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The Relaxed Investor with Partial Information∗

Nicole Bäuerle†, Sebastian P. Urban†, and Luitgard A. M. Veraart‡

Abstract. We consider an investor in a financial market consisting of a riskless bond and several risky assets.
The price processes of the risky assets are geometric Brownian motions where either the drifts
are modeled as random variables assuming a constant volatility matrix or the volatility matrix is
considered random and drifts are assumed to be constant. The investor is only able to observe the
asset prices but not all the model parameters and hence information is only partial. A Bayesian
approach is used with known prior distributions for the random model parameters. We assume that
the investor can only trade at discrete-time points which are multiples of h > 0 and investigate the
loss in expected utility of terminal wealth which is due to the fact that the investor cannot trade
and observe continuously. It turns out that in general a discretization gap appears, i.e., for h → 0
the expected utility of the h-investor does not converge to the expected utility of the continuous
investor. This is in contrast to results under full information in [L.C.G. Rogers, Finance Stoch.,
5(2001), pp. 131–154]. We also present simple asymptotically optimal portfolio strategies for the
discrete-time problem. Our results are illustrated by some numerical examples.

Key words. optimal investment, partial information, Bayesian approach, Markov decision problem, discrete
versus continuous trading, discretization gap
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1. Introduction. This paper combines two lines of research which have attracted atten-
tion in recent years: portfolio optimization under partial information and approximation of
continuous trading strategies by strategies which adjust portfolio weights only in discrete time.
It will turn out that some surprising effects occur.

More precisely, we consider a standard Black–Scholes market with d risky assets and one
money market account with constant interest rate. In the first part of the paper we assume
that the drift of the risky assets is not known to the investor. Her aim is to maximize the
expected log-utility of her wealth at terminal time T > 0. We follow a Bayesian approach
here. Clearly, when the drift rates μ are chosen according to a multivariate normal prior,
the conditional distribution of μ given the observation of the stock prices is again normal
and there exists a simple sufficient statistic. This is useful since we can apply the principle
of estimation and control to solve the portfolio problem. If the investor is able to trade in
continuous-time this problem is well understood and can be found, e.g., in [17]. Now let us
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assume the investor is only able to observe the stock prices and adjust the portfolio at discrete
points in time which are multiples of h > 0. In practice, trading continuously is impossible
and the investor also might want to avoid transaction cost or relax and therefore reduces the
trading frequency. As in [25], we will call her the h-investor and the optimization problem
h-optimization problem in contrast to the continuous investor and the continuous problem. In
the case of complete information these two portfolio problems have been compared by [25] for
power utilities; [25] shows that in general the difference between these two problems is small.

We will show that this is no longer true in the case of partial observation. In general, there
remains a discretization gap, i.e., for h → 0 the expected utility of the h-investor does not
converge to the expected utility of the continuous investor. This is because for the h-investor
it is never optimal to short-sell stocks or the bond. Surprisingly, the h-investor does not lose
information when she observes stock prices only in discrete-time, i.e., the estimators of the
drift of the h-investor and the continuous investor coincide at the discrete-time points.

Furthermore, we show that the optimal trading strategy for the h-investor can be ap-
proximated by the very simple to implement “plug-in” Merton-ratio strategy, i.e., we take
the Merton-ratio and replace the unknown μ by its estimate. In [27] the authors studied
discrete-time portfolio problems where the drift and the volatility are driven by an unob-
servable discrete-time Markov chain and used Taylor series expansion of the utility to derive
simple approximations of the optimal portfolio strategy. We instead use the knowledge of the
continuous problem to approximate the portfolio strategy.

In the second part of the paper we consider the same problem with known stock price
drift but unknown volatility matrix. The continuous investor can immediately estimate the
volatility matrix from a tiny period of observed stock prices, but this is not true for the h-
investor who obtains information only at discrete-time points. In this case the h-investor loses
relevant information by discrete observation. We solve the h-optimization problem assuming
that the prior distribution of (σσ�)−1 is a Wishart distribution. Again, for h → 0, there
remains a discretization gap between the continuous expected utility and the limit of the
h-expected utilities. We propose an easy-to-implement portfolio strategy for the h-investor
which is asymptotically optimal for h → 0.

By now there are quite some papers investigating portfolio problems with unknown, not
necessarily constant drift. In most papers it is either assumed that the drift is a linear,
mean-reverting diffusion or a function of a finite state Markov chain. Both cases lead to well-
known, finite-dimensional filters. Lakner [18, 19] uses a martingale approach to represent the
optimal terminal wealth and trading strategy. In [18] explicit results in case of log and power
utility with constant but random drift are given, whereas in [19] the case of a linear diffusion
is treated. Rishel [24] uses a dynamic programming approach to solve the linear diffusion
case with power utility. Brendle [5, 6] slightly extends this problem to a multivariate setting
where the linear diffusion may be correlated with the stock prices and gives results for power
and exponential utility. In [29] inverse Laplace transforms are used to represent the optimal
strategy and value function for general utility problems. Karatzas and Zhao [17] present a
comprehensive approach via the martingale method. Moreover, there are papers dealing with
the hidden Markov-modulated drift problem. Honda [15] investigates the problem for two
states. The general case is considered in [26] with the help of the martingale approach and
Malliavin calculus and in [23] by dynamic programming focusing on power and log-utility. The
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latter paper also compares the optimal portfolio strategies in the case of complete and partial
information. The recent paper [4] takes a general point of view where the drift is allowed
to be an arbitrary semimartingale. Nevertheless, fairly explicit expressions for the optimal
terminal wealth and the optimal portfolio strategy are derived in the cases of log, power, and
exponential utility.

Pham and Quenez [20] treat portfolio problems with partially observed stochastic volatil-
ity. In discrete-time the portfolio problem with unobservable drift and volatility is investigated
in [27]. Frey and Runggaldier [11] consider hedging problems in discrete-time with unknown
volatility. An unknown jump intensity is treated in [2].

The question of approximating the (often) complicated filter and thus also the portfolio
strategy is tackled in [21] and [7] by means of quantization techniques. The relation between
continuous- and discrete-time filters is investigated in [16]. In [13] the authors study the effect
of estimating parameters in optimal investment strategies when the number of assets gets
large.

For the approximation of continuous-time financial models and portfolio strategies by
discrete-time models and strategies see, e.g., [14], [10], or [22]. The latter two sources consider
among others general questions of convergence of stochastic integrals. Most of the results are
positive in the sense that convergence of the wealth process is obtained. This is in contrast to
our findings. In [10] two counterexamples are given where the processes do not convergence,
but these examples are quite academic. In most cases considered in these sources, the financial
market is also approximated.

Our paper is organized as follows. In the next section we introduce the financial market
with unknown drift. In section 3 we review the continuous-time optimization problem, fol-
lowed by the h-optimization problem in section 4. In both cases the aim is to maximize the
expected log-utility of the investor’s wealth. Afterward we establish in section 5 the compar-
ison between the continuous and the h-optimization problem. We show that there remains a
discretization gap between the optimal value of the problems for h → 0 and construct a simple
but asymptotically optimal portfolio strategy for the h-investor. In section 6 we investigate
the same optimization problem with known drift but unknown volatility. We proceed in the
same way as before, i.e., we first show that there exists a discretization gap and construct a
simple but asymptotically optimal portfolio strategy for the h-investor. This case differs from
the first one since the h-investor with unknown volatility loses information by the discrete
observation of the stock prices. In section 7 we provide some numerical results and give addi-
tional insight in the size and sensitivity of the discretization gap. We also discuss in the case
of unknown volatility to which extend the loss of information can be blamed for the distance
to the continuous investor. The paper ends with a conclusion.

