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Abstract 
 
 

Asset returns are frequently assumed to be determined by one or more common 
factors. We consider a bivariate factor model, where the unobservable common 
factor and idiosyncratic errors are stationary and serially uncorrelated, but have 
strong dependence in higher moments. Stochastic volatility models for the latent 
variables are employed, in view of their direct application to asset pricing models. 
Assuming the underlying persistence is higher in the factor than in the errors, a 
fractional cointegrating relationship can be recovered by suitable transformation of 
the data. We propose a narrow band semiparametric estimate of the factor 
loadings, which is shown to be consistent with a rate of convergence, and its finite 
sample properties are investigated in a Monte Carlo experiment. 
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1 Introduction

Financial time series, such as asset returns, are commonly found to be approximately

uncorrelated but not independent across time. Much of this dependence can be traced to

the fact that volatilities are time dependent, with highly volatile observations grouped

in some periods, and relatively low volatilities elsewhere. A great deal of attention has

focused on modelling the consequent conditional heteroscedasticity. In�uential early

contributions were the ARCH model of Engle (1982) (applied there to in�ation data),

the GARCH extension of Bollerslev (1986), and along a di¤erent line, the stochastic

volatility (SV) model of Taylor (1986). Empirical evidence has suggested a higher de-

gree of persistence than these models entail, leading to Engle and Bollerslev�s (1986)

introduction of the IGARCH model. However, the persistence implied by this model

(and other unit root based ones, such as IEGARCH) seems too extreme. On the one

hand, the absence of mean reversion in the second moments implies permanent shifts to

long term volatility forecasts, which is theoretically implausible. On the other, empirical

investigation of volatility measures, such as absolute values and squares of observations,

suggests they are better explained as stationary processes with long memory, indicating

the need for a more �exible model of volatility persistence; see, for example, Whistler

(1990), Ding et al. (1993), Ding and Granger (1996), Andersen and Bollerslev (1997).

Several parametric models for this phenomenon have been proposed. Robinson (1991)

extended the GARCH framework to an ARCH(1) model that can explain greater per-

sistence. Other models within this framework include Ding and Granger (1996), Baillie

et al. (1996), Bollerslev and Mikkelsen (1996). Other authors have extended Taylor�s

(1986) SV model to explain long memory in squares, e.g. Andersen and Bollerslev (1997),

Harvey (1998), Breidt et al. (1998).

In a parallel line of research, asset pricing models assume the existence of one or
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more common factors explaining asset returns. The classical capital asset pricing model

(CAPM) of Sharpe (1964) decomposes returns into a single factor, interpreted as the

market return, and an idiosyncratic component. The intertemporal CAPM (ICAPM) of

Merton (1973) and the arbitrage pricing theory (APT) of Ross (1976) show that, under

more realistic assumptions, multiple factors need to be considered as determinants of

returns. Estimation of the ICAPM requires correct speci�cation of the factors, there as-

sumed to be observable state variables; the APT uses asymptotics on the cross-sectional

dimension (i.e. the number of assets) for its theoretical implications, and also to allow

estimation of the unobservable factors and respective loadings. In the present paper, we

consider a bivariate model with a single unobservable common factor. It is shown that,

under some conditions, persistence in higher moments can allow consistent estimation

of the ratio of factor loadings. The bivariate setup is chosen for simplicity; extension of

our techniques to more than two observables and one common factor is clearly feasible,

but left for future research.

Suppose two observable scalar time series, yt and xt, t = 0;�1; : : :, are generated by

yt = �1�t + "t; (1.1)

xt = �2�t + �t; (1.2)

where �1, �2 are unknown, �2 6= 0, and �t, "t, �t are unobservable stationary processes,

generated by SV models. In asset pricing models, yt and xt would be asset returns,

�t could be interpreted as the (unobservable) market return, and �1, �2 would be the

market risk exposures of yt and xt, respectively. Since the scale of �t cannot be identi�ed,

we only aim to estimate � = �1=�2; equivalently, �2 could be normalised to unity by

suitably rescaling �t. In the suggested interpretation, knowledge of the relative risk

exposures of the assets would allow the researcher to compare (and reduce, if necessary)
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the total exposure to market risk of portfolios containing the two assets. In particular, a

portfolio could be derived which completely hedges against the common source of risk.

The ordinary least squares (OLS) estimate of yt on xt su¤ers from errors-in-variables

inconsistency for �, due to the �t component in xt. Indeed, our assumptions will imply

that �t, "t, �t are white noise sequences (i.e. have zero autocorrelations at all lags), so in

no meaningful sense can (1.1), (1.2) be described as a cointegrating relation. However,

�t, "t, �t are not serially independent, but exhibit persistence in higher moments. In

particular, for some integer p > 1, our assumptions imply that xpt and y
p
t are cointegrated

long memory I(d) processes, 0 < d < 1=2, with cointegrating coe¢ cient � = �p, and

cointegrating errors are I(du) for 0 � du < d. Squares of asset returns are typically

found to display the underlying persistence, so a cointegrating relationship of the type

described could be present, with p = 2. Still, xpt and y
p
t are stationary, so the OLS

estimate is inconsistent for �, unlike under the traditional assumption of I(1) observables

and I(0) cointegrating errors. The usual instrumental variables estimates employed in

time series models (e.g. with xpt�1 as instrument) will also be inconsistent here, as the

assumed persistence renders all available instruments invalid.

When the spectral density of stationary regressors dominates that of cointegrating

errors at low frequencies, Robinson (1994a) showed that a narrow band least squares

(NBLS) estimate can be consistent. His observable sequences were linear processes in

conditionally homoscedastic martingale di¤erence (md) innovations, which is manifestly

not the case in our intrinsically nonlinear framework. Nevertheless, NBLS has been ap-

plied to �nancial data (see e.g. Christensen and Nielsen, 2006; Bandi and Perron, 2006),

as have other models for fractional cointegration in volatility (such as the parametric

FIGARCH model of Brunetti and Gilbert, 2000), so it would be desirable to estab-

lish consistency under more relevant assumptions. The present paper �lls this gap in
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the theoretical properties of the NBLS estimate of �, allowing the latent variables in

(1.1), (1.2) to be quite general SV processes. The NBLS estimate converges at a slow

(nonparametric) rate, but in long �nancial series adequate precision may be achievable.

Better estimates of � are possible (see e.g. Hualde and Robinson, 2006), though they

would require at least estimating the memory parameters, and are computationally more

intensive and more complicated to handle theoretically. Even for the relatively simple

NBLS estimate, our proof of consistency is extremely lengthy.

Note that if we had instead assumed a multiplicative model, where observables are

generated by an exponential SVmodel, and a factor structure is present only in the latent

volatility process, a log-squares transformation would yield a linear representation, on

which linear process assumptions similar to those of Robinson (1994a) might be plausible

(see e.g. Hurvich et al., 2005). In (1.1), (1.2), the presence of additive errors, and the

semiparametric SV model which will be introduced, prevent this type of �linearisation.�

Our speci�cation may be more realistic: common factor structures in the levels often

follow from behavioural foundations, as in the CAPM literature, while in volatilities

they are typically used just as a convenient assumption for dimensionality-reduction.

Furthermore, our approach does not require a speci�c shape for the volatility function,

and indeed allows that shape to vary between the common and idiosyncratic components.

A key component of the proof of consistency is an approximation for expectations

of products of nonlinear functions of Gaussian processes (Theorem 1), which may be of

independent interest and is presented in the following section, with proof in Appendix

A. Section 3 describes the SV setting. Section 4 introduces the NBLS estimate and

our consistency result, which is proved in a series of propositions stated and proved in

Appendix B, using lemmas in Appendix C, as well as Theorem 1. Sections 5 and 6

consist of a Monte Carlo study of �nite sample performance and a discussion of further
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directions for research.

2 Approximating cross-moments of nonlinear func-

tions of Gaussian variables

With the objective of examining the memory of SVmodels similar to those introduced

in the following section, Robinson (2001) established an asymptotic expansion for the

covariance between nonlinear functions of multivariate normal random vectors. Here we

need a (non-trivial) extension to cross-moments of more than two real functions.

Let �(�) denote the standard normal density and Hj(�) the j-th Hermite polynomial,

for j � 0, de�ned by

Hj(x)�(x) = (�1)j
@j

@xj
�(x): (2.1)

For a function f(�) satisfying
R
R f

2(x)�(x)dx < 1, de�ne the j-th Hermite coe¢ cient

Gj =
R
R f(x)Hj(x)�(x)dx and the Hermite rank r = minfj � 0 : Gj 6= 0g. De�ne

Pq = fi 2 N : i � qg, where N = f1; 2; : : :g, Qq = f(i; j) 2 P 2q : i < jg, and

Rq;k = f(i; j) 2 Qq : i = k or j = kg for k 2 Pq.

Theorem 1 For integer J > 1, let �j, j 2 PJ be jointly normally distributed with zero

mean, unit variance, and covariances �jk = Cov(�j; �k), j 6= k; let fj = fj(�j) be a

function such that E(f 2j ) <1, with k-th Hermite coe¢ cient Gj;k and Hermite rank rj.

Then

E

 Y
j2PJ

fj

!
=

1X
q=0

aq; (2.2)

where

aq =
X
v��0:
�v�=q;
�2QJ

Y
j2PJ

Gj;wj
Y
�2QJ

�v��
v�!

; wj =
X
�2RJ;j

v�: (2.3)
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If in addition � = 2
P

�2QJ j��j < 1, then

aq = 0; 2q < r; (2.4)

jaqj � �
Y
j2PJ

0@ X
�2RJ;j

j��j

1A
rj
2

� q�
r
2 ; 2q � r; (2.5)

1X
i=q

jaij � �
Y
j2PJ

0@ X
�2RJ;j

j��j

1A
rj
2

� q�
r
2

1� �
; 2q � r; (2.6)

where r =
P

j2PJ rj and � = f
Q
j2PJ E(f

2
j )g1=2.

The bounds (2.4), (2.5) re�ect the individual, possibly di¤ering, Hermite ranks rj of

the fj. The weakest version of Theorem 1 arises when rj � 0 (i.e. when E(fj) 6= 0 for

all j), and because this would be relevant also when the rj are unknown, we present it

in the following Corollary, whose proof follows from the inequality
P

�2RJ;j j��j � � .

Corollary 1

jaqj � �� q;
1X
i=q

jaij � �
� q

1� �
:

As in Robinson (2001) in case J = 2, Theorem 1 provides a valid asymptotic ex-

pansion when � ! 0. Robinson (1994a) established consistency of the NBLS estimate

using L1 arguments enabled by linear process (in md innovations) assumptions. Since

those are unavailable to us, we use L2 arguments. These were also employed by Robin-

son (1994b) in studying the mean squared error of the averaged periodogram, but in

case of Gaussian and linear (in independent and identically distributed, iid, innovations)

assumptions. In the SV setting introduced in the following section, matters are consid-

erably more complicated, and we are led to consider various cross-moments of nonlinear

functions of Gaussian processes. Theorem 1 is crucial in obtaining su¢ ciently sharp

bounds on these cross-moments to establish consistency.
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3 Long memory stochastic volatility framework

To describe the structure of the latent processes �t, "t, �t in (1.1), (1.2), we �rst

introduce a technical de�nition of I(d) processes. We say zt is I(d), with memory

parameter d 2 [0; 1=2), if it is stationary with �nite variance, and has autocovariance

function �j = Cov(z0; zj) satisfying

1X
j=0

j�jj <1; (3.1)

if d = 0, and

�j � C�j
2d�1 as j !1, for C� > 0; (3.2)

j�j � �j+1j � K
j�j+1j
j

; j > 0; (3.3)

if 0 < d < 1=2, where K throughout denotes a generic, arbitrarily large �nite constant,

and the symbol ���indicates that the ratio of left- and right-hand sides tends to one.

