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Strategic Trading in a Dynamic Noisy Market

Dimitri Vayanos∗

March 10, 2003

ABSTRACT

This paper studies a dynamic model of a financial market with a strategic trader. In

each period the strategic trader receives a privately observed endowment in the stock.

He trades with competitive market makers to share risk. Noise traders are present in

the market. After receiving a stock endowment, the strategic trader is shown to reduce

his risk exposure either by selling at a decreasing rate over time, or by selling and

then buying back some of the shares sold. When the time between trades is small, the

strategic trader reveals the information regarding his endowment very quickly.
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Large traders, such as dealers, mutual funds, and pension funds, play an important

role in financial markets.1 Many empirical studies show that these agents’ trades have a

significant price impact.2 Recent studies also show that large traders execute their trades

slowly, over several days, presumably to reduce their price impact.3 These studies raise a

number of theoretical questions. For instance, what dynamic strategies should large traders

employ to minimize their price impact? In particular, how quickly should they execute

their trades? How quickly does the price adjust to reflect the presence of a large trader?

Given the importance of large traders, an analysis of their dynamic strategies is relevant

for understanding the daily and weekly behavior of returns, volume, and bid-ask spreads.

It is also relevant for comparing trading mechanisms, in terms of liquidity provided to large

traders, and information revealed in prices.

An analysis of large traders’ dynamic strategies requires an assumption about their

motives to trade. Trading motives are generally divided into “informational” motives,

arising from private information about asset payoffs, and “allocational” motives, such as

risk-sharing, portfolio rebalancing, and liquidity. In a seminal paper, Kyle (1985) studies

the dynamic strategy of a large trader with informational motives (an “insider”). The

insider is risk-neutral and trades with risk-neutral market makers. Market makers agree to

trade because they cannot distinguish the insider from noise traders who are also present

in the market. Kyle shows that the insider reveals his information slowly, until the time

when it is publicly announced.4

If most large trades were motivated by information, large traders would significantly

outperform the market. However, many empirical studies show that large traders do not

significantly outperform, and may even underperform, the market. Moerover, this per-

formance is in spite of high portfolio turnover.5 Therefore, allocational motives must be

important.

The dynamic strategies of large traders with allocational motives have received com-

paratively less attention. The problem has some similarities with the case of informational

motives. For instance, a large trader who wants to sell in order to hedge a risky position,

has private information that he will sell and that the price will fall. This is similar to an

insider who has private information that the price will fall because of a negative earnings an-

nouncement. The crucial difference, however, is that the time of the earnings announcement

is exogenous, while the time at which the large trader sells is endogenous. Therefore, the

large trader’s speed of trade execution cannot be deduced from the insider’s, since the latter
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depends crucially on the time of the earnings announcement. Notice that in the presence of

allocational motives, the speed of trade execution determines two important aspects of the

trading process. First, the speed of price adjustment, as in the presence of informational

motives, and second, the allocative efficiency. If, for instance, the large trader sells slowly,

optimal risk-sharing is slowly achieved, and the trading process is not very efficient.

In this paper we study the dynamic strategy of a large trader who trades to share risk.6

We consider a discrete-time, infinite-horizon, stationary economy with a consumption good

and two investment opportunities. The first is a riskless bond and the second is a risky

stock that pays a random dividend in each period. The large trader is risk-averse and trades

with competitive market makers. We introduce a risk-sharing motive through a privately

observed stock endowment that the large trader receives in each period.7 For simplicity, we

eliminate informational motives by assuming that dividend information is public. To obtain

the price impact in the absence of informational motives, we assume that market makers are

risk-averse.8 In addition to the large trader and the market makers, small “noise” traders

are present in the market. Since the large trader has a risk-sharing motive, trade can take

place even without noise. We introduce noise because it is realistic to assume that the large

trader can conceal his trades to some extent.

Our model is similar to Kyle (1985) in that a large trader trades with competitive market

makers and noise traders. The main differences between the two models are the following.

First, in Kyle’s model the large trader trades to exploit private information about asset

payoffs. By contrast, in our model, information about asset payoffs is public and the large

trader trades to share risk. Second, in Kyle’s model the large trader and the market makers

are risk-neutral, while in our model they are risk-averse. We assume risk aversion so that

there is scope for risk-sharing. Third, Kyle’s model is non-stationary, since the large trader

receives private information only at the beginning of the trading session. By contrast, our

model is stationary, since the large trader receives a stock endowment in each period. We

assume stationarity so that the model is tractable even when traders are risk-averse.

Our main results concern the dynamics of stock holdings and prices. We show that

after an endowment shock, the large trader’s stock holdings converge to a long-run limit,

determined by optimal risk-sharing between the large trader and the market makers. More-

over, there are two patterns of convergence to the long-run limit: stock holdings can either

decrease over time, or they can decrease and then increase.

The first convergence pattern is very intuitive. Stock holdings decrease over time as
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the large trader sells to the market makers the fraction of his endowment corresponding

to optimal risk-sharing. We show that the first convergence pattern also has the following

properties. First, the trading rate, defined as trade size (of the large trader’s trades) over

the size of subsequent trades, decreases over time. In particular, trade size decreases over

time. Second, the price impact, defined as price change over trade size, decreases over

time. The trading rate decreases over time as the information regarding the large trader’s

endowment gets reflected in the price. When the information is not reflected in the price,

the large trader has an incentive to sell quickly in order to “frontrun” on this information.

The second convergence pattern is somewhat surprising. The large trader sells to the

market makers the fraction of his endowment corresponding to optimal risk-sharing. He

then engages in a “round-trip transaction”, selling some shares only to buy them back

later. This pattern occurs when there is enough noise, and when the large trader is not

very risk-averse relative to the market makers. The large trader engages in the round-trip

transaction because the market makers misinterpret the sale prior to that transaction, i.e.

the sale that led to optimal risk-sharing. Indeed, the market makers attribute the sale to

the small traders, who account for most order flow, and expect the large trader to absorb a

fraction of the sale. The large trader knows that he initiated the sale and that he will not

absorb back a fraction. Therefore, he has private information that the price will fall. He can

trade on that information, selling some shares and buying them back when the price falls.

The second convergence pattern suggests that large traders’ strategies can be complicated

and reminiscent of “market manipulation”.

The dynamics of stock holdings and prices take a very simple form in the “continuous-

time” case, where the time between trades, h, is small. They consist of two phases: a first

short phase, whose length goes to 0 when h goes to 0, and a second long phase. In the first

phase, the large trader sells a fraction of his endowment (bounded away from 0) and the

information regarding the endowment gets fully reflected in the price. In the second phase,

optimal risk-sharing is achieved. The trading rate is thus very high in the first phase and

lower in the second phase. An important property of the dynamics for small h, is that the

large trader reveals his information “quickly”, i.e. within a time that goes to 0 when h goes

to 0. This is in contrast to the slow revelation of information in Kyle’s (1985) model.9

The dynamics of stock holdings and prices depend on the noise and on traders’ risk

aversion. We show that, as the noise increases, the large trader sells faster. However, the

market makers’ and the large trader’s risk aversion have an ambiguous effect on the speed
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of trade.

