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Abstract  
 
 
 

Employing recent results of Robinson (2005) we consider the asymptotic properties of 
conditional-sum-of-squares (CSS) estimates of parametric models for stationary time 
series with long memory. CSS estimation has been considered as a rival to Gaussian 
maximum likelihood and Whittle estimation of time series models. The latter kinds of 
estimate have been rigorously shown to be asymptotically normally distributed in case of 
long memory. However, CSS estimates, which should have the same asymptotic 
distributional properties under similar conditions, have not received comparable 
treatment: the truncation of the infinite autoregressive representation inherent in CSS 
estimation has been essentially ignored in proofs of asymptotic normality. Unlike in short 
memory models it is not straightforward to show the truncation has negligible effect. 
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1 Introduction

Consider a real-valued, strictly and covariance stationary time series xt, t 2 Z.
It is believed that xt has a parametric autoregressive (AR) representation

1P
j=0

�j(�0)xt�j = "t; t 2 Z: (1.1)

Here "t is a sequence of zero-mean, uncorrelated and homoscedastic random
variables, with variance �20, the �j(�) are given functions with p � 1 vector
argument �, �0 is an unknown p� 1 vector, and �0(�) � 1 for all �.
The range of structures f�j(�)g covered by (1.1) is very broad, but of in-

terest to us are ones which allow xt to have long memory. Usually, these are
"fractional", where it is assumed that the function

�(s; �) =
1P
j=0

�j(�)s
j ; (1.2)

with complex-valued argument s on the unit circle, is of form

�(s; �) = (1� s)�(�)��(s; �); (1.3)

where �(�) is a scalar function of � such that

0 < �(�0) <
1

2
(1.4)

and
0 < j��(s; �0)j <1; jsj = 1: (1.5)

It follows that xt has spectral density of form

f(�) =
�20

j� (ei�; �0)j2
= �20

��1� ei����2�(�0)
j�� (ei�; �0)j2

: (1.6)

The leading choice of �� is a rational function of s, in which case xt is said to be
a fractional autoregressive integrated moving average (FARIMA) model; �(�0)
is caled the memory parameter.
Leading methods of estimation of �0, given observations x1; :::; xn, are Gaussian

maximum likelihood (ML), and approximations thereto. They are "approxima-
tions" in the sense that under similar conditions they have the same asymptotic
normal distribution as ML, and are thus asymptotically e¢ cient under Gaus-
sianity. At the same time, under many departures from Gaussianity, though the
e¢ ciency is lost the limit normal distribution of all these estimates is una¤ected.
Assuming Gaussianity, asymptotic normality of one form of approximation, a
Whittle estimate involving integration over frequency, was �rst established by
Fox and Taqqu (1986), and then by Dahlhaus (1989) in case of ML estimation.
Giraitis and Surgailis (1990) established asymptotic normality for the estimate
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considered by Fox and Taqqu (1986) when "t need not be Gaussian but is inde-
pendent and identically distributed with �nite fourth moment. Due to the pole
in the spectral density at � = 0 (see (1.6)), the asymptotic normality proofs are
considerably more challenging than those of Hannan (1973) for short memory
time series models, incisive though these were for such models.
An alternative estimate that has been considered in the literature is conditional-

sum-of-squares (CSS) estimation, which was previously employed by Box and
Jenkins (1970) for short memory time series models. De�ne

et(�) =
t�1P
j=0

�j(�)xt�j ; (1.7)

sn(�) =
1

n

nP
t=1
e2t (�); (1.8)

and estimate �0 by
�̂n = argmin

�2�
sn(�); (1.9)

where � � Rp is a compact set.
One can motivate �̂n by the hope that sn(�0) is a good approximation to

n�1
Pn

t=1 "
2
t , which is itself proportional to the exponent in the density func-

tion of independent identically distributed zero-mean normal variates. Thus
one hopes that (after centering at �0 and n

1
2 norming) �̂n has the same limit

distributional properties as the Gaussian ML and Whittle estimates mentioned
previously.
Given an initial consistency proof of �̂n, a standard approach to proving

asymptotic normality entails applying the mean value theorem to rn(�̂n) about
�0, where

rn(�) =
@sn(�)

@�
=
2

n

nP
t=1
ht(�)et(�); (1.10)

for

ht(�) =
@et(�)

@�
: (1.11)

