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ROBUST MAXIMIZATION OF ASYMPTOTIC GROWTH

CONSTANTINOS KARDARAS AND SCOTT ROBERTSON

Abstract. This paper addresses the question of how to invest in a robust growth-optimal way

in a market where the instantaneous expected return of the underlying process is unknown. The

optimal investment strategy is identified using a generalized version of the principal eigenfunction

for an elliptic second-order differential operator which depends on the covariance structure of the

underlying process used for investing. The robust growth-optimal strategy can also be seen as a

limit, as the terminal date goes to infinity, of optimal arbitrages in the terminology of Fernholz

and Karatzas [5].

0. Discussion

This paper addresses the question of how to invest optimally in a market when the finan-

cial planning horizon is long and the dynamics of the underlying assets are uncertain. For long

time-horizons, it is reasonable to question whether fixed parameter estimation, especially for drift

rates, remain valid. Therefore, determining a robust way to invest across potential model mis-

identifications is desirable, if not indispensable.

On the canonical space of continuous functions from [0,∞) to Rd, let X denote the coordinate

mapping, which should be thought as representing the (relative) price of certain underlying assets,

discounted by some baseline wealth process. It is assumed that there exists a probability Q under

which X has dynamics of the form dXt = σ(Xt)dW
Q
t , where c := σσ′ represents the instantaneous

covariance matrix, and WQ is a standard Brownian motion under Q. The significance of the local

martingale probability Q lies in that it acts as a “dominating” measure used to form a class of

probabilities Π, out of which an unknown representative is supposed to capture the true dynamics of

the process. The class Π is built by exactly all probabilities satisfying the following two conditions:

• Firstly, under P ∈ Π the coordinate mapping X stays in an open and connected subset

E ⊆ Rd. Qualitatively, if X represents either asset prices or relative capitalizations, this

condition asserts that assets should not cease to exist over the time horizon.

Date: December 27, 2010.

2000 Mathematics Subject Classification. 60G44, 60G46, 60H05.

Key words and phrases. Asymptotic growth rate; robustness; generalized martingale problem; optimal arbitrage.

The authors would like to express their gratitude towards the Associate Editor and four anonymous referees for

their very constructive remarks that helped improve the paper significantly. The first author is supported in part by

the National Science Foundation under grant number DMS-0908461.

1

http://arxiv.org/abs/1005.3454v3
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• Secondly, each P ∈ Π is locally (i.e. for each t ∈ R+) absolutely continuous with respect

to Q. This last fact implies that the volatility process of X under each P ∈ Π is the same;

even though model mis-identification is possible, the allowable models are not permitted

to be wildly inconsistent with one another.

Note that the family Π as described above does not necessarily induce any ergodic or stability

property of the assets, although it certainly contains all such models; in particular, models where

the assets display transient behavior are allowable. Furthermore, it is not assumed that Q ∈ Π.

Indeed, it is often the case that X “explodes” under Q; more precisely, with ζ denoting the first

exit time of X from E, Q [ζ < ∞] > 0 is allowed.

There are good reasons to let the class of models be defined in the above way. For example,

while the covariance structure given by the function c is easy to assess, the returns process of X

under the “true” probability is statistically impossible to estimate in practice.1

Given that the underlying dynamics are only specified within a range of models P ∈ Π, a natural

question is to find a reasonable criterion for “optimal investment in X”. Here, optimal investment

is defined as a wealth process which ensures the largest possible asymptotic growth rate under all

models. Given the class V of all possible positive stochastic integrals against X starting from unit

initial capital, the asymptotic growth rate of V ∈ V under P ∈ Π is defined as the largest γ ∈ R+

such that limt↑∞ P [(1/t) log Vt ≥ γ] = 1 holds. (An alternative definition of asymptotic growth

rate via almost-sure limits is also considered in the paper.) With this definition, the investor seeks

to find a wealth process in V that achieves maximal growth rate uniformly over all possible models

in Π, or at least in a large enough suitable subclass of Π that covers all “non-pathological” cases.

The solution to the above problem is given in terms of a generalized version of the principal

eigenvalue-eigenvector pair (λ∗, η∗) of the eigenvalue equation

(0.1)
1

2

d∑

i,j=1

ci,j(x)
∂2η

∂xi∂xj
(x) = −λη(x), x ∈ E.

More precisely, the main result of Section 2 states that, when restricted to a large sub-class Π∗

of Π, λ∗ is the maximal growth rate and the process V ∈ V defined via Vt = eλ
∗tη∗(Xt) for

t ∈ R+ achieves this maximal growth rate. There are, of course, technicalities on an analytical

level arising from the use of the eigenvalue equation (0.1), since it is unreasonable in the present

setting to assume either that c is uniformly positive definite on E or that E is bounded with

1Actually, under continuous-time observations, perfect estimation of c is possible. More realistically, high-

frequency data give good estimators for c. In contrast, consider a one-dimensional model for an asset-price of the

form dXt/Xt = bdt+ .2dWt, where b ∈ R — note that σ = .2 is considered a “typical” value for annualized volatility.

Given observations (Xt)t∈[0,T ], where T > 0, the best linear unbiased estimator for b is b̂T := (1/T ) log(XT /X0).

Easy calculations show that in order for |̂bT − b| ≤ .01 to happen with probability at least 95%, one needs T ≈ 1600

(in years). This simple exercise demonstrates the futility of attempting to estimate drifts.
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smooth boundary. (Consider, for example, the case where X represents the prices of d assets. In

this instance E = (0,∞)d, which is unbounded with corners. Furthermore, once the stock price

goes to zero, it remains stuck there. Thus, the covariance matrix c degenerates along the boundary

of E and hence cannot be both continuous and uniformly elliptic.) In order to allow for degenerate

c and unbounded E with non-smooth boundary, but still retain some tractability in the problem,

it is assumed that E can be “filled up” by bounded subregions with smooth boundary and that c

is continuous and pointwise strictly positive definite. Under this assumption, [23, Chapter 4] gives

a detailed account of eigenvalue equations of the form (0.1).

Growth-optimal trading in the face of model uncertainty has been investigated by other authors.

One strand of research considers the case where asset returns are assumed stationary and ergodic.

In [2], asymptotically growth-optimal trading strategies based upon historical data are constructed.

There have been a number of follow up papers on this topic — see [1], [13] and the references cited

within. In contrast to the aforementioned approach, knowledge of the entire past is not required in

this paper. In fact, the optimal strategy is only based on the current level of X and is, therefore,

closely-related to the idea of functionally-generated portfolios studied in [8]. Furthermore, it is

also not assumed here that X represents asset returns; in fact, the primary example is when

X are relative capitalizations, and not asset returns. In this setting, stationarity of the relative

capitalizations does not automatically transfer to stationarity of returns.

The concept of robust growth optimality is also related to that of robust utility optimization,

the idea of which dates back to [10] and is considered in detail in [12], [9], [24], [26] and [25]

amongst others. (There is also recent literature on optimal stopping under model ambiguity —

see, for example, [3].) Though this paper differs from those mentioned in not considering penalty

functions and by focusing on growth rather than general utility functions, the growth-optimal

strategy provides a “good” long term robust optimal strategy for general utility functions due to

the exponential increase in terminal wealth as time progresses. Two recent papers which are close

in spirit to the present paper are [17] and [16]. [17] considers long-run robust utility maximization

in the case of model uncertainty for power and logarithmic utility and [16] addresses the problem

of finding wealth processes that minimize long-term downside risk. The precise manner in which

the class of models is defined in these papers can only be identified up to a (stochastic) affine

perturbation away from a fixed model. This paper differs from the above two in that, to the

extent that underlying economic factors affect the asset dynamics, it is only through the drift of

X. Furthermore, there is no a priori fixed model from which all other models are recovered via

perturbations. This enables the class of models to be determined by qualitative properties, without

additional technical restrictions. However, here, as well as in [16], there is a fundamental PDE,

playing the role of an ergodic Bellman equation, which governs the robust trading strategies.
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The problem of constructing robust growth-optimal strategies can be extended to the case where

even the covariance matrix c is not known precisely, but rather assumed to belong to a class of

admissible matrices C. Such a situation has been studied in [6] in the setting of optimal arbitrage

mentioned below. In such a setting, one does not even assume the existence of a dominating

probability Q, and the probabilities in P can be mutually singular. It is left for future research to

establish a natural definition of an “extremely” robust growth-optimal trading strategy in terms

of sub-solutions of (0.1) which are uniform over C.

A second goal of the present paper is to relate robust growth-optimal trading strategies to

optimal arbitrages, as considered in [5]. Optimal arbitrages are trading strategies designed to

almost surely outperform in the best possible manner the benchmark process used for discounting

over a given time horizon. In [5], it was shown that the existence of an optimal arbitrage on a finite

time horizon [0, T ], T ∈ R+, is equivalent to Q[ζ ≤ T ] > 0 (positive probability of explosion of the

coordinate process under Q before T ), when E is the simplex in Rd. In fact, optimal arbitrages

are naturally expressed in terms of (conditional) tails of the distribution of ζ under Q.

The robust growth-optimal trading strategies considered here can be regarded as a long term

limit of the optimal arbitrages; this is a topic taken up in Section 4. A better understanding of this

connection requires exploring a particular probability P∗, under which X has dynamics of the form

dXt = (c(Xt)∇ log η∗(Xt)) dt+ σ(Xt)dW
P∗

t for t ∈ R+, where W
P∗

is a standard Brownian motion

under P∗. Loosely speaking, ergodicity of X under P∗ implies the convergence (at least on compact

time-intervals) of the collection of processes (V T )T∈R+ , where (V T
t )t∈[0,T ] is the optimal arbitrage

in the interval [0, T ], to the robust growth-optimal wealth process, as the horizon T becomes large.

This is part of the reason why Section 3 is devoted to investigating the properties of X under

P∗. An application of ergodic results for unbounded functions from [21], coupled with powerful

probabilistic arguments, allows to show the aforementioned convergence of optimal arbitrages to

the robust growth-optimal one. Furthermore, convergence of the probabilities Q [ · | ζ > T ] to P∗

on Ft as T ↑ ∞ in the total-variation norm is established. This extends results on diffusions

conditioned to remain in a bounded region, first obtained in [22], to regions with non-smooth

boundaries where the matrix c need not be uniformly positive definite, and where the process X

under Q need not be m-reversing for any measure m.

In the special one-dimensional case, considered in Section 5, simple tests for transience and

recurrence of diffusions are readily available. This allows to provide tight conditions upon c in the

case of a bounded interval, in which λ∗ = 0 or λ∗ > 0, and characterize both the nature of η∗ and

of P∗. The main message is essentially the following: if X can explode to both endpoints under Q

then everything works out nicely, in the sense that λ∗ > 0 and X is positive recurrent under P∗.