Our results have several empirical implications. In Section VI we derive these implica-

tions, and relate our results to the empirical literature on large trades. Moreover, in Section

VII we calibrate the model and study how quickly the large trader trades for realistic pa-

rameter values.

There is a small literature on the dynamic behavior of large traders with allocational

motives. Admati and Pfleiderer (1988) and Foster and Vishwanathan (1990) allow large

traders to optimize the timing of a single trade. They study whether such timing decisions

can explain the daily and weekly behavior of returns, volume, and bid-ask spreads. Seppi

(1990) compares the upstairs market, where large traders execute their trades as single

blocks, to the downstairs market, where they can trade over time. He derives conditions

under which large traders with allocational motives prefer the upstairs market. Almgren

and Chriss (1999) and Bertsimas and Lo (1998) study the dynamic strategies of large traders

who have a fixed time horizon to complete a trade and face an exogenous price reaction

function.

Vayanos (1999) studies the dynamic strategies of large traders who trade to share risk.

The main difference with this paper is that there is no noise. The no noise assumption

is somewhat unrealistic, since it implies that large traders cannot conceal their trades. In

this paper we make the more realistic assumption that there is noise and show that in

its presence, large traders’ strategies are very different. Indeed, in Vayanos (1999) large

traders’ stock holdings decrease after an endowment shock and the trading rate is constant.

By contrast, in this paper stock holdings either decrease, in which case the trading rate also

decreases, or they decrease and then increase. Cao and Lyons (1999) study the dynamic

strategies of large dealers who share risk in an inter-dealer market. The main differences

with this paper is that there is no noise and that dealers can trade only for two periods.

The remainder of this paper is organized as follows. In Section I we present the model.

In Section II we determine a Nash equilibrium of the game between the market makers and

the large trader. In Section III we study the dynamics of stock holdings and prices after the

large trader receives an endowment shock, and in Section IV we study the dynamics in the

continuous-time case. In Section V we examine how the dynamics depend on the noise and

on traders’ risk aversion. In Section VI we derive the empirical implications of our results,

and in Section VII we calibrate the model. Finally, in Section VIII we conclude. All proofs

are in the Appendix.
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I. The Model

Time is continuous and goes from −∞ to ∞. Trade takes place at times `h, where

` = ..,−1, 0, 1, .., and h > 0 is the time between trades. We refer to time `h as period

`. There is a consumption good and two investment opportunities. The first investment

opportunity is a riskless bond with an exogenous, continuously compounded rate of return

r. One unit of the consumption good invested in the bond in period `− 1 returns erh units

in period `. The second investment opportunity is a risky stock that pays a dividend d`h

in period `. We set

d` = d`−1 + δ`, (1)

and assume that the dividend shocks δ` are independent of each other and are normal with

mean 0 and variance σ2h. All traders learn δ` in period `, i.e. dividend information is

public.

There are three types of traders: a large trader, market makers, and small “noise”

traders. The large trader is infinitely-lived and consumes c`h in period `.10 His utility

over consumption is exponential with coefficient of absolute risk aversion (CARA) α and

discount rate β, i.e.

−h
∞
∑

`=`0

exp(−αc` − β(`− `0)h). (2)

In period ` the large trader receives an endowment of ε` shares of the stock and

−d`

h

1− e−rh
ε`

units of the consumption good. The consumption good endowment is the negative of the

present value of expected dividends, d`h/(1− e−rh), times the stock endowment, ε`.
11 The

stock endowments ε` are independent of each other and of the dividend shocks, and are

normal with mean 0 and variance σ2
eh. They are private information to the large trader.

Market makers are infinitely-lived and form a continuum with measure 1. A market

maker consumes c`h in period `. His utility over consumption is exponential with CARA α

and discount rate β, i.e.

−h
∞
∑

`=`0

exp(−αc` − β(`− `0)h). (3)

The assumption that market makers form a continuum with measure 1 means the following.

First, a market maker maximizes equation (3) taking price as given. Market makers are

thus competitive. Second, the market makers’ aggregate demand is derived by assigning

each market maker an index m in [0, 1] and integrating market makers’ demands over m.
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Aggregate demand is thus the average of market makers’ demands. The same is true for

the market makers’ aggregate stock holdings, endowment, etc.12

Small traders’ behavior is not derived from utility maximization. Small traders simply

sell u` shares in period `. (Small traders buy if u` is negative.) The sell orders u` are

independent of each other, of the dividend shocks, and of the large trader’s endowments.

They are normal with mean 0 and variance σ2
uh.

The sequence of events in period ` is as follows. First, the large trader receives his

endowments. Second, the market makers and the large trader learn the dividend shock.

Third, trade in the stock takes place. Fourth, the stock pays the dividend and fifth, the

market makers and the large trader consume. Trade is organized as follows. The large

trader and the small traders submit market orders and, simultaneously, the market makers

submit demand functions. The market-clearing price is then determined and all trades take

place at this price.

II. Equilibrium Determination

In this section we determine a stationary Nash equilibrium of the game between the market

makers and the large trader. (A Nash equilibrium is stationary if traders’ equilibrium

strategies are independent of time, holding the state variables constant.) In Section II.A we

conjecture traders’ equilibrium strategies. These strategies form a Nash equilibrium if it is

optimal for a trader to follow his strategy when other traders follow theirs. In Sections II.B

and II.C we study traders’ optimization problems, and show that determining a stationary

Nash equilibrium reduces to solving a system of non-linear equations. In Section II.D we

solve the system for small order flow. We also derive an equation that we use in Sections

III and IV to explain the intuition behind our results.13

A. Strategies

We first introduce some notation. We denote by e` the large trader’s stock holdings after

trade in period `, and by s` the market makers’ expectation of e`, conditional on informa-

tion available after trade in period `. We divide the large trader’s stock holdings before

trade in period `, e`−1 + ε`, into expected stock holdings, defined as the market makers’

expectation, s`−1, and into unexpected stock holdings. We denote by e` the market mak-

ers’ aggregate stock holdings after trade at period `. When all market makers follow their

equilibrium strategy, e` are also the stock holdings of each market maker. To study the
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market makers’ optimization problem, we will allow a market maker to deviate from his

equilibrium strategy, but assume that the other market makers follow theirs. Since market

makers form a continuum, the stock holdings of each non deviating market maker will be

e`. We will denote the stock holdings of the deviating market maker by e` + ∆e`.

The conjectured period ` equilibrium sell order for the large trader is

x` = ae(e`−1 + ε` − s`−1) + ass`−1 − aee`−1. (4)

(If x` is negative, it is a buy order.) The sell order, x`, is linear in the large trader’s

unexpected stock holdings, e`−1 +ε`−s`−1, the large trader’s expected stock holdings, s`−1,

and the market makers’ stock holdings, e`−1, all evaluated before trade in period `.14 We

expect the coefficients ae, as, and ae to be positive, i.e. the large trader sells when his stock

holdings are high and the market makers’ stock holdings are low. We allow ae and as to

be different, i.e. the large trader can sell at different rates out of unexpected and expected

stock holdings. We will show that the coefficients ae, as, and ae are indeed positive and

ae > as.