We say an I(0) process has short memory, and an I(d) process, for 0 < d < 1=2, has

long memory. We can deduce from (3.1) or (3.2), (3.3) properties of the spectral density

f(�) of zt, which satis�es �j =
R �
�� f(�) cos(j�)d�. For d = 0, f(�) is continuous for all

�, whereas for 0 < d < 1=2, Theorem III-12 of Yong (1974) indicates that

f(�) � Cf�
�2d as �! 0+; (3.4)

where

Cf = ��1�(2d) sin
n
(1� 2d)�

2

o
C�;
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so that f(�) diverges at � = 0. Stationary autoregressive moving average (ARMA) proc-

esses satisfy (3.1), and stationary fractionally integrated ARMA (ARFIMA) processes

satisfy (3.2), (3.3).

Assumption 1 For t = 0;�1; : : :,

�t = �1tgt; �t = �1tht; "t = �1tlt; (3.5)

where for real-valued functions g, h, l,

gt = g(�2t); ht = h(�2t); lt = l(�2t); (3.6)

and

(i) f�1tg, f�1tg, f�1tg are jointly iid processes with zero mean;

(ii) f�2tg is I(d), f�2tg is I(d0), and f�2tg is I(d00), for d0 � 0, d00 � 0, maxfd0; d00g <

d < 1=2;

(iii) f�2tg, f�2tg, f�2tg are standard Gaussian processes, independent of each other and

of f�1tg, f�1tg, f�1tg;

(iv) For some integer p > 1,

E(�p1t)E fgp(�2t)�2tg 6= 0; (3.7)

and for j = 1; : : : ; p� 1,

E(�j1t�
p�j
1t )E

�
gj(�2t)�2t

	
= E(�j1t�

p�j
1t )E

�
gj(�2t)�2t

	
= 0; (3.8)
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(v) f�1tg, f�1tg, f�1tg, fgtg, fhtg, fltg have �nite 4p-th moments.

It follows that �t, "t, �t, described by SV models in (3.5), are serially uncorrelated but

not serially independent. In particular, xpt is I(d), due to (3.7), which entails E(�
p
1t) 6= 0

and gpt � E(gpt ) having Hermite rank one. Condition (3.8) ensures a valid cointegrating

relationship between xpt and y
p
t , since it implies that the cointegrating error has memory

smaller than d. If �1t is independent of �1t, �1t, the smallest integer satisfying (3.7) will

also satisfy (3.8). It is assumed that p is known, which imposes some restrictions on g;

in practice it may be reasonable to suppose that p = 2. The most notable exception

would occur if g is a symmetric function, e.g. gt = j�2tja, � > 0, but then no �nite p

satis�es (3.7). This does not rule out a cointegrating relationship of the type that we

study below, but the associated conditions would be extremely complex, involving the

magnitudes of d, d0, d00, and the Hermite ranks of each centered power of gt, ht, lt. Note

that for 
 6= 0, gt = j
 + �2tja gives p = 2. Further discussion concerning the Hermite

rank for functional forms in SV models with long memory can be found in Robinson

(2001).

An advantage of a low p is that the moment conditions in part (v) of Assumption 1

increase in strength with p. Even for p = 2, the 8-th moment condition that is required

seems stringent for most �nancial data: Jansen and de Vries (1991) and Loretan and

Phillips (1994), among others, suggest that several �nancial time series may have in�nite

fourth moments. Other parts of Assumption 1 might be relaxed at cost of substantial

lengthening of the proof, in particular the mutual independence assumptions of (iii). A

consistency result under weaker versions of (iii) could surely be provided with the same

theoretical tools, but enumeration of all relevant cross-moments would be a tedious

exercise with little added value. The Gaussianity assumption on �2t, �2t, �2t is mitigated

by allowing g, h, l to be quite general functions, and without Gaussianity the details
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would be considerably more complex; of course Gaussianity frequently plays a role in

short memory SV models also. We do not assume Gaussianity of �1t, �1t, �1t.

4 Consistency of the Narrow Band Least Squares

estimate

We transform (1.1), (1.2) to

Yt = �Xt + Ut; (4.1)

where

Yt = ypt =

pX
j=0

�
p

j

�
�j1�

j
t"
p�j
t ; Xt = xpt =

pX
j=0

�
p

j

�
�j2�

j
t�
p�j
t ; � = �p =

�p1
�p2
;

Ut = ypt � �xpt =

pX
j=0

�
p

j

�
(�j1�

j
t"
p�j
t � �p�j2�

j
t�
p�j
t ) =

p�1X
j=0

�
p

j

�
�j2�

j
t(�

j"p�jt � �p�p�jt ):

It will follow from (4.1) and Assumption 1 that Yt andXt are cointegrated I(d) processes.

As an example, if p = 2, we have Ut = "2t � �2�2t + 2�2�t(�"t � �2�t). The memory

parameters of �2t , "
2
t are bounded by d

0, d00 respectively, and therefore smaller than d by

part (ii) of Assumption 1. Condition (3.8) guarantees that either gt has Hermite rank

greater than one, reducing the memory of the last term by virtue of Theorem 1, or that

both �t"t and �t�t contain a zero mean and serially uncorrelated multiplicative error,

and are therefore white noise. By contrast, (3.7) ensures that g2t in Xt has Hermite rank

one, and thus retains the memory, d, of its underlying volatility process.

Given observations xt, yt, t = 1; : : : ; n, the NBLS estimate of Robinson (1994a) for

� is given by

�̂m =
Re
n
F̂XY (�m)

o
F̂XX(�m)

; 1 � m � n

2
; (4.2)
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where �j = 2�j=n are the Fourier frequencies, and for generic scalar sequences at; bt,

t = 1; : : : ; n, we de�ne the discretely averaged (cross-) periodogram

F̂ab(�m) =
2�

n

mX
j=1

Iab(�j);

where Iab(�) = wa(�)wb(�) is the (cross-) periodogram, and wa(�) =
Pn

t=1 ate
it�=
p
2�n

is the discrete Fourier transform of a1; : : : ; an. We can estimate � by �̂m = �̂
1=p

m , though

only up to an unknown sign when p is even.

For m = [n=2], where [�] denotes integer part, (4.2) reduces to OLS, but for consis-

tency we require, on the contrary:

Assumption 2 The bandwidth sequence m = m(n) satis�es

1

m
+
�m
n

��
log n! 0 as n!1; (4.3)

for all � > 0.

This assumption is slightly stronger than that of Robinson (1994a,b), namely

1

m
+
m

n
! 0 as n!1: (4.4)

We need (4.3) over (4.4) only in order to handle powers of gt, ht, lt with particular

combinations of memory parameters and Hermite ranks, notably for d = 1=4. This

case presents no special problems with the method of proof in Robinson (1994a), and is

excluded in Robinson (1994b).

For integers j 2 [1; p� 1] and k 2 [0; p� 1], denote the Hermite rank of centered gj,
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hp�k, lp�k by rgj, rhk, rlk respectively, and introduce the sets

Sg =
�
j : �jE(�j1t"

p�j
t ) 6= �pE(�j1t�

p�j
t ); 0 < j < p

	
;

Sh =
n
k : E(�p�k1t �kt ) 6= 0; 0 � k < p

o
;

Sl =
n
k : E(�p�k1t �kt ) 6= 0; 0 � k < p

o
;

Sgh =
�
j : E(�j1t�

p�j
1t ) 6= 0; 0 < j < p

	
;

Sgl =
�
j : E(�j1t�

p�j
1t ) 6= 0; 0 < j < p

	
:

Intuitively, Ut will be expanded as a sum of terms involving the basic processes described

in Assumption 1. This allows us to express the autocovariance function of Ut as a linear

combination of covariances of powers of gt; ht; lt and products of these covariances. The

memory of Ut will depend only on those terms associated with a nonzero coe¢ cient,

in particular for which the white noise component has nonzero mean. These �ve sets

group the particular exponents for which this occurs: Sg; Sh; Sl for terms including

only the covariances of powers of gt; ht; lt respectively, and Sgh; Sgl for cross-products of

said covariances. Note that Ut does not contain products of "t and �t, and therefore

interactions between ht and lt do not occur. Using the convention that the maximum

over an empty set is �1, the slowest rate of decay corresponding to each source is

de�ned by

d�g = max
j2Sg

�
1

2
� rgj

�
1

2
� d

��
; (4.5)

d�h = max
k2Sh

�
1

2
� rhk

�
1

2
� d0

��
� 1(d0 = 0); (4.6)

d�l = max
k2Sl

�
1

2
� rlk

�
1

2
� d00

��
� 1(d00 = 0); (4.7)

d�gh = max
j2Sgh

�
1

2
� rgj

�
1

2
� d

�
� rhj

�
1

2
� d0

��
; (4.8)
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d�gl = max
j2Sgl

�
1

2
� rgj

�
1

2
� d

�
� rlj

�
1

2
� d00

��
; (4.9)

where 1(�) throughout denotes the identity function, and the memory of Ut will be

d� = maxfd�g; d�h; d�l ; d�gh; d�glg: (4.10)

Theorem 2 Under Assumptions 1 and 2, as n!1

�̂m � � = Op

��m
n

�d�du�
; (4.11)

where du = d�1(d� > 0) + �1(d� = 0), for any � > 0.

Proof. As in Section 5.3 of Robinson (1994a),

j�̂m � �j �
(
F̂UU(�m)

F̂XX(�m)

) 1
2

:

By Proposition 2, �m
n

�2du�1
F̂UU(�m) = Op(1);

while by Propositions 1, 3, and Slutsky�s Theorem,

�
m
n

�1�2d
F̂XX(�m)

p! 1

C�
<1:

Since � is arbitrarily small and d� < d, it follows that �̂m is consistent for �. More-

over, when d� > 0, we can write d � du = d � d�, which is the di¤erence between the

integration orders of Xt and Ut, where the rate in (4.11) corresponds to that of Robin-

son and Marinucci (2003). For some particular combinations of memory parameters and
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Hermite ranks, yielding zeros in (4.5)-(4.9), the autocorrelation function is O(j�1), and

an additional log n factor arises. When such a process dominates in the expansion of

Ut, (4.3) is required to derive (4.11), justifying the appearance of � in the above rate of

convergence.

5 Finite sample properties

We now present a Monte Carlo study of �nite sample performance. For linear proc-

esses, Robinson and Marinucci (2003) reported simulation experiments of NBLS with

I(1) observables and I(0) cointegrating errors, while Marinucci and Robinson (2001)

explored di¤erent cases of I(dx) nonstationary observables and I(de) stationary errors.

