b1 = b2 = 0, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .000 .061 -.338 -.002 .017 -.320 -.003 .008 -.307
.2 .4 .000 .124 -.401 -.005 .077 -.387 -.010 .048 -.377

-.5 .4 .8 .000 .061 -.193 -.002 .017 -.151 -.003 .008 -.120
.7 1 .000 .101 -.220 -.003 .040 -.176 -.006 .020 -.142
0 .4 -.006 -.006 -.007 -.001 .000 -.003 -.001 -.001 .000
.2 .4 -.014 -.038 -.011 .000 -.001 -.005 -.003 -.007 .000

0 .4 .8 -.006 -.006 -.015 -.001 .000 -.009 -.001 -.001 -.002
.7 1 -.009 -.020 -.031 .000 .000 -.023 -.002 -.003 -.005
0 .4 .001 -.089 .337 .005 -.016 .320 .003 -.009 .308
.2 .4 -.001 -.179 .394 .009 -.081 .384 .006 -.056 .376

.5 .4 .8 .001 -.089 .192 .005 -.016 .155 .003 -.009 .120
.7 1 .000 -.142 .214 .006 -.043 .182 .004 -.025 .143
0 .4 .002 -.123 .511 .003 -.029 .481 .002 -.010 .460
.2 .4 .003 -.212 .599 .007 -.125 .578 .006 -.077 .562

.75 .4 .8 .002 -.123 .287 .003 -.029 .226 .002 -.010 .176
.7 1 .003 -.194 .315 .005 -.073 .258 .004 -.028 .206
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TABLE 3
MONTE CARLO BIAS, b1 = b2 = 0:9, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 -.015 .165 -.161 -.003 .102 -.136 -.005 .078 -.120
.2 .4 -.041 .121 -.293 -.008 .096 -.266 -.006 .120 -.248

-.5 .4 .8 -.015 .165 -.147 -.003 .102 -.113 -.005 .078 -.088
.7 1 -.024 .190 -.207 -.005 .080 -.166 -.006 .134 -.131
0 .4 -.026 -.086 -.014 -.016 -.039 -.005 -.008 -.005 .000
.2 .4 -.057 -.155 -.027 -.033 -.098 -.012 -.009 -.010 -.001

0 .4 .8 -.026 -.086 -.025 -.016 -.039 -.014 -.008 -.005 -.003
.7 1 -.036 .036 -.043 -.022 -.093 -.030 -.008 .002 -.006
0 .4 .016 -.208 .158 .004 -.145 .137 .005 -.073 .120
.2 .4 .028 -.118 .281 .010 -.168 .267 .008 -.122 .247

.5 .4 .8 .016 -.208 .140 .004 -.145 .116 .005 -.073 .090
.7 1 .019 -.269 .195 .006 -.144 .170 .006 -.081 .134
0 .4 .027 -.278 .237 .010 -.149 .202 .007 -.068 .176
.2 .4 .047 -.092 .421 .020 -.143 .390 .010 -.158 .364

.75 .4 .8 .027 -.278 .206 .010 -.149 .165 .007 -.068 .129
.7 1 .034 -.278 .283 .013 -.215 .236 .008 -.139 .192

TABLE 4
MONTE CARLO BIAS, b1 = 0, b2 = 0:5, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 -.001 .036 -.142 .000 .044 -.128 .000 .032 -.119
.2 .4 -.002 .058 -.203 .001 .065 -.189 -.001 .058 -.181

-.5 .4 .8 -.001 .036 -.083 .000 .044 -.065 .000 .032 -.052
.7 1 -.001 .057 -.106 .000 .065 -.085 .000 .050 -.069
0 .4 -.001 -.003 -.004 .001 .001 -.001 .001 .000 .000
.2 .4 .001 -.018 -.008 .004 -.007 -.003 .003 .006 .000

0 .4 .8 -.001 -.003 -.008 .001 .001 -.005 .001 .000 -.001
.7 1 .000 -.012 -.017 .002 .000 -.012 .002 .004 -.002
0 .4 .006 -.034 .142 .004 -.030 .129 .001 -.029 .119
.2 .4 .016 -.037 .201 .010 -.045 .189 .004 -.044 .180