The conjectured period ` equilibrium demand for a market maker is

x`(p`) = B

(

h

1− e−rh
d` − p`

)

−Aee`−1 −Ass`−1. (5)

Demand, x`(p`), is linear in the dividend rate, d`, the price, p`, the market makers’ stock

holdings before trade in period `, e`−1, and the market makers’ expectation of the large

trader’s stock holdings before trade in period `, s`−1. Notice that a unit increase in the

dividend rate leaves demand unaffected only if the price increases by h/(1 − e−rh). This

is because h/(1− e−rh) is equal to the increase in the present value of expected dividends.

Notice also that traders’ conjectured strategies are stationary, since the coefficients ae, as,

ae, Ae, As, and B, are independent of `.

The price in period ` is given by the market-clearing condition

x`(p`) = x` + u`. (6)

Using equation (5), we get

p` =
h

1− e−rh
d` −

Ae

B
e`−1 −

As

B
s`−1 −

1

B
(x` + u`). (7)

B. The Market Makers’ Optimization Problem

A market maker maximizes the expectation of equation (3) assuming that the other market

makers and the large trader follow their equilibrium strategies. We formulate the market
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maker’s problem as a dynamic programming problem. The “state” in period ` is evaluated

after trade takes place and before the stock pays the dividend. There are five state variables:

the market maker’s consumption good holdings that we denote by M `, the dividend rate

d`, the market maker’s stock holdings e` + ∆e`, the other market makers’ stock holdings

e`, and the market makers’ expectation s`, of the large trader’s stock holdings. There are

two control variables chosen between the state in period `−1 and the state in period `: the

consumption c`−1, and the demand x`(p`).

The dynamics of M ` are given by the budget constraint

M ` = erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)− p`x`(p`).

Since market makers form a continuum, the price p` in the budget constraint is given by

equation (7), which assumes that all market makers follow their equilibrium strategy. Given

that the large trader also follows his equilibrium strategy, equation (7) becomes

p` =
h

1− e−rh
d` −

Ae

B
e`−1 −

As

B
s`−1 −

1

B
(ae(e`−1 + ε` − s`−1) + u`), (8)

where As = As + as and Ae = Ae − ae. The dynamics of d` are given by equation (1). The

dynamics of e` + ∆e` are given by

e` + ∆e` = e`−1 + ∆e`−1 + x`(p`). (9)

The market maker’s stock holdings after trade in period ` are equal to his stock holdings

after trade in period `−1, plus the shares that he buys in period `. Similarly, the dynamics

of e` are given by

e` = e`−1 + x` + u`. (10)

The other market makers’ stock holdings after trade in period ` are equal to their stock

holdings after trade in period ` − 1, plus the order flow in period `. Given that the large

trader follows his equilibrium strategy, equation (10) becomes

e` = (1− ae)e`−1 + ass`−1 + ae(e`−1 + ε` − s`−1) + u`. (11)

We finally determine the dynamics of s`, the market makers’ expectation of the large

trader’s stock holdings e`. To determine these dynamics, we first determine the dynamics

of e` and then use recursive filtering. The dynamics of e` are given by

e` = (e`−1 + ε`)− x`. (12)
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The large trader’s stock holdings after trade in period ` are equal to his stock holdings after

trade in period ` − 1, plus his stock endowment in period `, minus his sell order in period

`. Given that the large trader follows his equilibrium strategy, equation (12) becomes

e` = (e`−1 + ε`)− ae(e`−1 + ε` − s`−1)− ass`−1 + aee`−1. (13)

We next use recursive filtering. We denote the information available to the market makers

after trade in period ` by I`. The information I` consists of I`−1, the dividend rate d`

(which does not contain information on e`), and the order flow x` + u`. To compute s`,

the mean of e` conditional on I`, we proceed recursively. We first condition on I`−1 and

then compute the mean of e` conditional on the order flow x` + u`. Since all variables are

normal, we can simply regress e` on x` + u`. (The regression is conditional on I`−1.) To do

the regression, we use equations (4) and (13). We also denote by Σ2
e the variance of e`−1

conditional on I`−1.
15 The regression implies that

s` = EI`
e` = (1− as)s`−1 + aee`−1 + g(x` + u` − (ass`−1 − aee`−1)), (15)

where

g =
ae(1− ae)(Σ

2
e + σ2

eh)

a2
e(Σ

2
e + σ2

eh) + σ2
uh

. (16)

The mean of e` conditional on I`, is the sum of two terms. The first term, (1 − as)s`−1 +

aee`−1, is the mean of e` conditional on I`−1. The second term corresponds to the market

makers’ “surprise” in period `. The surprise is proportional to the difference between the

order flow x` + u`, and the mean of the order flow conditional on I`−1, ass`−1 − aee`−1.

The coefficient of proportionality g increases in (Σ2
e + σ2

eh)/σ2
uh, which is a measure of the

relative order flow coming from the large and the small traders. The dynamics of s` are

given by equation (15). Since the large trader follows his equilibrium strategy, equation

(15) becomes

s` = (1− as)s`−1 + aee`−1 + g(ae(e`−1 + ε` − s`−1) + u`). (17)

We conjecture that the market maker’s value function is

V (M `, d`, ∆e`, e`, s`) = −exp(−α(
1− e−rh

h
M ` +d`(e` +∆e`)+F (Q,













∆e`

e`

s`













)+q)), (18)

where F (Q, v) = (1/2)vtQv for a matrix Q and a vector v, vt is the transpose of v, Q is

a symmetric 3 × 3 matrix, and q is a constant. In Proposition 1 (in the Appendix) we
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provide sufficient conditions for the demand in equation (5) to solve the market maker’s

optimization problem and for the function (18) to be the value function. The conditions

are on the coefficients Ae, As, B, ae, as, ae, Q, and q. We explore the economic intuition

behind these conditions in Section II.D.

C. The Large Trader’s Optimization Problem

The large trader maximizes the expectation of equation (2) assuming that the market makers

follow their equilibrium strategy. We formulate the large trader’s problem as a dynamic

programming problem. The state in period ` is evaluated after trade takes place and before

the stock pays the dividend. There are five state variables: the large trader’s consumption

good holdings that we denote by M`, the dividend rate d`, the large trader’s stock holdings

e`, the market makers’ expectation s`, of the large trader’s stock holdings, and the market

makers’ stock holdings e`. There are two control variables chosen between the state in

period `− 1 and the state in period `: the consumption c`−1, and the market order x`. The

dynamics of M` are given by the budget constraint

M` = erh(M`−1 + d`−1e`−1 − c`−1h)− d`

h

1− e−rh
ε` + p`x`. (19)

The price p` in the budget constraint is given by equation (7). The dynamics of d`, e`, s`,

and e` are given by equations (1), (12), (15), and (10), respectively.

We conjecture that the large trader’s value function is

V (M`, d`, e`, s`, e`) = −exp(−α(
1− e−rh

h
M` + d`e` + F (Q,













e` − s`

s`

e`













) + q)). (20)

where Q is a symmetric 3×3 matrix and q a constant. In Proposition 2 (in the Appendix) we

provide sufficient conditions for the market order in equation (4) to solve the large trader’s

optimization problem, and for the function (20) to be the value function. The conditions

are on the coefficients Ae, As, B, ae, as, ae, Q, and q. We explore the economic intuition

behind these conditions in the next section.