Bandi and Perron (2006) examined NBLS for the regression between realized and im-

plied volatility, generating the data from a discretised continuous time SV model. We

employ 50,000 replications of series of various lengths n generated by (1.1), (1.2), (3.5),

(3.6), setting �1 = �2 = 1. All basic processes in (3.5), (3.6) are independent of each

other, and standard Gaussian. Processes �1t, �1t, �1t in (3.5) were generated as iid, while

for the ones in (3.6) the Davies and Harte (1987) algorithm was used to generate �2t as

ARFIMA(0; d; 0) and �2t, �2t as ARFIMA(0; d
0; 0). In most cases h and l are constant

functions, and �2t, �2t are not required. For all functions g considered, p = 2 satis�es

Assumption 1.

We compare the performance of NBLS (4.2) with OLS estimates obtained from

squared data,

~� =

X
(Xt � �X)(Yt � �Y )X

(Xt � �X)2
: (5.1)

Of course, (5.1) is not consistent for �, but it is a simple estimate that a practitioner

might optimistically compute. One can furthermore interpret (5.1) as the full band

14



0.8

0.85

0.9

0.95

1

0 32 64 96 128

m

R
e
la
t
iv
e
 b
ia
s

d= 0.1

d= 0.2

d= 0.3

d= 0.4

Figure 1: Relative bias of NBLS versus OLS, for varying m and d.

version of the proposed NBLS estimate, i.e. (4.2) for m = [n=2]. OLS estimates using

the original data, yt on xt, performed much worse than both (4.2) and (5.1), and are

therefore omitted. We report the bias, standard deviation (SD), and root mean squared

error (RMSE) for each estimate. On occasion, relative quantities are reported, meaning

the ratio between the corresponding quantity for NBLS and (5.1).

Bandwidth choice

Theorem 2 highlights the relationship between bandwidthm and rate of convergence.

In the �rst experiment, we present the evolution of relative bias, SD, and RMSE for

di¤erent m and d. We set n = 256, d = 0:1, 0:2, 0:3, 0:4, g(x) = exp(kx), with k chosen

to satisfy Var(�t) = 2, and h(x) = l(x) = 1. We chose this value for Var(�t) in several

experiments in order to balance the contributions of bias and SD to RMSE; the impact

of the signal to noise ratio is explored later.
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Figure 2: Relative SD of NBLS versus OLS, for varying m and d.

Figure 1 shows the bias reduction achieved by NBLS relative to OLS. Not surpris-

ingly, it is greater for small m and large d. It is only around frequency zero that the

spectral density of Xt dominates that of Ut; frequencies further from the origin are more

contaminated by the correlation between Xt and Ut, and contribute more to bias. Also,

a higher d indicates a stronger cointegrating relationship, increasing the spectral density

of Xt around the origin and thus the averaged periodogram.

The increase in SD of NBLS relative to OLS, displayed in Figure 2, is a consequence

of discarding high frequency information, and is decreasing in m. The in�uence of d on

relative SD appears to be small, especially if compared to Figure 1.

The di¤erent pro�les of bias and SD give rise to the traditional trade-o¤ in bandwidth

choice. Figure 3 presents the relative RMSE of NBLS. For most m, NBLS dominates

OLS. For this particular n, a low d does not provide enough information for NBLS to

work, due to the modest bias reductions displayed in Figure 1, making the improvement

over OLS negligible. The RMSE is essentially a �at function of m, implying that any m
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Figure 3: Relative RMSE of NBLS versus OLS, for varying m and d.

above a certain threshold, thereby taking in OLS, attains similar RMSE. However, note

that an increase in n should have a similar e¤ect to an increase in d on RMSE, although

it will be minimized at a di¤erent m. This e¤ect is explored in the next subsection.

Higher d lead to very low values for the optimal m, and more signi�cant improvements

in RMSE. For d = 0:4, a noticeable reduction is already achieved, of over 10% for a

number of di¤erent m. It should also be noted that if the bandwidth selection is larger

than optimal, it is still possible to considerably reduce RMSE, while choosing too small

an m can lead to an undesirably large SD.

Memory in signal

We now investigate the in�uence of n and d on the performance of the estimates. We

consider n = 256, 512, 1024, 2048 and d = 0:1, 0:2, 0:3, 0:4. As before, g(x) = exp(kx),

with k chosen to satisfy Var(�t) = 2, and h(x) = l(x) = 1. In this experiment and in the
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following ones, we evaluate NBLS at the bandwidthm� that minimizes RMSE. Although

this is not a feasible choice in the usual sense, it gives an indication of potential gains.

We also present results for the feasible bandwidth rule m = [n0:5], often used in practical

applications. Table 1 summarizes the results.

As expected, the RMSE of all estimates improves with n. For even moderate n,

NBLS has the lowest RMSE, being less biased than OLS; while OLS attains a lower SD,

especially for small n, its larger bias makes it worse. This gain in RMSE seems negligible

for low d, as suggested by Figure 3, but becomes noticeable for higher d.

Both bias and SD of OLS increase with d. Both also decrease with n, but while

SD seems to be rapidly converging to zero, bias decreases rather slowly and appears to

stabilise at some substantial non-zero value. The e¤ect of d on NBLS bias is ambiguous

for small n, but as n increases bias becomes clearly decreasing with d. In most cases,

SD increases with d for NBLS, but to a much smaller extent than for OLS.

The results for m = [n0:5] and m� are comparable for intermediate d. For low d,

the feasible rule underestimates the optimal bandwidth, and as a result the increase

in variance does not compensate for the modest gains in bias reduction. By contrast,

the optimal bandwidth is greatly overestimated for large d, not taking advantage of the

sizeable bias reduction potential. Even so, the feasible rule is superior to OLS in all but

one case, and its RMSE is often much closer to the optimal than to the full band one.

The bias reduction of NBLS becomes quite large with n, while the variance penalty

is always of small magnitude. In fact, for large n and d, NBLS actually dominates OLS

in both SD and bias. The improvement in performance for high d and the rate of decay

of RMSE seem compatible with the asymptotic result of Theorem 2.

While Figure 3 and Table 1 both illustrate the high sensitivity of m� to d, caused

by the di¤erent scope for bias reduction in each case, m� does not appear to grow
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with n. This is surely a small sample e¤ect, as NBLS is only consistent if m ! 1.

As a consequence, m� will diverge when bias becomes negligible compared to SD, a

situation which does not occur in the sample sizes considered. Since Theorem 2 shows

that convergence of �̂m is faster the slower m grows, this phenomenon is not entirely

surprising.

Memory in signal and noise

In Table 2, d is kept constant, while we introduce long memory in the errors. We set

g(x) = exp(k1x) and h(x) = l(x) = exp(k2x), with k1, k2 chosen to satisfy Var(�t) = 10

and Var(�t) = Var("t) = 2: These values were again chosen to balance contributions of

bias and SD to RMSE. We consider n = 256, 512, 1024, 2048, d = 0:4 and d0 = 0; 0:1,

0:2, 0:3.

The results are very similar to the previous experiment, but here d � d0 takes the

role of d. As before, RMSE improves with n for all estimates. OLS displays similar

patterns of bias and SD across d � d0 and n, with the exception that SD decays much

more slowly with n. The bias of NBLS decreases with d� d0 for all n; for n > 256 even

SD decreases with d � d0. A surprising fact in this case is related to the variance/bias

trade-o¤ of NBLS. While this can be found in small samples, as n increases it starts

dominating OLS in both bias and variance. The evolution of m� is also similar to the

previous section.

We do not directly address the impact of short-run dynamics in �nite samples, as we

expect its consequences to be qualitatively analogous to the linear case. As reported in

Robinson and Marinucci (2003), the presence of short memory positive autocorrelation

in the common factor should boost the spectral peak in small samples, reducing bias

in a similar manner to a higher d in Table 1; conversely, negative autocorrelation in
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the common factor should have a similar e¤ect to a lower d. The impact of short-run

dynamics in the idiosyncratic components would predictably be the opposite: positive

correlation should worsen performance similarly to an increase in d0 in Table 2, while

negative correlation would be associated with a dampened d0. Both e¤ects should become

negligible as n grows.

Signal to noise ratio

This experiment investigates the in�uence of the signal to noise (S2N) ratio on the

performance of NBLS. We use g(x) = exp(kx), such that Var(�t) = 2, and h(x) =

l(x) = �, so that Var(�t) = Var("t) = �2, for �2 = 0:25, 0:5, 1, 2, 4. The results

obtained for di¤erent d were qualitatively similar, so we report results only for d = 0:3

and n = 256, 512, 1024, 2048. Since it is unreasonable to compare absolute performance

for di¤erent S2N ratios, in Table 3 we focus on relative performance only. We also

report the ratio between bias and SD. Although we refer to Var(�t)=Var(�t) as the S2N

ratio, for simplicity, it is only an accurate description for the regression in levels. For

x2t = �2t + 2�t�t + �
2
t ; the dominant term is �2t , and even there �

2
1t could be considered a

multiplicative noise. Hence, the de�nition of the �true�S2N ratio would be ambiguous,

but it would be arguably smaller than the one in levels.

NBLS performs best when bias and SD are balanced. The regressor Xt consists of

two parts: a long memory component containing a dominating pole at frequency zero,

and a component with less memory not orthogonal to Ut. In this case, it is actually short

memory, since �t is iid. If the S2N ratio is very large, the �rst component will dominate

the second even at frequencies distant from zero. As a result, any large enough m will

perform well, and even with OLS, bias will contribute very little to RMSE and gains

from NBLS will be small. On the other hand, for very small S2N, the second component
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n 256 512 1024 2048

S2N Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

0.5 0.994 1.280 0.998 0.981 1.960 0.992 0.961 2.924 0.980 0.927 4.141 0.956

1 0.910 1.406 0.959 0.818 1.682 0.902 0.737 1.773 0.829 0.621 1.955 0.731

2 0.797 1.163 0.920 0.691 1.175 0.839 0.604 1.144 0.749 0.485 1.181 0.650

4 0.834 1.050 0.969 0.738 1.057 0.922 0.652 1.048 0.857 0.557 1.059 0.781

8 0.996 1.000 1.000 0.879 1.013 0.989 0.773 1.019 0.965 0.683 1.016 0.922

Bias / SD Bias / SD Bias / SD Bias / SD

S2N m� OLS NBLS m� OLS NBLS m� OLS NBLS m� OLS NBLS

0.5 52 -9.29 -7.22 27 -11.42 -5.72 17 -14.19 -4.66 12 -17.26 -3.86

1 12 -3.38 -2.19 8 -3.72 -1.81 8 -4.14 -1.72 7 -4.69 -1.49

2 12 -1.55 -1.06 12 -1.73 -1.02 14 -1.95 -1.03 13 -2.28 -0.94

4 26 -0.82 -0.65 28 -0.93 -0.65 33 -1.09 -0.68 35 -1.31 -0.69

8 121 -0.43 -0.43 87 -0.49 -0.42 86 -0.57 -0.43 90 -0.69 -0.47

Table 3: Monte Carlo relative bias, SD, RMSE of NBLS versus OLS, for varying n and
S2N, with d = 0:3.

will be relatively large, dominating the signal even at frequencies close to zero. In small

samples, an attempt to reduce bias by only choosing informative frequencies would imply

the use of very small m, which would force SD to be too high (see Figure 2). In this

case, NBLS would also provide little gains, as the cost (in terms of SD) of reducing bias

is too high for RMSE.