2. A first financial market model. We consider a financial market with finite time horizon
0 < T < ∞. Let (Ω,F ,P) be the underlying probability space on which we consider a d-
dimensional Brownian motion W = (W 1

t , . . . ,W
d
t ). We suppose that there are d risky assets

and one riskless bond with the following dynamics for t ∈ [0, T ]. The price process S0
t of the

riskless bond is given by

S0
t := ert,
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where r ≥ 0 denotes the deterministic interest rate. The price process Si
t of the risky asset

i, i = 1, . . . , d, satisfies the stochastic differential equation

dSi
t = Si

t

⎛
⎝μidt+

d∑
j=1

σijdW
j
t

⎞
⎠ ,

where μ = (μ1, . . . , μd)
� ∈ Rd and σ = (σij) ∈ Rd×d

+ is assumed to be nonsingular and we set
Si
0 = 1.

In the first part of the paper we assume that the drift vector μ is not known to the investor;
however, the initial distribution Q0 of μ is known. We choose a d-variate normal distribution
Q0 := Nd(μ0,Σ0) and assume the drift to be independent of W . By FS := (σ(Su , 0 ≤ u ≤
t))t∈[0,T ] we denote the filtration obtained by observing the stock prices St = (S1

t , . . . , S
d
t )

�, a
subfiltration of

Fμ,S := (σ (μ, Su , 0 ≤ u ≤ t))t∈[0,T ] = (σ (μ,Wu , 0 ≤ u ≤ t))t∈[0,T ] .

3. Continuous-time optimization. In a continuous-time setup, an investor with initial
capital x > 0 chooses a trading strategy π = (πt)t∈[0,T ]. We allow short-selling the stock

and the bond, thus πt = (π1(t), . . . , πd(t))
� ∈ Rd, where πi(t) denotes the fraction of wealth

invested in stock i at time t and 1 := (1, . . . , 1)� ∈ Rd. The wealth process satisfies the
stochastic differential equation

(3.1) dXπ
t = Xπ

t

(
r + π�

t

(
μ− r1

))
dt+Xπ

t π
�
t σdWt, Xπ

0 = x.

We only consider admissible trading strategies, i.e., strategies from the set

A :=

{
π : [0, T ] × Ω → Rd : π is measurable, self-financing, FS-adapted

and satisfies

∫ T

0
‖π(s)‖2ds < ∞ a.s.

}
.

The investor aims to maximize her expected logarithmic utility of terminal wealth. We
define

Jπ(x) := Ex log (X
π
T ) ,

and the aim is to find

(3.2) J(x) := sup
π∈A

Jπ(x),

where Ex is the conditional expectation given X0 = x. Note that π in (3.1) has to be adapted
w.r.t. FS , but not w.r.t. FS,μ, which makes the problem “nonstandard.” However, it is well
known that such a problem can be solved by the principle of estimation and control which
works as follows. First, note that for t ∈ [0, T ]

logSi
t = log Si

0 +

⎛
⎝μi − 1

2

d∑
j=1

σ2
ij

⎞
⎠ t+

d∑
j=1

σijW
j
t .
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Hence, when we denote Zt := μt+ σWt for t ≥ 0 and σi := (σi1, . . . , σid), i = 1, . . . , d, we can
write

log Si
t = log Si

0 + Zi
t −

1

2
‖σi‖2t

and obtain that FS = FZ , i.e., the filtration generated by the stock prices is the same as the
filtration generated by the process Z = (Zt). Next, we define for t ∈ [0, T ] the estimator

μ̂t := E
[
μ | FS

t

]
,

which is the conditional expectation of μ given the stock prices until time t. The evolution of
(μ̂t) is given by the so-called Kalman-Bucy filter on the “signal” μ and “observation” σ−1Zt.
When we define Σ := (σσ�), then it can be shown that

μ̂t =
(
Σ−1
0 + tΣ−1

)−1(
Σ−1
0 μ0 +Σ−1Zt

)
.(3.3)

More details on the derivation can be found in [1] and [12]. We can now introduce the
innovation process (Vt) by

dVt = σ−1(dZt − μ̂tdt).

Using Lévy’s characterization of the Brownian motion it is possible to show that (Vt) is an FS-
Brownian motion under the given probability measure P. Moreover, the stochastic differential
equation for the wealth can be rewritten as

dXπ
t = Xπ

t

(
r + π�

t

(
μ− r1

))
dt+Xπ

t π
�
t σdWt

= Xπ
t

(
r + π�

t

(
μ̂t − r1

))
dt+Xπ

t π
�
t σdVt,(3.4)

which reduces the stochastic control problem with partial observation to one with complete
observation, since all processes in (3.4) are FS-adapted. An explicit solution of (3.4) is given
by

Xπ
t = x exp

(∫ t

0

(
r + π�

s (μ̂s − r1)− 1

2
π�
s Σπs

)
ds+

∫ t

0
π�
s σdVs

)

and, given that the local martingale
∫
π�σdV is a true martingale, we obtain for an investor

with logarithmic utility that

(3.5) Jπ(x) = Ex logX
π
T = log(x) + Ex

[∫ T

0

(
r + π�

s (μ̂s − r1)− 1

2
π�
s Σπsds

)]
.

It is now easy to see and has been shown, e.g., by [17] that the simple strategy

(3.6) π∗
t = Σ−1(μ̂t − r1)

is an optimal portfolio strategy for the investor with logarithmic utility.
When short-selling is not allowed, we maximize (3.5) over all π which are elements of

A := {π ∈ A | πt ∈ D ∀t ∈ [0, T ]}, where D := {x ∈ [0, 1]d : x�1 ≤ 1}.
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That is, we consider the value function

Jnss(x) := sup
π∈A

E log(Xπ
T ),

where nss denotes no short-selling. The optimal portfolio strategy is here denoted by π = (πt),
where πt is the (unique) solution of

(3.7)

{
a�(μ̂t − r1)− 1

2a
�Σa → max,

a ∈ D.

In dimension d = 1, if π∗
t 	∈ [0, 1], we simply have to shift π∗

t from (3.6) to the nearest boundary
of the interval [0, 1]. For d ≥ 2 this is in general not true. For a comprehensive treatment of
constraint portfolio problems see [8] and [17]. Also note that the pointwise maximization in
(3.7) leads to an FS-progressively measurable strategy (cf. [8]).