D. Equilibrium for Small Order Flow

The optimization problems of Sections II.B and II.C produce a set of sufficient conditions

for traders’ strategies to form a stationary Nash equilibrium. The conditions are on Ae , As,

B, ae, as, and ae, the coefficients of traders’ strategies, and Q, q, Q, and q, the coefficients
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of traders’ value functions. In the Appendix we combine these conditions with equations

(14) and (16) of the market makers’ recursive filtering problem, and obtain a system, (S),

of 20 non-linear equations. The 20 unknowns are the six coefficients Ae, As, B, ae, as, and

ae, the 12 elements of the symmetric 3 × 3 matrices Q and Q, and the two coefficients g

and Σ2
e.

In general, the system (S) is complicated and can only be solved numerically. This is

because traders face both “fundamental” risk (dividend risk) and “price” risk (risk coming

from the effect of the other traders on price). The large trader, for instance, faces the risk

of a negative dividend shock and the risk of selling at the same time as the small traders.

The cost of bearing dividend risk is exogenous and easy to compute. However, the cost of

bearing price risk depends on traders’ strategies and is a non-linear function of Ae, As, B,

ae, as, ae, Q, and Q.

Since dealing with dividend risk is easy and with price risk difficult, it is natural to study

the case where price risk is small. The large trader’s problem does not change qualitatively

for small price risk. Indeed, the determinants of the large trader’s strategy are price impact

and the risk of holding a large position. Neither goes to 0 as price risk gets small, since

there is dividend risk.

Price risk is small when order flow is small, i.e. when the variances σ2
e and σ2

u of the

endowment and the noise shocks are small. To study the system (S) for small order flow,

we set σ2
u = σ2

uσ2
e , and assume that σ2

e goes to 0 while σ2
u stays constant. We also set

Σ2
e = Σ

2
eσ

2
e . For σ2

e = 0 the system (S) simplifies dramatically. In Theorem 1 we show

that (S) collapses to a system of four non-linear equations in ae, as, g, and Σ
2
e. This new

system, (s), has a solution (obtained in closed-form for small h in Section IV) and thus (S)

has a solution. The solution of (S) can be extended for small σ2
e , by the implicit function

theorem.

Theorem 1 The system (S) has a solution for small σ2
e . For σ2

e = 0, the coefficients ae,

as, g, and Σ
2
e solve the system (s) of

ae(1−(1−ae(1+g))e−rh)(1−as(1+g))α−(1−ae(1+g))(1−as−ae)(1−e−rh)α = 0, (21)

−as
1− (1− as(1 + g)(2− as − ae))e

−rh

1− (1− as(1 + g))(1− as − ae)e−rh
α + (α(1− as)− αas)(1− e−rh) = 0, (22)

g =
ae(1− ae)(Σ

2
e + h)

a2
e(Σ

2
e + h) + σ2

uh
, (23)
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and

Σ
2
e =

(1− ae)
2(Σ

2
e + h)σ2

uh

a2
e(Σ

2
e + h) + σ2

uh
. (24)

The coefficient ae is given by

aeα− asα = 0. (25)

The coefficients Ae, As, B, Q, and Q, are determined (in the Appendix) by solving systems

of linear equations.

When the variance σ2
e of the endowment shocks is zero, we can simplify the system

(S) and explore the economic intuition behind its equations. We do not consider all the

equations of (S), but only two equations that we can derive by combining the equations of

(S). (We derive the two equations in the Appendix.) The first, “market maker” equation

follows by combining the equations coming out of the market makers’ optimization prob-

lem. The second, “large trader” equation similarly follows from the large trader’s problem.

Combining the market maker and large trader equations, we can obtain an equation that

we use in Sections III and IV to explain the intuition behind our results.

The market maker equation is

−p` + d`h−
ασ2h2e−rh

1− e−rh
e` + E`p`+1e

−rh = 0. (26)

Equation (26) states that a market maker’s marginal benefit of buying ∆x shares in period

` and selling them in period ` + 1, is 0. The marginal benefit is the sum of four terms. The

first term represents the price p` that the market maker pays at period `. The second term

represents the dividend d`h that the market maker receives in period `. The third term

represents an “inventory” cost that the market maker bears by holding a riskier position

between periods ` and ` + 1. This inventory cost is proportional to the dividend risk σ2,

the market maker’s CARA α, and the market maker’s stock holdings e`. Finally, the fourth

term represents the price that the market maker expects to receive in period `+1, discounted

in period `. (We denote by E` the expectation w.r.t. the market makers’ information, to

distinguish it from the expectation w.r.t. the large trader’s information.)

The large trader equation is

−p` + d`h−
ασ2h2e−rh

1− e−rh
e` + E`p`+1e

−rh

+
1

B
x` − (gas − ae)(1 + g)

As − as

B

∑

`′≥`+1

(1− as(1 + g))`′−`−2E`x`′e
−(`′−`)rh = 0. (27)

12



Equation (27) states that the large trader’s marginal benefit of buying ∆x shares in period

` and selling them in period ` + 1, is 0. It is the counterpart of equation (26) which sets

the marginal benefit of a market maker to 0. The large trader’s marginal benefit is the sum

of six terms. The first four terms are as for the market maker. The fifth and sixth terms

represent the impact of buying and selling shares on prices. The fifth term represents the

impact on the period ` price. It is the product of x`, the number of shares that the large

trader sells in equilibrium, times 1/B, the “marginal” price increase that corresponds to the

purchase of ∆x shares. (Equation (7) implies that a purchase of ∆x shares increases the

price by (1/B)∆x.) The sixth term represents the impact on the price in periods `′ ≥ `+1.

For each `′, we multiply E`x`′ , the expected number of shares that the large trader sells in

equilibrium, by

−(gas − ae)(1 + g)
As − as

B
(1− as(1 + g))`′−`−2, (28)

the marginal price increase that corresponds to the purchase of ∆x shares in period ` and

the sale of ∆x shares in period ` + 1. We then discount in period `, and sum over `′.

Equation (28) implies that the purchase and subsequent sale of ∆x shares decreases the

price in periods `′ ≥ `+1 if gas−ae > 0 and increases the price otherwise. We first explain

why this zero cumulative trade affects prices, and then why the effect depends on the sign

of gas− ae. The purchase and subsequent sale of ∆x shares affects prices because it affects

the market makers’ expectation of the large trader’s stock holdings. The reason why it

affects the market makers’ expectation, is the following. The market makers revise their

expectation by comparing order flow to expected order flow. In period `, they compare the

purchase of ∆x shares to 0. However, in period ` + 1, they compare the sale of ∆x shares

not to 0, but to the expectation that the purchase in period ` has created. Suppose, for

instance, that after a purchase, the market makers expect a purchase. Then, the sale of ∆x

shares will send a stronger signal than the purchase, and the market makers will increase

their expectation of the large trader’s stock holdings. To determine whether the market

makers expect a purchase after a purchase, we use equations (15) and (10). These equations

imply that a purchase of ∆x shares in period ` reduces s` by g∆x, e` by ∆x, and expected

(sell) order flow in period ` + 1, ass` − aee`, by

−(as∆s` − ae∆e`) = (gas − ae)∆x.

Therefore, the market makers expect a purchase after a purchase if gas − ae > 0. Notice

that when g is small, i.e. most order flow comes from the small traders, the market makers

13



expect a sale after a purchase. This is because they attribute the purchase to the small

traders, and expect the large trader to satisfy part of the demand, i.e. to sell some shares.