.5 .4 .8 .006 -.034 .082 .004 -.030 .067 .001 -.029 .052
.7 1 .009 -.048 .102 .006 -.053 .088 .002 -.041 .069
0 .4 .004 -.061 .216 .002 -.059 .192 .000 -.047 .178
.2 .4 .011 -.089 .305 .006 -.094 .283 .001 -.085 .269

.75 .4 .8 .004 -.061 .123 .002 -.059 .097 .000 -.047 .076
.7 1 .006 -.093 .151 .003 -.091 .124 .001 -.073 .100
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TABLE 5
MONTE CARLO BIAS, b1 = 0:9, b2 = 0, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 -.118 -.189 -.758 -.040 -.099 -.755 -.014 -.046 -.746
.2 .4 -.264 -.323 -1.05 -.110 -.155 -1.11 -.054 -.084 -1.14

-.5 .4 .8 -.118 -.189 -1.05 -.040 -.099 -.965 -.014 -.046 -.852
.7 1 -.172 -.329 -1.51 -.066 -.142 -1.41 -.029 -.064 -1.26
0 .4 .006 .006 -.039 .005 .042 -.015 .005 .011 -.002
.2 .4 -.002 -.063 -.065 .009 .019 -.030 .005 .000 -.005

0 .4 .8 .006 .006 -.119 .005 .042 -.082 .005 .011 -.013
.7 1 .003 -.073 -.251 .006 .029 -.210 .005 .008 -.038
0 .4 .129 .111 .714 .052 .124 .740 .018 .038 .741
.2 .4 .258 .189 .970 .126 .167 1.07 .056 .067 1.12

.5 .4 .8 .129 .111 .994 .052 .124 .981 .018 .038 .854
.7 1 .177 .173 1.42 .079 .147 1.46 .032 .052 1.27
0 .4 .167 .190 1.09 .065 .128 1.11 .022 .039 1.11
.2 .4 .363 .300 1.48 .172 .237 1.61 .079 .074 1.68

.75 .4 .8 .167 .190 1.48 .065 .128 1.42 .022 .039 1.25
.7 1 .242 .291 2.08 .106 .197 2.05 .043 .058 1.83

TABLE 6
MONTE CARLO BIAS, b1 = b2 = 0:5, mis-speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .000 1.13 -.242 -.001 .981 -.221 -.003 .851 -.208
.2 .4 .000 1.95 -.346 -.003 1.84 -.328 -.009 1.64 -.316

-.5 .4 .8 .000 1.13 -.167 -.001 .981 -.132 -.003 .851 -.105
.7 1 .000 1.51 -.212 -.002 1.30 -.170 -.005 1.10 -.138
0 .4 -.005 1.79 -.008 .000 1.59 -.003 .000 1.40 .000
.2 .4 -.010 3.40 -.016 .002 3.30 -.006 -.001 3.06 -.001

0 .4 .8 -.005 1.79 -.017 .000 1.59 -.010 .000 1.40 -.002
.7 1 -.007 2.50 -.033 .000 2.20 -.024 .000 1.91 -.005
0 .4 .004 2.45 .240 .006 2.10 .222 .003 1.98 .208
.2 .4 .008 5.04 .337 .013 4.73 .326 .007 4.45 .314

.5 .4 .8 .004 2.45 .164 .006 2.10 135 .003 1.98 .105
.7 1 .005 3.54 .204 .008 3.03 177 .004 2.78 .140
0 .4 .004 2.71 .365 .003 2.33 .332 .002 2.21 .310
.2 .4 .009 5.88 .513 .008 5.46 .487 .006 5.04 .469

.75 .4 .8 .004 2.71 .244 .003 2.33 .196 .002 2.21 .154
.7 1 .006 3.97 .300 .005 3.40 .250 .003 3.12 .201
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TABLE 7
MONTE CARLO BIAS, b1 = b2 = 0, over-speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .020 .207 -.338 .013 .248 -.320 .021 .149 -.307
.2 .4 .065 .012 -.401 .042 .042 -.387 .035 -.017 -.377