4. The h-optimization problem. Here we suppose that the investor observes the stock
prices only at discrete-times which are multiples of h > 0 and rebalances her portfolio only at
these time points. We refer to this investor as the h-investor. To simplify the presentation we
require that N := T/h ∈ N. We define

R̃i
n := exp

⎛
⎝μih− 1

2

d∑
j=1

σ2
ijh+

d∑
j=1

σij

(
W j

nh −W j
(n−1)h

)⎞⎠(4.1)

for n = 1, . . . , N and i = 1, . . . , d and obtain Si
nh =

∏n
k=1 R̃

i
k. In what follows we write

Ri
n :=

R̃i
n

erh
− 1,

Z̃i
n := μih+

d∑
j=1

σij
(
W j

nh −W j
(n−1)h

) d
= μih+

d∑
j=1

σijε
j
n

√
h,

where εn = (ε1n, . . . , ε
d
n)

� and ε1, ε2, . . . , εN are independently and identically distributed
(i.i.d.) random vectors from a multivariate normal distribution Nd(0, I). Thus, we have Z̃n =

(Z̃1
n, . . . , Z̃

d
n)

� d
= μh + σεn

√
h, where

d
= denotes equality in distribution. The conditional

distribution of Z̃n given μ = m is denoted by QZ̃(·|m). Obviously, we have QZ̃(·|m) =
Nd(mh,Σh).

Let FR := (σ(R1, . . . , Rn))n∈{0,1,...,N} be the filtration generated by (R1, . . . , Rn). The

portfolio strategies for the h-investor are now FR-adapted stochastic processes α = (αn) =
((α1

n, . . . , α
d
n)

�)n∈{0,...,N−1}. In what follows the interpretation of αi
n will always be the fraction

of wealth invested in the ith stock at time step n. Once the h-investor has chosen a portfolio
strategy, the wealth at time nh under this strategy satisfies

Xα
hn = erhXα

h(n−1)(1 + α�
n−1Rn).

The set of strategies of the h-investor is given by

Ah := {α = (αn)n∈{0,1,...,N−1}
∣∣αn : Ω → Rd, αn is FR

n −measurable ∀n, α is self-financing}.
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Note that we set log(x) := −∞ if x ≤ 0. With this agreement it is obvious that an optimal
portfolio strategy is found among the strategies α with αn ∈ D.

The h-investor’s value function is then defined by

(4.2) Jh
0 (x) := sup

α∈Ah

Ex log(X
α
T ),

where x > 0 is the initial wealth. It is now well known that problem (4.2) can be solved
by using the theory of (Bayesian) Markov decision problems; see, e.g., [3, Chapter 5]. In
order to set up the filtered Markov decision problem we have to enlarge the state space by
the conditional distribution of the unknown parameter given the observation of the stock
prices up to this time. If we denote the conditional distribution of μ given the observations
(z̃1, . . . , z̃n) by μ(·|z̃1, . . . , z̃n), it is a classical result of statistics (see, e.g., [9, p. 175]) that

Q0 = Nd(μ0,Σ0) is a conjugate prior distribution to QZ̃(·|m) = Nd(mh,Σh) and we obtain
with ¯̃zn := 1

n

∑n
k=1 z̃k

μ(·|z̃1, . . . , z̃n) = Nd

((
Σ−1
0 + nhΣ−1

)−1(
Σ−1
0 μ0 + nΣ−1 ¯̃zn

)
,
(
Σ−1
0 + hnΣ−1

)−1
)
.

Obviously, (
∑n

k=1 z̃k, n) is a sufficient statistic for μ(·|z̃1, . . . , z̃n). Thus we will also write
μ(·|s, n), where s =

∑n
k=1 z̃k. For n = 0, . . . , N and a portfolio strategy α = (αn) ∈ Ah, we

define the nth step value function

Jh
n,α(x, s) := E

[
log(Xα

Nh)
∣∣∣ Xnh = x,

n∑
k=1

Z̃k = s

]
,

Jh
n (x, s) := sup

α∈Ah

Jh
n,α(x, s).

(4.3)

Note that the probability measure underlying the expectation in (4.3) is induced by Q0 and
the transition probabilities of the Markov decision process (Xnh,

∑n
k=1 Z̃k), i.e., it is essentially

induced by Q0 and QZ̃(·|m).
Problem (4.2) can now be solved recursively via the Bellman equation

Jh
n (x, s) = sup

a∈D

{∫∫
Jh
n+1

(
erhx

(
1+a�ẑ

)
, (s+z̃)

)
QZ̃(dz̃|m)μ(dm|s, n)

}
,

where ẑi := exp
(
z̃i − 1

2‖σi‖2h− rh
)− 1.

Theorem 4.1.
(a) The value function for the h-investor is for n = 0, 1, . . . , N given by

Jh
n (x, s) = log(x) + dn(s), (x, s) ∈ R>0 × R,

where the dn satisfy the following recursion:

dN (s) := 0,

dn(s) = rh+ sup
a∈D

{∫ ∫
log

(
1 + a�ẑ

)
QZ̃(dz̃|m)μ(dm|s, n)

}

+

∫ ∫
dn+1(s+ z̃)QZ̃(dz̃|m)μ(dm|s, n).(4.4)

The value function of the problem is given by Jh
0 (x) = Jh

0 (x, 0), where μ(·|0, 0) = Q0(·).
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(b) The optimal amounts which are invested in the stocks at time step n when Xnh = x
and Z̃1 + · · ·+ Z̃n = s are given by

f∗
n(x, s) = α∗

n(s)x, x > 0,

where α∗
n(s) is the maximizer of (4.4) and denotes the optimal proportions. The

optimal portfolio strategy is constructed through the application of the maximizers.
This can be proved by induction along the lines of [3, Theorem 6.1.1] and we therefore

skip the proof.
The optimal strategy is given by the maximum points in (4.4) and denoted by α∗ but

is not available in closed form. In the next section we propose a portfolio strategy which is
suboptimal although “simple” and performs for h → 0 asymptotically as well as the optimal
strategy.

5. Comparison of the continuous and the h-investor. In this section we compare the
performance of the continuous investor with the performance of the h-investor.

5.1. Comparison of information. First we compare the relevant information of both
investors. The continuous investor uses the estimator (μ̂t), whereas the h-investor uses
(μ(·|z̃1, . . . , z̃n)). We obtain for t = nh that

μ̂t =
(
Σ−1
0 + tΣ−1

)−1(
Σ−1
0 μ0 +Σ−1Zt

)
=

∫
mμ

(
dm

∣∣∣ n∑
k=1

Z̃k,
t

h

)
.

Thus, the h-investor has the same estimator at the rebalancing points as the continuous
investor. For general results concerning discretization of filter processes see [16].

Let us now discuss the different results for the situations with and without short-selling
constraints.

5.2. No short-selling. We consider first the problem where the continuous investor is
not allowed to short-sell the stocks or the bond. Obviously, we have Jh

0 (x) ≤ Jnss(x). On
the other hand, consider the portfolio strategy α = (αn)n∈{0,1,...,N−1} given by αn := πnh,
recalling the optimal strategy π for the continuous investor obliging short-selling constraints.
It is admissible for the h-investor since it depends on the history only through μ̂nh. We obtain
that for h → 0 the expected log-utility of the h-investor using the optimal strategy of the
continuous investor with short-selling constraints only at discrete points in time converges to
the expected log-utility of the continuous investor with short-selling constraints.

Theorem 5.1. With π and α as above it holds that

lim
h→0

Jh
0,α(x, 0) = Jnss

π (x) = Jnss(x), x > 0.

The proof is given in the appendix. Theorem 5.1 immediately leads to the following
corollary.