The main part of the proof then involves establishing that n
1
2 rn(�0) converges

in distribution to a zero-mean normal vector. If the "t are assumed to be
conditionally homoscedastic martingale di¤erences, and conditions ensuring that
ht(�) has �nite variance are imposed, such convergence is easily seen to hold
(see e.g. Brown (1971)) for

r�n(�0) =
2

n

nP
t=1
ht"t; (1.12)

where ht = ht(�0). However this is only useful if also

r�n(�0)� rn(�0) = op
�
n�

1
2

�
; (1.13)
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in other words, if the e¤ect of replacing et = et(�0) by "t is su¢ ciently small.
Unlike the ht"t, the htet and ht (et � "t) are not zero-mean, orthogonal random
variables. We can employ the Schwarz inequality:

E jr�n(�0)� rn(�0)j � 2n�1
nP
t=1

h
E(et � "t)2E kht(�t(�0)k2

i 1
2

: (1.14)

Then if, say, it were true that E(et � "t)2 = Op(t
�1��) for some � > 0, the

right hand side of (1.14) would be Op
�
n�

1
2�

�
2

�
, and (1.13) established. For

short memory models E(et � "t)2 typically decays fast enough, indeed even
exponentially. But under quite general conditions permitting long memory (see
Robinson (2005)),

E(et � "t)2 � Kt�1 (1.15)

only, where K is an arbitrarily large generic constant, which is insu¢ cient to
establish (1.13) using (1.14).
A more delicate proof of (1.13) is required, and this was given by Robinson

(2005). As discussed there, this delicacy relates to that seen in the proofs of Fox
and Taqqu (1986) and others for alternative estimates of �0. Indeed, given that
these estimates and CSS should have the same limit distributional properties,
it would be extraordinary if the proof for CSS were very much easier than for
the other estimates.
A central limit theorem for �̂n is given in Section 3. Prior to that, in the

following section, we provide the almost convergence of �̂n (under somewhat
more general conditions). Hannan (1973) proved this for various estimates, as-
suming strict stationarity and ergodicity, which is consistent with long memory.
However, he did not cover CSS estimation.

2 Almost Sure Convergence

In the present section we do not require that xt necessarily has spectral density
of form (1.6), with (1.5) holding, but simply that it is a zero-mean strictly
stationary, ergodic process with AR representation (1.1), with the sentence after
(1.1) holding, and also �0 2 �; for all � 2 �nf�0g

�(s; �) 6= �(s; �0) (2.1)

on a subset of jsj = 1 of positive measure, j�(s; �)j is continuous in � for all
s : jsj = 1; and

1P
j=0

sup
�2�

j�j(�)j <1: (2.2)

Condition (2.1) is a standard identi�ability condition, and (2.2) is reasonable
in that long memory models (e.g. (1.6), such as FARIMAs) typically have AR
representations with summable coe¢ cients. Note that this setup allows the
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spectral density to have poles at non-zero frequencies (as in certain cyclic and
seasonal models), whereas (1.6) does not, in view of (1.5).

Theorem 1 Under the above conditions

lim
n!1

�̂n = �0; a:s: (2.3)

Proof. Theorem 1 of Hannan (1973) and Theorem 1 of Fox and Taqqu (1986)
cover the estimate

~�n = argmin
�
syn(�); (2.4)

where syn(�) is the objective function for the integral form of Whittle estimate,
i.e. �2N (�) of Hannan (1973) or �

2
N (�) of Fox and Taqqu (1986). We can write

syn(�) = cn(0)�0(�) + 2
n�1P
j=1

cn(j)�j(�); (2.5)

where

cn(j) =
1

n

n�jP
t=1

xtxt+j ; 0 � j � n� 1; (2.6)

�j(�) =
1P
k=0

�k(�)�k+j(�): (2.7)

From Theorem 1 of Hannan (1973), and its proof, it is clear that it su¢ ces to
show that

lim
n!1

sup
�

��syn(�)� sn(�)�� = 0; a:s: (2.8)

Now

syn(�)� sn(�) =
1

n

nP
t=1
x2t

1P
k=n�t+1

�2k(�)

+
2

n

n�1P
j=1

n�jP
t=1

xtxt+j
1P

k=n�t�j+1
�k(�)�k+j(�)

=
4P
i=1

ain(�); (2.9)

where

a1n(�) = 
(0)

(
1

n

n�1P
j=1

j�2j (�) +
1P
j=n

�2j (�)

)
; (2.10)

a2n(�) =
1

n

nP
t=1

�
x2t � 
(0)

	 1P
k=n�t+1

�2k(�); (2.11)

a3n(�) =
2

n

n�1P
j=1


(j)
n�jP
t=1

1P
k=n�t�j+1

�k(�)�k+j(�); (2.12)

a4n(�) = 2
n�1P
j=1

(
1

n

n�jP
t=1

(xtxt+j � 
(j))
1P

k=n�t�j+1
�k(�)�k+j(�)