-.5 .4 .8 .020 .207 -.193 .013 .248 -.151 .021 .149 -.120
.7 1 .035 .179 -.220 .022 .205 -.176 .026 .124 -.142
0 .4 -.032 -.056 -.007 -.006 -.059 -.003 .007 -.140 .000
.2 .4 -.036 -.058 -.011 .023 -.083 -.005 .027 -.108 .000

0 .4 .8 -.032 -.056 -.015 -.006 -.059 -.009 .007 -.140 -.002
.7 1 -.034 -.043 -.031 .003 -.101 -.023 .014 -.115 -.005
0 .4 .006 -.291 .337 .017 -.323 .320 -.005 -.290 .308
.2 .4 .021 -.092 .394 .061 -.151 .384 .004 -.155 .376

.5 .4 .8 .006 -.291 .192 .017 -.323 .155 -.005 -.290 .120
.7 1 .012 -.259 .214 .032 -.288 .182 -.001 -.263 .143
0 .4 -.018 -.288 .511 .002 -.319 .481 -.016 -.187 .460
.2 .4 -.034 -.103 .599 .016 -.102 .578 -.021 -.178 .562

.75 .4 .8 -.018 -.288 .287 .002 -.319 .226 -.016 -.187 .176
.7 1 -.023 -.191 .315 .007 -.319 .258 -.017 -.210 .206

TABLE 8
MONTE CARLO S.D., b1 = b2 = 0, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .178 .429 .109 .112 .169 .084 .076 .104 .065
.2 .4 .419 .788 .131 .274 .470 .102 .193 .318 .077

-.5 .4 .8 .178 .429 .154 .112 .169 .122 .076 .104 .092
.7 1 .259 .583 .270 .167 .286 .237 .116 .183 .188
0 .4 .212 .321 .107 .128 .151 .073 .086 .093 .049
.2 .4 .489 .817 .141 .310 .469 .105 .217 .284 .076

0 .4 .8 .212 .321 .171 .128 .151 .128 .086 .093 .093
.7 1 .305 .518 .322 .189 .269 .278 .130 .150 .214
0 .4 .184 .484 .112 .113 .175 .084 .073 .099 .063
.2 .4 .426 .892 .136 .276 .514 .104 .187 .313 .078

.5 .4 .8 .184 .484 .160 .113 .175 .127 .073 .099 .092
.7 1 .266 .673 .283 .168 .307 .247 .112 .176 .192
0 .4 .140 .593 .114 .087 .196 .091 .058 .101 .075
.2 .4 .328 .811 .116 .213 .535 .092 .146 .354 .073

.75 .4 .8 .140 .593 .140 .087 .196 .111 .058 .101 .086
.7 1 .203 .733 .226 .129 .401 .188 .088 .193 .152
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TABLE 9
MONTE CARLO S.D., b1 = b2 = 0:9, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .918 2.88 .164 .480 1.62 .112 .271 .784 .075
.2 .4 1.78 4.15 .300 .961 1.85 .225 .557 1.03 .159

-.5 .4 .8 .918 2.88 .225 .480 1.62 .161 .271 .784 .108
.7 1 1.19 3.46 .374 .633 1.70 .296 .363 .886 .216
0 .4 1.06 2.98 .192 .553 1.54 .122 .306 .878 .079
.2 .4 2.04 3.67 .354 1.10 2.12 .253 .634 1.26 .177

0 .4 .8 1.06 2.98 .282 .553 1.54 .191 .306 .878 .120
.7 1 1.37 3.21 .483 .729 1.78 .370 .411 .847 .249
0 .4 .901 3.81 .172 .472 1.55 .115 .266 .877 .075
.2 .4 1.76 3.59 .319 .953 2.04 .233 .553 1.02 .161

.5 .4 .8 .901 3.81 .241 .472 1.55 .170 .266 .877 .109
.7 1 1.17 3.44 .405 .625 1.75 .313 .358 .862 .219
0 .4 .717 2.67 .138 .372 1.30 .093 .212 .914 .066
.2 .4 1.39 2.94 .248 .747 1.56 .179 .441 .986 .131

.75 .4 .8 .717 2.67 .195 .372 1.30 .128 .212 .914 .088
.7 1 .930 2.79 .331 .491 1.50 .232 .286 1.12 .169