Corollary 5.2. For x > 0 we obtain limh→0 J
h
0 (x) = Jnss(x).

We see that the h-investor can perform almost as well as the continuous investor with
short-selling constraints with an error which tends to zero if h → 0. This is in line with the
results in [25].
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The optimal portfolio strategy for the h-investor is complicated and the solution of problem
(4.4) has to be computed numerically. However, it can be shown that for small h the optimal
portfolio strategy is close to the discretization of (πt). To show this let again α∗ = (α∗

n(s))
be the optimal strategy for the h-investor, i.e., the solution of problem (4.4), and define for
t ∈ [0, T ] the process

πh
t := α∗

� t
h
�

⎛
⎝� t

h
�∑

k=1

Z̃k

⎞
⎠ .(5.1)

This is an admissible strategy for the continuous investor and at time points t = nh, πh
t corre-

sponds to the optimal strategy of the h-investor. This piecewise constant strategy converges
a.s. to the optimal strategy of the continuous investor with short-selling constraints.

Theorem 5.3. With the preceding definitions it holds that

lim
h→0

πh
t = πt P− a.s., t ∈ [0, T ].

Again, the proof can be found in the appendix.

5.3. With short-selling. Let us now return to the original problem (3.2), where the con-
tinuous investor can do short-selling. As outlined before we cannot allow the h-investor to
short-sell assets (this would lead to an expected utility of −∞), which implies that a simple
discretization of the optimal portfolio strategy (3.6) in the continuous setting is not admissible
for the h-investor. Corollary 5.4 shows that the h-investor cannot in general do as well as the
continuous investor, even if h → 0. There still remains a gap between the maximal expected
utilities.

Corollary 5.4. The h-investor faces a discretization gap in the sense that

lim
h→0

(
J(x)− Jh

0 (x)
)
= J(x)− Jnss(x) > 0, x > 0.

In the case of an unknown drift for the stock price and no short-selling constraints, the
situation which has been excluded in [25], namely, that π∗

t /∈ [0, 1]d cannot be avoided here.
Even if the true ratio Σ−1(μ − r1) lies within [0, 1]d, there is no guarantee that its estimator
lies in [0, 1]d as well.

Hence, we encounter a somewhat surprising result where we do not have convergence of the
maximal expected utility of the h-investor to the maximal expected utility of the continuous
investor. The size of the discretization gap is discussed in section 7.

6. Unknown volatility. So far we have assumed that the drift μ is unknown and the
volatility matrix is known. In this section we consider the reverse situation where the drift μ
is known but the volatility matrix is unknown.

More precisely, the investor cannot observe Σ−1 = (σσ�)−1 directly but knows the initial
distribution Qvol

0 of Σ−1. We choose here a d-dimensional Wishart distribution with ν degrees
of freedom and parameter matrix Σ−1

0 , denoted by Qvol
0 = Wd(ν,Σ

−1
0 ), i.e., there exist i.i.d.

vectors Ai ∼ Nd(0,Σ
−1
0 ), i = 1, . . . , ν, such that Σ−1 d

=
∑ν

i=1 AiA
�
i . The Wishart distribution
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is a distribution on the set of all symmetric, positive definite matrices with dimension d and
is a multivariate generalization of the χ2-distribution.

We denote by det(·) the determinant and by tr(·) the trace of a matrix. Then the density
of the d-dimensional Wishart distribution with ν degrees of freedom and parameter matrix
Σ−1
0 is (see, e.g., [9, p. 57])

qvol0 (τ) := c(det(Σ−1
0 ))−

ν
2 (det(τ))

ν−d−1
2 exp

(
−1

2
tr(Σ0τ)

)
,(6.1)

where c is the normalizing constant.

6.1. The continuous investor with unknown volatility. Even if we assume that the con-
tinuous investor does not know σσ�, then she is able to estimate it perfectly from a tiny
observation of the stock prices. To explain this, consider the quadratic covariation of log St

which is given by

〈log Si
t , log S

j
t 〉t =

d∑
k=1

σikσjkt = σi(σj)�t = Σijt.

This quadratic covariation can be observed since for h → 0 it is the limit in probability of∑
k:kh≤t

(log Si
hk − log Si

h(k−1))(log S
j
hk − log Sj

h(k−1)).

Note that convergence in probability implies that there exists a subsequence which converges
P-a.s.. The optimization problem for the continuous investor is therefore

Jvol(x) := sup
π∈A

Ex log(X
π
T ) = log(x)+sup

π
Ex

[∫ T

0
r + π�

s (μ− r1)− 1

2
π�
s Σπsds+

∫ T

0
π�
s σdWs

]
.

One can easily see that in the case where short-selling is allowed, the optimal strategy denoted
by πvol = (πvol

t ) is constant in time and given by πvol
t := Σ−1(μ − r1) ∀t > 0. At t = 0, the

value of Σ−1 is not yet known, but it makes no difference which value one chooses and hence
πvol
0 := c̃ ∈ R. The maximal expected utility is

Jvol(x) = log(x) + rT + T sup
a∈Rd

Ex

[
a�(μ− r1)− 1

2
a�Σa

]

= log(x) + rT +
T

2
Ex

[
(μ− r1)�Σ−1(μ − r1)

]
= log(x) + rT +

νT

2
(μ− r1)�Σ−1

0 (μ− r1),

(6.2)

since for Σ−1 ∼ Wd(ν,Σ
−1
0 ), the expectation is given by EΣ−1 = νΣ−1

0 and for a vector a ∈ Rd

one obtains a�Σ−1a ∼ W1(ν, a
�Σ−1

0 a); see, e.g., [9, p. 58].
If short-selling is excluded, the optimal strategy, denoted by πvol = (πvol

t ), is still constant
in time and given by the solution of

(6.3)

{
a�(μ − r1)− 1

2a
�Σa → max,

a ∈ D.
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We denote by
Jvol,nss(x) := sup

π∈A
Ex log(X

π
T )

the corresponding maximal expected logarithmic utility.
We will see in the next section that the h-investor loses relevant information in this setting

and is unable to estimate the volatility as perfectly as the continuous investor.

6.2. The h-investor with unknown volatility. We consider now the h-investor in the
market with unknown volatility matrix and known drift vector μ. We again require that
N = T/h ∈ N. Since the h-investor is only able to observe the stock prices at time points
{0, h, . . . , T}, she observes the random variable

Y i
n := log(R̃i

n) = μih− 1

2

d∑
j=1

σ2
ijh+

d∑
j=1

σij
(
W j

nh −W j
(n−1)h

)

d
= μih− 1

2

d∑
j=1

σ2
ijh+

d∑
j=1

σijε
j
n

√
h,

where we used the notation from section 4 with n = 1, . . . , N, i = 1, . . . , d, and ε1, ε2, . . . , εN
are i.i.d. Nd(0, I)-distributed random vectors. The h-investor’s value function is then defined
by

(6.4) Jh,vol
0 (x) := sup

α∈Ah

Ex log(X
α
T ),

where the wealth Xα
T is again determined recursively in terms of the Yn.