Combining the market maker equation (26) and the large trader equation (27), we can

obtain an equation that we use to explain the intuition behind our subsequent results.

Substituting the price p` from equation (26) into equation (27), we get

σ2h2e−rh

1− e−rh
(αe` − αe`) +

(

E`p`+1 − E`p`+1

)

e−rh

+
1

B
x` − (gas − ae)(1 + g)

As − as

B

∑

`′≥`+1

(1− as(1 + g))`′−`−2E`x`′e
−(`′−`)rh = 0. (29)

The large trader’s marginal benefit of buying shares in period ` and selling them in period

` + 1, can be reduced to a sum of four terms. The first term is the “risk-sharing” term.

Buying shares benefits the large trader when his stock holdings e`, adjusted by his CARA α,

are smaller than the market makers’ stock holdings. The second term is the “frontrunning”

term. Suppose that in equilibrium the large trader sells in period ` + 1, and that the sale is

not expected by the market makers. In period `, the large trader has private information

that the price will fall, i.e. E`p`+1 − E`p`+1 < 0. By buying shares, he foregoes “frontrun-

ning” on this information. The third term is the “price impact” term and represents the

impact of buying shares on the period ` price. The fourth term represents the impact of

buying and selling shares on the price in periods `′ ≥ `+1. Since the impact is through the

market makers’ expectation, we refer to the fourth term as the “belief manipulation” term.

III. Dynamics of Stock Holdings and Prices

In this section we study the dynamics of stock holdings and prices. To study these dynamics,

we first show a result on the coefficients ae and as of the large trader’s equilibrium strategy.

A. The Coefficients ae and as

The large trader’s sell order in period ` is given by equation (4) that we reproduce below

x` = ae(e`−1 + ε` − s`−1) + ass`−1 − aee`−1.

The coefficient as is the rate at which the large trader sells out of his expected stock holdings

(conditional on the market makers’ information) s`−1. The coefficient ae is similarly the

rate at which the large trader sells out of his unexpected stock holdings e`−1 + ε` − s`−1.

In Proposition 3 we compare the coefficients ae and as for small order flow. Our numerical

solutions confirm Proposition 3 for large order flow.

14



Proposition 3 For small σ2
e , ae > as.

Proposition 3 states that the large trader sells at a higher rate out of unexpected than

out of expected stock holdings. To explain the intuition behind this result, we consider

two extreme cases. First, the case where the large trader’s stock holdings are expected, i.e.

where they are equal to the market makers’ expectation s`−1. Second, the case where the

large trader’s stock holdings are unexpected, i.e. where the market makers’ expectation is

0. We also suppose that the large trader’s stock holdings are high relative to the market

makers’, so that the large trader sells over time and the price falls. When stock holdings

are unexpected, the large trader has private information that the price will fall. By selling

slowly, he bears the opportunity cost of not “frontrunning” on this information. By contrast,

when stock holdings are expected, the large trader has no private information and bears no

such cost. Therefore, the large trader sells more slowly when stock holdings are expected.

In terms of equation (29), the “frontrunning” term is 0 when stock holdings are expected

and negative when they are unexpected. Therefore, the marginal benefit of buying in period

` and selling in period ` + 1, i.e. the marginal benefit of selling more slowly, is higher when

stock holdings are expected.

B. Dynamics

The dynamics of stock holdings and prices are, a priori, complicated, because they are gen-

erated by multiple endowment and noise shocks. We can, however, simplify the dynamics,

using the linearity of the model. Indeed, because of linearity, the dynamics are simply the

sum over all shocks of the dynamics generated by each shock.16 We will study the dynamics

generated by an endowment shock. The dynamics generated by a noise shock have a similar

flavor. We normalize the endowment shock to 1, and assume that it comes in period `, i.e.

we set ε` = 1. To isolate the dynamics generated by this shock, we set all other endowment

and noise shocks to 0. In Proposition 4 we determine the dynamics of the large trader’s

stock holdings.

Proposition 4 The large trader’s stock holdings before trade in period `′ ≥ ` are

e`′−1 =
ae

as + ae
+

ae(gas − ae)

(ae(1 + g)− as − ae)(as + ae)
(1− as − ae)

`′−`

+
ae − as

ae(1 + g)− as − ae
(1− ae(1 + g))`′−`. (30)
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Proposition 4 implies that stock holdings converge to the long-run limit ae/(as + ae),

and that convergence takes place at a combination of the rates (1 − as − ae)
`′−` and

(1 − ae(1 + g))`′−`. To prove Proposition 4, we determine the joint dynamics of the large

trader’s stock holdings, e`, the market makers’ expectation of the large trader’s stock hold-

ings, s`, and the market makers’ stock holdings, e`. Equations (13), (17), and (11), give

e`, s`, and e` as linear functions of e`−1, s`−1, and e`−1. The 3 × 3 matrix corresponding

to these equations has three eigenvalues. The first eigenvalue is 1, and corresponds to the

long-run limit. The other two eigenvalues are 1− as − ae and 1− ae(1 + g) and correspond

to the rates of convergence.

The dynamics of prices can be deduced from the dynamics of e`, s`, and e`. Equation

(8) implies that the price p` is a linear function of e`, s`, and e`. Therefore, the price

converges to a long-run limit, and convergence takes place at a combination of the rates

(1− as − ae)
`′−` and (1− ae(1 + g))`′−`.

We next study the long-run limits of stock holdings and prices, and then the convergence

to these limits. The long-run limit of the large trader’s stock holdings is ae/(as +ae). Since

the endowment shock is equal to 1, the long-run limit of the market makers’ stock holdings

is as/(as+ae). Therefore, in the long run, the endowment shock is divided between the large

trader and the market makers according to the ratio ae/as. This ratio is in fact the optimal

risk-sharing rule. Theorem 1 implies that in the absence of price risk, the risk-sharing rule

coincides with the standard risk-sharing rule α/α.17 The long-run limit of the price can be

deduced from the long-run limits of stock holdings and the market makers’ expectation of

the large trader’s stock holdings. In the proof of Proposition 4, we show that the latter is

ae/(as+ae). This means that, in the long run, the market makers form a correct expectation

of the large trader’s stock holdings. (As all results in this section, this result concerns the

dynamics generated by one endowment shock. Because of the subsequent endowment and

noise shocks, the market makers never learn the large trader’s stock holdings.)

In Proposition 5 we show some results on the convergence of stock holdings and prices

to their long-run limits. To state the proposition, we define two variables, the trading rate

and the price impact. The trading rate is the ratio of the large trader’s sell order at a given

period, to the sum of his sell orders at that and subsequent periods. The price impact is

the ratio of minus the price change at a given period, to the large trader’s sell order at that

period. Formally, the trading rate in period `′ is x`′/
∑

`′′≥`′ x`′′ , and the price impact is

(p`′−1 − p`′)/x`′ .
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Proposition 5 If gas − ae ≥ 0, the large trader’s stock holdings decrease over time. The

trading rate and the price impact also decrease over time. If gas−ae < 0, the large trader’s

stock holdings decrease and then increase over time.