The technical proof of this result relies heavily on singular Sturm-Liouville theory and is given in

Section 7.
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Finally, Section 6 provides examples that illustrate the results obtained in previous sections. In

contrast to the case where c is uniformly positive definite on E, multi-dimensional examples where

the function η∗ does not vanish on the boundary of E, even if E is bounded, are given.

1. The Set-Up

Consider an open and connected set E ⊆ Rd and a function c mapping E to the space of d× d

matrices. The following assumptions will be in force throughout:

Assumption 1.1. For each x ∈ E, c(x) is a symmetric and strictly positive definite d× d matrix.

For 1 ≤ i, j ≤ d, cij(x) is locally C2,α on E for some α ∈ (0, 1]. Furthermore, there exists a

sequence (En)n∈N of bounded open connected subsets of E such that each boundary ∂En is C2,α,

Ēn ⊂ En+1 for n ∈ N, and E =
⋃∞

n=1En.

1.1. The generalized martingale problem on E. It will now be discussed how Assumption

1.1 implies the existence of a unique solution to the generalized martingale problem on E for the

operator L which acts on f ∈ C2(E) via

(1.1) (Lf)(x) =
1

2

d∑

i,j=1

cij(x)
∂2f

∂xi∂xj
(x), x ∈ E.

Let Ê = E ∪ △ be the one-point compactification of E; the point △ is identified with ∂E if E

is bounded and with ∂E plus the point at ∞ if E is unbounded. Let C
(
R+, Ê

)
be the space of

continuous functions from [0,∞) to Ê. For ω ∈ C
(
R+, Ê

)
, define the exit times:

ζn(ω) := inf {t ∈ R+ | ωt /∈ En} ,

ζ(ω) := lim
n↑∞

ζn(ω).

Then, define

Ω =
{
ω ∈ C

(
R+, Ê

)
| ωζ+t = △ for all t ∈ R+ if ζ(ω) < ∞

}
.

Let X = (Xt)t∈R+ be the coordinate mapping process for ω ∈ Ω. Set B = (Bt)t∈R+ to be the

natural filtration ofX. It follows that the smallest σ-algebra that is generated by
⋃

t∈R+
Bt, denoted

by B∞, is actually the Borel σ-algebra on Ω. Furthermore, B∞ is also the smallest σ-algebra that

is generated by
⋃

n∈N Bζn , since paths in Ω stay in △ upon arrival.

A solution to the generalized martingale problem on E is a family of probability measures

(Qx)x∈Ê such that Qx[X0 = x] = 1 and

f(Xt∧ζn)−
∫ t∧ζn

0
(Lf)(Xs)ds

is a
(
Ω, (Bt)t∈R+ ,Qx

)
-martingale for all n ∈ N and all f ∈ C2(E) with Lf given as in (1.1).

Assumption 1.1 ensures a solution to the generalized martingale problem, as the following result,

taken from [23, Theorem 1.13.1], shows.
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Proposition 1.2. Under Assumption 1.1, there is a unique solution (Qx)x∈Ê to the generalized

martingale problem on E. Furthermore, the family (Qx)x∈Ê possesses the strong Markov property.

Set (Ft)t∈R+ to be the right-continuous enlargement of (Bt)t∈R+ . With F denoting the smallest

σ-algebra that contains
⋃

t∈R+
Ft, we have F = B∞. Assumption 1.1 implies that

f(Xt∧ζn)−
∫ t∧ζn

0
(Lf)(Xs)ds

is a
(
Ω, (Ft)t∈R+ ,Qx

)
-martingale for all n ∈ N and f ∈ C2(E) since f and Lf are bounded on

each En. By setting f(x) = xi, i = 1, ..., d and f(x) = xixj, i, j = 1, ...d it follows that for each

n and each x ∈ Ê, Xt∧ζn is a
(
Ω, (Ft)t∈R+ ,Qx

)
-martingale with quadratic covariation process

∫ ·
0 I{t≤ζn}c(Xt)dt.

1.2. Asymptotic growth rate. For a fixed x0 ∈ E, set Q = Qx0 . In the sequel, whenever there

is no subscript associated to the probabilities it will be tacitly assumed that they only charge the

event {X0 = x0}.
Denote by Π the class of probabilities on (Ω,F) which are locally absolutely continuous with

respect to Q (written P ≪loc Q) and for which the coordinate process X does not explode, i.e.,

P ∈ Π if and only if P|Ft ≪ Q|Ft for all t ≥ 0 and P [ζ < ∞] = 0. For each P ∈ Π, X is

a
(
Ω, (Ft)t∈R+ ,P

)
-semimartingale such that P [X ∈ C (R+, E)] = 1. Therefore, X admits the

representation

X = x0 +

∫ ·

0
bPt dt+

∫ ·

0
σ(Xt)dW

P
t ,

where W P is a standard d-dimensional Brownian motion on
(
Ω, (Ft)t∈R+ ,P

)
, σ is the unique

symmetric strictly positive definite square root of c and bP is a d-dimensional (Ft)t∈R+ -progressively-

measurable process.

Let (ξt)t∈R+ be an adapted process. For P ∈ Π, define

P- lim inf
t→∞

ξt := ess sup
P

{
χ is F-measurable | lim

t→∞
P[ξt ≥ χ] = 1

}
.

If, in addition, P [ξt > 0] = 1 for each t ∈ R+, let

g(ξ;P) := sup
{
γ ∈ R | P- lim inf

t→∞

(
t−1 log ξt

)
≥ γ, P- a.s.

}

be the asymptotic growth rate of ξ under P. (If the previous set is empty, it is tacitly assumed that

g(ξ;P) = −∞.) Since P ∈ Π and Q are not necessarily equivalent on F , g(ξ;P) indeed depends on

P ∈ Π. The following result, the proof of which is straightforward and hence omitted, provides an

alternative representation for g(ξ;P).

Lemma 1.3. For a given P ∈ Π and an adapted real-valued process (ξt)t∈R+ such that P[ξt > 0] = 1

for all t ∈ R+,

g(ξ;P) = sup
{
γ ∈ R | lim

t→∞
P
[
t−1 log ξt ≥ γ

]
= 1
}
.
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1.3. The problem. The basic object in our study will be the class of all possible nonnegative

wealth processes that one can achieve by investing in the d assets whose discounted price processes

are modeled via X. Whenever ϑ is a d-dimensional predictable process that is X-integrable under

Q (and, as a consequence, X-integrable under any P ∈ Π, as P ≪loc Q), define the process

V ϑ = 1+
∫ ·
0 ϑ

′
tdXt. Then, let V denote the class of all processes V ϑ of the previous form, where we

additionally have V ϑ ≥ 0 up to Q-evanescent sets. (Of course, V ϑ ≥ 0 also holds up to P-evanescent

sets for all P ∈ Π.) Naturally, ϑ represents the position that an investor takes on the assets whose

discounted price-processes are given by X, and V ϑ represents the resulting wealth from trading

starting from unit capital, constrained not to go negative at any time.

The problem considered is to calculate

(1.2) sup
V ∈V

inf
P∈Π

g(V ;P)

and to find V ∗ ∈ V that attains this value, at least for all P in a large sub-class of Π that will be

soon defined. To this end, for a given λ ∈ R and L as in (1.1), define the cone of positive harmonic

functions with respect to L+ λ as

(1.3) Hλ :=
{
η ∈ C2(E) | Lη = −λη and η > 0

}
.

Set

(1.4) λ∗ := sup {λ ∈ R | Hλ 6= ∅} .

Since H0 6= ∅ (take η ≡ 1), it follows that λ∗ ≥ 0. If Hλ∗ 6= ∅ then, by construction, there is an

η∗ ∈ C2(E) satisfying

(1.5) Lη∗ = −λ∗η∗

and λ∗ is the largest real number for which such an η∗ exists. Thus, λ∗ is a generalized version of

the principal eigenvalue for L on E. The following result, taken from [23, Theorem 4.3.2], states

that, indeed, Hλ∗ 6= ∅.

Proposition 1.4. Let Assumption 1.1 hold. Then 0 ≤ λ∗ < ∞ and Hλ∗ 6= ∅.

Remark 1.5. To connect Proposition 1.4 with [23, Theorem 4.3.2] note that λc(D) therein is equal

to −λ∗. Note also, that by its construction, Π = ∅ if there exists a t > 0 such that Q [ζ > t] = 0.

However, by [23, Theorem 4.4.4] it follows that if such a t > 0 exists then λ∗ = ∞. Proposition 1.4

thus implies that Q [ζ > t] > 0 for all t > 0. It is also directly shown in the proof of Theorem 2.1

below that, under Assumption 1.1, Π 6= ∅.

Remark 1.6. Proposition 1.4 makes no claim regarding the uniqueness of η∗ (up to multiplicative

constants) corresponding to λ∗. For example, when E = (0,∞) and c ≡ 1, it holds that λ∗ = 0;

hence η∗ could be either x or 1. For this E and c, Example 4.7 in Section 4 shows that even when

uniqueness fails, a particular choice of η∗ may be advantageous.
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The following result, taken from [23, Theorems 4.3.3 and 4.3.4], provides a way of checking if a

particular pair (η, λ) such that η ∈ Hλ corresponds to an optimal pair (η∗, λ∗) and if the optimal

pair is unique.

Proposition 1.7. Let Assumption 1.1 hold. Let (η, λ) be such that η ∈ Hλ. Then, there exists a

unique solution (Pη
x)x∈Ê to the generalized martingale problem on Ê for the operator

(1.6) Lη = L+ c∇ log η · ∇,

and (Pη
x)x∈Ê possesses the strong Markov property. Furthermore, if the coordinate mapping process

X is recurrent under (Pη
x)x∈E, then λ∗ = λ and Hλ is a one-dimensional linear space.

Remark 1.8. Proposition 1.7 only covers the case where the coordinate mapping process X is

recurrent under (Pη
x)x∈E. It should be noted, however, that λ = λ∗ is still possible even when the

coordinate mapping process X under (Pη
x)x∈E is transient. Indeed, in Example 4.7 from Section

4, λ∗ = 0 even though Qx[ζ < ∞] > 0 for all x ∈ E, and thus η∗ = 1 does not yield a recurrent

process.

2. The Min-Max Result

2.1. The result. For future reference, let η∗ ∈ Hλ∗ with η∗(x0) = 1, and define the function

ℓ∗ : E 7→ R via

(2.1) ℓ∗(x) = log η∗(x), for x ∈ E.