With OLS the ratio between bias and SD increases with n. This is expected, since

OLS still converges in probability to a constant. In NBLS, the ratio is very close to

that of OLS in small samples. From that point, it increases with n if it was originally

small, but decreases if it was originally large. It appears that this ratio will stabilize at

some value close to unity for large enough n, and from that point on NBLS will have a

noticeable RMSE improvement over OLS.
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Nonlinearity

To investigate the in�uence of nonlinearity on NBLS, Table 4 reports its performance

in three di¤erent settings, for n = 256, 512, 1024, 2048 and d = 0:1, 0:2, 0:3, 0:4. The

nonlinear setting (NL), already used in the �rst two subsections, has g(x) = exp(kx),

with k chosen to satisfy Var(�t) = 2, and h(x) = l(x) = 1. In the other two we

deviate from (1.1), (1.2), (3.5), (3.6), using instead Yt = Xt + ut, Xt = ft + vt, where

ut, vt are generated as iid mean zero Gaussian with Var(ut) = 20, Var(vt) = 6, and

Cov(ut; vt) = �10. In a fully linear setting (L), we generate ft as a Gaussian mean

zero ARFIMA(0; d; 0), with Var(ft) = 44: In a linear setting with a multiplicative noise

(MN), we set ft = �21tzt, where �1t is iid standard Gaussian while zt is independently

generated as a Gaussian ARFIMA(0; d; 0), with E(zt) = 2 and Var(zt) = 12. The chosen

moments replicate those of corresponding processes in the nonlinear setting.

Both OLS and NBLS perform much better under L than NL, while performance

under MN falls in the middle. A similar ordering is found in relative performance (not

shown), since a relatively stable, large bias of OLS estimates throughout makes variations

in RMSE smaller than for NBLS. Although some of the gap in performance should be

a consequence of nonlinearity, signi�cant excess kurtosis in NL and MN is arguably the

dominant factor, since it directly a¤ects the variance of the periodogram. In MN, the

kurtosis of ft is around 77, while in NL it is around 3523 for ft, 36 for vt, and 30 for ut.

Volatility function

Finally, we explore the impact of the functional form of the volatility function g.

considering g(x) = exp(kx), (1 + kx)2, j1 + kxj, with k chosen in each case so that

Var(�t) = 2. We set h(x) = l(x) = 1 and d = 0:1, 0:2, 0:3, 0:4. Table 5 presents the

results for n = 512, where the properties of each estimate seem robust to the choice
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g exp (x) (1 + x)
2 j1 + xj

d m� Bias SD RMSE m� Bias SD RMSE m� Bias SD RMSE

0.1 ~� � -0.244 0.141 0.282 � -0.262 0.122 0.289 � -0.291 0.112 0.312

�̂m� 53 -0.234 0.149 0.278 47 -0.250 0.136 0.284 52 -0.280 0.128 0.308

0.2 ~� � -0.251 0.145 0.290 � -0.267 0.125 0.295 � -0.295 0.114 0.316

�̂m� 23 -0.215 0.164 0.270 17 -0.219 0.159 0.271 23 -0.255 0.148 0.295

0.3 ~� � -0.276 0.160 0.319 � -0.285 0.136 0.316 � -0.308 0.122 0.332

�̂m� 12 -0.191 0.188 0.268 12 -0.190 0.174 0.258 13 -0.220 0.174 0.280

0.4 ~� � -0.368 0.208 0.423 � -0.358 0.181 0.401 � -0.359 0.150 0.390

�̂m� 7 -0.205 0.247 0.321 8 -0.190 0.219 0.290 8 -0.205 0.219 0.299

Table 5: Monte Carlo bias, SD, RMSE for varying g(x) and d, with n = 512.

of volatility function. Normalizing Var(�t) appears to be su¢ cient to capture most of

the di¤erences across functions. Results for other n are similar and available from the

authors upon request.

6 Final comments

To our knowledge this paper represents the �rst treatment of fractional cointegra-

tion in the context of nonlinear processes. The stationary environment, the SV models

employed, and the NBLS estimate seem well motivated by applications in �nance. Our

model is semiparametric both in the sense that only assumptions about low frequency

behavior are required, and the volatility functions are nonparametric. While the nonlin-

ear setting necessitates a considerably more complex proof of consistency of NBLS than

earlier ones, a comparable result is obtained, with rate of convergence depending essen-

tially on the strength of the cointegrating relation, namely the gap between integration

orders of observables and cointegrating error. Monte Carlo results show encouraging

performances in moderate sample sizes across a variety of speci�cations.

As always, consistency results are reassuring only in very large data sets. Though
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these do exist in �nance, one would like a limit distributional result that could be used in

statistical inference. Christensen and Nielsen (2006) have achieved this in a simpler set-

ting, indeed with regressor and disturbance assumed incoherent at frequency zero, and

linear process (in conditionally homoscedastic md innovations) assumptions. In general,

not only is the proof likely to be much more complicated than even our proof of Theo-

rem 2, but the limit distribution is likely to be non-standard for various combinations of

memory parameters, though a bootstrap procedure might be investigated. By analogy

with experience in I(1)/I(0) cointegrated models (e.g. Johansen, 1991; Phillips, 1991),

it may be possible to obtain estimates with nicer asymptotic distributional properties,

in particular leading to Wald statistics with null limiting �2 distributions. However, in

our nonlinear setting it is not immediately obvious that the sort of transformations used

in those references to achieve the necessary �whitening�will be successful, the estimates

would require preliminary estimation of memory parameters, and proofs would be signif-

icantly more complicated. Nevertheless, those wishing to embark on limit distributional

proofs for NBLS or other estimates in our SV setting should �nd techniques described

in the present paper relevant.

Though our Monte Carlo study addressed the choice of bandwidth m, it would evi-

dently be desirable to develop a feasible rule for bandwidth selection. In a Gaussian or

linear setting, Robinson (1994b) developed formulae for minimum-MSE bandwidth with

respect to the basic averaged periodogram statistic, and these were further analyzed

by Delgado and Robinson (1996). In principle these could be extended to the NBLS

estimate, though the formulae will be highly complex, and feasible versions would re-

quire estimating memory parameters and other quantities. As in other circumstances,

sensitivity to choice of m can be assessed by a �window-closing�approach, computing

NBLS over a sensibly chosen grid of m values; since discrete Fourier transforms at all
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Fourier frequencies can be obtained simultaneously by the Fast Fourier Transform, and

NBLS is algebraically simple, this can cheaply be achieved, indeed a simple recursion

deals with unit or other increases in m.

The bulk of the fractional and non-fractional cointegration literature assumes nonsta-

tionary observables. The motivation usually comes from macroeconomics, but nonsta-

tionarity can often appear in �nancial time series also. The modelling of nonstationary

series via analogues of (4.1) is itself a somewhat open topic, but given that Xt has a

kind of I(d) property, for d � 1=2, some of the arguments of Robinson and Marinucci

(2001) should be relevant in establishing rates of convergence of NBLS. Indeed, these au-

thors, following Stock (1987) in the I(1)/I(0) case, found OLS also to be consistent here,

though in some circumstances NBLS has bias of smaller order. The nonstationary Xt

case is in some respects technically easier than the stationary one, because consistency

of OLS follows from the domination of sums of squares of Ut by those of Xt.

Other directions of research could extend (1.1), (1.2) to more than two observables,

and then possibly to allowmore than one common factor, i.e. more than one cointegrating

relation. On the one hand, cointegrating relations between a potentially large number of

asset returns can be of interest, while on the other, Ross (1976) and others suggest the

need for additional unobservable factors in asset pricing models. It should be possible

to determine a form of multivariate regression linking the observables, analogous to

(4.1), and then a multivariate extension for NBLS (4.2). Its consistency, subject to

identi�ability conditions, can then be established under an analogue of Assumption 1,

using Theorem 1 and techniques employed in the proof of Theorem 2, though of course

the details would be even more complicated. The issue of determining cointegrating

rank, and thus the number of common factors, is of more pressing concern than in our

simple model (1.1), (1.2), but procedures such as those of Robinson and Yajima (2002)
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might be employed in practice. Again, their theoretical justi�cation in our setting would

require considerable further work.
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Appendix A: Proof of Theorem 1

Throughout the proof, we denote P = PJ , Q = QJ , and Rj = RJ;j, j 2 P . Further-

more, all sums and products run over P unless otherwise stated. We have
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0 and 
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This proves (2.3). For the remainder of the proof, we use the Cauchy-Schwarz in-

equality in
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X
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If 2q < r, there always exists a j in (2.3) such that wj < rj, implying (2.4).

For 2q � r, the multinomial theorem yields
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Using (A.4), (A.5) in (A.3) gives (2.5). Then (2.6) follows from � < 1.

Appendix B: Propositions for Theorem 2

We denote the Dirichlet kernel by Dm(�) =
Pm

j=1 e
ij�, for m � 1, and will use the

fact that

Dn (�j) = n1(j = 0;modn): (B.1)

We also use the abbreviating notation
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0
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0
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where at; bt; a0t; b
0
t, t = 1; : : : ; n are scalar sequences with �nite second moments.

Proposition 1 Under (1.2) and Assumptions 1 and 2,
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For s = t, denote by � the di¤erence between Var(Xt) and (B.2). It follows that
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From (3.7), (3.8), and Lemma 4, bg;jbg;kSm(gj; gk) = o((m=n)1�2d), if either j < p or k <

p, while b2g;pSm(g
p; gp) = C� (m=n)1�2d + o((m=n)1�2d). Lemma 4 and d0 < d imply that

bh;jbh;kSm(h
p�j; hp�k) = o((m=n)1�2d), and by Lemma 5, ajakS 0m(g

j; gk;hp�j; hp�k) =

o((m=n)1�2d).
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for s 6= t, Cov(Us; Ut) is
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j; gk; lp�j; lp�k) = O
�
(m=n)1�2maxfd

�
gl;0g (log n)1(d

�
gl=0)

�
:
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By (3.8), d�g < d. Since d�h and d
�
gh are bounded by d

0 < d while d�l and d
�
gl are

bounded by d00 < d, we have d� < d. The bound for d� = 0 follows from Assumption 2.