TABLE 10
MONTE CARLO S.D., b1 = 0:9, b2 = 0, correct speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 .608 1.72 .434 .346 .899 .338 .210 .431 .249
.2 .4 1.09 2.12 .831 .642 1.23 .714 .403 .749 .555

-.5 .4 .8 .608 1.72 1.18 .346 .899 1.04 .210 .431 .818
.7 1 .761 1.98 2.23 .438 1.03 2.16 .270 .564 1.81
0 .4 .666 2.34 .466 .399 .927 .373 .239 .479 .280
.2 .4 1.14 2.18 .864 .711 1.33 .764 .443 .750 .615

0 .4 .8 .666 2.34 1.36 .399 .927 1.18 .239 .479 .907
.7 1 .813 1.86 2.70 .496 1.10 2.60 .301 .555 2.09
0 .4 .615 1.84 .450 .358 .864 .353 .205 .384 .262
.2 .4 1.09 2.00 .849 .657 1.25 .729 .408 .691 .585

.5 .4 .8 .615 1.84 1.24 .358 .864 1.08 .205 .384 .816
.7 1 .768 1.74 2.38 .451 1.03 2.27 .268 .504 1.85
0 .4 .529 1.70 .383 .295 .774 .297 .166 .325 .217
.2 .4 .986 1.95 .769 .590 1.27 .652 .362 .651 .508

.75 .4 .8 .529 1.70 .974 .295 .774 .835 .166 .325 .678
.7 1 .681 1.72 1.89 .391 .966 1.72 .228 .445 1.44
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TABLE 11
MONTE CARLO S.D., b1 = b2 = 0, over-speci�cation

n 64 128 256
� 
 � �I �F �0 �I �F �0 �I �F �0

0 .4 1.78 2.41 .109 1.07 1.53 .084 .670 1.13 .065
.2 .4 3.46 2.92 .131 2.14 1.79 .102 1.36 1.13 .077

-.5 .4 .8 1.78 2.41 .154 1.07 1.53 .122 .670 1.13 .092
.7 1 2.30 2.65 .270 1.41 1.50 .237 .887 .999 .188
0 .4 2.04 3.09 .107 1.19 1.75 .073 .748 1.23 .049
.2 .4 4.03 3.57 .141 2.37 2.20 .105 1.52 1.53 .076

0 .4 .8 2.04 3.09 .171 1.19 1.75 .128 .748 1.23 .093
.7 1 2.66 3.51 .322 1.56 1.89 .278 .988 1.25 .214
0 .4 1.74 2.73 .112 1.06 1.82 .084 .668 1.35 .063
.2 .4 3.39 3.13 .136 2.12 1.90 .104 1.35 1.45 .078

.5 .4 .8 1.74 2.73 .160 1.06 1.82 .127 .668 1.35 .092
.7 1 2.26 3.10 .283 1.40 1.73 .247 .881 1.38 .192
0 .4 1.42 2.05 .114 .831 1.60 .091 .519 1.33 .075
.2 .4 2.74 2.32 .116 1.67 1.47 .092 1.05 1.22 .073

.75 .4 .8 1.42 2.05 .140 .831 1.60 .111 .519 1.33 .086
.7 1 1.83 2.17 .226 1.09 1.45 .188 .686 1.20 .152

TABLE 12
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .076 .137 .072 .091 .068 .059 .124 .174 .124 .142 .122 .102
-.5 .2 .4 .076 .130 .059 .099 .058 .075 .134 .164 .117 .141 .130 .115

.7 1 .073 .137 .066 .102 .060 .077 .129 .175 .118 .139 .128 .116
0 .4 .078 .093 .053 .080 .057 .055 .136 .152 .112 .122 .125 .117

0 .2 .4 .077 .055 .054 .033 .062 .034 .133 .082 .104 .073 .114 .066
.7 1 .076 .074 .058 .060 .053 .055 .134 .128 .105 .102 .120 .099
0 .4 .074 .131 .055 .080 .055 .066 .136 .164 .119 .122 .117 .097

.5 .2 .4 .073 .114 .055 .094 .054 .081 .141 .146 .120 .135 .111 .108
.7 1 .068 .115 .055 .083 .050 .080 .140 .154 .121 .127 .116 .116
0 .4 .075 .124 .059 .076 .063 .037 .136 .153 .112 .104 .116 .067