The following result identifies λ∗ with the value in (1.2).

Theorem 2.1. Let Assumption 1.1 hold. Let η∗ be a solution of (1.5) corresponding to λ∗ with

η∗(x0) = 1, and define V ∗ via V ∗
t = eλ

∗t η∗(Xt) for all t ∈ R+. Define also

Π∗ :=
{
P ∈ Π | P- lim inf

t→∞

(
t−1 log η∗(Xt)

)
≥ 0 P- a.s.

}

Then, V ∗ ∈ V and g(V ∗;P) ≥ λ∗ for all P ∈ Π∗. Furthermore,

(2.2) λ∗ = sup
V ∈V

inf
P∈Π∗

g(V ;P) = inf
P∈Π∗

sup
V ∈V

g(V ;P).

Remark 2.2. The normalized eigenfunction η∗ in the statement of Theorem 2.1 may not be unique.

Since the class of measures Π∗ depends upon η∗, the variational problems in (2.2) also change with

η∗. However, the value λ∗ is the same no matter which η∗ is chosen.

For a given η∗, it may seem artificial to restrict attention to Π∗. However, no matter which

η∗ ∈ Hλ∗ is chosen, Π∗ contains all the probabilities P such that X is tight in E, and hence

naturally corresponds to those P for which X is “stable”. To see this, let ǫ > 0 and Kǫ ⊆ E be
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compact such that supt≥0 P [Xt 6∈ Kǫ] ≤ ǫ. Set βǫ = maxx∈Kǫ | log η∗(x)| and note that for any

δ > 0 and t > βǫ/δ,

P
[
t−1 log η∗(Xt) < −δ

]
≤ P

[∣∣t−1 log η∗(Xt)
∣∣ > δ;Xt 6∈ Kǫ

]
≤ ǫ.

Thus, limt→∞ P
[
t−1 log η∗(Xt) ≥ −δ

]
= 1 for all δ > 0; hence, P ∈ Π∗.

Proof of Theorem 2.1. To see why V ∗ ∈ V, note that Itô’s formula gives, for each n ∈ N, each

t ∈ R+ and each P ∈ Π,

(2.3) V ∗
t∧ζn = 1 +

∫ t∧ζn

0
eλ

∗s∇η∗(Xs)
′dXs = 1 +

∫ t∧ζn

0
V ∗
s ∇ℓ∗(Xs)

′dXs,

where the prime symbol (′) denotes transposition. Since P[ζ < ∞] = 0 for all P ∈ Π, it follows

that the equalities in (2.3) hold under P when we replace t ∧ ζn with t for all t ∈ R+. By the

construction of Π∗, P
[
limt→∞ t−1 log(V ∗

t ) ≥ γ
]
= 1 holds for all γ < λ∗ and all P ∈ Π∗. Therefore,

Lemma 1.3 implies g(V ∗;P) ≥ λ∗ for all P ∈ Π∗. In particular, λ∗ ≤ supV ∈V infP∈Π∗ g(V ;P).

Now, let λ∗
n, η

∗
n and ℓ∗n be the equivalents of λ∗, η∗ and ℓ∗ when E is replaced by En in (1.3), (1.4),

(2.1) and (2.3). Assumption 1.1 gives that c is uniformly elliptic on En and hence η∗n ∈ C2,α
(
Ēn

)

and η∗n vanishes on ∂En [23, Theorem 3.5.5]. Furthermore, there exists a solution to the generalized

martingale problem
(
P∗
x,n

)
x∈En

for the operator Lη∗n in (1.6) and the coordinate process X under
(
P∗
x,n

)
x∈En

is recurrent in En ([23, proof of Theorem 4.2.4]). This latter fact gives the uniqueness

(up to multiplication by a positive constant) of η∗n.

Set P∗
n = P∗

x0,n. It follows that P∗
n [ζ < ∞] = 0 and limt→∞ P∗

n

[
t−1 log η∗(Xt) = 0

]
= 1 since

there exists a Kn > 0 such that 1/Kn < η∗ < Kn on En. Thus, P∗
n ∈ Π∗ if P∗

n ≪loc Q. To show

the latter, let (Qx,n)x∈Ên
be the solution to the generalized martingale problem for L on Ên. Let

Qn = Qx0,n. It follows from [23, Corollary 4.1.2] and the recurrence of X under P∗
n that for t > 0,

(2.4)
dP∗

n

dQn

∣∣∣∣
Bt

= eλ
∗
nt
η∗n(Xt)

η∗n(x0)
I{ζn>t},

and thus P∗
n|Bt ≪ Qn|Bt . This immediately gives P∗

n|Bt∧ζn
≪ Qn|Bt∧ζn

for each n. But, Qn|Bt∧ζn
=

Q|Bt∧ζn
. If B ∈ Bt is such that Q[B] = 0, then Q[B ∩ {ζn > t}] = 0. Since B ∩ {ζn > t} ∈ Bt∧ζn it

follows that P∗
n[B ∩ {ζn > t}] = 0. But, P∗

n[ζn > t] = 1 for each t so P∗
n[B ∩ {ζn > t}] = 0 implies

P∗
n[B] = 0. Therefore, P∗

n|Bt ≪ Q|Bt and hence P∗
n|Ft ≪ Q|Ft as well, proving P∗

n ∈ Π∗.

Let V ∗
n be defined via V ∗

n (t) = eλ
∗
n(t∧ζn)η∗n(Xt∧ζn) for t ∈ R+. (In order to avoid the cumbersome

notation V ∗
n,t for t ∈ R+, we simply use V ∗

n (t) here.) The same computations as in (2.3) show that,

for all P ∈ Π,

V ∗
n = 1 +

∫ ·

0
I{t≤ζn}e

λnt∇η∗n(Xt)
′dXt

and hence V ∗
n ∈ V. Note that V ∗

n stays strictly positive under P∗
n since P∗

n [ζn < ∞] = 0. Now,

g(V ∗
n ;P

∗
n) ≤ λ∗

n is immediate since En is bounded and hence η∗n is bounded above on En. Fur-

thermore, V ∗
n is the numéraire portfolio in V under P∗

n, which means that V/V ∗
n is a (nonnegative)
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P∗
n-supermartingale for all V ∈ V. To wit, consider any other V ∈ V and write V = 1+

∫ ·
0 ϑ

′
tdXt. A

straightforward use of Itô’s formula using the fact that Lη∗n(x) = −λ∗
n(x)η

∗
n(x) holds for all x ∈ En

gives that, under P∗
n,

V

V ∗
n

=

∫ ·

0

(
ϑt − Vt∇ℓ∗n(Xt)

V ∗
n (t)

)′

d (Xt − c(Xt)∇ℓ∗n(Xt)dt) ;

since the process X −
∫ ·
0 c(Xt)∇ℓ∗n(Xt)dt is a local P∗

n-martingale, the numéraire property of V ∗
n

in V under P∗
n follows. In view of the nonnegative supermartingale convergence theorem, the

nonnegative supermartingale property of V/V ∗
n under P∗

n gives that lim supt→∞ log (Vt/V
∗
n (t)) ≤ 0

in the P∗
n-a.s. sense. Therefore, g(V ;P∗

n) ≤ g(V ∗
n ;P

∗
n) holds for all V ∈ V. Since g(V ∗

n ;P
∗
n) ≤ λ∗

n,

supV ∈V g(V ;P∗
n) ≤ λ∗

n holds, and infP∈Π∗ supV ∈V g(V ;P) ≤ infn∈N λ∗
n. However, ↓ limn→∞ λ∗

n = λ∗

holds in view of Assumption 1.1 [23, Theorem 4.4.1]. This gives infP∈Π∗ supV ∈V g(V ;P) ≤ λ∗ and

completes the argument. �

2.2. An “almost sure” class of measures. For a fixed η∗ ∈ Hλ∗ , define the following class of

probability measures

Π∗
a.s. :=

{
P ∈ Π | lim inf

t→∞

(
t−1 log η∗(Xt)

)
≥ 0, P-a.s.

}
.

It is straightforward to check that Π∗
a.s. ⊆ Π∗. Furthermore, as will be seen in Section 3, it can be

easier to verify inclusion in Π∗
a.s. than Π∗. For P ∈ Π and V ∈ V define

ga.s.(V ;P) := sup
{
γ ∈ R | lim inf

t→∞

(
t−1 log Vt

)
≥ γ, P-a.s.

}

as the “almost sure” growth of the wealth V . The following result is the analogue of Theorem 2.1

for the class of measures Π∗
a.s. and for the growth rate ga.s.(V ;P).

Proposition 2.3. Let Assumption 1.1 hold. Let η∗ ∈ Hλ∗ be such that η∗(x0) = 1 and define Π∗
a.s

as above. Define V ∗ ∈ V by V ∗
t = eλ

∗tη∗(Xt), t ≥ 0 as in Theorem 2.1. Then ga.s.(V
∗;P) ≥ λ∗ for

all P ∈ Π∗
a.s. and

λ∗ = sup
V ∈V

inf
P∈Π∗

a.s.

ga.s.(V ;P) = inf
P∈Π∗

a.s.

sup
V ∈V

ga.s.(V ;P)

Remark 2.4. Concerning the class Π∗, in Remark 2.2 it was discussed that when the coordinate

process X is P-tight, then P ∈ Π∗. In contrast, a useful characterization of even a subset of Π∗
a.s.

independent of η∗ is difficult. On the positive side, if P is such that X never exits En for some n

then P ∈ Π∗
a.s.. However, even if X is positive recurrent under P, it cannot immediately be said

that P ∈ Π∗
a.s.