We are interested in the posterior distribution of the unknown matrix Σ−1. The conditional
distribution of the vector Yn given σσ� = τ is denoted by QY (·|τ) and clearly

QY (·|τ) = Nd(m(τ), τh), m(τ) :=

(
μ− 1

2
(τ11 . . . , τdd)

�
)
h.

Given observations (y1, . . . , yn), the corresponding likelihood function is therefore

l(y1, . . . , yn|τ−1) :=
1

((2π)d det(hτ))
n
2

exp

(
− 1

2h

n∑
i=1

(yi−m(τ))�τ−1(yi−m(τ))

)
.

The exponential can be simplified by taking the trace:

n∑
i=1

(yi −m(τ))�τ−1(yi −m(τ)) = tr

(
n∑

i=1

(yi −m(τ))�τ−1(yi −m(τ))

)

= tr

(
n∑

i=1

(yi −m(τ))(yi −m(τ))�τ−1

)

= tr

((
n∑

i=1

yiy
�
i − 2

n∑
i=1

yim(τ)� + nm(τ)m(τ)�
)
τ−1

)
.
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Hence we see that (
∑n

i=1 yiy
�
i ,

∑n
i=1 yi, n) is a sufficient statistic for (y1, . . . , yn). The posterior

density of Σ−1 given (y1, . . . , yd) is then proportional to l(y1, . . . , yn|Σ−1)qvol0 (Σ−1), where
the prior density qvol0 was specified in (6.1). We denote by Σ−1(·|y1, . . . , yn) the posterior
distribution of Σ−1 given (y1, . . . , yn). We will also use the notation Σ−1(·|u, v, n), where
u =

∑n
i=1 yiy

�
i , v =

∑n
i=1 yi.

For n = 0, . . . , N and a portfolio strategy (αn) ∈ Ah we can now define the nth step value
function with unknown volatility similarly to section 4 by

Jh,vol
n,α (x, (u, v)) := E

[
log(Xα

Nh)
∣∣∣ Xnh = x,

n∑
i=1

YiY
�
i = u,

n∑
i=1

Yi = v

]
,

Jh,vol
n (x, (u, v)) := sup

α∈Ah

Jh,vol
n,α (x, (u, v)).

The value function can again be determined recursively:

Jh,vol
n (x, (u, v))

= sup
a∈D

{∫∫
Jh,vol
n+1

(
erhx

(
1+a�ẑ

)
, (u+ yy�, v + y)

)
QY (dy|τ−1)Σ−1(dτ |u, v, n)

}
,

where ẑi = exp(yi − hr)− 1. The next theorem follows again from [3, Theorem 6.1.1] and we
will therefore skip the proof.

Theorem 6.1.
(a) The value function for the h-investor is given by

Jh,vol
n (x, (u, v)) = log(x) + dvoln (u, v), (u, v) ∈ Rd×d

+ × Rd, n ∈ N, x > 0,

where the dvoln satisfy the following recursion:

dvolN (u, v) := 0,

dvoln (u, v) = rh+ sup
a∈D

{∫ ∫
log

(
1 + a�ẑ

)
QY (dy|τ−1)Σ−1(dτ |u, v, n)

}

+

∫ ∫
dvoln+1(u+ yy�, v + y)QY (dy|τ−1)Σ−1(dτ |u, v, n).(6.5)

The value function of the problem is given by Jh,vol
0 (x) = Jh,vol

0 (x, (0, 0)),
where Σ−1(·|0, 0, 0) = Qvol

0 (·).
(b) The optimal amounts which are invested in the stocks are given by

f vol
n (x, (u, v)) = αvol

n (u, v)x, x ≥ 0,

where αvol
n (u, v) is the maximizer of (6.5) and denotes the optimal proportions. The

optimal portfolio strategy is constructed through the application of the maximizers.
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6.3. Comparison of continuous and h-investor with unknown volatility.

6.3.1. Comparison of information. As we have discussed, the continuous investor can
estimate Σ perfectly from a very short observation of the stock price and from this time
onward works under full information. For the h-investor, however, this is not the case. The
h-investor updates her estimator of Σ at discrete-time points but does not work under full
information.

This is a remarkable contrast to the situation where the drift was unknown and where the
h-investor did not suffer a loss in information compared to the continuous investor.

6.3.2. A simple and almost optimal strategy for the h-investor. We have seen that
the optimal strategy of the h-investor can theoretically be described; however, the practical
implementation is difficult. It is reasonable to look for an admissible “simple” strategy which
is almost optimal. In contrast to the case of unknown drift, however, the h-investor is unable
to implement the strategy of the continuous investor (in discrete-time) since the continuous
investor works almost immediately under full information.

To simplify the presentation we assume that T = 2Ñh, Ñ ∈ N, i.e., N = 2Ñ . We propose
now to update the strategy at even multiples of h only and use the difference of the two
observations during the time interval ((2n − 2)h, 2nh] given by

Ỹn := Y2n − Y2n−1 = σ(ε2n − ε2n−1)
√
h

for n = 1, . . . , Ñ . The advantage of doing this is that Ỹ1, . . . , ỸÑ are now i.i.d. and obviously

the distribution of Ỹn given σσ� = τ is QỸ (·|τ) := Nd(0, 2τh). Now we are in a classical
situation with normally distributed observations with unknown covariance matrix. In this
case the Wishart distribution is a conjugate prior, and hence if we assume that the initial
distribution of Σ−1 = (σσ�)−1 is Qvol

0 = Wd(ν,Σ
−1
0 ), then the conditional distribution of Σ−1

given the observations (ỹ1, . . . , ỹn) is also a Wishart distribution, namely,

Wd

⎛
⎝ν + n,

(
Σ0 +

1

2h

n∑
k=1

ỹkỹ
�
k

)−1
⎞
⎠ ;

see [9, pp. 176–177]. Obviously, (
∑n

k=1 ỹkỹ
�
k , n) is a sufficient statistic for Σ−1. Moreover, the

conditional expectation of Σ−1 given
∑n

k=1 ỸkỸ
�
k = s is

Σ̂−1,h(s, n) := E

[
Σ−1

∣∣ n∑
k=1

Ỹk = s

]
= (ν + n)

(
Σ0 +

1

2h
s

)−1

(6.6)

for n = 1, . . . , Ñ . For n = 0 we set Σ̂−1,h(s, 0) := νΣ−1
0 .

Similarly, we can also derive the conditional expectation of Σ given
∑n

k=1 ỸkỸ
�
k = s (see,

e.g., [28, Theorem 3.1]):

Σ̂h(s, n) := E

[
Σ
∣∣ n∑
k=1

Ỹk = s

]
=

1

ν + n− d− 1

(
Σ0 +

1

2h
s

)
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for n = 1, . . . , Ñ and Σ̂h(s, 0) := 1
ν−d−1Σ0. This conditional expectation can be used to define

an admissible strategy for the h-investor by replacing Σ with Σ̂h in the optimal strategy for
the continuous investor.

6.3.3. No short-selling. Consider now the optimization problem

(6.7)

{
a�(μ− r1)− 1

2a
�Σ̂h(s, n)a → max,

a ∈ D,

and denote the maximizer by αh,vol
n (s). We define a portfolio strategy by

πh,vol
t := αh,vol

� t
2h

�

⎛
⎝� t

2h
�∑

k=1

ỸkỸ
�
k

⎞
⎠ .