Proposition 5 implies that there are two patterns of convergence to the long-run limit:

the large trader’s stock holdings can decrease over time, or they can decrease and then

increase. Moreover, when stock holdings decrease over time, the trading rate and the price

impact also decrease.18

The first convergence pattern is very intuitive. Stock holdings decrease over time, as

the large trader sells to the market makers the fraction of his endowment corresponding to

optimal risk-sharing. The trading rate decreases over time because, first, the large trader

sells at a higher rate out of unexpected than out of expected stock holdings (Proposition

3) and, second, the fraction of stock holdings that are expected increases, as the market

makers’ expectation becomes more accurate. The price impact decreases over time because

the fraction of the large trader’s sell order that is unexpected, and that causes the price to

change, decreases. Figure 1 illustrates the first convergence pattern.19

The second convergence pattern is somewhat surprising. The large trader sells to the

market makers the fraction of his endowment corresponding to optimal risk-sharing. He

then engages in a “round-trip transaction”, selling some shares only to buy them back later.

This pattern occurs when g is small, i.e. most order flow comes from the small traders,

and when ae/as is large, i.e. the optimal risk-sharing rule assigns many shares to the large

trader. The large trader engages in the round-trip transaction because the market makers

misinterpret the sale prior to that transaction, i.e. the sale that led to optimal risk-sharing.

Indeed, the market makers attribute the sale to the small traders, who account for most

order flow, and expect the large trader to absorb a fraction of the sale. The large trader

knows that he initiated the sale and that he will not absorb back a fraction. Therefore, he

has private information that the price will fall. He can trade on that information, selling

some shares and buying them back when the price falls. Figure 2 illustrates the second

convergence pattern.

IV. Dynamics in the Continuous-Time Case

In this section we study the dynamics of stock holdings and prices in the “continuous-time”

case, where the time between trades h, is small. We consider the continuous-time case for
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two reasons. First, because in real-world financial markets the time between trades can

be very small. Second, because when both the order flow and the time between trades are

small, we can determine the Nash equilibrium in closed-form. In Section IV.A we determine

the closed-form solution and in Section IV.B we use the solution to study the dynamics of

stock holdings and prices.

A. The Closed-Form Solution

We obtain the closed-form solution when both the order flow and the time between trades

are small. More precisely, we consider the Taylor expansion in h of the coefficients Ae,

As, B, ae, as, ae, Q, Q, g, and Σ2
e. For small σ2

e , i.e. for small order flow, we determine

the order of the dominant term in the Taylor expansion, i.e. we determine whether the

dominant term is of order h, or
√

h, or 1, etc. For σ2
e = 0, we determine the dominant term

in closed-form. In Proposition 6 we present the results for the coefficients ae, as, ae, and g.

We omit the other coefficients, since we do not use them in what follows.

Proposition 6 For small σ2
e ,

ae = φe

√
h + o(

√
h), as = φsh + o(h), ae = φeh + o(h), and g = g0 + o(1).

For σ2
e = 0,

g0 =

√

1 +
1

σ2
u

− 1,

φe =

√

αr

α(1 + g0)
,

φs is the positive root of

2(φs)
2(1 + g0)

α

α
− φsr(2 + g0)− r2 = 0,

and φe = φsα/α.

Proposition 6 implies that for small order flow, ae is of order
√

h, as and ae of order

h, and g of order 1. Our numerical solutions confirm these results for large order flow.

In Section IV.B we use these results to study the dynamics of stock holdings and prices.

Proposition 6 has also implications on how the coefficients ae, as, ae, and g depend on the

exogenous parameters σ2
u, α, and α, for σ2

e = 0. We explore these implications in Section

V, where we perform comparative statics.
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The result that ae is of order
√

h and as of order h, is stronger than the result ae > as

of Proposition 3. For small h, the large trader sells at a much higher rate, and not simply

at a higher rate, out of unexpected than out of expected stock holdings. This result turns

out to be crucial for the dynamics of stock holdings and prices, so we explain the intuition

behind it in the rest of this section.

We suppose that before trade in period `, the large trader’s stock holdings are equal

to 1, and the market makers’ stock holdings to 0. The large trader thus sells over time.

Equation (29) states that the marginal benefit of buying in period ` and selling in period

` + 1, i.e. the marginal benefit of selling more slowly, is the sum of the “risk-sharing” term,

the “frontrunning” term, the “price impact” term, and the “belief manipulation” term.

The risk-sharing term is negative, since the large trader bears more dividend risk between

periods ` and ` + 1. Since the variance of the dividend shock δ`+1 is σ2h, the risk-sharing

term is of order h. The price impact term is positive, since the price in period ` increases.

It is of the same order as the trade x`, of the large trader. The belief manipulation term

can be negative or positive, depending on whether the market makers expect a purchase

or a sale after a purchase. For simplicity, we assume that it is 0. When stock holdings

are expected, i.e. when s`−1 = 1, the frontrunning term is 0. Therefore, the price impact

benefit of selling more slowly, has to equal the risk-sharing cost. This means that the trade

x` is of order h. Equation (4) implies that x` = as. Therefore, as is of order h.

When stock holdings are unexpected, i.e. when s`−1 = 0, the frontrunning term is

negative. This is because the period ` price does not reflect the large trader’s future sales,

and is higher than the period ` + 1 price. Substituting the price p`+1 from equation (7), we

can write the frontrunning term as

− 1

B

(

E`x`+1 − E`x`+1

)

e−rh.

The term in parentheses is the “unexpected” period ` + 1 sell order, i.e. the sell order that

can be predicted by the large trader and not by the market makers. The frontrunning term

is simply the price impact of the unexpected sell order, discounted in period `. Notice that

the price impact term, (1/B)x`, is the “negative” of the frontrunning term, since it is the

negative of the price impact of x`, the unexpected period ` sell order. The sum of the two

terms is of order

x` −
(

E`x`+1 − E`x`+1

)

e−rh.

19



This, rather than x`, has to be of the same order as the risk-sharing term, i.e. of order h.

Equations (4), (13), and (17) imply that

x` −
(

E`x`+1 − E`x`+1

)

e−rh = ae − ae(e` − s`)e
−rh = ae(1− (1− ae(1 + g))e−rh).

Therefore, ae is of order
√

h.

B. Dynamics

As in Section III.B, we study the dynamics generated by one endowment shock. We first

proceed heuristically. To complement the heuristic analysis, we then study the dynamics

in the limit when h goes to 0. In Proposition 6 we showed that ae, the selling rate out

of unexpected stock holdings, is of order
√

h. Therefore, unexpected stock holdings get

close to 0, their long-run limit, within a number of periods of order 1/
√

h, i.e. within

a time of order h × (1/
√

h) =
√

h. Within that time, total (expected plus unexpected)

stock holdings get close to expected stock holdings. This happens both because total stock

holdings decrease, as the large trader sells a fraction of his endowment, and because expected

stock holdings increase, as the market makers’ expectation becomes more accurate. Once

total stock holdings get close to expected stock holdings, they evolve more slowly. Indeed,

in Proposition 6 we showed that as, the selling rate out of expected stock holdings, is of

order h. Therefore, expected (and total) stock holdings get close to their long-run limit,

within a number of periods of order 1/h, i.e. within a time of order h× (1/h) = 1.

The above heuristic analysis implies that for small h, the dynamics consist of two phases.