Proposition 3 Under (1.2) and Assumptions 1 and 2,

Var
n
F̂XX(�m)

o
= o

��m
n

�2�4d�
:

Proof. De�ne �t = E(�20�2t); wherever time indexes ti, i = 1; : : : ; 4 are used, it

will be convenient to write also 
ij = �tj�ti. Denoting Zt = Xt � E(Xt), there exists a

Gaussian I(d) process Vt such that the bounds in Lemma 6 hold. Lemmas 7 and 10 in

Robinson (1994b) and Lemma 7 imply that VarfF̂V V (�m)g = o((m=n)2�4d), so we need

to show that the approximation error satis�es

A = Var
n
F̂XX(�m)

o
� Var

n
F̂V V (�m)

o
= o

��m
n

�2�4d�
: (B.4)

Since n2[F̂XX(�m)� EfF̂XX(�m)g] can be written

nX
t1;t2=1

fXt1Xt2 � E(Xt1Xt2)gDm(�t2�t1) =
nX

t1;t2=1

fZt1Zt2 � E(Zt1Zt2)gDm(�t2�t1);

by (B.1), we have

Var
n
F̂XX(�m)

o
=
1

n4

nX
t1;t2;t3;t4=1

Cov(Zt1Zt2 ; Zt3Zt4)Dm(�t2�t1)Dm(�t4�t3);

and therefore

A =
1

n4

nX
t1;t2;t3;t4=1

fCov(Zt1Zt2 ; Zt3Zt4)� Cov(Vt1Vt2 ; Vt3Vt4)gDm(�t2�t1)Dm(�t4�t3):
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We now decompose A into sums where the time indexes conform to cases (a) to (g)

in Lemma 6. Using Lemmas 3 and 6 repeatedly, the approximation error for each case

is bounded by:

(a) X
�1;�22Q4:�1 6=�2

K

n4

nX
t1;t2;t3;t4=1


2�1j
�2jjDm(�t2�t1)jjDm(�t4�t3)j:

If �1 is either (1; 2) or (3; 4), each element in the �rst summation is bounded by

K

n2

nX
j=1

�2j jDm(�j)j
nX
j=1

j�jjjDm(�j)j+
K

n3

nX
j=1

�2j jDm(�j)j
nX
j=1

j�jj
nX
j=1

jDm(�j)j

� K
�m
n

�2�2d�
1 +

logm

m1�2d

��
1 + (log n)1

�
d =

1

4

�
+
� n
m

�4d�1
1

�
d >

1

4

��
;

while if �1 is not equal to (1; 2) or to (3; 4), we have a bound

K

n3

nX
j=1

�2j

nX
j=1

j�jjjDm(�j)j
nX
j=1

jDm(�j)j+
K

n4

nX
j=1

�2j

nX
j=1

j�jj
(

nX
j=1

jDm(�j)j
)2

� K
�m
n

�2�2d logm
m

�
1 +

logm

m1�2d

��
1 + (log n)1

�
d =

1

4

�
+ n4d�11

�
d >

1

4

��
:

(b)

K

n4

nX
t1;t2;t3=1

(
212 + 
213 + 
223)jDm(�t2�t1)jjDm(�t3�t1)j

�K
n3

nX
j=1

�2j jDm(�j)j
nX
j=1

jDm(�j)j+
K

n4

nX
j=1

�2j

(
nX
j=1

jDm(�j)j
)2

�K
�m
n

�2 logm
m

��
1 +

logm

m

��
1 + (log n)1

�
d =

1

4

��
+

�� n
m

�4d�1
+ n4d�1

logm

m

�
1

�
d >

1

4

��
:
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(c)

K

n4

nX
t1;t2;t3=1

(
212 + 
213 + 
223)jDm(0)jjDm(�t3�t2)j

�Km

n2

nX
j=1

�2j jDm(�j)j+K
m

n3

nX
j=1

�2j

nX
j=1

jDm(�j)j

�K
�m
n

�2 ��
1 +

logm

n

��
1 + (log n)1

�
d =

1

4

��
+

�� n
m

�4d�1
+ n4d�1

logm

n

�
1

�
d >

1

4

��
:

(d), (e), (f) For any a = a(t1; t2) and b = b(t1; t2),

K

n4

nX
t1;t2=1

j
12jjDm(a)jjDm(b)j � K
m2

n3

nX
j=1

j�jj � K
�m
n

�2
n2d�1:

(g)
K

n4

nX
t1=1

jDm(0)j2 � K
�m
n

�2
n�1:

Since cases (a) to (g) satisfy (B.4), the proof is complete.

Appendix C: Technical lemmas for Appendix B

Lemma 1 Let j�j��j+1j � Kj�j+1j=j and j
j�
j+1j � Kj
j+1j=j, for all j � 1. Then,

for any positive integers r, s, and j,

j�rj � �rj+1j � K
j�rj+1j
j

; (C.1)

j�rj
sj � �rj+1

s
j+1j � K

j�rj+1
sj+1j
j

: (C.2)
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Proof. First note that

(a� b)k =
kX
i=0

�
k

i

�
ai(�b)k�i =

kX
i=0

�
k

i

�
(ai � bi)(�b)k�i;

since
kX
i=0

�
k

i

�
bi(�b)k�i = (b� b)k = 0:

Hence,

jak � bkj =
�����(a� b)k �

k�1X
i=1

�
k

i

�
(ai � bi)(�b)k�i

�����
� ja� bjk +

k�1X
i=1

�
k

i

�
jbjk�ijai � bij:

Proceeding by induction, suppose (C.1) holds for r = 1; 2; : : : ; k � 1. Then

j�kj � �kj+1j � j�j � �j+1jk +
k�1X
i=1

�
k

i

�
j�k�ij+1jj�ij � �ij+1j

� K
j�kj+1j
jk

+K
k�1X
i=1

j�k�ij+1j
j�ij+1j
j

� K
j�kj+1j
j

;

proving (C.1). To prove (C.2) we use (C.1):

j�rj
sj � �rj+1

s
j+1j = j(�rj � �rj+1)(


s
j � 
sj+1) + 
sj+1(�

r
j � �rj+1) + �rj+1(


s
j � 
sj+1)j

� K
j�rj+1j
j

j
sj+1j
j

+Kj
sj+1j
j�rj+1j
j

+Kj�rj+1j
j
sj+1j
j

� K
j�rj+1
sj+1j

j
:

Lemma 2 If (a1; b1) is independent of (a2; b2) and E(a2i + b2i ) <1,
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Cov(a1a2; b1b2) = Cov(a1; b1)E(a2)E(b2) + E(a1b1) Cov(a2; b2)

= Cov(a1; b1)E(a2)E(b2) + E(a1)E(b1) Cov(a2; b2) + Cov(a1; b1) Cov(a2; b2):

Proof. Straightforward.

Lemma 3 Let �j = O(j2d�1), a > 0, b � 1, m � n=2, and d+ = (a� 1)=2a. Then,

nX
j=1

j�jja = O
�
1 + (log n)1(d = d+) + na(2d�1)+11(d > d+)

�
;

nX
j=1

jDm(�j)jb = O
�
n
�
logm+mb�11(b > 1)

	�
;

nX
j=1

j�jjajDm(�j)jb = O

�
mb

�
1 + (log n)1(d = d+) +

� n
m

�a(2d�1)+1
1(d > d+)

��
:

Proof. From e.g. Zygmund (1977, p. 11) and an elementary inequality,

jDm(�j)j � Kmin

�
m;

n

jjj

�
; jjj � n

2
: (C.3)

The remainder of the proof is straightforward.

Lemma 4 For j = 1; 2, de�ne gj;t = gj(�t), where �t is a standard Gaussian I(d)

process and �t = E(�0�t). Assume E(g
2
j;t) < 1. Denote by Gj;k the k-th Hermite

coe¢ cient of gj(�), and let

r = minfk 2 N : G1;kG2;k 6= 0g: (C.4)

If d > 0, de�ne

d� =
1

2
� r

�
1

2
� d

�
; C� = lim

j!1
�jj

1�2d:
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Let A = Sm(g1; g2), where m satis�es Assumption 2 if d� = 1=(2r + 2) or just (4.4)

otherwise. Then,

A =O
�m
n
f1(d = 0) + 1(d� < 0) + (log n)1(d� = 0)g

�
+

�
C�
�m
n

�1�2d�
+ o

��m
n

�1�2d���
1(d� > 0); (C.5)

where

C� = 2
(2�)�2d

�
�(2d�)

1� 2d�
G1;rG2;r

r!
sin
n
(1� 2d�)�

2

o
Cr� 6= 0:

Proof. Let 
t = Cov(g1;0; g2;t). Then

A =
1

n2

nX
s;t=1


t�sDm(�t�s) =
1

n

n�1X
u=1�n

�
1� juj

n

�

uDm(�u): (C.6)

We will make repeated use of (C.3) and of �ru = Kur(2d�1) = O(u2d
��1). By Theorem

1 and (C.4),


u =
1X
k=1

G1;kG2;k
k!

�ku = C�ru +O(j�r+1u j);

where C = G1;rG2;r=r!.

(a) If d = 0, then 
u = O(j�ruj) are summable. Similarly, if d� < 0, then 
u =

O(j�ruj) = O(u2d
��1) are summable. In either case,

A � K

n

n�1X
u=1�n

�
1� juj

n

�
j
ujjDm(�u)j � K

m

n

n�1X
u=1�n

j
uj = O
�m
n

�
: (C.7)

(b) If d� = 0, 
u = O(j�ruj) = O(u�1), hence

A � K
m

n

n�1X
u=1�n

j
uj = O
�m
n
log n

�
: (C.8)
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(c) If d� > 0, j
u � C�ruj � Kj�r+1u j � Kj�ruj1+!, where ! = r�1. De�ning

B1 =
1

n

n�1X
u=1�n

�
1� juj

n

�
�ruDm(�u);

we get

jA� CB1j �
1

n

n�1X
u=1�n

�
1� juj

n

�
j
u � C�rujjDm(�u)j

� K

n

n�1X
u=1�n

j�ruj1+!jDm(�u)j � K
m

n
+
K

n

nX
u=1

j�ruj1+!jDm(�u)j:

Therefore, setting d+ = !=(2 + 2!) in Lemma 3,

jA� CB1j = O

�
m

n

�
1 + (log n)1(d� = d+) +

�m
n

�(1+!)(1�2d�)�1
1(d� > d+)

��
= o

��m
n

�1�2d��
;

choosing 0 < � < 2d� in Assumption 2 if d� = d+. Now, write

B1 =
1

n

X
juj<n

�
1� juj

n

�
�ruDm(�u) =

1

n

X
juj<n

�ruDm(�u)�
1

n2

X
juj<n

juj�ruDm(�u)

=
1

n

1X
u=�1

�ruDm(�u)�
1

n

X
juj�n

�ruDm(�u)�
1

n2

X
juj<n

juj�ruDm(�u) = B2 +B3 +B4;

where

B2 =
2�

n

mX
j=1

f(�j); f(�j) =
1

2�

1X
u=�1

�rue
iu�j ; (C.9)

B3 = �
1

n

1X
u=n

�ru

n
Dm(�u) +Dm(�u)

o
; (C.10)
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B4 = �
1

n2

n�1X
u=1

u�ru

n
Dm(�u) +Dm(�u)

o
: (C.11)

Then

jA� CB2j = jA� C(B1 �B3 �B4)j � jA� CB1j+ CjB3j+ CjB4j: (C.12)

Note that, for any u,

�����
uX
k=1

Dm(�k)

����� =
�����
uX
k=1

mX
j=1

eij�k

����� �
mX
j=1

jDu(�j)j � K
mX
j=1

n

j
� Kn logm: (C.13)

Using summation by parts, (C.13), and Lemma 1 in (C.11),

jB4j �
K

n2

n�1X
u=1

(
ju�ru � (u+ 1)�ru+1j

�����
uX
k=1

Dm(�k)

�����
)
+
K

n2

�����
n�1X
j=1

Dm(�j)

�����nj�rnj
� K

n2

n�1X
u=1

(uj�ru � �ru+1j+ j�ru+1j)n logm+Kn2d
��1 logm

� K
logm

n

n�1X
u=1

u2d
��1 +Kn2d

��1 logm � Kn2d
��1 logm = o

��m
n

�1�2d��
: (C.14)

Using the partial summation formula for in�nite sums, (C.13), and Lemma 1 in

(C.10),

jB3j �
K

n

1X
u=n

j�ru � �ru+1j
�����
uX
k=1

Dm(�k)

�����+ K

n

�����
n�1X
j=1

Dm(�j)

����� j�rnj
� K logm

1X
u=n

u2d
��2 +Kn2d

��1 logm � Kn2d
��1 logm = o

��m
n

�1�2d��
: (C.15)

45



Lemma 1 implies that f(�) � Cf�
�2d� as �! 0+, where

Cf = ��1�(2d�) sin
n
(1� 2d�)�

2

o
Cr� :

Thus, by Proposition 1 in Robinson (1994a),

B2 =
2�

n

mX
j=1

f(�j) �
Z �m

0

f(t)dt � Cf
�1�2d

�

m

1� 2d� � Cf
(2�)1�2d

�

1� 2d�
�m
n

�1�2d�
;

which together with (C.12), (C.14), (C.15) gives (C.5).