When we consider (πh,vol
t ) only at time points nh, we obtain an admissible strategy for the

h-investor. For general t ∈ [0, T ] it is admissible for the continuous investor and converges to
the optimal strategy of the continuous investor with no short-selling restriction.

Theorem 6.2. For t ∈ [0, T ] we obtain limh→0 π
h,vol
t = πvol.

The proof can be found in the appendix.
Finally, when we denote by αh,vol = (αh,vol) the discretization of πh,vol

t , we obtain the
following theorem.

Theorem 6.3. For x > 0 we obtain limh→0 J
h,vol
0,αh,vol

(
x, (0, 0)

)
= Jvol,nss(x).

A proof is given in the appendix. The theorem tells us that for small time steps h, the
h-investor can choose the simpler strategy αh,vol, which is close to being optimal.

Again we obtain convergence of the h-investor’s value function to the value function of
the continuous investor with short-selling restriction as h → 0.

Corollary 6.4. For x > 0 we obtain limh→0 J
h,vol
0 (x) = Jvol,nss(x).

We give a short proof in the appendix.

6.3.4. With short-selling. If we allow short-selling for the continuous investor we again
observe a discretization gap between the expected utilities of the h-investor and the continuous
investor.

Corollary 6.5.For x > 0 we obtain limh→0

(
Jvol(x)− Jh,vol

0 (x)
)
= Jvol(x)−Jvol,nss(x) > 0.

7. Numerical examples. In this section we illustrate our theoretical results with some
numerical examples and investigate the speed of convergence of some of our convergence
results. We also give examples for the discretization gap. We consider a market with one
stock, i.e., d = 1, time horizon T = 1 year, and interest rate r = log(1.03). The investor’s
initial capital is set to x = 1.

7.1. Unknown drift. We first consider the situation where the drift μ is unknown and
sampled from a N1(μ0, σ

2
0)-distribution with μ0 = log(1.05), σ2

0 = 1
3μ0 unless stated otherwise.

The known volatility is chosen to be σ = 0.3.
The expected log-utility of the continuously trading investor is known analytically (see

[17]), and for our choice of market parameters it is J(1) = E[log(Xπ∗
1 )] ≈ 0.0389. This can
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Table 1
Results of Monte Carlo simulations of the expected terminal utility of the h-investor for different values of

N = 1
h
using first the lower-bound strategy α and second the optimal strategy α∗.

N Jh
0,α(1, 0) Jh

0 (1)

2 0.0351 0.0352
4 0.0361 0.0361
6 0.0363 0.0365
8 0.0365 0.0366

be used as an upper bound on the expected utility of the continuously trading investor with
short-selling constraints and on that of the h-investor.

In order to get an impression about the loss which is due to incomplete information we
derive the expected utility of an investor who knows μ and can therefore implement the
strategy (μ− r)/σ2. This strategy is obviously not FS-adapted and therefore not admissible.
The corresponding expected utility is known analytically and given by

Jdrift,known(x) := log(x) + rT +
T

2σ2
(σ2

0 + (μ0 − r)2).

For our choice of parameters we obtain Jdrift,known(1) ≈ 0.1220. We see that the difference
in expected utility between an investor with full and one with partial information is severe.
In the following we focus on admissible strategies.

7.1.1. Comparison of expected utilities. For different values of h, we investigate the
difference between the expected utility of an h-investor using her optimal strategy Jh

0 (1)
and Jh

0,α(1, 0) which is the expected utility of an h-investor using the discretization of the
optimal solution of the continuous investor with short-selling constraints (denoted by αn

in Theorem 5.1). We computed the expected utilities by using Monte Carlo methods and
solved the optimization problem (4.4) by using numerical optimization. We used 1,500,000
replications to derive Jh

0,α(1, 0), 300,000 replications for N = 2, 4, 6, and 85,000 replications for

N = 8 to derive Jh
0 (1). The smaller number of replications in the latter case was necessary,

since a numerical optimization has to be carried out at each time step, which resulted in
a longer running time. The results are presented in Table 1. We observe that the expected
utility increases with N , i.e., more frequent portfolio adjustments increase the expected utility.
The simple strategy α which just discretizes the optimal continuous solution with short-selling
constraints results only in a slightly lower expected utility than using the optimal solution.

From Theorem 5.1 we know that limh→0 J
h
0,α(1, 0) = Jnss(1) and obviously Jnss(1) ≤ J(1).

Figure 1 shows Jh
0,α(1, 0) for different values of h and compares it to J(1). We clearly find the

discretization gap as stated in Corollary 5.4. The h-investor’s value function converges only
to Jnss(1) and not to J(1).

Figure 2 illustrates the sensitivity of the discretization gap to the time horizon T and
the variance of the prior distribution. We plot J(1) and Jnss(1). One clearly finds a loss in
terminal utility when having to obey short-selling restrictions, its magnitude increasing with
a longer time horizon or a higher variance of the prior.

7.1.2. Comparison of strategies. In Figure 3 we plot the h-investor’s optimal strategy
α∗
n(s) for fixed n and various values of s =

∑n
k=1 Z̃k = Znh representing different observation
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Figure 1. Expected utilities Jh
0,α(1, 0) (lower bound values) and J(1) (continuous upper bound) for various

time lags h.
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Figure 3. Comparison of the h-investor’s optimal strategy α∗
n(s) and the approximating strategy αn for

n = 10, for different values of the sufficient statistic s =
∑n

k=1 Z̃k = Znh and different time lags h. For every
color-coded combination the straight line gives the value of α∗

n(s), while the dotted curve represents αn.
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Table 2
Market scenarios for the prior distribution of Σ−1.

Scenario ν Σ−1
0

A 250 1/20
B 25 1/2
C 4 25/8

D 250 1/5
E 25 2
F 4 25/2

scenarios. The same plot contains the approximating strategy αn using the same s = Znh.
One can easily see from (3.3) that for s = Znh = 0 the approximating strategy converges to
μ0−r
σ2 for h → 0. Moreover, for fixed s = Znh 	= 0, μ̂nh converges to ±∞ for h → 0 and the

sign does depend on the value of s. Hence, since short-selling is excluded, the corresponding
strategies will converge to either 0 or 1 for h → 0 if s 	= 0. Note that if s = Znh was not fixed
we would always find that μ̂nh → μ0 as h → 0. The main purpose of this figure, however,
is to show that the two strategies are almost identical even for larger values of h. Hence, in
practice, the approximating strategy can be very useful since it is available in closed form and
is reasonably close to the optimal strategy.

7.2. Unknown volatility. In contrast to the previous setting, we now assume that the
drift is a known constant and the volatility is the unobservable random variable. We set
μ = log(1.05) and Σ−1 ∼ W1(ν,Σ

−1
0 ). We choose six different parameter combinations for

ν,Σ−1
0 as specified in Table 2. In scenarios A, B, and C we have E[Σ−1] = νΣ−1

0 = 12.5, while
in D, E, and F we have E[Σ−1] = 50.