Proof. By construction of the class Π∗
a.s. it follows that ga.s.(V

∗;P) ≥ λ∗ for all P ∈ Π∗
a.s.. Thus,

λ∗ ≤ supV ∈V infP∈Π∗
a.s

ga.s.(V ;P). The inequality λ∗ ≥ infP∈Π∗
a.s.

supV ∈V ga.s.(V ;P) follows by es-

sentially the same argument as in Theorem 2.1. Specifically, let λ∗
n, η

∗
n, ℓ

∗
n, V

∗
n and P∗

n be as in

the proof of Theorem 2.1. It was shown therein that P∗
n ∈ Π for each n and that the coordinate
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process is recurrent in En under (P∗
x,n)x∈En . In fact, P∗

n ∈ Π∗
a.s because there is a Kn > 0 such that

1/Kn < η∗ < Kn on En and hence, P∗
n-a.s., limt→∞ t−1 log η∗(Xt) = 0. Furthermore, since η∗n is

from bounded above on En it holds that ga.s.(V
∗
n ;P

∗
n) ≤ λ∗

n. Using the numéraire property of V ∗
n

under P∗
n and the supermartingale convergence theorem, it follows that ga.s.(V ;P∗

n) ≤ ga.s.(V
∗;P∗

n)

holds for all V ∈ V. Therefore, supV ∈V ga.s.(V ;P∗
n) ≤ λ∗

n and

inf
P∈Π∗

a.s

sup
V ∈V

ga.s.(V ;P∗
n) ≤ inf

n∈N
λ∗
n = λ∗,

since ↓ limn→∞ λ∗
n = λ∗ as seen in the proof of Theorem 2.1. This completes the argument. �

3. An Interesting Probability

Let η∗ ∈ Hλ∗ and let (P∗
x)x∈Ê be the solution to the generalized martingale problem on Ê for

the operator Lη∗ given in (1.6) — see Proposition 1.7. Set P∗ ≡ P∗
x0
.

It is of great interest to know whether P∗ ∈ Π∗. To begin with, if this is indeed true and

g(V ∗,P∗) = λ∗, the pair (V ∗,P∗) constitutes a saddle point for the minimax problem described in

(2.2). Indeed, in this case

g(V ;P∗) ≤ g(V ∗;P∗) ≤ g(V ∗;P), for all V ∈ V and P ∈ Π∗.

Furthermore, in Section 4 where connections between robust growth-optimal portfolios and optimal

arbitrages are studied, the behavior of the coordinate process X under P∗ becomes important. To

this end, presented in the sequel are some results that explore the behavior of X under P∗. In

particular, Propositions 3.4 and 3.6 give sufficient conditions to ensure that P∗ ∈ Π∗.

Remark 3.1. Although only sufficient conditions ensuring that P∗ ∈ Π∗ are presented in this

section, examples where P∗ /∈ Π∗ have not been found. It is thus conjectured that P∗ ∈ Π∗ is

always true under Assumption 1.1, but it is an open question. For a potential counterexample,

see Example 6.5 in Section 6. (In examples where Hλ∗ is not one dimensional, at least one of the

resulting P∗ is in Π∗.)

The first result gives conditions under which P∗ ∈ Π and relates the tail probabilities of ζ under

Q and robust growth-optimal strategies.

Proposition 3.2. Let Assumption 1.1 hold and let η∗ ∈ Hλ∗ be such that P∗
x[ζ < ∞] = 0 holds for

all x ∈ E. Then, P∗ ∈ Π and

(3.1) Qx [ζ > T ] = η∗(x)EP∗

x

[
1

V ∗
T

]
holds for all T ∈ R+ and x ∈ E.

Proof. In a similar manner to (2.4), if P∗ [ζ < ∞] = 0 then it follows from [23, Corollary 4.1.2] that

dP∗

dQ

∣∣∣∣
Bt

= eλ
∗t η

∗(Xt)

η∗(x0)
I{ζ>t}
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from which it immediately holds that P∗ ≪loc Q, and hence P∗ ∈ Π. Given V ∗
T = exp(λ∗T )η∗(XT ),

the equality in (3.1) follows immediately from [23, Theorem 4.1.1]. �

Recall from Remark 2.2 that P∗-tightness of (Xt)t∈R+ implies that P∗ ∈ Π∗. The following

result is useful because it shows that, under Assumption 1.1, positive recurrence and tightness of

(Xt)t∈R+ under P∗ are equivalent notions. Note that, in general, even in the one-dimensional case

with bounded E, the behavior of (Xt)t∈R+ under P∗ can vary from positive recurrence to transience

as is shown in the examples of Section 6.1.

Proposition 3.3. Let Assumption 1.1 hold. Then the following are equivalent:

(1) The coordinate mapping process X is positive recurrent under (P∗
x)x∈E.

(2) For some x ∈ E the family of random variables (Xt)t≥0 is P∗
x-tight in E.

Proof. Under Assumption 1.1, X is recurrent under (P∗
x)x∈E if for any x, y ∈ E and ε > 0 it holds

that P∗
x

[
τB(y,ε) < ∞

]
= 1, where τB(y,ε) is the first time the coordinate process enters into the

closed ball of radius ε around y. Note that, if X is recurrent under (P∗
x)x∈E then for all x ∈ E,

P∗
x [ζ < ∞] = 0 [23, Theorem 2.8.1]. Furthermore, if X is recurrent then X is positive recurrent

under (P∗
x)x∈E if there exists a function η̃∗ > 0 such that L̃∗η̃∗ = 0 and η̃∗ ∈ L1(E, Leb) where L̃∗

is the formal adjoint to L∗ [23, Section 4.9]. Under Assumption 1.1, and recalling the definition of

ℓ∗ from (2.1), L̃∗ is the differential operator acting on f ∈ C2(E) by

L̃∗f(x) =
1

2

d∑

i,j=1

∂2

∂xi∂xj
(cij(x)f(x))−

d∑

i=1

∂

∂xi
((c(x)∇ℓ∗(x))i f(x)) .

Assume that X is positive recurrent under (P∗
x)x∈E and normalize η̃∗ so that

∫
E η̃∗(y)dy = 1.

By the ergodic theorem [23, Theorem 4.9.9] it follows that for any bounded measurable function

f : E 7→ R

(3.2) lim
t↑∞

EP∗

x [f(Xt)] =

∫

E
f(y)η̃∗(y)dy

Since η̃∗ is a probability density, for any ε > 0 there is a compact set Kε ⊂ E such that
∫

Kc
ε

η̃∗(y)dy ≤ ε.

Thus, taking fε(x) = IKc
ε
(x) in (3.2), the continuity of X and P∗ [ζ < ∞] = 0 imply that (Xt)t≥0

is P∗
x-tight for any x ∈ E.

As for the reverse implication, assume for some x ∈ E that (Xt)t≥0 is P∗
x-tight in E and for each

ε let Kε ⊂ E be a compact set such that

(3.3) inf
t≥0

P∗
x [Xt ∈ Kε] ≥ 1− ε.

Under Assumption 1.1 there are only three possibilities for the coordinate process X under

(P∗
x)x∈Ê [23, Section 2.2.8]:
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(1) X is transient: for all x ∈ E and n ∈ N, P∗
x [X is eventually in Ec

n] = 1;

(2) X is null recurrent: X is recurrent and for any φ ∈ C2(E), φ > 0 such that L̃∗φ = 0,
∫
E φ(y)dy = ∞;

(3) X is positive recurrent, meaning that X is recurrent but not null recurrent.

Clearly, if (Xt)t≥t0
is P∗

x-tight in E for some x ∈ E then X cannot be transient. Furthermore, if

X were null recurrent then for each x ∈ E and any compact set K ⊂ E it would follow that [23,

Theorem 4.9.5]

lim
t↑∞

1

t

∫ t

0
P∗
x [Xs ∈ K] ds = 0.

But, by the assumption of tightness, for the compact set Kε ⊂ E appearing in (3.3)

lim inf
t↑∞

1

t

∫ t

0
P∗
x [Xs ∈ Kε] ds ≥ (1− ε).

Therefore, X cannot be null-recurrent. Thus, X is positive recurrent under (P∗
x)x∈E. �

The following result is useful when point-wise estimates for η∗ are available.

Proposition 3.4. Let Assumption 1.1 hold and let ℓ∗ be as in (2.1). If λ∗ > 0, P∗ [ζ < ∞] = 0

and

(3.4) lim
n↑∞

inf
x∈Ec

n

1

2
∇ℓ∗(x)′c(x)∇ℓ∗(x) ≥ λ∗,

then P∗ ∈ Π∗.

Remark 3.5. If c is uniformly elliptic on E and E is bounded with a smooth boundary, λ∗ cor-

responds to the principal eigenvalue for L acting on functions η which vanish on ∂E. Since(
eλ

∗tη∗(Xt)
)−1

is a P∗-supermartingale it follows that P∗ [ζ < ∞] = 0. Furthermore, Hopf’s lemma

asserts that ∇η∗ does not vanish on ∂E so (3.4) holds as well; indeed, the quantity on the left hand

side is unbounded from above.

Proof of Proposition 3.4. That P∗ ∈ Π follows by Proposition 3.2. Recall that η∗(x0) = 1. Now,

(3.5)
1

t
ℓ∗(Xt) =

1

t

∫ t

0

(
1

2
∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)− λ∗

)
ds+

1

t

∫ t

0
∇ℓ∗(Xs)

′σ(Xs)dW
P∗

s ,

where W P∗

is a Brownian motion under P∗. By (3.4), there is a λ̃ > 0 such that for n large enough

(3.6)

∫ t

0
∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)ds ≥ λ̃

∫ t

0
I{Xs∈Ec

n}
ds+

∫ t

0
∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)I{Xs∈En}ds

Under Assumption 1.1, X is either positive recurrent, null recurrent or transient under (P∗
x)x∈E.

If X is positive recurrent then, since λ∗ > 0 implies that η∗ is not identically constant, it follows

that [23, Theorem 4.9.5] for n large enough

lim
t↑∞

∫ t

0
∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)I{Xs∈En}ds = ∞, P∗-a.s.
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Similarly, if X is either null recurrent or transient it follows that (again, by [23, Theorem 4.9.5])

lim
t↑∞

λ̃

∫ t

0
I{Xs∈Ec

n}
ds = ∞, P∗-a.s..

Using (3.6) it thus holds in each case

lim
t↑∞

∫ t

0
∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)ds = ∞, P∗-a.s.

Let M =
∫ ·
0 ∇ℓ∗(Xs)

′σ(Xs)dW
P∗

s , so that [M,M ] =
∫ ·
0 ∇ℓ∗(Xs)

′c(Xs)∇ℓ∗(Xs)ds. By the Dambins,

Dubins and Schwarz Theorem, [14, Theorem 3.4.6], there exists a standard Brownian motion (under

P∗) B such that M = B[M,M ]. Therefore, one can write (3.5) as

1

t
ℓ∗(Xt) = −λ∗ +

[M,M ]t
2t

(
1 + 2

B[M,M ]t

[M,M ]t

)
.

By the strong law of large numbers,

lim
t↑∞

B[M,M ]t

[M,M ]t
= 0 P∗-a.s.,

which means that

(3.7) lim inf
t↑∞

1

t
ℓ∗(Xt) ≥ −λ∗ + lim inf

t↑∞

[M,M ]t
2t

, P∗-a.s.

If X is positive recurrent under P∗, then P∗ ∈ Π∗ as shown in Proposition 3.3 and Remark 2.2.