The first phase is short, with length of order
√

h. In this phase, the large trader sells a

fraction of his endowment, and the market makers form a correct expectation of the large

trader’s stock holdings. The second phase is long. In this phase, optimal risk-sharing is

achieved. Figure 3 illustrates the dynamics of the large trader’s stock holdings for small h.

To complement the heuristic analysis, we study the dynamics in the limit when h goes

to 0. We assume that the endowment shock comes at time t, and we determine the limit

when h goes to 0, of the large trader’s stock holdings at time t′ > t. We fix times t and t′,

rather than periods ` and `′, because the time between two periods goes to 0 when h goes

to 0. We determine the limit of the large trader’s stock holdings in Proposition 7.

Proposition 7 The limit when h goes to 0, of the large trader’s stock holdings at time

t′ > t is
φe

φs + φe

+
g0φs − φe

(1 + g0)(φs + φe)
e−(φs+φe)(t′−t). (31)
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Proposition 7 implies that in the limit when h goes to 0, stock holdings behave as follows.

At time t they are equal to 1, the endowment shock. Immediately after time t they drop

discontinuously to g0/(1+g0). They then converge to the long-run limit φe/(φs +φe) at the

rate e−(φs+φe)(t
′−t). The discontinuous drop corresponds to the first phase of the dynamics

for small h, and the exponential rate of convergence corresponds to the second phase. We

should emphasize that the discontinuous drop does not correspond to a single block trade,

but to many small trades. Each of these trades is of order
√

h, and the trades are completed

within a time of order
√

h.

An important property of the dynamics for small h, is that the large trader reveals his

information “quickly”, i.e. within a time that goes to 0 when h goes to 0. Indeed, the

market makers form a correct expectation of the large trader’s stock holdings within a time

of order
√

h. The “fast” revelation of information is in contrast to the “slow” revelation of

information (within a time that does not go to 0 when h goes to 0) in Kyle’s (1985) insider

trading model. One reason why the results are different may have to do with traders’

impatience. Our large trader is risk-averse and bears a cost when holding a risky position.

He is thus impatient to reduce his position. By contrast, Kyle’s insider is risk-neutral and is

not impatient to establish a position, as long as he does so before his information is publicly

announced.20 It is, however, unlikely that the difference in results is due to impatience.

Indeed, we get fast revelation of information for all parameter values, including when the

risk aversion of the large trader is small.21

A second reason why the results are different may have to do with stationarity. Our

model is stationary, since the large trader receives a stock endowment in each period. By

contrast, Kyle’s model is non-stationary, since the insider receives private information only

at the beginning of the trading session. Non-stationarity implies that the fast revelation

of information cannot be an equilibrium. Indeed, if the insider reveals his information

quickly, market depth will increase over time and the insider will prefer to trade more

slowly. To determine whether the difference in results is due to stationarity, one can examine

a stationary model with a risk-neutral insider who receives private information over time.

Such a model is of independent interest. For instance, a result that the insider reveals his

information quickly would suggest that markets are informationally efficient even in the

presence of informational monopolists.22
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V. Comparative Statics

In this section we study how the dynamics of the large trader’s stock holdings after an

endowment shock depend on the exogenous parameters σ2
u, α, and α. The parameter

σ2
u = σ2

u/σ2
e is a measure of the relative order flow coming from the small traders and

the large trader. We refer to it as noise. The parameters α and α are the coefficients of

absolute risk aversion of the large trader and the market makers. We refer to them as the

large trader’s and the market makers’ risk aversion.

It is easiest to perform the comparative statics for small order flow and time between

trades, i.e. for small σ2
e and h. Indeed, in the limit when h goes to 0, the dynamics of

the large trader’s stock holdings simplify to the ones given by Proposition 7. Moreover,

for σ2
e = 0, the parameters g0, φs, and φe, are given in closed form by Proposition 6. We

perform the comparative statics for small σ2
e and h (more precisely, in the limit when σ2

e and

h go to 0) in Corollaries 1 and 2. Corollary 1 concerns the comparative statics w.r.t. the

noise, and Corollary 2 those w.r.t. traders’ risk aversion. After stating the corollaries, we

explain how they follow from Propositions 6 and 7. Finally, we show that the comparative

statics for general values of σ2
e and h are consistent with the corollaries.

Corollary 1 If the noise is small, the large trader’s stock holdings decrease over time,

while if the noise is large, they decrease and then increase over time. Moreover, as the

noise increases, the large trader sells faster.

Corollary 2 If the large trader’s risk aversion is large or the market makers’ risk aversion

small, the large trader’s stock holdings decrease over time. In the opposite case, they decrease

and then increase over time. Both the large trader’s and the market makers’ risk aversion

have an ambiguous effect on the speed at which the large trader sells.

To prove the corollaries, we first note that from Proposition 7 the large trader’s stock

holdings drop discontinuously from 1 to g0/(1+g0), and then converge to the long-run limit

φe/(φs + φe) at the rate e−(φs+φe)(t′−t). We then use Proposition 6 to study how the long-

run limit, the discontinuous drop, and the rate of convergence depend on the noise and on

traders’ risk aversion. Proposition 6 implies that the long-run limit is α/(α+α). The long-

run limit thus decreases in the large trader’s risk aversion, increases in the market makers’

risk aversion, and is independent of the noise. The intuition is that the long-run limit is

determined by optimal risk-sharing. Proposition 6 also implies that the discontinuous drop
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1/(1+g0), in the large trader’s stock holdings increases in the noise and is independent of the

large trader’s and the market makers’ risk aversion. The intuition is that the discontinuous

drop represents the number of shares the large trader can sell before the market makers

form a correct expectation of his stock holdings. This number of shares depends only

on the noise. Finally, Proposition 6 implies that the rate of convergence e−(φs+φe)(t
′−t)

becomes faster (i.e. φs +φe increases) as the noise increases, the large trader’s risk aversion

increases, and the market makers’ risk aversion decreases.23 The intuition is that the large

trader trades quickly if he is impatient to reduce his position and if the price impact is

small. The large trader’s impatience increases in his risk aversion, and the price impact

decreases in the noise and increases in the market makers’ risk aversion.

Using the above results, it is straightforward to prove the corollaries. The first result

of Corollary 1 follows by noting that the long-run limit of stock holdings is independent

of the noise, while the discontinuous drop increases in the noise. Therefore, stock holdings

drop above their long-run limit if the noise is small, and below otherwise. For the second

result of the corollary, suppose that the noise is small, in which case stock holdings drop

above their long-run limit. As the noise increases, the discontinuous drop increases, and the

subsequent rate of convergence to the long-run limit becomes faster. Therefore, the large

trader sells faster. Moreover, as the noise gets large, the large trader sells immediately,

since stock holdings drop discontinuously below their long-run limit.