Lemma 5 For i; j = 1; 2, de�ne gij;t = gij(�it), where �it is a standard Gaussian I(di)

process and �i;t = E(�i0�it). Assume E(g
2
ij;t) < 1. Denote by Gij;k the k-th Hermite

coe¢ cients of gij(�), with

ri = minfk > 0 : Gi1;kGi2;k 6= 0g: (C.16)

Let d1 � d2 without loss of generality, and de�ne

d� =
1

2
� r1

�
1

2
� d1

�
� r2

�
1

2
� d2

�
; Ci� = lim

j!1
�ijj

1�2di :

Let A = S 0m(g11; g12; g21; g22), where m satis�es Assumption 2 if d� + d1 = 1=2 or just

(4.4) otherwise. Then,

A =O
�m
n
f1 + (log n)1(d� = 0)g

�
+

�
C�
�m
n

�1�2d�
+ o

��m
n

�1�2d���
1(d� > 0); (C.17)
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where

C� = 2
(2�)�2d

�
�(2d�)

1� 2d�
G11;r1G12;r1

r1!

G21;r2G22;r2
r2!

sin
n
(1� 2d�)�

2

o
Cr11�C

r2
2� 6= 0:

Proof. Let 
i;t = Cov(gi1;0; gi2;t). Then, similarly to (C.6),

A =
1

n

n�1X
u=1�n

�
1� juj

n

�

1u
2uDm(�u):

By Theorem 1 and (C.16),


iu =
1X
k=1

Gi1;kGi2;k
k!

�kiu = Ci�
ri
iu +O(j�ri+1iu j);

where Ci = Gi1;riGi2;ri=ri!.

(a) If d1d2 = 0, then 
1u
2u = O(j�r11u�r22uj) are summable. Similarly, if d1d2 > 0 but

d� < 0, then 
1u
2u = O(j�r11u�r22uj) = O(ur1(2d1�1)+r2(2d2�1)) = O(u2d
��1) are summable.

In either case, writing 
1u
2u instead of 
u in (C.7) yields A = O(m=n).

(b) If d� = 0, 
1u
2u = O(u�1), hence (C.8) holds for 
1u
2u.

(c) If d� > 0,

j
1u
2u � C1C2�
r1
2u�

r2
2uj � j
1ujj
2u � C2�

r2
2uj+ C2j�r22ujj
1u � C1�

r1
1uj

� Kj�r11u�r2+12u j+Kj�r22u�r1+11u j � Kj�r1+11u �r21uj � Kj�r11u�r22uj1+!;

where ! = (1�2d1)=(1�2d�), since d1 � d2. Then (C.17) follows from the proof of case

(c) of Lemma 4, writing �r11u�
r2
2u instead of �

r
u.

Lemma 6 Under (1.2) and Assumption 1, let Zt = Xt � E(Xt). For t1, t2, t3, t4

distinct, de�ne �ij = E(�2ti�2tj) and �
0
ij = E(�2ti�2tj). Then there exists a mean-zero
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Gaussian I(d) process Vt such that:

(a) Cov(Zt1Zt2 ; Zt3Zt4)� Cov(Vt1Vt2 ; Vt3Vt4) = O(
P

�1;�22Q4:�1 6=�2 �
2
�1
j��2j);

(b) Cov(Zt1Zt2 ; Zt1Zt3)� Cov(Vt1Vt2 ; Vt1Vt3) = O(�212 + �213 + �223);

(c) Cov(Z2t1 ; Zt2Zt3)� Cov(V 2
t1
; Vt2Vt3) = O(�212 + �213 + �223);

(d) Cov(Zt1Zt2 ; Zt1Zt2)� Cov(Vt1Vt2 ; Vt1Vt2) = O(j�12j);

(e) Cov(Z2t1 ; Z
2
t2
)� Cov(V 2

t1
; V 2

t2
) = O(j�12j);

(f) Cov(Z2t1 ; Zt1Zt2)� Cov(V 2
t1
; Vt1Vt2) = O(j�12j);

(g) Cov(Z2t1 ; Z
2
t1
)� Cov(V 2

t1
; V 2

t1
) = O(1).

Proof. All Zt covariances in (a) to (g) can be written as linear combinations of

E

 
4Y
i=1

Zkiti

!
= E

(
E

 
4Y
i=1

Zkiti

����� gtj ; htj ; j = 1; : : : ; 4
!)

= E

(
4Y
i=1

E(Zkiti jgtj ; htj ; j = 1; : : : ; 4)
)
= E

(
4Y
i=1

E(Zkiti jgti ; hti)
)
; (C.18)

where, conditionally on gs and hs, Zs is independent of Zt, gt, and ht, for any t 6= s.

In what follows, let si, i = 1; : : : ; 4 denote (not necessarily distinct) elements of

ft1; t2; t3; t4g. Wherever ui and si are both de�ned, let

Ai =

�
p

ui

�
�ui2 �

ui
1si
�p�ui1si

; Bi = guisi h
p�ui
si

;

and de�ne ci = E(Ai), cij = E( ~Ai ~Aj), cijk = E( ~Ai ~Aj ~Ak), where throughout the proof

~zut = zut �E(zut ). We �rst computeE(Zkt jgt; ht) for k = 1; : : : ; 3. Setting s1 = s2 = s3 = t,

but omitting time subscripts for convenience,

Z =

pX
u1=0

fA1B1 � E(A1B1)g =
pX

u1=0

( ~A1B1 + c1 ~B1):
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Therefore, independence of A1 and B1 yields

E(Zjg; h) =
pX

u1=0

c1 ~B1: (C.19)

Similarly,

Zk =
kY
i=1

pX
ui=0

( ~AiBi + ci ~Bi);

so by independence of Ai and Bj; for all i, j

E(Z2jg; h) =
pX

u1;u2=0

(c1c2 ~B1 ~B2 + c12B1B2); (C.20)

E(Z3jg; h) =
pX

u1;u2;u3=0

(c1c2c3 ~B1 ~B2 ~B3 + c123B1B2B3

+ c12c3B1B2 ~B3 + c13c2B1B3 ~B2 + c23c1B2B3 ~B1): (C.21)

Unless otherwise noted, we will use
P
to mean

Pp
u1;u2;u3;u4=0

for the remainder of

the proof. Using (C.19), (C.20), (C.21) in (C.18), we can write E(
Q4
i=1 Zsi) as follows:

(i) if si = ti, i = 1; : : : ; 4,

E(Zt1Zt2Zt3Zt4) =
X

c1c2c3c4E( ~B1 ~B2 ~B3 ~B4); (C.22)

(ii) if s1 = s2 = t1, s3 = t2, s4 = t3,

E(Z2t1Zt2Zt3) =
Xn

c1c2c3c4E( ~B1 ~B2 ~B3 ~B4) + c12c3c4E(B1B2 ~B3 ~B4)
o
; (C.23)

(iii) if s1 = s2 = t1, s3 = s4 = t2,

E(Z2t1Z
2
t2
) =

Xn
c1c2c3c4E( ~B1 ~B2 ~B3 ~B4) + c12c34E(B1B2B3B4)

49



+c12c3c4E(B1B2 ~B3 ~B4) + c1c2c34E( ~B1 ~B2B3B4)
o
; (C.24)

(iv) if s1 = s2 = s3 = t1, s4 = t2,

E(Z3t1Zt2) =
Xn

c1c2c3c4E( ~B1 ~B2 ~B3 ~B4) + c123c4E(B1B2B3 ~B4) + c12c3c4E(B1B2 ~B3 ~B4)

+c13c2c4E(B1B3 ~B2 ~B4) + c23c1c4E(B2B3 ~B1 ~B4)
o
: (C.25)

We can also write E(Zs1Zs2) as follows:

(v) if s1 = ti, s2 = tj, i 6= j,

E(ZtiZtj) =

pX
u1;u2=0

c1c2E( ~B1 ~B2); (C.26)

(vi) if s1 = s2 = ti,

E(Z2ti) =

pX
u1;u2=0

n
c1c2E( ~B1 ~B2) + c12E(B1B2)

o
: (C.27)

We now proceed to expand Bi and ~Bi in terms of g and h. Wherever ui and si

are both de�ned, we use the following notation: �i = ~guisi ,  i =
~hp�uisi

; �ij = g
ui+uj
si ,

 ij = h
2p�ui�uj
si ; �123 = gu1+u2+u3s1

,  123 = h3p�u1�u2�u3s1
; �12;34 = gu1+u2s1

gu3+u4s3
,  12;34 =

h2p�u1�u2s1
h2p�u3�u4s3

. Note that

~Bi = ch;i�i + �i i + cg;i i; (C.28)

where ch;i = E(hp�uisi
), cg;i = E(guisi ). Four forms of expectations need to be accounted

for in (C.22) to (C.25).
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1. E( ~B1 ~B2 ~B3 ~B4) will be a linear combination of 81 terms, all of them expec-

tations of products of �i and  i, i = 1; : : : ; 4. Denoting by h1i, h2i, h3i, h4i any

permutation of P4, those terms can be separated into the following categories: terms

that vanish due to E(�i) = E( i) = 0, namely E(�h1i h2i h3i h4i), E( h1i�h2i�h3i�h4i),

E(�h1i 1 2 3 4), and E( h1i�1�2�3�4); non-vanishing terms with four factors, namely

E(�1�2�3�4), E( 1 2 3 4), and E(�h1i�h2i h3i h4i); non-vanishing terms with �ve fac-

tors, namely E(�h1i�h2i h1i h3i h4i) and E( h1i h2i�h1i�h3i�h4i); terms with six factors,

namely E(�h1i�h2i 1 2 3 4), E( h1i h2i�1�2�3�4), and E(�h1i�h2i�h3i h1i h2i h4i);

terms with seven factors, namely E(�h1i�h2i�h3i 1 2 3 4) and E( h1i h2i h3i�1�2�3�4);

a term with eight factors, namely E(�1�2�3�4 1 2 3 4). It can be seen from (C.28)

that, for each i = 1; : : : ; 4, the corresponding coe¢ cient will include a factor ch;i if only

�i is present or cg;i if only  i is present.

2. E(B1B2 ~B3 ~B4) will be a linear combination of 9 terms. Denoting by h3i, h4i any

permutation of f3; 4g, these can be grouped in the following categories: E(�12 12 3 4),

E( 12�12�3�4), E(�12�h3i 12 h4i), E(�12�h3i 12 3 4), E( 12 h3i�12�3�4), and

E(�12�3�4 12 3 4). As in the previous case, (C.28) implies that, for each i = 3; 4,

the corresponding coe¢ cient will include a factor ch;i if only �i is present or cg;i if only

 i is present.