.75 .2 .4 .073 .170 .058 .146 .069 .093 .143 .207 .113 .183 .116 .137
.7 1 .076 .145 .060 .111 .064 .075 .143 .178 .113 .148 .110 .116
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TABLE 13
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0:9, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .114 .020 .092 .027 .084 .037 .184 .035 .161 .060 .132 .069
-.5 .2 .4 .109 .029 .098 .037 .074 .049 .180 .053 .158 .066 .138 .082

.7 1 .112 .029 .097 .032 .082 .044 .182 .047 .161 .065 .136 .078
0 .4 .122 .024 .080 .022 .077 .028 .187 .053 .150 .044 .129 .066

0 .2 .4 .125 .025 .092 .017 .063 .009 .191 .036 .146 .030 .130 .025
.7 1 .125 .037 .079 .022 .075 .016 .192 .051 .146 .046 .122 .044
0 .4 .112 .024 .097 .030 .067 .033 .177 .049 .160 .055 .145 .052

.5 .2 .4 .118 .020 .094 .031 .071 .055 .182 .053 .161 .060 .139 .076
.7 1 .121 .025 .090 .033 .073 .046 .179 .046 .165 .059 .133 .072
0 .4 .115 .018 .100 .023 .079 .022 .185 .041 .161 .041 .151 .048

.75 .2 .4 .107 .038 .096 .066 .081 .107 .188 .074 .162 .098 .146 .149
.7 1 .112 .034 .101 .049 .079 .053 .181 .066 .159 .078 .141 .092

TABLE 14
EMPIRICAL SIZES OF WI AND WF , b1 = 0, b2 = 0:5, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .067 .076 .067 .049 .055 .057 .125 .103 .117 .081 .100 .088
-.5 .2 .4 .067 .051 .063 .036 .055 .047 .119 .068 .119 .056 .094 .072

.7 1 .067 .063 .066 .044 .058 .052 .122 .082 .120 .067 .103 .073
0 .4 .069 .041 .067 .046 .059 .038 .113 .065 .122 .072 .106 .078

0 .2 .4 .066 .022 .064 .022 .065 .017 .114 .030 .120 .035 .112 .035
.7 1 .070 .035 .067 .035 .065 .025 .114 .048 .125 .056 .107 .056
0 .4 .062 .070 .054 .056 .049 .053 .124 .098 .115 .078 .105 .075

.5 .2 .4 .061 .046 .053 .039 .049 .041 .127 .065 .110 .057 .103 .060
.7 1 .066 .062 .051 .051 .047 .044 .127 .087 .118 .063 .102 .067
0 .4 .073 .092 .055 .059 .054 .063 .145 .116 .107 .082 .096 .083

.75 .2 .4 .069 .079 .054 .066 .057 .064 .131 .102 .104 .091 .099 .087
.7 1 .067 .088 .058 .055 .051 .049 .137 .113 .106 .078 .103 .068
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TABLE 15
EMPIRICAL SIZES OF WI AND WF , b1 = 0:9, b2 = 0, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .101 .036 .081 .030 .068 .030 .171 .059 .140 .055 .115 .070
-.5 .2 .4 .105 .030 .087 .025 .060 .017 .178 .055 .139 .040 .123 .031

.7 1 .101 .033 .086 .031 .061 .033 .175 .065 .140 .055 .119 .062
0 .4 .097 .032 .086 .037 .071 .042 .162 .062 .157 .080 .125 .074

0 .2 .4 .090 .031 .091 .025 .077 .020 .166 .057 .150 .044 .127 .039
.7 1 .092 .034 .089 .034 .070 .030 .155 .056 .150 .066 .124 .056
0 .4 .112 .037 .073 .028 .053 .038 .165 .054 .141 .057 .101 .071

.5 .2 .4 .097 .019 .078 .029 .064 .018 .161 .044 .139 .051 .120 .045
.7 1 .109 .026 .082 .030 .060 .034 .164 .050 .147 .062 .110 .059
0 .4 .117 .025 .082 .022 .051 .026 .185 .047 .133 .048 .104 .060