Otherwise, note that, because of (3.4), for any δ > 0 and n ∈ N large enough,

−λ∗ +
[M,M ]t

2t
≥ −δ

1

t

∫ t

0
I{Xs∈Ec

n}
ds− λ∗ 1

t

∫ t

0
I{Xs∈En}ds

≥ −δ − λ∗ 1

t

∫ t

0
I{Xs∈En}ds.

Now, if X is null-recurrent under P∗ then from [23, Theorem 4.9.5] it follows that

lim
t↑∞

1

t

∫ t

0
I{Xs∈En}ds = 0, P∗-a.s

proving, in view of (3.7), that P∗ ∈ Π∗
a.s., and hence P∗ ∈ Π∗. Clearly,

{X eventually in Ec
n} ⊆

{
lim
t↑∞

1

t

∫ t

0
I{Xs∈En}ds = 0

}
.

Therefore, if X is transient it follows that P∗ ∈ Π∗. �

Another result giving a condition on whether P∗ ∈ Π∗ based on the tail-decay of the distribution

of ζ under Q will now be established.

Proposition 3.6. Let Assumption 1.1 hold. If P∗ [ζ < ∞] = 0 and

(3.8) lim inf
t↑∞

(
−1

t
logQ [ζ > t]

)
≥ λ∗,

then P∗ ∈ Π∗.
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Proof. That P∗ ∈ Π follows by Proposition 3.2. Also, by Proposition 3.2, using the fact that

V ∗
t = exp(λ∗t)η∗(Xt) for t ∈ R+,

log

(
EP∗

[
1

η∗(Xt)

])
= λ∗t+ log (Q [ζ > t])− log η∗(x0).

Thus, (3.8) implies

(3.9) lim sup
t↑∞

(
1

t
log

(
EP∗

[
1

η∗(Xt)

]))
≤ 0.

Now, by Chebyshev’s inequality, for each ǫ > 0,

1

t
log

(
P∗

[
1

t
log η∗(Xt) ≤ −ǫ

])
=

1

t
log

(
P∗

[
1

η∗(Xt)
≥ exp (ǫt)

])

≤ 1

t
log

(
exp (−ǫt)EP∗

[
1

η∗(Xt)

])

= −ǫ+
1

t
log

(
EP∗

[
1

η∗(Xt)

])
.

In conjunction with (3.9), this gives

lim sup
t↑∞

(
1

t
log

(
P∗

[
1

t
log η∗(Xt) ≤ −ǫ

]))
≤ −ǫ,

which implies in particular that

lim
t↑∞

P∗

[
1

t
log η∗(Xt) ≤ −ǫ

]
= 0.

Since this is true for all ǫ > 0, it follows that P∗ ∈ Π∗. �

Remark 3.7. From [23, Theorem 4.4.4] (note that there, λc is used in place of −λ∗),

−λ∗ = lim
n↑∞

lim
t↑∞

1

t
logQ[ζn > t].

Since Q[ζn > t] ≤ Q[ζ > t] it holds that

λ∗ + lim inf
t↑∞

1

t
logQ[ζ > t] ≥ 0.

In particular, (3.8) is really equivalent to

lim
t↑∞

(
1

t
logQ [ζ > t]

)
= −λ∗.
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4. Connections with Optimal Arbitrages

In [5], and quite close to the setting considered here, the authors treat the problem of optimal

arbitrage on a given finite time horizon. We briefly mention the main points below, sending the

interested reader to [5] for a more in-depth treatment.

Define a function U : R+ × E 7→ [0, 1] via the following recipe: for (T, x) ∈ R+ × E, set

1/U(T, x) = sup {v ∈ R+ | ∃V ∈ V such that Px[VT ≥ v] = 1 holds for all P ∈ Π} .

In words, 1/U(T, x) is the maximal capital that one can realize at time T under any probability

in Π, starting from unit initial capital, and when the market configuration at the initial time is

x ∈ E. Equivalently, U(T, x) is the minimal capital required in order to ensure at least one unit

of wealth at time T under any probability in Π, when the market configuration at the initial time

is x ∈ E. Arbitrage on the finite time interval [0, T ] exists if and only if U(T, x) < 1. Using

the notation of the present paper and recalling that for x0 ∈ E the subscripts in the probability

measures are dropped, it is shown in [5] that arbitrage over a time horizon [0, T ] exists if and only

if Q[ζ > T ] < 1. Furthermore, it is established that U(T, x) = Qx[ζ > T ] for all (T, x) ∈ R+ × E,

and that the optimal arbitrage exists and is given by V T = (V T
t )t∈[0,T ], where

(4.1) V T
t =

Q[ζ > T | Ft]

Q[ζ > T ]
=

U(T − t,Xt)

U(T, x0)
, for t ∈ [0, T ].

Observe that the optimal arbitrage V T in (4.1) is normalized so that V T
0 = 1. In [5], the normaliza-

tion is such that the terminal value of the optimal relative arbitrage is unit; as already mentioned,

in that case U(T, x0) is the minimal capital required at time zero to ensure a unit of capital at

time T .

Remark 4.1. In [5, Sections 10-12], the problem of optimal arbitrage is specified to when E is the

interior of the simplex in Rd, i.e.,

E =

{
x ∈ Rd

∣∣∣ min
i=1,...,d

xi > 0, and

d∑

i=1

xi < 1

}
.

The interpretation is that the coordinate process X represents the relative capitalizations of stocks,

and the corresponding optimal arbitrages are in fact relative arbitrages with respect to the market

portfolio. In principle, the treatment of [5] does not really utilize the special structure of the

simplex; therefore, the general case is considered here.

It is natural to study the asymptotic behavior of these optimal arbitrages as the time-horizon be-

comes arbitrarily large. It is shown below that, under suitable assumptions, the sequence of wealth

processes (V T )T∈R+ (parameterized via their maturity) converges to the robust asymptotically

growth-optimal wealth process on compact time-intervals.
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A tool in proving this convergence will be Proposition 3.2. In view of that result, it follows that

if λ∗ > 0 and P∗
x [ζ < ∞] = 0 for each x ∈ E, arbitrage occurs if and only if the local P∗

x-martingale

1/V ∗ is a strict local P∗
x-martingale in the terminology of [4]. If 1/V ∗ is a P∗

x-martingale then,

even though arbitrage does not exist, it is still possible to construct robust growth-optimal trading

strategies, as seen in Example 6.7.

Remark 4.2. Equation (3.1) holds when ζ, η∗, V ∗ and P∗
x are replaced by ζn, η

∗
n, V

∗
n and P∗

x,n,

where these quantities appear in the proof of Theorem 2.1. In this case, and when E = (0,∞)d,

conditioning upon ζn > T can be interpreted as forcing a diversity condition in the market, since

X ∈ En implies there exists some δ > 0 such that no one asset’s relative capitalization is above

1− δ. Conditioned upon never exiting En for n ∈ N, the robust growth optimal wealth process V ∗
n

is thus identified with the long-run version of the arbitrage constructed in [20].

Equation (3.1) may be re-written as

(4.2) eλ
∗TQx [ζ > T ] = η∗(x)EP∗

x

[
1

η∗(XT )

]
.

Thus, to study the asymptotic behavior of V T
t as T ↑ ∞ in (4.1) it is necessary to study the

long time (as T ↑ ∞) behavior of EP∗

x

[
(η∗(XT ))

−1
]
. Assume that X is positive recurrent (or,

equivalently, tight) under (P∗
x)x∈E with invariant probability measure µ. Under Assumption 1.1,

[21, Theorem 1.2 (iii), Equations (3.29),(3.30)] extends the ergodic result in (3.2) to functions f

which are integrable with respect to µ. Thus, for all nonnegative measurable functions f : E 7→ R+,

(4.3) lim
T↑∞

EP∗

x [f(XT )] =

∫

E
fdµ,

and this limit is the same for all x ∈ E. This yields the following result:

Proposition 4.3. Let Assumption 1.1 hold. Suppose that η∗ ∈ Hλ∗ is such that

(4.4) lim
n↑∞

sup
x∈Ec

n

η∗(x) = 0

Then, P∗
x[ζ < ∞] = 0 for all x ∈ E, and the following are equivalent:

(1) limT↑∞ eλ
∗TQx [ζ > T ] = κη∗(x) for all x ∈ E where κ > 0 does not depend upon x.

(2) lim supT↑∞ eλ
∗TQx [ζ > T ] < ∞ for some x ∈ E.

(3) X is positive recurrent under (P∗
x)x∈E and

∫
E(η

∗)−1dµ < ∞ where µ is the invariant

measure for X.

Remark 4.4. Note that (3) implies (1) even if (4.4) does not hold. Note also that by Example 4.7

below that some condition like (4.4) is necessary for (1), (2) and (3) to be equivalent.

Proof of Proposition 4.3. Let x ∈ E. Note that
(
eλ

∗tη∗(Xt)
)−1

is a nonnegative supermartingale

under P∗
x. By (4.4), if P∗

x [ζ < ∞] > 0 then the supermartingale property would be violated. Thus,

an explosion cannot occur.
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Regarding the equivalences, (1) ⇒ (2) is trivial. As for (2) ⇒ (3), if (2) holds then by (4.2) it

follows that there is some T0 ≥ 0 such that

sup
T≥T0

EP∗

x

[
1

η∗(XT )

]
< ∞

Therefore, (4.4) yields that (Xt)t∈R+
form a P∗

x-tight family of random variables for each x ∈ E.

By Proposition 3.3 it follows that X is positive recurrent under (P∗
x)x∈E ; hence, (4.3) gives

∫

E

1

η∗
dµ = lim

T↑∞
EP∗

x

[
1

η∗(XT )

]
≤ lim sup

T↑∞
EP∗

x

[
1

η∗(XT )

]
< ∞,

proving (3). Implication (3) ⇒ (1) follows by applying (4.3) to 1/η∗ and using (4.2). �

The following is the main result of the section.

Theorem 4.5. Suppose that η∗ ∈ Hλ∗ is such that P∗ [ζ < ∞] = 0 and that condition (1) in

Proposition 4.3 holds. Fix P ∈ Π. Then, for any fixed t ∈ R+,

(4.5) P- lim
T→∞

sup
τ∈[0,t]

∣∣V T
τ − V ∗

τ

∣∣ = 0.

Additionally, for each T ∈ R+, let (ϑ
T
t )t∈[0,T ] be a predictable process such that

(4.6) V T = 1 +

∫ ·

0
V T
t

(
ϑT
t

)′
dXt.