3. E(B1B2B3 ~B4) = ch;4E(�123�4 123) + cg;4E(�123 123 4) + E(�123�4 123 4).

4. E(B1B2B3B4) = E(�12;34 12;34).

In (C.26) and (C.27), the relevant expectations are E( ~B1 ~B2) = ch;1ch;2E(�1�2) +

cg;1cg;2E( 1 2) + E(�1�2 1 2) and E(B1B2) = E(�12 12).

We can now use Theorem 1 to expand each these expectations as
P1

q=0 aq. Let �t

represent either �2t or �2t, with 
ij = E(�ti�tj), and de�ne fi;t = fi(�t), f
�
ij;t = f �ij(�t)

such that E(fi;t) = 0. Denote by Gi;q, Gij;q, Gijk;q, G�ij;q the q-th Hermite coe¢ cient of
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fi;t, fi;tfj;t, fi;tfj;tfk;t, f �ij;t respectively.

For E(f1;t1f2;t2f3;t3f4;t4), we have

aq =
X
v��0:

�v�=q;�2Q4

4Y
i=1

Gi;wi
Y
�2Q4


v��
v�!

; wk =
X
�2R4;k

v�;

a0 = a1 = 0; a2 = G1;1G2;1G3;1G4;1(
12
34 + 
13
24 + 
14
23):

Since Gi;0 = 0, Theorem 1 yields

1X
q=3

jaqj � K
4Y
i=1

0@ X
�2R4;i

j
�j

1A 1
2 X
�2Q4

j
�j:

Label the elements of P4 as h1i, h2i, h3i, h4i, such that j
h1ih2ij is the largest absolute

correlation. Then
P

�2Q4 j
�j � Kj
h1ih2ij and

4Y
i=1

X
�2R4;i

j
�j � K
2h1ih2i(j
h1ih3ij+ j
h2ih3ij+ j
h3ih4ij)(j
h1ih4ij+ j
h2ih4ij+ j
h3ih4ij):

Choosing the second largest absolute correlation, we have a bound of the form

1X
q=4

jaqj � K
2h1ih2ij
h3ih4ij or
1X
q=4

jaqj � K
2h1ih2ij
h1ih3ij:

Therefore, taking all possible permutations for h1i, h2i, h3i, h4i,
P1

q=3 jaqj = O(e3),

where e3 =
P

�1;�22Q4:�1 6=�2 

2
�1
j
�2j, yielding

E(f1;t1f2;t2f3;t3f4;t4) =

4Y
i=1

Gi;1(
12
34 + 
13
24 + 
14
23) +O(e3): (C.29)

52



Again from Theorem 1 but using Corollary 1, de�ning e2 = 
212 + 
213 + 
223;

E(f1;t1f2;t1f3;t2f4;t3) = G12;0G3;1G4;1
23 +O(e2); (C.30)

E(f1;t1f2;t1f3;t2f4;t2) = G12;0G34;0 +O(j
12j); (C.31)

E(f1;t1f2;t1f3;t1f4;t2) = O(j
12j); (C.32)

E(f1;t1f2;t2f3;t3) = O(e2); (C.33)

E(f1;t1f2;t1f3;t2) = G12;1G3;1
12 +O(
212); (C.34)

E(f1;t1f2;t1f3;t1) = G123;0; (C.35)

E(f1;t1f2;t2) = G1;1G2;1
12 +O(
212); (C.36)

E(f1;t1f2;t1) = G12;0; (C.37)

E(f �12;t1f3;t2f4;t3) = G�12;0G3;1G4;1
23 +O(e2); (C.38)

E(f �12;t1f3;t2f4;t2) = G�12;0G34;0 +O(j
12j); (C.39)

E(f �12;t1f3;t2) = G�12;1G3;1
12 +O(
212); (C.40)

E(f �12;t1) = G�12;0; (C.41)

E(f �12;t1f
�
34;t2

) = G�12;0G
�
34;0 +O(j
12j): (C.42)

Now let the G and G� coe¢ cients in (C.29) to (C.42) apply to the case

fi;t = ~g
ui
t ; f�ij;t = g

ui+uj
t ; (C.43)

while corresponding G0 and G�0 coe¢ cients apply to

fi;t = ~h
p�ui
t ; f�ij;t = h

2p�ui�uj
t : (C.44)
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We can approximate each term in the expansion of (C.22) to (C.27) using (C.29) to

(C.42):

(i) E(Zt1Zt2Zt3Zt4). Denote by h1i, h2i, h3i, h4i any permutation of P4. Using (C.29),

(C.33), (C.36), the only terms that are not O(e3) are:

E(�1�2�3�4) = G1;1G2;1G3;1G4;1(�12�34 + �13�24 + �14�23) +O(e3);

E( 1 2 3 4) = G01;1G
0
2;1G

0
3;1G

0
4;1(�

0
12�

0
34 + �013�

0
24 + �014�

0
23) +O(e3);

E(�h1i�h2i)E( h3i h4i) = Gh1i;1Gh2i;1G
0
h3i;1G

0
h4i;1�h1ih2i�

0
h3ih4i +O(e3):

(ii) E(Z2t1Zt2Zt3). Using (C.30), (C.33), (C.34), (C.36), (C.37), the only terms in

E( ~B1 ~B2 ~B3 ~B4) that are not O(e2) are:

E(�1�2�3�4) = G12;0G3;1G4;1�23 +O(e2);

E( 1 2 3 4) = G012;0G
0
3;1G

0
4;1�

0
23 +O(e2);

E(�1�2)E( 3 4) = G12;0G
0
3;1G

0
4;1�

0
23 +O(e2);

E( 1 2)E(�3�4) = G012;0G3;1G4;1�23 +O(e2);

E(�1�2)E( 1 2 3 4) = G12;0G
0
12;0G

0
3;1G

0
4;1�

0
23 +O(e2);

E( 1 2)E(�1�2�3�4) = G012;0G12;0G3;1G4;1�23 +O(e2):

Using (C.38), (C.40), (C.41) the only terms in E(B1B2 ~B3 ~B4) that are not O(e2) are:

E(�12)E( 12 3 4) = G�12;0G
�0
12;0G

0
3;1G

0
4;1�

0
23 +O(e2);

E( 12)E(�12�3�4) = G�012;0G
�
12;0G3;1G4;1�23 +O(e2):

54



(iii) E(Z2t1Z
2
t2
). From (C.31), (C.34), (C.36), (C.37) it follows that all terms in

E( ~B1 ~B2 ~B3 ~B4) will be O(j�12j) except the ones only involving (C.31) and (C.37):

E(�1�2�3�4) = G12;0G34;0 +O(j�12j);

E( 1 2 3 4) = G012;0G
0
34;0 +O(j�12j);

E(�1�2)E( 3 4) = G12;0G
0
34;0;

E( 1 2)E(�3�4) = G012;0G34;0;

E(�1�2)E( 1 2 3 4) = G12;0G
0
12;0G

0
34;0 +O(j�12j);

E(�3�4)E( 1 2 3 4) = G34;0G
0
12;0G

0
34;0 +O(j�12j);

E( 1 2)E(�1�2�3�4) = G012;0G12;0G34;0 +O(j�12j);

E( 3 4)E(�1�2�3�4) = G034;0G12;0G34;0 +O(j�12j);

E(�1�2�3�4)E( 1 2 3 4) = G12;0G34;0G
0
12;0G

0
34;0 +O(j�12j):

Similarly, from (C.39), (C.40), (C.41), (C.42), all terms in E(B1B2 ~B3 ~B4),

E( ~B1 ~B2B3B4), and E(B1B2B3B4) will be O(j�12j) except the following:

E(�12)E( 12 3 4) = G�12;0G
�0
12;0G

0
34;0 +O(j�12j);

E(�34)E( 34 1 2) = G�12;0G
�0
12;0G

0
34;0 +O(j�12j);

E( 12)E(�12�3�4) = G�012;0G
�
12;0G34;0 +O(j�12j);

E( 34)E(�34�1�2) = G�012;0G
�
12;0G34;0 +O(j�12j);

E(�12�3�4)E( 12 3 4) = G�12;0G34;0G
�0
12;0G

0
34;0 +O(j�12j);

E(�34�1�2)E( 34 1 2) = G�12;0G34;0G
�0
12;0G

0
34;0 +O(j�12j);

E(�12;34)E( 12;34) = G�12;0G
�
34;0G

�0
12;0G

�0
34;0 +O(j�12j):
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(iv) E(Z3t1Zt2). Using (C.32), (C.34), (C.35), (C.36), (C.37) in E(
~B1 ~B2 ~B3 ~B4) note

that at least one factor in each term necessarily involves t2. Therefore, one of (C.32),

(C.34), (C.36) will apply, making all terms O(j�12j).

Similarly, in E(B1B2 ~B3 ~B4), E(B1 ~B2B3 ~B4), E( ~B1B2B3 ~B4), and E(B1B2B3 ~B4), at

least one factor in each term necessarily involves t2. Thus, (C.40) will apply for some

function f �ij;t, not necessarily one given in (C.43) or (C.44), making all terms O(j�12j).

(v) E(ZtiZtj). Using (C.36), the following are not O(�
2
ij):

E(�1�2) = G1;1G2;1�ij +O(�2ij); E( 1 2) = G01;1G
0
2;1�

0
ij +O(�2ij):

(vi) E(Z2ti). Using (C.37), E(
~B1 ~B2) and E(B1B2) include the following terms:

E(�1�2) = G12;0; E(�1�2)E( 1 2) = G12;0G
0
12;0;

E( 1 2) = G012;0; E(�12)E( 12) = G�12;0G
�0
12;0:

We now compute the coe¢ cients of the leading terms listed above. De�ne

Li = cich;iGi;1; �L1 =

pX
ui=0

Li; L0i = cicg;iG
0
i;1;

�L01 =

pX
ui=0

L0i;

Lij = cich;icjch;jGij;0; �L2 =

pX
ui;uj=0

Lij; L0ij = cicg;icjcg;jG
0
ij;0;

�L02 =

pX
ui;uj=0

L0ij;

L�ij = cicjGij;0G
0
ij;0;

�L�2 =

pX
ui;uj=0

L�ij; L��ij = cijG
�
ij;0G

�0
ij;0;

�L��2 =

pX
ui;uj=0

L��ij :

Note that Lp = cpch;pGp;1 = �p2E(�
p
1t)Efgp(�2t)H1(�2t)g 6= 0 by assumption, but Li = 0

for any i < p. Hence �L1 = Lp 6= 0. The contributions of the non-negligible terms will

be:
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(i) E(Zt1Zt2Zt3Zt4)

E(�1�2�3�4) : L1L2L3L4(�12�34 + �13�24 + �14�23) +O(e3);

E( 1 2 3 4) : L01L
0
2L

0
3L

0
4(�

0
12�

0
34 + �013�

0
24 + �014�

0
23) +O(e3);

E(�h1i�h2i)E( h3i h4i) : Lh1iLh2iL
0
h3iL

0
h4i�h1ih2i�

0
h3ih4i +O(e3):

Thus, E(Zt1Zt2Zt3Zt4) is

X
fL1L2L3L4(�12�34 + �13�24 + �14�23) + L01L

0
2L

0
3L

0
4(�

0
12�

0
34 + �013�

0
24 + �014�

0
23)