)
;(2.13)
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where

(j) = cov(x0; xj): (2.14)

It remains to prove

lim
n!1

sup
�2�

jain(�)j = 0; i = 1; 2; 3; 4: (2.15)

As the proofs for i = 1; 2 are similar to but simpler than those for i = 3; 4, we
give only the latter. We have

sup
�
ja3n(�)j �

2

n

n�1P
j=1

j
(j)j
(

1P
j=0

sup
�2�

j�j(�)j
)2
: (2.16)

The quantity in braces is �nite and since, by the Riemann-Lebesgue theorem,
existence of a spectral density implies limj!1 
(j) = 0, it follows from the
Toeplitz lemma that (2.16) ! 0 as n!1. Next, by summation-by-parts

a4n(�) = �2
n�1P
j=1

n�j�1P
t=1

t

n
fct(j)� 
(j)g�n�t�j+1(�)�n�t+1(�)

+2
n�1P
j=1

1

n

n�jP
t=1

fxtxt+j � 
(j)g
1P
k=1

�k(�)�k+j(�): (2.17)

The modulus of the �rst term on the right has supremum, over �, bounded by

K
nP
t=1

sup
1�j�n

jct(j)� 
(j)j sup
�
j�n�t+1(�)j (2.18)

using (2.2). Using (2.2) again, and Theorem 1 of Hannan (1974) and the Toeplitz
lemma, it follows that (2.18) is o(1) a.s. The second term in (2.17) can be
similarly handled.

3 Asymptotic Normality

We assume now in addition that xt has spectral density (1.6), with (1.4), (1.5)
satis�ed, that �0 is an interior point of �, that the "t in (1.1) are independent
with zero mean, variance �20 and uniformly bounded fourth moment, that �(s; �)
is twice continuously di¤erentiable in �, and that the matrix


 =
1

2�

R �
��

�
log
��1� ei���2

�2 @@� log
��� �ei�; �0���

� �
log
��1� ei���2

�2 @@� log
��� �ei�; �0���

�0
d� (3.1)

is positive de�nite.
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Theorem 2 Under the above conditions, as n ! 1 n
1
2 (�̂n � �0) converges in

distribution to a p-variate normal vector with zero mean and covariance matrix

�1.

Proof. As discussed in Section 1, we have

0 = rn(�̂n) = rn(�0) + ~Tn(�̂n � �0); (3.2)

where ~Tn is the matrix formed by evaluating, for i = 1; :::; p, the i-th row of the

matrix Tn(�) =
�
@2=@�@�

0
�
sn(�) at � = ~�i, where




~�i � �0


 � 


�̂n � �0


 ; k:k
denoting Euclidean norm.
De�ne

�j =
@

@�
�j(�; �); (3.3)

so that

ht =
t�1P
j=1

�jxt�j ; (3.4)

and de�ne also

�t =
1P
j=1

�jxt�j ; (3.5)

rn =
1

n

nP
t=1
�t"t: (3.6)

Write rn(�0)� rn = r1n + r2n + r3n, where

r1n = 2n�1
nP
t=1
(ht � �t)"t; (3.7)

r2n = 2n�1
nP
t=1
�t(et � "t); (3.8)

r3n = 2n�1
nP
t=1
(ht � �t)(et � "t): (3.9)

We show that rin = op(n�
1
2 ), i = 1; 2; 3. To deal with r1n, we may write

ht � �t = �
1P
j=t

�jxt�j = �
1P
j=1

�jt"�j ; (3.10)

where

�jt =
jP

k=0

�k+j�j�k: (3.11)

Since

E kht � �tk
2
= �20

1P
j=1



�jt

2 � K (log t)2t
(3.12)
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as noted on p.1824 of Robinson (2005), and "t is independent of ht � �t, it
follows that

E kr1nk2 �
K

n2

nP
t=1
t�1 � K log n

n2
: (3.13)

Next, we can write

et � "t = �
1P
j=1

�jt"�j ; (3.14)

where

�jt =
jP

k=0

�k+j�t�k: (3.15)

Thus, from Lemma 16 of Robinson (2005),

E kr2nk2 � K
(log n)3

n2
: (3.16)

Finally,

E kr3nk � 1

n

nP
t=1

�
E kht � �tk

2
E (et � "t)2

� 1
2

� K

n

nP
t=1

log t

t

� K
(log n)2

n
; (3.17)

using (3.12) and also Lemma 14 of Robinson (2005). This completes the proof
that rin = op(n�

1
2 ), i = 1; 2; 3. The remainder of the proof is easier, and more

standard, and is omitted.
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