.75 .2 .4 .107 .022 .078 .026 .065 .024 .173 .044 .133 .038 .114 .037
.7 1 .111 .019 .081 .029 .058 .031 .184 .047 .143 .058 .106 .053

TABLE 16
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0:5, mis-speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .274 .072 .250 .244 .255 .813 .349 .179 .333 .498 .341 .957
-.5 .2 .4 .258 .001 .228 .009 .228 .085 .331 .017 .317 .053 .317 .239

.7 1 .270 .025 .243 .068 .233 .392 .343 .056 .331 .215 .334 .682
0 .4 .258 .477 .245 .807 .248 .988 .344 .621 .319 .882 .325 .995

0 .2 .4 .242 .160 .214 .277 .229 .459 .327 .258 .296 .404 .310 .679
.7 1 .255 .302 .229 .565 .241 .842 .339 .435 .308 .701 .322 .956
0 .4 .264 .702 .246 .904 .248 .988 .356 .767 .324 .938 .324 .992

.5 .2 .4 .245 .295 .230 .399 .224 .631 .341 .371 .303 .467 .317 .733
.7 1 .253 .498 .239 .726 .239 .944 .347 .598 .306 .778 .325 .962
0 .4 .274 .767 .244 .941 .251 .997 .360 .820 .329 .965 .333 .997

.75 .2 .4 .249 .320 .221 .407 .218 .661 .336 .403 .310 .495 .313 .768
.7 1 .262 .544 .240 .734 .238 .963 .350 .623 .318 .815 .318 .978

35



TABLE 17
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, over-speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

� 
 � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .091 .013 .072 .034 .066 .031 .143 .035 .109 .065 .112 .067
-.5 .2 .4 .084 .014 .065 .046 .053 .074 .139 .034 .115 .083 .099 .124

.7 1 .088 .018 .067 .047 .058 .051 .137 .039 .112 .084 .105 .097
0 .4 .078 .027 .061 .022 .050 .036 .127 .046 .115 .041 .100 .064

0 .2 .4 .072 .021 .054 .040 .047 .054 .135 .048 .107 .068 .086 .102
.7 1 .075 .022 .052 .029 .049 .050 .132 .040 .104 .064 .094 .079
0 .4 .068 .027 .063 .026 .056 .028 .124 .047 .118 .051 .105 .061

.5 .2 .4 .071 .028 .064 .032 .061 .046 .113 .042 .116 .057 .110 .087
.7 1 .065 .024 .056 .035 .060 .039 .120 .046 .110 .061 .110 .074
0 .4 .085 .031 .072 .025 .060 .018 .144 .051 .129 .054 .113 .042

.75 .2 .4 .074 .026 .073 .045 .057 .048 .138 .052 .126 .076 .114 .087
.7 1 .080 .026 .080 .039 .058 .033 .143 .060 .125 .065 .112 .063

TABLE 18
MONTE CARLO BIAS of e�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) -.016 .403 .852 -.001 .415 .868 -.003 .417 .875
S1 (d) -.325 -.170 .161 -.286 -.121 .114 -.207 -.072 .059

TABLE 19
MONTE CARLO S.D. of e�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .110 .149 .107 .072 .102 .075 .046 .070 .057
S1 (d) .419 .258 .286 .409 .216 .237 .373 .182 .165

TABLE 20
EMPIRICAL SIZES (� = 0:05) OF W�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .087 .806 1.00 .061 .941 1.00 .085 1.00 1.00
S1 (d) .367 .170 .158 .382 .149 .159 .276 .135 .106

TABLE 21
EMPIRICAL SIZES (� = 0:10) OF W�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .130 .837 1.00 .117 .955 1.00 .104 1.00 1.00
S1 (d) .444 .201 .205 .419 .190 .195 .304 .162 .122
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TABLE 22
MONTE CARLO BIAS of e
, � = 0:5, b1 = b2 = b

n 64 128 256
estimation 
 �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 -.038 .396 .842 -.012 .416 .868 -.003 .421 .874
S0 (d), T0 (c) .2 .4 -.048 .368 .825 -.018 .400 .857 -.005 .413 .870