+ L1L2L
0
3L

0
4�12�

0
34 + L01L

0
2L3L4�

0
12�34 + L1L

0
2L3L

0
4�13�

0
24 + L01L2L

0
3L4�

0
13�24

+L1L
0
2L

0
3L4�14�

0
23 + L01L2L3L

0
4�
0
14�23g+O(e3)

=
X

f(L1L2�12 + L01L
0
2�
0
12)(L3L4�34 + L03L

0
4�
0
34)

+ (L1L3�13 + L01L
0
3�
0
13)(L2L4�24 + L02L

0
4�
0
24)

+(L1L4�14 + L01L
0
4�
0
14)(L2L3�23 + L02L

0
3�
0
23)g+O(e3)

=
�
�L21�12 + �L

02
1 �

0
12

� �
�L21�34 + �L

02
1 �

0
34

�
+
�
�L21�13 + �L

02
1 �

0
13

� �
�L21�24 + �L

02
1 �

0
24

�
+
�
�L21�14 + �L

02
1 �

0
14

� �
�L21�23 + �L

02
1 �

0
23

�
+O(e3): (C.45)

(ii) E(Z2t1Zt2Zt3)

E(�1�2�3�4) : L12L3L4�23 +O(e2); E(�1�2)E( 1 2 3 4) : L
�
12L

0
3L

0
4�
0
23 +O(e2);

E( 1 2 3 4) : L
0
12L

0
3L

0
4�
0
23 +O(e2); E( 1 2)E(�1�2�3�4) : L

�
12L3L4�23 +O(e2);

E(�1�2)E( 3 4) : L12L
0
3L

0
4�
0
23 +O(e2); E(�12)E( 12 3 4) : L

��
12L

0
3L

0
4�
0
23 +O(e2);

E( 1 2)E(�3�4) : L
0
12L3L4�23 +O(e2); E( 12)E(�12�3�4) : L

��
12L3L4�23 +O(e2):
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Thus,

E(Z2t1Zt2Zt3) =
X
(L12L3L4�23 + L012L

0
3L

0
4�
0
23 + L12L

0
3L

0
4�
0
23 + L012L3L4�23

+ L�12L
0
3L

0
4�
0
23 + L�12L3L4�23 + L��12L

0
3L

0
4�
0
23 + L��12L3L4�23) +O(e2)

=
X
(L12 + L012 + L�12 + L��12)(L3L4�23 + L03L

0
4�
0
23) +O(e2)

=
�
�L2 + �L

0
2 +

�L�2 +
�L��2
� �
�L21�23 +

�L021 �
0
23

�
+O(e2): (C.46)

(iii) E(Z2t1Z
2
t2
)

E(�1�2�3�4) : L12L34 +O(j�12j); E(�1�2)E( 1 2 3 4) : L
�
12L

0
34 +O(j�12j);

E( 1 2 3 4) : L
0
12L

0
34 +O(j�12j); E(�3�4)E( 1 2 3 4) : L

0
12L

�
34 +O(j�12j);

E(�1�2)E( 3 4) : L12L
0
34; E( 1 2)E(�1�2�3�4) : L

�
12L34 +O(j�12j);

E( 1 2)E(�3�4) : L
0
12L34; E( 3 4)E(�1�2�3�4) : L12L

�
34 +O(j�12j);

E(�12)E( 12 3 4) : L
��
12L

0
34 +O(j�12j); E(�12�3�4)E( 12 3 4) : L

��
12L

�
34 +O(j�12j);

E(�34)E( 34 1 2) : L
0
12L

��
34 +O(j�12j); E(�34�1�2)E( 34 1 2) : L

�
12L

��
34 +O(j�12j);

E( 12)E(�12�3�4) : L
��
12L34 +O(j�12j); E(�1�2�3�4)E( 1 2 3 4) : L

�
12L

�
34 +O(j�12j);

E( 34)E(�34�1�2) : L12L
��
34 +O(j�12j); E(�12;34)E( 12;34) : L

��
12L

��
34 +O(j�12j):

Thus,

E(Z2t1Z
2
t2
) =

X
(L12L34 + L012L

0
34 + L12L

0
34 + L012L34 + L�12L

0
34

+ L012L
�
34 + L�12L34 + L12L

�
34 + L�12L

�
34 + L��12L

0
34 + L��12L34

+ L��12L
�
34 + L012L

��
34 + L12L

��
34 + L�12L

��
34 + L��12L

��
34) +O(j�12j)

=
X
(L12 + L012 + L�12 + L��12)(L34 + L034 + L�34 + L��34) +O(j�12j)

=
�
�L2 + �L

0
2 +

�L�2 +
�L��2
�2
+O(j�12j): (C.47)
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(iv) E(Z3t1Zt2)

E(Z3t1Zt2) = O(j�12j): (C.48)

(v) E(ZtiZtj), i 6= j

E(�1�2) : L1L2�ij +O(�2ij); E( 1 2) : L
0
1L

0
2�
0
ij +O(�2ij):

Thus,

E(ZtiZtj) =

pX
u1;u2=0

(L1L2�ij + L01L
0
2�
0
ij) +O(�2ij) =

�L21�ij +
�L021 �

0
ij +O(�2ij): (C.49)

(vi) E(Z2ti)

E(�1�2) : L12; E(�1�2)E( 1 2) : L
�
12;

E( 1 2) : L
0
12; E(�12)E( 12) : L

��
12:

Thus,

E(Z2ti) =

pX
u1;u2=0

(L12 + L012 + L�12 + L��12) = �L2 + �L
0
2 + �L

�
2 + �L

��
2 : (C.50)

De�ne Vt as a mean-zero Gaussian I(d) process with E(V 2
t ) = �L2 + �L02 + �L�2 + �L��2

and E(VtiVtj) = �L21�ij +
�L021 �

0
ij, for i 6= j. Using equations (C.45) to (C.50) to compute

the covariances of interest in each case, they are easily shown to be identical to

Cov(Vs1Vs2 ; Vs3Vs4) = E(Vs1Vs3)E(Vs2Vs4) + E(Vs1Vs4)E(Vs2Vs3);
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up to the desired approximation errors.

Lemma 7 If Vt is Gaussian I(1=4), under (4.4), VarfF̂V V (�m)g = O(n�1 logm).

Proof. Let �j = Cov(V0; Vj) and assume �0 = 1, without loss of generality. By

assumption, j�jj � Kj�1=2. We will use similar methods to the proof of Lemma 10 in

Robinson (1994b), including the decomposition

Var
n
F̂V V (�m)

o
=
1

n4

nX
s;t;u;v=1

Cov(VsVt; VuVv)Dm(�t�s)Dm(�v�u)

=
1

n4

nX
s;t;u;v=1

(�u�s�v�t + �v�s�u�t)Dm(�t�s)Dm(�v�u)

=
1

n4

mX
j;k=1

(Wj;k�jWk;j�k +Wj;�j�kW�k;j+k); (C.51)

whereWj;k =
Pn�1

u=1�n �ue
i�juTk(u) and Tk(u) =

Pn�u�
t=1+u+ e

it�k , denoting the positive and

negative parts of u by u+ = (juj + u)=2 and u� = (juj � u)=2 respectively. Note that

Robinson (1994b) has a typo in this decomposition, using k instead of �k in the �rst

index of the last W . However, the correct expression is used in the remainder of his

proof.

To bound Wj;0, for j = 1; : : : ;m, note that T0(u) = n � juj. Summation by parts

gives

Wj;0 =

n�1X
u=1�n

(n� juj)�uei�ju = n+

n�1X
u=1

(n� u)�u(e
i�ju + e�i�ju)

= n+
n�1X
u=1

�
(n� u)�u � (n� u� 1)�u+1

	n
Du(�j) +Du(�j)

o
;
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so using (C.3) we get

jWj;0j � n+K
n�1X
u=1

�
(n� u)j�u � �u+1j+ j�u+1j

	
jDu(�j)j

� n+K
n�1X
u=1

n

u
j�u+1jjDu(�j)j � n+Kn

[n=j]X
u=1

u�
1
2 +K

n2

j

nX
u=[n=j]

u�
3
2

� n+Kn

�
n

j

� 1
2

+K
n2

j

�
n

j

�� 1
2

� K
n
3
2

j
1
2

: (C.52)

For k 6= 0 and u > 0, (B.1) implies that Tk(0) = 0,

Tk(u) =
nX

t=1+u

eit�k =
nX
t=1

eit�k �
uX
t=1

eit�k = �Du(�k);

Tk(�u) =
n�uX
t=1

eit�k =
nX
t=1

eit�k � ei�k
n�1X
t=n�u

eit�k = �ei�kDu(�k):

Therefore, using summation by parts,

Wj;k =
n�1X
u=1

�u
�
ei�juTk(u) + e�i�juTk(�u)

	
=
n�1X
u=1

(�u � �u+1)
uX
q=1

n
�ei�jqDq(�k)� ei(�k��jq)Dq(�k)

o
+ �n

n�1X
q=1

n
�ei�jqDq(�k)� ei(�k��jq)Dq(�k)

o
;

implying

jWj;kj � K
n�1X
u=1

j�u � �u+1j
�����
uX
q=1

ei�jqDq(�k)

�����+Kj�nj
�����
n�1X
q=1

ei�jqDq(�k)

����� :
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Since

uX
q=1

ei�jqDq(�k) =

uX
q=1

ei�jq
qX
t=1

eit�k =

uX
q=1

ei�jq
1� eiq�k

e�i�k � 1

=
1

e�i�k � 1

uX
q=1

(ei�jq � ei�j+kq) =
Du(�j)�Du(�j+k)

e�i�k � 1 ;

and je�i� � 1j � j�j as �! 0, we have

�����
uX
q=1

ei�jqDq(�k)

����� � K
n

jkj fjDu(�j)j+ jDu(�j+k)jg :

So, using (C.3) and for a = minfjjj; jj + kjg,

jWj;kj � K
n

jkj

[n=a]X
u=1

j�u+1j+K
n

jkj

n�1X
u=[n=a]+1

j�u+1j
u

n

a
+Kj�nj

n2

jkja

� K
n

jkj

[n=a]X
u=1

u�
1
2 +K

n2

jkja

n�1X
u=[n=a]+1

u�
3
2 +K

n
3
2

jkja

� K
n

jkj

�n
a

� 1
2
+K

n2

jkja

�n
a

�� 1
2
+K

n
3
2

jkja � K
n
3
2

jkja 12
;

yielding

jWj;k�jWk;j�kj � K
n3

(j � k)2minfj; kg ; 1 � j; k � m; j 6= k; (C.53)

jWj;�j�kW�k;j+kj � K
n3

(j + k)2minfj; kg ; 1 � j; k � m: (C.54)

Thus, using (C.52), (C.53), (C.54) in (C.51),

Var
n
F̂V V (�m)

o
� K

n4

mX
j=1

n3

j
+
K

n4

mX
j;k=1
j 6=k

n3

(j � k)2minfj; kg +
K

n4

mX
j;k=1

n3

(j + k)2minfj; kg
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� K
logm

n
+
K

n4

mX
j;k=1
j<k

n3

(j � k)2j
+
K

n4

mX
j;k=1
j�k

n3

(j + k)2j

� K
logm

n
+
K

n

m�1X
j=1

j�1
m�jX
a=1

a�2 +
K

n

mX
j=1

j�1
m+jX
a=2j

a�2 � K
logm

n
:
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