Figure 4 illustrates the distribution of Σ−1(μ − r) by showing corresponding histograms
for all six scenarios. If Σ−1(μ−r) is used as a trading strategy within the first three scenarios,
the no-short-selling restriction is satisfied with a very high probability. In scenarios D, E, and
F, however, being constrained to no short-selling or not makes a notable difference. The red
vertical line in Figure 4 indicates the upper bound 1 on Σ−1(μ− r) which is in place as soon
as short-selling constraints are imposed. For D, E, and F we observe a significant proportion
of the probability mass outside the [0, 1] interval.

Again, we are interested in the discretization gap. We can easily compute Jvol, the ex-
pected utility of the continuous investor without short-selling constraints, since this is available
in closed form; see (6.2).

The optimal solution to the h-investor’s problem with unknown volatility is difficult to
calculate, but we can use some approximations. When trading continuously, the volatility can
be determined with any desired precision over an arbitrary small compact interval; thus the
continuous investor will invest optimally when holding the Merton-ratio Σ−1(μ − r) in the
stock. Applying this strategy in discrete-time is denoted by αvol,known,N , where N = T/h.
Restricting it to no short-selling leads to a strategy denoted by αvol,known,N . These strategies
are obviously not FR-adapted and therefore not admissible for the h-investor, but they are
useful for our comparisons.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE RELAXED INVESTOR WITH PARTIAL INFORMATION 321

0 0.5 1 1.5
0

100

200

300

400

500

(a) Scenario A

0 0.5 1 1.5
0

100

200

300

400

500

(b) Scenario B

0 0.5 1 1.5
0

100

200

300

400

500

(c) Scenario C

0 1 2 3 4 5
0

100

200

300

400

500

(d) Scenario D

0 1 2 3 4 5
0

100

200

300

400

500

(e) Scenario E

0 1 2 3 4 5
0

100

200

300

400

500

(f) Scenario F

Figure 4. Histogram obtained by simulating Σ−1(μ− r) for all six scenarios.

Table 3
Expected terminal utility for strategies with either estimated or known parameter Σ−1 for different N and

different scenarios.

N = 4 N = 200 N = 2000 Continuous
Jh,vol
0,α

(
1, (0, 0)

)
Jh,vol
0,α

(
1, (0, 0)

)
Jh,vol
0,α

(
1, (0, 0)

)
Jvol(1)

α αvol,est,4 αvol,known,4 αvol,est,200 αvol,known,200 αvol,est,2000 αvol,known,2000 π

A 0.03181 0.03183 0.03182 0.03184 0.03185 0.03186 0.03187
B 0.03164 0.03182 0.03177 0.03184 0.03185 0.03186 0.03187
C 0.02984 0.03183 0.03165 0.03183 0.03182 0.03184 0.03187

Standard deviations of Jh,vol
0,α

(
1, (0, 0)

) ∈ [0.000048, 0.000065] for A, B, C -

D 0.03868 0.03874 0.03868 0.03873 0.03874 0.03876 0.03880
E 0.03799 0.03853 0.03835 0.03853 0.03852 0.03856 0.03880
F 0.03144 0.03763 0.03723 0.03759 0.03757 0.03761 0.03880

Standard deviations of Jh,vol
0,α

(
1, (0, 0)

) ∈ [0.000076, 0.000127] for D, E, F -

We also consider the following strategies which are admissible for the h-investor since the
unknown Σ−1 is replaced by the estimator defined in (6.6):

αvol,est,N
n (s) := Σ̂−1,h

(
s,
⌊n
2

⌋)
(μ − r),

αvol,est,N
n (s) := max

{
0,min

{
1, Σ̂−1,h

(
s,
⌊n
2

⌋)
(μ − r)

}}
,

where n = 0, 1, . . . , N − 1 and the latter obeys short-selling restrictions. Here s denotes again
the value of the sufficient statistic. By Monte Carlo simulation (2 million replications) we
have found the results given in Table 3.
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Table 4
Discretization gap Jvol(1)− Jh,vol

0,αvol,known,2000 (1, (0, 0)), difference between continuous and discrete trading

for continuous observations Jh,vol

0,αvol,known,2000 (1, (0, 0))−Jh,vol

0,αvol,known,4(1, (0, 0)), and difference between contin-

uous and discrete observations for discrete trading Jh,vol

0,αvol,known,4(1, (0, 0))− Jh,vol

0,αvol,est,4(1, (0, 0)).

Scen. Discretization gap Cont. - disc. trading Cont. - disc. observations
with cont. observations with disc. trading

A 0.00001 0.00003 0.00002

B 0.00001 0.00004 0.00018

C 0.00003 0.00001 0.00199

D 0.00004 0.00002 0.00006

E 0.00024 0.00003 0.00054

F 0.00119 0.00098 0.00619

Clearly and as expected, taking into account additional information gives an advantage to
the investor. Additional information is particularly useful if the estimator is not very precise
yet due to a high variance of the prior.

Table 4 shows the discretization gap for unknown volatility. Since Jvol,nss(1) is not avail-

able in closed form, we approximate it by Jh,vol
0,αvol,known,2000(1, (0, 0)), which can be justified by

Theorem 6.3. We find that the discretization gap is small in scenarios A–C. Moreover, it is still
within the size of the standard deviation of our estimator. This result is not too surprising,
given that the no-short-selling restriction in these scenarios is satisfied with a very high proba-
bility anyway and hence the difference between Jvol(1) and Jvol,nss(s) is expected to be small.

The situation is very different in scenarios D–F. Even if we account for the standard
deviation of the estimator, the discretization gap is clearly there and becomes more obvious
when we move from D to F. In these scenarios the no-short-selling restriction is usually not
automatically satisfied and therefore these results seem natural.

Next we compare the difference between continuous and discrete trading assuming that
we have continuous observations. We compare Jh,vol

0,αvol,known,2000(1, (0, 0)) as an approximation

for continuous trading with Jh,vol
0,αvol,known,4(1, (0, 0)) which represents discrete trading. We find

that the difference is rather small.
The story is very different if we account for the different information of the discrete and

the continuous investor. We compare Jh,vol
0,αvol,known,4(1, (0, 0)), i.e., the expected utility of the h-

investor who was told the volatility, with Jh,vol
0,αvol,est,4(1, (0, 0)), which is the expected utility she

gains from using the two-step-volatility estimator defined in (6.6). The difference in expected
utility is severe. Given that N = 4, the estimator for the volatility is based on only two
observations and therefore not very precise yet. Therefore the loss in expected utility is large.

Generally, we find that if the volatility is unknown, the information loss is the main
problem for the h-investor.

8. Conclusion. We have derived optimal trading strategies for an investor who can only
trade at discrete-time points and does not observe all market parameters. We have provided
a detailed comparison between the h-investor and the continuous investor regarding their
optimal strategies and their expected utilities.
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For unknown drift, we have proved that the estimators of the drift of the continuous and
the h-investor coincide at the discrete trading times. The expected utility of the h-investor,
however, does not converge to the expected utility of the continuous investor for h → 0. This
is because the h-investor’s optimal strategy excludes short-selling, whereas for the continuous
investor this is not the case. The arising discretization gap is just the difference between the
expected utility of the continuous investors with and without short-selling constraints.