.7 1 -.040 .387 .839 -.012 .410 .865 -.005 .418 .872
0 .4 -.250 -.309 .044 -.192 -.218 .066 -.105 -.153 .042

S1 (d), T1 (c) .2 .4 -.422 -.345 .001 -.361 -.255 .025 -.256 -.177 .012
.7 1 -.336 -.325 .026 -.279 -.233 .049 -.176 -.164 .030

TABLE 23
MONTE CARLO S.D. of e
, � = 0:5, b1 = b2 = b

n 64 128 256
estimation 
 �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .123 .126 .128 .081 .087 .087 .053 .062 .062
S0 (d), T0 (c) .2 .4 .112 .117 .114 .077 .086 .083 .055 .063 .060

.7 1 .118 .122 .123 .079 .087 .086 .058 .065 .064
0 .4 .330 .260 .252 .309 .223 .183 .279 .195 .136

S1 (d), T1 (c) .2 .4 .378 .239 .225 .370 .214 .157 .347 .195 .113
.7 1 .355 .248 .240 .340 .220 .170 .316 .195 .126

TABLE 24
EMPIRICAL SIZES (� = 0:05) OF W
 , � = 0:5, b1 = b2 = b

n 64 128 256
estimation 
 �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .114 .951 1.00 .096 1.00 1.00 .075 1.00 1.00
S0 (d), T0 (c) .2 .4 .105 .946 1.00 .091 1.00 1.00 .084 1.00 1.00

.7 1 .110 .945 1.00 .075 .999 1.00 .092 1.00 1.00
0 .4 .243 .273 .115 .352 .263 .094 .322 .249 .080

S1 (d), T1 (c) .2 .4 .388 .301 .108 .471 .297 .074 .455 .271 .068
.7 1 .329 .274 .104 .400 .268 .089 .362 .254 .073

TABLE 25
EMPIRICAL SIZES (� = 0:10) OF W
 , � = 0:5, b1 = b2 = b

n 64 128 256
estimation 
 �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .182 .970 1.00 .136 1.00 1.00 .148 1.00 1.00
S0 (d), T0 (c) .2 .4 .174 .963 1.00 .144 1.00 1.00 .129 1.00 1.00

.7 1 .163 .958 1.00 .139 1.00 1.00 .182 1.00 1.00
0 .4 .330 .329 .152 .421 .324 .126 .375 .304 .110

S1 (d), T1 (c) .2 .4 .450 .349 .136 .533 .357 .104 .501 .331 .099
.7 1 .380 .329 .140 .453 .328 .118 .416 .312 .099
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TABLE 26
EFFICIENCY RATIOS

b 0.5 0.9
n 64 128 256 64 128 256 64 128 256 64 128 256

� 
 � r1 r1 r1 r2 r2 r2 r1 r1 r1 r2 r2 r2
0 .4 1.18 1.12 1.15 1.06 1.12 1.10 7.46 5.12 3.63 1.38 3.40 3.14

-.5 .2 .4 5.97 5.00 4.23 1.00 1.43 2.37 45.9 33.6 25.8 1.09 16.3 19.8
.7 1 1.86 1.54 1.40 .988 1.09 1.15 16.6 11.6 8.52 1.35 7.47 7.30
0 .4 1.22 1.13 1.12 1.00 1.07 1.05 6.77 5.14 3.60 1.67 3.20 3.26

0 .2 .4 6.11 5.06 4.27 1.07 1.29 2.32 37.9 31.3 23.8 1.91 11.5 20.3
.7 1 1.97 1.57 1.38 .931 1.02 1.13 14.3 11.3 8.16 2.12 6.82 7.41
0 .4 1.13 1.14 1.16 1.01 1.11 1.13 7.64 5.10 3.63 1.44 3.69 3.03

.5 .2 .4 6.19 4.61 4.19 1.04 1.35 2.12 45.7 32.8 27.4 .900 4.71 18.8
.7 1 1.83 1.50 1.39 .961 1.07 1.12 16.9 11.5 8.76 1.26 7.01 7.11
0 .4 1.16 1.18 1.23 1.16 1.21 1.23 9.14 5.77 3.91 1.53 3.67 2.72