With ℓ∗ as in (2.1) and ϑ∗ = ∇ℓ∗(X), it follows that, for any fixed t ∈ R+,

(4.7) P- lim
T→∞

∫ t

0

(
ϑT
τ − ϑ∗

τ

)′
c(Xτ )

(
ϑT
τ − ϑ∗

τ

)
dτ = 0.

Proof. Fix t ∈ R+. Equation (4.1), coupled with condition (1) in Proposition 4.3, imply that

P- limT→∞ V T
t = V ∗

t . Let ZT = (ZT
τ )τ∈[0,t] be defined via ZT

τ := V T /V ∗. The arguments used in

the proof of Theorem 2.1 show that V ∗ is the numéraire portfolio in V under P∗, i.e., that ZT is a

nonnegative P∗-supermartingale on [0, t] for all T ∈ (t,∞). Then, [15, Theorem 2.5] implies that

P∗-limT→∞ supτ∈[0,t]
∣∣ZT

τ − 1
∣∣ = 0. Using the fact that P∗

[
infτ∈[0,t] V

∗
τ > 0

]
= 1, it follows that

P∗-limT→∞ supτ∈[0,t]
∣∣V T

τ − V ∗
τ

∣∣ = 0. Now, with RT = (RT
τ )τ∈[0,t] defined via

RT =

∫ ·

0

(
ϑT
s − ϑ∗

s

)′
(dXs − c(Xs)∇ℓ∗(Xs)ds) ,

it holds that ZT = 1+
∫ ·
0 Z

T
s dRs. Invoking [15, Theorem 2.5] again yields P∗-limT→∞[RT , RT ]t = 0

for all t ∈ R+. As

[RT , RT ]t =

∫ t

0

(
ϑT
τ − ϑ∗

τ

)′
c(Xτ )

(
ϑT
τ − ϑ∗

τ

)
dτ,

(4.7) follows, with P∗ replacing P there.

Up to now, the validity of both (4.5) and (4.7), for the special case P = P∗ ∈ Π has been

shown. For a general P ∈ Π, the result follows by noting that P∗ and P are equivalent on each Fζn ,

n ∈ N, and that limn→∞ P [ζn > t] = 1. Indeed, for any ǫ > 0, pick nǫ ∈ N large enough so that
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P [ζnǫ ≤ t] ≤ ǫ/2. Then, pick δǫ > 0 so that P[A] ≤ ǫ/2 holds whenever A ∈ Fζnǫ
and P∗[A] ≤ δǫ.

Finally, pick Tǫ ∈ R+ large enough so that

P∗

[
sup

τ∈[0,t]

∣∣V T
τ − V ∗

τ

∣∣ ≥ ǫ

]
≤ δǫ, as well as P∗

[∫ t

0

(
ϑT
τ − ϑ∗

τ

)′
c(Xτ )

(
ϑT
τ − ϑ∗

τ

)
dτ ≥ ǫ

]
≤ δǫ

holds whenever T ≥ Tǫ. Therefore, for all T ≥ Tǫ,

P

[
sup

τ∈[0,t]

∣∣V T
τ − V ∗

τ

∣∣ ≥ ǫ

]
≤ P

[
sup

τ∈[0,ζn∧t]

∣∣V T
τ − V ∗

τ

∣∣ ≥ ǫ

]
+ P [ζnǫ ≤ t]

≤ ǫ/2 + ǫ/2 = ǫ.

This establishes (4.5). Similarly, we establish (4.7). �

Remark 4.6. The result of Theorem 4.5 is expected to hold in greater generality than its assump-

tions suggest. It is conjectured that the result holds under Assumption 1.1, but it is an open

question. See Example 6.4 in Section 6 for a potential counterexample. The next example shows

that it can even hold when λ∗ = 0.

Example 4.7. Let E = (0,∞) and c(x) = 1 for x ∈ E. It is straightforward to check that

U(T, x) = Qx [ζ > T ] = 2Φ
(
x/

√
T
)
− 1, for (T, x) ∈ R+ × E,

where Φ is the cumulative distribution function of the standard normal law. With x0 = 1, it follows

that

V T
t =

2Φ
(
Xt/

√
T − t

)
− 1

2Φ
(
1/
√
T
)
− 1

, for t ∈ [0, T ].

From this explicit formula it is immediate that P- limT→∞ supτ∈[0,t]
∣∣V T

τ −Xτ

∣∣ = 0 holds whenever

t ∈ R+. Observe that V ∗ = X holds exactly for the choice η∗(x) = x corresponding to λ∗ = 0,

and P∗ being the probability that makes X behave as a 3-dimensional Bessel process. Remember

that in this example the dimensionality of the set of principal eigenfunctions is two — the other

one is η ≡ 1. It is interesting to note that the sequence (V T ) “chooses” to converge to the optimal

strategy of the optimal probability P∗ that satisfies P∗ ∈ Π.

As in [7, Section 5.1], for T ∈ R+ and x ∈ E define the measure P
⋆,T
x on FT via

P⋆,T
x [A] = Qx [A | ζ > T ] , for A ∈ FT .

It is shown therein that for each t ∈ [0, T ] and x ∈ E

dP⋆,T
x

dQx

∣∣∣∣
Ft

=
U(T − t,Xt)

U(T, x)
I{ζ>t}.
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Furthermore, under the assumption U ∈ C1,2((0, T )×E), the coordinate processX under
(
P
⋆,T
x

)
x∈E

has dynamics on [0, T ] of

dXτ = c(Xτ )
∇xU(T − τ,Xτ )

U(T − τ,Xτ )
dτ + σ(Xτ )dWτ

= c(Xτ )ϑ
T
τ dτ + σ(Xτ )dWτ

using the notation of (4.6) in Theorem 4.5. Assuming P∗
x[ζ < ∞] = 0, it follows that P⋆,T

x and P∗
x

are equivalent on Ft for t ∈ [0, T ] with

(4.8)
dP⋆,T

x

dP∗
x

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

(
ϑT
τ − ϑ∗

τ

)′
c(Xτ )

(
ϑT
τ − ϑ∗

τ

)
dτ +

∫ t

0

(
ϑT
τ − ϑ∗

τ

)′
σ(Xτ )dWτ

)
.

Thus, the results of Theorem 4.5 immediately imply the following:

Proposition 4.8. Suppose the hypotheses of Theorem 4.5 hold. Then, for any t ∈ R+, P
⋆,T
x

converges in total variation norm to P∗
x on Ft as T ↑ ∞.

Proof. The process on the right hand side of (4.8) is the process ZT = V T /V ∗ in the proof of

Theorem 4.5. Since for each A ∈ Ft

∣∣P⋆,T
x (A)− P∗

x(A)
∣∣ ≤ EP∗

x

[∣∣ZT
t − 1

∣∣] ,

the result follows from [15, Theorem 2.5 (i)]. �

Remark 4.9. In [22], a similar result to Proposition 4.8 is obtained, though not in the setting of

convergence of relative arbitrages. Namely, it is assumed that

(4.9) lim
T↑∞

∇xU(T, x)

U(T, x)
= ∇ℓ∗(x), for x ∈ E,

where the convergence takes place exponentially fast with rate λ∗ and is uniform on compact

subsets of E. Under this assumption, the measures P⋆,T
x are shown to weakly converge as T ↑ ∞

to P∗
x on Ft for each t ∈ R+.

In the case where E is bounded with smooth boundary and c is uniformly elliptic over E, (4.9)

holds if there exists a function H : E 7→ R such that, for each i = 1, . . . d,

d∑

j=1

cij(x)
∂

∂xj

H(x) = fi(x); fi(x) := −1

2

d∑

j=1

∂

∂xj

cij(x), i = 1, . . . , d.

In vector notation, this gradient condition takes the form ∇H = c−1f , and f is the Fichera drift

associated to Q. Under this hypothesis, the measure m(dx) = exp (2H(x)) dx is reversing for the

transition probability function Q(t, x, ·) and the convergence result in (4.9) follows by representing

U(T, x) = Qx [ζ > T ] as an eigenfunction expansion where the underlying space is L2(E,m) (see

[22]).
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The message of Proposition 4.8 is that analytic convergence assumptions of the type in (4.9),

which are difficult to prove in the general setup of Assumption 1.1, can be replaced by the proba-

bilistic convergence assumptions in Proposition 4.3.

5. A Thorough Treatment of the One-Dimensional Case

This section considers the case d = 1, where E = (α, β) is a bounded interval. If E = R, then

λ∗ = 0 holds by Proposition 1.7, because the coordinate process under Q is recurrent. If E is a

half bounded interval, it is possible for:

• λ∗ = 0, even though there is explosion under Q — see Example 4.7.

• λ∗ > 0, even though there is no explosion under Q — see Example 6.6 with d = 1.

and hence making a general statement connecting λ∗ > 0 with explosion or non-explosion under Q

is difficult. Thus, to enlighten the connections with relative arbitrages the following will assumed

throughout the section:

Assumption 5.1. Assumption 1.1 holds for E = (α, β) with −∞ < α < β < ∞.

Under the validity of Assumption 5.1, results are provided that almost completely cover all the

cases that can occur.

The first proposition establishes point-wise tests for c which yield λ∗ > 0 or λ∗ = 0. However,

in the case λ∗ > 0, nothing is claimed regarding η∗ or P∗. The second proposition gives integral

tests which yield λ∗ > 0 or λ∗ = 0. Condition (5.11) is equivalent to the coordinate process X

under (Qx)x∈[α,β] exploding to both α, β with positive probability. Additionally, condition (5.11)

not only yields λ∗ > 0 but also that P∗ ∈ Π∗
a.s. (and hence P∗ ∈ Π∗).

Recall the following facts regarding explosion, transience, recurrence and positive recurrence in

the one dimensional case under Assumption 5.1 (see [23, Chapter 5.1]):

• Since E is bounded the coordinate process X under (Qx)x∈[α,β] is transient. Furthermore

it explodes to α and/or β with positive probability if for some x0 ∈ (α, β):
∫ x0

α

x− α

c(x)
dx < ∞ and/or

∫ β

x0

β − x

c(x)
dx < ∞.

• The coordinate process X under (P∗
x)x∈(α,β) is recurrent if

(5.1)

∫ x0

α

1

(η∗(x))2
dx = ∞ and

∫ β

x0

1

(η∗(x))2
dx = ∞.

If either of the integrals in (5.1) are finite then the coordinate processX is transient towards

the endpoint with finite integral.

