Library Header Image
LSE Research Online LSE Library Services

Parameter estimation through ignorance

Du, Hailiang and Smith, Leonard A. (2012) Parameter estimation through ignorance. Physical Review E, 86 (1). 016213. ISSN 2470-0045

Full text not available from this repository.

Identification Number: 10.1103/PhysRevE.86.016213


Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.

Item Type: Article
Official URL:
Additional Information: © 2012 American Physical Society
Divisions: Centre for Analysis of Time Series
Subjects: Q Science > QA Mathematics
Date Deposited: 02 Aug 2012 14:12
Last Modified: 16 May 2024 01:27

Actions (login required)

View Item View Item