.75 .2 .4 6.11 4.49 4.15 .985 1.39 1.66 61.1 44.2 35.3 .669 15.1 18.5
.7 1 1.79 1.42 1.38 1.09 1.07 1.01 21.6 14.4 10.4 1.21 7.99 6.80

TABLE 27
CONSUMPTION AND INCOME: ut WHITE NOISE

n0 138 137 136 135 134 133 132 131 130 129 128b� .223 .222 .251 .252 .251 .248 .247 .242 .243 .245 .246
SE(b�) .027 .031 .024 .022 .023 .022 .023 .021 .022 .023 .023e� 1.07 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18
SE(e�) .028 .028 .059 .068 .073 .080 .083 .082 .083 .082 .084e
 .714 .745 .715 .692 .694 .696 .696 .685 .692 .694 .693
SE(e
) .084 .092 .087 .087 .089 .090 .090 .089 .093 .093 .093b� -.024 -.055 -.085 -.090 -.090 -.086 -.085 -.072 -.073 -.073 -.074
r -.195 -.189 -.297 -.311 -.310 -.294 -.285 -.247 -.251 -.250 -.253

TABLE 28
CONSUMPTION AND INCOME: u1t AR(1), u2t WHITE NOISE

n0 137 136 135 134 133 132 131 130 129 128 127b� .163 .257 .264 .267 .263 .265 .258 .261 .262 .263 .262
SE(b�) .179 .055 .054 .057 .053 .056 .051 .056 .055 .055 .054e� 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18 1.18
SE(e�) .028 .059 .068 .073 .080 .083 .082 .083 .082 .084 .084e
 -.101 -.167 -.183 -.184 -.184 -.179 -.193 -.180 -.184 -.189 -.186
SE(e
) .234 .187 .181 .183 .185 .193 .180 .193 .192 .191 .192bb1 .798 .843 .842 .839 .837 .832 .845 .842 .842 .842 .843c�b1 .116 .221 .228 .230 .226 .226 .223 .225 .226 .227 .226b� .009 -.088 -.102 -.104 -.102 -.105 -.093 -.096 -.094 -.095 -.094
r .009 -.128 -.122 -.119 -.126 -.127 -.128 -.128 -.119 -.117 -.121
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TABLE 29
LogM1 AND LogGNP: ut WHITE NOISE

n0 90 89 88 87 86 85 84 83 82 81 80b� .704 .740 .578 .564 .608 .640 .638 .644 .643 .649 .658
SE(b�) .077 .145 .040 .058 .058 .054 .054 .061 .061 .061 .061e� 1.06 1.06 1.91 1.88 1.74 1.63 1.64 1.63 1.63 1.61 1.59
SE(e�) .057 .057 .025 .121 .117 .068 .083 .082 .086 .084 .076e
 .884 .928 1.12 1.16 1.11 1.09 1.09 1.11 1.10 1.10 1.09
SE(e
) .108 .122 .121 .121 .131 .136 .138 .140 .140 .139 .139b� -.134 -.222 -.261 -.268 -.315 -.352 -.350 -.379 -.376 -.391 -.408
r -.839 -.543 -.402 -.413 -.455 -.475 -.473 -.507 -.504 -.515 -.522

TABLE 30
STOCK PRICES AND DIVIDENDS: ut WHITE NOISE

n0 116 115 114 113 112 111 110 109 108 107 106b� 32.7 32.7 32.2 31.9 31.7 31.8 31.7 32.0 32.1 32.1 32.1
SE(b�) 7.56 7.64 7.80 7.83 7.81 7.93 7.91 7.99 8.02 7.99 8.01e� 1.04 1.04 1.08 1.09 1.09 1.09 1.09 1.09 1.10 1.10 1.10
SE(e�) .077 .077 .090 .092 .092 .092 .093 .093 .095 .095 .095e
 .749 .751 .751 .752 .751 .752 .752 .751 .749 .749 .749
SE(e
) .114 .116 .116 .117 .116 .117 .117 .116 .116 .116 .116b� -8.97 -9.52 -9.13 -8.82 -8.56 -8.67 -8.54 -8.52 -.8.64 -8.59 -8.69
r -.299 -.283 -.272 -.263 -.256 -.259 -.255 -.252 -.255 -.253 -.256
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