• The coordinate process X under (P∗
x)x∈(α,β) is positive recurrent if (5.1) holds and if

(5.2)

∫ β

α

(η∗(x))2

c(x)
dx < ∞.
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Proposition 5.2 (Pointwise result). Let Assumption 5.1 hold. If

(5.3) sup
x∈(α,β)

(x− α)2(β − x)2

c(x)
< ∞,

then λ∗ > 0. If

(5.4) lim
x↓α

(x− α)2

c(x)
= ∞ or lim

x↑β

(β − x)2

c(x)
= ∞,

then λ∗ = 0.

Remark 5.3. We thank an anonymous referee for suggesting the short, self-contained proof to

Proposition 5.2 below.

Proof. By [23, Theorem 4.4.5] (note that λc from [23, Theorem 4.4.5] is equal to −λ∗ here), λ∗

admits the following variational representation:

(5.5) λ∗ = sup
η∈C2(α,β)

η>0

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
,

where the ′ symbol is used to signify a derivative with respect to x (and not to denote matrix

transposition as it was used in previous sections).

Let η(x) =
√
(x− α)(β − x). If (5.3) holds then

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
= inf

x∈(α,β)

(β − α)2c(x)

8(x− α)2(β − x)2
> 0

and hence λ∗ > 0.

Now, assume (5.4) holds for x ↓ α. The proof for x ↑ β is the same. Let a > α and consider

the case when c ≡ 1 and E = (α, a). Since Assumption 1.1 clearly holds in this setting, let

λ∗
a represent the generalized principal eigenvalue. Set λa = π2

2(a−α)2
and consider the function

φ(x) = sin
(√

2λa(x− α)
)
. It can be directly verified that −1

2φ
′′(x) = λaφ(x) and that both (5.1)

and (5.2) hold (with c ≡ 1, β replaced by a and x0 ∈ (α, a)). Thus, Proposition 1.7 implies that

λ∗
a = λa = π2

2(a−α)2
. Plugging this into (5.5) (again, for c ≡ 1 and β replaced by a) gives for all

η ∈ C2(α, a), η > 0

(5.6) inf
x∈(α,a)

−η′′(x)

2η(x)
≤ π2

2(a− α)2

Now, for the general case, it is clearly true that λ∗ ≥ 0. Assume by way of contradiction that

λ∗ > 0. By (5.5), it follows there exists a λ̃ > 0 and η ∈ C2(α, β), η > 0 such that

(5.7) λ̃ ≤ inf
x∈(α,β)

−c(x)η′′(x)

2η(x)

Let M > 0. Since (5.4) holds there is an αM such that for x ∈ (α,αM )

(5.8) M ≤ (x− α)2

c(x)
≤ (αM − α)2

c(x)
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Together, (5.7) and (5.8) give

(5.9)
λ̃M

(αM − α)2
≤ inf

x∈(α,αM )

λ̃

c(x)
≤ inf

x∈(α,αM )

−η′′(x)

2η(x)

By (5.6) with a = αM it follows that

(5.10) inf
x∈(α,αM )

−η′′(x)

2η(x)
≤ π2

2(αM − α)2

Combining (5.9) and (5.10) gives

λ̃M

(αM − α)2
≤ π2

2(αM − α)2

or that M ≤ π2/(2λ̃). This is a contradiction since M was arbitrary. Thus λ∗ = 0. �

The proof of the following result is lengthy and technical; for this reason, it is delayed until

Section 7.

Proposition 5.4 (Integral result). Let Assumption 5.1 hold. If

(5.11)

∫ β

α

(x− α)(β − x)

c(x)
dx < ∞,

then:

(1) λ∗ > 0.

(2) limx↓α η
∗(x) = 0 = limx↑β η

∗(x).

(3) The coordinate process X under (P∗
x)x∈(α,β) is positive recurrent; therefore, P∗ ∈ Π∗.

(4) P∗ ∈ Π∗
a.s.

If, for some a ∈ (α, β),

(5.12)

∫ a

α

(x− α)2

c(x)
dx = ∞ or

∫ β

a

(β − x)2

c(x)
dx = ∞,

then λ∗ = 0.

6. Examples

6.1. One-dimensional examples. The following examples display a variety of outcomes regard-

ing η∗ and P∗. Proofs of all the statements follow from Propositions 5.2, 5.4 and/or from the tests

for recurrence, null recurrence or positive recurrence under P∗ given in equations (5.1) and (5.2),

in conjunction with Proposition 1.7.

Example 6.1. Let E = (0, 1) and c(x) = x(1− x). Then:

• (5.11) holds; therefore, the results of Proposition 5.4 follow.

• η∗(x) = x(1− x), λ∗ = 1.

• (4.4) holds, as well as condition (3) in Proposition 4.3. Thus, the results of Theorem 4.5

and Proposition 4.8 follow.
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Example 6.2. Let E = (0, 1) and c(x) = x2(1− x)2. Then:

• Q [ζ < ∞] = 0.

• η∗(x) =
√

x(1− x), λ∗ = 1/8.

• The coordinate process X is null recurrent under (P∗
x)x∈E ; however, P

∗ ∈ Π∗
a.s..

Note that there is a multidimensional generalization of this in Example 6.7.

Example 6.3. Let E = (0, 1) and c(x) = x3(1− x)3. Then:

• Q [ζ < ∞] = 0.

• λ∗ = 0 by either Proposition 5.2 or 5.4.

• η∗ can be any affine function α+βx such that η∗ > 0 on (0, 1). For any such η∗, P∗ ∈ Π∗
a.s..

Example 6.4. Let E = (0, x̂), where

x̂ := min

{
x > 0

∣∣∣
∫ x

0
log (− log(y)) dy = 0

}
≈ 0.75.

Furthermore, let c : E 7→ R+ be defined via

c(x) = −2x log(x)

∫ x

0
log (− log(y)) dy, for x ∈ E.

Then:

• (5.11) holds and so the results of Proposition 5.4 follow.

• η∗(x) =
∫ x
0 log (− log(y)) dy, λ∗ = 1.

• (η∗)−1 is not integrable with respect to the invariant measure for P∗.

Example 6.5. Let E = (0,∞) and

c(x) =
4
(
x3/2

∫ x
0 cos

(
y−1/2

)
dy + 4x2 − x5/2

)

2− sin
(
x−1/2

) , for x ∈ E.

Then:

• Q [ζ < ∞] = 0.

• η∗(x) =
∫ x
0 cos

(
y−1/2

)
dy + 4

√
x− x, λ∗ = 1.

• The coordinate process X under (P∗
x)x∈E is null-recurrent but no conclusion as to whether

or not P∗ ∈ Π∗
a.s. or Π∗ can be drawn based on the results of the paper (see Propositions

3.4 and 3.2) since

lim sup
x↓0

(
1

2
∇ℓ∗(x)′c(x)∇ℓ∗(x)− λ∗

)
= 0

lim inf
x↓0

(
1

2
∇ℓ∗(x)′c(x)∇ℓ∗(x)− λ∗

)
= −2

3
.
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6.2. Multi-dimensional examples. The following examples show that the optimal η∗ need not

vanish on the boundary of E even when E is bounded, and that strictly positive asymptotic growth

rate is possible even when Q [ζ < ∞] = 0.

Example 6.6 (Correlated geometric Brownian Motion). Let E = (0,∞)d, and define the matrix c

via

cij(x) = xixjAij , 1 ≤ i, j ≤ d.

where A is a symmetric, strictly positive definite d× d matrix. Define the vectors Â, B̂ ∈ Rd by

Âi = Aii (1 ≤ i ≤ d), B̂ =
1

2
A−1Â.

Then

(6.1) η∗(x) =

d∏

i=1

xB̂i

i , λ∗ =
1

8
Â′A−1Â,

and P∗ ∈ Π∗
a.s..

To see the validity of the above claims, set η, λ as the respective right hand sides of (6.1). A

straightforward calculation shows that Lη = −λη and hence that λ∗ ≥ λ. Set (Pη
x)x∈Ê as the

solution to the generalized martingale problem for Lη as in (1.6) and Pη = P
η
x0 . The coordinate

process X under Pη is given by Xt = exp (aWt) where a is the unique positive definite square root

of A and W a Brownian motion under Pη. Thus, under Pη,

1

t
log η(Xt) =

1

t
B̂′aWt.

The strong law of large numbers for Brownian motion gives that Pη ∈ Π∗
a.s.. Theorem 2.1 then

yields λ∗ ≤ supV ∈V g(V ;Pη) ≤ λ, and hence λ∗ = λ, η∗ = η and P∗ = Pη.

Example 6.7 (Relative capitalizations of a correlated geometric Brownian Motion). For d ≥ 2, let

E =

{
x ∈ Rd−1

∣∣ min
i=1,...,d−1

xi > 0;

d−1∑

i=1

xi < 1

}
.

For the matrix A of Example 6.6 define the d− 1 dimensional square matrix A by

Aij = Aij −Aid −Ajd +Add 1 ≤ i, j ≤ d− 1,

and the matrix c via

cij(x) = xixj

(
Aij − (Ax)i − (Ax)j + x′Ax

)
, 1 ≤ i, j ≤ d− 1.

Set the d− 1 dimensional vectors

Âi = Aii (1 ≤ i ≤ d− 1), B̂ =
1

2
A−1Â.
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Then,

(6.2) η∗(x) =

(
d−1∏

i=1

xB̂i

i

)(
1−

d−1∑

i=1

xi

)1−
∑d−1

i=1 B̂i

, λ∗ =
1

8
Â′A−1Â,

and P∗ ∈ Π∗
a.s.. Furthermore, the coordinate process under P∗ on the simplex has the same

dynamics as the coordinate process under P∗ in Example 6.6 moved to the simplex.

To prove the validity of the claims, rewrite P̃∗ for the probability measure P∗ of Example 6.6.

Set η, λ as the right hand sides of (6.2). Set (Pη
x)x∈Ê as the solution to the generalized martingale

problem for Lη as in (1.6) and Pη = P
η
x0 . A long calculation using Itô’s formula shows that

Lη = −λη and the equivalence between the dynamics on E under Pη and the dynamics under of P̃∗

after making the transformation Y = X/(1′dX) where 1d is the vector of all 1’s in Rd and noting

that Yd = 1− 1′d−1X. Under P̃, X = exp (aW ). Thus, under Pη,

log η(Yt) = β̂(∗)′aWt − log
(
1′de

aWt
)
,

where

β̂(∗)i = β̂i 1 ≤ i ≤ d− 1, β̂(∗)d = 1−
d−1∑

j=1

β̂j .

Thus, it follows that limt↑∞
1
t log η(Yt) = 0 Pη a.s and hence Pη ∈ Π∗

a.s. The same argument as

in Example 6.6 yields the optimality of η, λ and Pη.