For unknown volatility, already the estimators between the two types of investors differ.
The continuous investor can perfectly estimate the unknown volatility from a very small time
frame of available stock prices and effectively works under full information. The h-investor,
however, loses relevant information by observing the asset price at discrete-time and therefore
has a disadvantage. We still observe a very similar limiting behavior for h → 0. Again, the
expected utility of the h-investor only converges to the expected utility of the continuous
investor satisfying short-selling constraints, i.e., again the discretization gap occurs.

For both situations (unknown drift and unknown volatility, respectively) we have provided
simple strategies for the h-investor which are almost optimal, are simple to implement, and
ensure that the corresponding expected utility converges to the optimal expected utility.

Of course, it is also possible to combine the situation of unknown drift and unknown
volatility, but we leave this for future research.

Our results under incomplete information are in contrast to those under full information
(see [25]) where the discretization gap does not occur. Hence, we have found a natural example
in which a discretization of a continuous problem does not converge to the continuous solution
when the size of the time step approaches zero.

Appendix A.
Proof of Theorem 5.1. The second equality holds by definition; therefore we only need to

prove the first equality. The expected log-utility of the continuous investor can be written as

Jnss
π (x) = Ex logX

π
T = log(x) + Ex

[∫ T

0

(
r + π�

s (μ − r1)− 1

2
π�
s Σπs

)
ds

]

and the expected log-utility of the h-investor is

Jh
0,α(x, 0) = Ex logX

α
N = log(x) + rT +

N∑
n=1

Ex log
(
1 + α�

n−1Rn

)
.

So it is obviously sufficient to show that

lim
h→0

N∑
n=1

Ex log
(
1 + α�

n−1Rn

)
= Ex

[∫ T

0

(
π�
s (μ− r1)− 1

2
π�
s Σπs

)
ds

]
.

We first prove

E

[
log(1 + α�

n−1Rn)
]
= E

[
π�
(n−1)h(μ− r1)h− 1

2
π�
(n−1)hΣπ(n−1)hh

]
+ o(h).

For a fixed time point t = (n − 1)h write α = αn−1 = πt. Using the tower property of the
conditional expectation we treat the FR

n−1-measurable αn−1 as given and write Et for the
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conditional expectation. Consider the function f : Rd → R defined by

f(x1, . . . , xd) = log

(
1 +

d∑
i=1

αi(e
xi − 1)

)
.

If we set Ỹ i
n := (μi − r)h− 1

2‖σi‖2h+
√
hσiεn, then

Et

[
log(1 + α�Rn)

]
= Etf(Ỹ

1
n , . . . , Ỹ

d
n ).

Next use a Taylor series expansion of f around 0 = (0, . . . , 0). We use the notation Dif for
the partial derivative w.r.t. xi and θ ∈ (0, 1):

f(x) = f(0) +

d∑
i=1

Dif(0)xi +
1

2

d∑
i,j=1

DiDjf(0)xixj +
1

6

d∑
i,j,k=1

DiDjDkf(θx)xixjxk.

Computing the derivatives we obtainDif(0) = αi,DiDjf(0) = −αiαj for i 	= j and (Di)
2f(0) =

αi(1− αi). Further note that |DiDjDkf(θỸn)| ≤ 1. Thus, our statement follows, since

Et

[
log(1 + α�Rn)

]
=

d∑
i=1

αiEtỸ
i
n − 1

2

d∑
i,j=1

αiαjEtỸ
i
nỸ

j
n +

1

2

d∑
i=1

αiEt(Ỹ
i
n)

2 + o(h)

= α�(μ− r1)h− 1

2
α�Σαh+ o(h).

We obtain with dominated convergence the fact that the constants in front of o(h) can be
made independent of n (due to stationarity) and the P-a.s. continuity of t �→ πt that

lim
h→0

T/h∑
n=1

Ex log
(
1 + α�

n−1Rn

)

= lim
h→0

⎛
⎝T/h∑

n=1

Ex

[
π�
(n−1)h(μ − r1)h− 1

2
π�
(n−1)hΣπ(n−1)hh

]
+

T/h∑
n=1

o(h)

⎞
⎠

= Ex

⎡
⎣ lim
h→0

T/h∑
n=1

π�
(n−1)h(μ− r1)h− 1

2
π�
(n−1)hΣπ(n−1)hh

⎤
⎦+ lim

h→0
o(1)

= Ex

[∫ T

0
π�
s (μ− r1)− 1

2
π�
s Σπs, ds

]
,

which implies the result.
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Proof of Theorem 5.3. Using the same Taylor expansion as in the previous proof we can
write the optimization problem in (4.4) as

∫ ∫
log

(
1 + a�ẑ

)
QZ̃(dz̃|m)μ(dm|s, n)

=

∫ ∫ ⎛
⎝ d∑

i=1

ai

(
z̃i − 1

2
‖σi‖2h− rh

)
− 1

2

d∑
i,j=1

aiaj z̃
iz̃j +

1

2

d∑
i=1

ai‖σi‖2h
⎞
⎠

QZ̃(dz̃|m)μ(dm|s, n) + o(h)

=

(
a�(μ̂t − r1)− 1

2
a�Σa

)
h+ o(h).

If we define f(a) := a�(μ̂t − r1)− 1
2a

�Σa, then

fh(a) =
1

h

∫ ∫
log

(
1 + a�ẑ

)
QZ̃(dz̃|m)μ(dm|s, n)

has the property that fh → f for h → 0 and the constant in front of o(h) can be chosen
independent of a. Since D is compact, a �→ fh(a) is continuous and strictly concave, i.e., the
maximum point of fh is unique, we obtain our statement with Theorem A.1.5 in [3].

Proof of Theorem 6.2. First observe that the strong law of large numbers implies

lim
h→0

Σ̂h

⎛
⎝� t

2h
�∑

k=1

ỸkỸ
�
k ,

⌊
t

2h

⌋⎞⎠ = lim
h→0

1

ν − d− 1 + � t
2h�

⎛
⎝Σ0 +

1

2h

� t
2h

�∑
k=1

ỸkỸ
�
k

⎞
⎠ = Σ, P-a.s..

Since the limit is independent of t, the convergence is also uniform on compact intervals
of the form [ε, T ] for ε > 0. Hence, when we denote the objective function of (6.3) by
f(a) := a�(μ − r1)− 1

2a
�Σa and by

fh(a) := a�(μ− r1)− 1

2
a�Σ̂h

⎛
⎝� t

2h
�∑

k=1

ỸkỸ
�
k ,

⌊
t

2h

⌋⎞⎠ a

the objective function of (6.7), we obviously have fh → f for h → 0. Since D is compact and
a �→ fh(a) is continuous and strictly concave, we obtain the statement with Theorem A.1.5
in [3].

Proof of Theorem 6.3. As in the proof of Theorem 5.1 we have

Ex log
(
1 + αh,vol�

n−1 Rn

)
= Ex

[
πh,vol�
(n−1)h(μ− r1)h− 1

2
πh,vol�
(n−1)hΣπ

h,vol
(n−1)hh

]
+ o(h).

Since the convergence of the portfolio strategy is uniform on intervals [ε, T ] the statement
finally follows as in Theorem 5.1.
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Proof of Corollary 6.4. With Theorem 6.3 and

Jh,vol
0,αh,vol(x) ≤ Jh,vol

0 (x) ≤ Jvol,nss(x)

we obtain the result.
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