An interesting numerical example. Using the same notation as in Examples 6.6 and 6.7, consider

for d = 3 the matrix A and associated vectors B̂, B̂ given by

A =




5/3 3 0

3 7 0

0 0 1


 , B̂ =




−7/4

5/4

1/2


 , B̂ =

(
−1

1

)
.

The eigenvalues of A are 1 and 13/3
(
1±

√
145/169

)
and hence A is positive definite. The η∗

from (6.1) and (6.2) respectively are

η∗(x, y, x) =
4

√
y5z2

x7
, for (x, y, z) ∈ (0,∞)3,

η∗(x, y) =
y(1− x− y)

x
, for x > 0, y > 0, x+ y < 1.

Therefore, η∗ goes to ∞ along the boundary of E in each case, even when the region is bounded.

7. Proof of Proposition 5.4

The proof of Proposition 5.4 relies upon the following two auxiliary results. As in the proof of

Proposition 5.2, the symbol ′ is used to identify derivatives.
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Lemma 7.1. Let Assumption 5.1 hold. Let η ∈ C2(α, β) be strictly positive and strictly concave.

If (5.12) holds, then

inf
x∈(α,β)

−c(x)η′′(x)

2η(x)
= 0.

Proof. The proof will be given for the integral near α in (5.12); the proof near β is the same. Let

η ∈ C2(α, β) be strictly positive and strictly concave. Set

δ(η) = inf
x∈(α,β)

−c(x)η′′(x)

2η(x)

Let x0 ∈ (α, β) and normalize η so that η(x0) = 1. Note that this will not change the value of δ(η).

Using integration by parts, for α < x < x0

η(x) = 1− (x0 − x)η′(x0)−
∫ x0

x
(y − x)(−η′′(y))dy,

and hence ∫ x0

α
I{y≥x}(y − x)(−η′′(y))dy ≤ 1 + (β − α)

∣∣η′(x0)
∣∣ .

Fatou’s lemma and the concavity of η yield

(7.1)

∫ x0

α
(y − α)(−η′′(y))dy ≤ 1 + (β − α)

∣∣η′(x0)
∣∣

The positivity and concavity of η yield for α < αm < y < x0 that

η(y) = η

(
y − αm

x0 − αm
x0 +

x0 − y

x0 − αm
αm

)
≥ y − αm

x0 − αm
.

and so, letting αm ↓ α it follows that η(y) ≥ (y − α)/(x0 − α). Thus, if δ(η) > 0 and (5.12) holds

then
∫ x0

α
(y − α)(−η′′(y))dy ≥ 2δ(η)

∫ x0

α

(y − α)η(y)

c(y)
dy

≥ 2δ(η)

x0 − α

∫ x0

α

(y − α)2

c(y)
dy = ∞,

which contradicts (7.1). Thus, δ(η) = 0 proving the result. �

Lemma 7.2. Let Assumption 5.1 hold. Let λ > 0 and η ∈ Hλ be such that

(7.2) lim
x↓α

η(x) = 0 = lim
x↑β

η(x)

and

(7.3)

∫ β

α

η2(x)

c(x)
dx < ∞.

Then, λ∗ = λ and η∗ = η. The coordinate process X under (P∗
x)x∈(α,β) is positive recurrent.

Furthermore, P∗ ∈ Π∗
a.s..
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Proof. IfX is recurrent under (P∗
x)x∈E then from Proposition 1.7, λ∗ = λ and η∗ = η. Furthermore,

by (7.3) positive recurrence will follow with the invariant measure η̃ that has density proportional

to η2/c with respect to Lebesgue measure, appropriately normalized so η̃ is a probability measure.

To check recurrence it will be shown that (5.1) holds near α, the proof near β is the same. Note

that, since η ∈ Hλ and (7.2) holds, there exists a unique x0 ∈ (α, β) such that η′(x0) = 0. For

α < x < x0,
∫ x0

x

2λη(y)2

c(y)
dy = −

∫ x0

x
η(y)η′′(y)dy = η(x)η′(x) +

∫ x0

x
η′(y)2dy.

Thus, as x ↓ α since η is positive and concave it must hold that η(x)η′(x) > 0 and hence by (7.3)

it follows that
∫ x0

α η′(y)2dy < ∞. Therefore, by the concavity of η and (7.2),

(7.4) 0 ≤ lim inf
x↓α

η(x)η′(x) ≤ lim
x↓α

∫ x

0
η′(y)2dy = 0.

This implies that for any ε > 0 there is an xε near α such that for x ∈ (α, xε), η
2(x) ≤ 2ε(x − α),

or that ∫ xε

α

1

η(y)2
dy ≥ 1

2ε

∫ xε

α

1

y − α
dy = ∞,

and recurrence follows. It remains to prove that P∗ ∈ Π∗
a.s.. To this end, it follows from equations

(3.5) and (3.7) in the proof of Proposition 3.4 that P∗ ∈ Π∗
a.s. if

lim inf
t↑∞

1

t

∫ t

0

(
1

2
c(Xs)

(
η′(Xs)

η(Xs)

)2

− λ

)
ds ≥ 0 P∗-a.s.

By the ergodic theorem [23, Theorem 4.9.5] and the monotone convergence theorem it follows that

lim inf
t↑∞

1

t

∫ t

0

(
1

2
c(Xs)

(
η′(Xs)

η(Xs)

)2

− λ

)
ds ≥

∫ β

α

(
1

2
c(y)

(
η′(y)

η(y)

)2

− λ

)
η(y)2

c(y)
dy, P∗-a.s.

Continuing, η ∈ Hλ implies
∫ β

α

(
1

2
c(y)

(
η′(y)

η(y)

)2

− λ

)
η(y)2

c(y)
dy = lim

x↓α
η(x)η′(x)− lim

x↑β
η(x)η′(x) = 0,

where the last equality follows from (7.4) since the same equality holds near β. Thus, P∗ ∈ Π∗
a.s.. �

In what follows, the proof of Proposition 5.4 will be given.

The proof of how (5.12) implies λ∗ = 0 is handled first. By (5.5), it suffices to consider strictly

concave functions η. However, since (5.12) holds, Lemma 7.1 applies and hence δ(η) = 0 for all

such η. Thus λ∗ = 0.

Regarding the assertions when (5.11) holds, in light of Lemma 7.2 it suffices to show that (5.11)

yields the existence of a λ > 0, η ∈ Hλ such that conditions (7.2) and (7.3) are satisfied. To

this end, define the σ-finite measure m via m(dx) = c(x)−1dx. Note that condition (7.3) now

reads η ∈ L2((α, β),m). The desired pair (λ, η) are the principal eigenvalue and eigenfunction

for the operator (L,D(L)) where (Lη)(x) = −(1/2)c(x)η′′(x) for x ∈ (α, β) and the domain D(L)
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consists of functions which vanish at α, β and is constructed so that (L,D(L)) is self adjoint in

L2((α, β),m). D(L) is highly dependent upon the behavior of m near α and β. The study of the

spectral properties of such operators falls under the name Sturm-Liouville theory. For a detailed

exposition on the topics covered/results given below, see [19] and [27].

The case when m ((α, β)) < ∞ is called the regular case. Here D(L) is given by

(7.5) D(L) =
{
η ∈ L2((α, β),m) | η′ ∈ AC(α, β), η(α) = η(β) = 0, cη′′ ∈ L2((α, β),m)

}
.

and the existence of a λ > 0, η ∈ Hλ ∩ D(L) is given by [19, Theorem 2.7.4] and [27, Theorem

10.12.1].

Now, suppose that (5.11) holds, but for some a ∈ (α, β) either m ((α, a)) = ∞ or m ((a, β)) = ∞,

or both. These cases are called the singular cases. In each of these three cases there exists a

domain D(L) ⊂ L2((α, β),m), similar to that in (7.5), such that (L,D(L)) is self adjoint. For

explicit formulas for the domains, see [27, Chapters 7 and 10].

According to [27, Theorem 10.12.1 (8)], if the spectrum of (L,D(L)) is discrete and bounded

from below then in fact there exists a λ > 0 and η ∈ Hλ ∩ D(L) such that (7.2) holds. (this last

fact follows by construction of D(L) but also because otherwise η 6∈ L2((α, β),m)).

To prove the spectrum is discrete and bounded from below, it suffices to treat the case of one

regular and one singular endpoint. This follows using the spectral decomposition method on which

a detailed description may be found in [11]. Without loss of generality, consider the case when α

is regular and β is singular. Under the transformation z = f(x) =
∫ x
α (1/c(y)) dy, (α, β) is taken

to be (0,∞). Set ϕ(z) = η(x) and g(z) = f−1(z). Note that η ∈ L2((α, β),m) is equivalent to

ϕ ∈ L2((0,∞),Leb) ≡ L2(0,∞). Furthermore, the operator (M,D(M)) defined by

(Mϕ)(z) = −1

2

(
1

g′(z)
ϕ′(z)

)′

, D(M) = {ϕ | ϕ(z) = η(x), η ∈ D(L)}

is self-adjoint in L2(0,∞). Let N > 0 and

QN =
{
v ∈ C0 ((N,∞),C) | v ∈ ACloc(0,∞), v′ ∈ L2(0,∞)

}
,

where C0 means that v is continuous and compactly supported in (N,∞). For v ∈ QN , set

I(v,N) =
1

2

∫ ∞

N

|v′(z)|2
g′(z)

dz.

According to [18, Lemma 4.2], (M,D(M)) has a discrete spectrum bounded from below if and

only if for each θ > 0 there exists an N > 0 such that

I(v,N) ≥ θ

∫ ∞

N
v(z)2dz

for each real valued v ∈ QN . To show this, fix θ > 0. For any N > 0 and v ∈ QN ,

v(z) = −
∫ ∞

z
v′(τ)dτ.
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Since τ = f(g(τ)), it follows that g′(τ) = c(g(τ)) > 0. By Hölder’s inequality, for real valued

v ∈ QN ,

v(z)2 ≤
(∫ ∞

z

v′(τ)2

g′(τ)
dτ

)(∫ ∞

z
g′(τ)dτ

)
≤ 2I(v,N) (β − g(z)) .

Therefore,

θ

∫ ∞

N
v(z)2dz ≤ 2θI(v,N)

∫ ∞

N
(β − g(z))dz

= 2θI(v,N)

∫ β

g(N)

β − x

c(x)
dx,

where the last equality follows from the substitution x = g(z) or z = f(x). Since limz↑∞ g(x) = β,

by (5.11)

2θ

∫ β

g(N)

β − x

c(x)
dx ≤ 1,

for N large enough, yielding the desired result. �
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