To prove Corollary 2, we note that the large trader’s and the market makers’ risk aversion

have opposite effects on the long-run limit of stock holdings, the discontinuous drop, and the

rate of convergence. Therefore, we can focus on the large trader’s risk aversion. The first

result of the corollary follows by noting that the long-run limit of stock holdings increases

as α decreases, while the discontinuous drop is independent of α. Therefore, stock holdings

drop above their long-run limit if α is large, and below otherwise. For the second result

of the corollary, note that as α decreases, the rate of convergence to the long-run limit

(that applies subsequent to the discontinuous drop) becomes slower, but the long-run limit

increases and becomes easier to reach. In other words, the large trader sells more slowly,

but has a smaller quantity to sell. To show that either effect can dominate, consider three

cases: α = ∞, i.e. infinitely risk-averse large trader, α large but not ∞, and α small. If

α = ∞, the large trader sells immediately, since he bears an infinite cost of holding a risky

position. If α is large but not ∞, the large trader does not sell immediately, since stock

holdings drop above their long-run limit and then converge slowly to that limit. Finally, if
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α is small, the large trader sells immediately, since stock holdings drop below their long-run

limit.

Figure 4 illustrates the effects of the noise on the dynamics of the large trader’s stock

holdings and Figure 5 illustrates the effects of the large trader’s risk aversion. These figures

are drawn for general values of σ2
e and h, and are consistent with the corollaries.

VI. Empirical Implications

In this section we derive the empirical implications of our results. We also relate our results

to the empirical literature on the price impact and the execution of large trades.

We focus on the results concerning the dynamics of stock holdings and prices. These

results have implications for time-series data on institutional trades. We should note that

the dynamics in our model are generated by multiple endowment and noise shocks. The

data are also likely to be generated by multiple shocks, where shocks can, for instance,

be interpreted as changes in institutions’ desired portfolios. Indeed, institutions’ desired

portfolios change frequently, in response to inflows and outflows of funds, changing market

conditions, etc. To study the dynamics in our model, we considered the dynamics generated

by each shock in isolation. Therefore, one way to bring our model to the data is to filter

the data, and produce sequences of trades corresponding to each shock. Our results have

empirical implications for these sequences.

In Proposition 5 we show that, after an endowment shock, the large trader’s stock

holdings can decrease over time, or they can decrease and then increase. Moreover, when

stock holdings decrease over time, the trading rate and the price impact also decrease.

These results imply that in a sequence of institutional trades, in which all trades are in the

same direction, the following should be true. First, trading rate, defined as trade size over

size of subsequent trades, decreases over time. In particular, trade size decreases over time,

i.e. the first trades are the largest. Second, price impact, defined as price change over trade

size, decreases over time.

In Corollaries 1 and 2 we show that stock holdings decrease and then increase, when

the noise is large, the large trader not very risk-averse, and the market makers very risk-

averse. Therefore, a sequence of institutional trades in which not all trades are in the same

direction is more likely to be observed (i) for stocks with a high ratio of non-institutional

to institutional trades, i.e. for stocks where the noise is large, (ii) for large, and thus not

very risk-averse, institutions, and (iii) for stocks with few, weakly capitalized, and thus very
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risk-averse, market makers.

In Corollaries 1 and 2 we show that, as the noise increases, the large trader sells faster.

We also show that the large trader’s and the market makers’ risk aversion have an am-

biguous effect on the speed of trade. Therefore, a sequence of institutional trades should

be completed faster for stocks with a high ratio of non-institutional to institutional trades.

However, the size of the institution and the number of market makers should have an

ambiguous effect on the length of a trading sequence.

Most empirical studies of large trades, isolate individual trades and measure their price

impact. (See, for instance Kraus and Stoll (1972), Scholes (1972), Holthausen, Leftwich, and

Mayers (1987, 1990), Hausman, Lo, and McKinlay (1992), Chan and Lakonishok (1993),

and Keim and Madhavan (1996).) Chan and Lakonishok (1995) recognize that individual

trades may be part of a sequence or, in their terminology, a “package”. They show that

the price impact of trades is larger when these are analyzed in terms of packages rather

than individually. They determine the distribution of package lengths and show that 53

percent of packages take four or more days to be completed. They also show that, quite

surprisingly, packages in small stocks are completed faster than packages in large stocks.

The above relation between package length and stock size, although surprising, is not

inconsistent with our results. Indeed, small stocks have few market makers and our results

imply that the length of a package does not necessarily increase as the number of market

makers decreases. On the other hand, our results imply a strong negative relation, across

stocks, between package length and the ratio of non-institutional to institutional trades.

Such a relation is not examined in Chan and Lakonishok (1995), but can be tested in future

research. The other implications of our results concern “finer” properties of packages, such

as how trade size and price impact vary over the course of the package and when all trades

in the package are in the same direction. These properties are not examined in Chan and

Lakonishok, but can also be tested in future research.

VII. Calibration

In this section we calibrate the model, and study how quickly the large trader trades after

receiving an endowment shock. We measure the speed of trade by the average time of trade

execution (ATTE). This is the weighted sum of the times at which trades are executed, with

weights equal to the trades divided by the total trade. In Figure 6 we plot the ATTE as a

function of the noise. (The noise is σ2
u = σ2

u/σ2
e and measures the relative order flow coming
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from the small traders and the large trader.) The values of the other parameters are the

same as for Figures 1, 2, and 4.24 The parameter α/α is equal to 1/9. The large trader is

thus nine times as risk-averse as the market makers as a group. We assume that the market

makers are not very risk-averse to capture the real-world feature that market makers can

unload, to outside investors and over time, trades they receive from the large trader. (In

our model market makers cannot unload trades since there are no outside investors.) The

annual interest rate r is equal to 5 percent. The time between trading periods h is equal

to 1/5000’th of a year. Since there are approximately 250 trading days per year, there are

(250 × h)−1 = 20 trading periods per day.25 The parameter ασσe/r is equal to 0.1. This

parameter determines the ratio of price risk (price variability due to trades) to dividend risk

(price variability due to dividends). If ασσe/r = 0.1, the ratio is approximately 10 percent.

Finally, the endowment shock of the large trader is equal to 1. The size of the endowment

shock does not affect the ATTE, because of the linearity of the model.

Figure 6 shows that when the noise is greater than four, the ATTE is approximately

five trading days. When the noise is smaller than four, however, the ATTE increases

substantially. For instance, when the noise is two, the ATTE is 53 trading days. Such an

ATTE seems somewhat long (although there is anecdotal evidence that it can take a very

long time to get out of an extremely large position.) On the other hand, an ATTE of five

trading days seems quite consistent with the findings of Chan and Lakonishok (1995).

VIII. Conclusion

This paper studies a dynamic model of a financial market with a large trader. In each

period the large trader receives a privately observed endowment in the stock. He trades

with competitive market makers to share risk. Small noise traders are present in the market.

After receiving a stock endowment, the large trader is shown to reduce his risk exposure

either by selling at a decreasing rate over time, or by selling and then buying back some

of the shares sold. He follows the second strategy when there is enough noise and when

he is not very risk-averse relative to the market makers. When the time between trades

is small, the large trader reveals the information regarding his endowment very quickly.

Finally, the large trader sells faster as the noise increases, but the market makers’ and the

large trader’s risk aversion have an ambiguous effect on the speed of trade. Our results have

several empirical implications that can be tested in future research.

Future research can also address some theoretical issues. First, in this paper we obtain
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analytical results only for small order flow, i.e. only for small endowment and noise shocks.

For large order flow, we can only obtain numerical results (which are consistent with the

analytical results). Since many institutions need to execute large trades on a frequent basis,

it would be desirable to gain more insight on the equilibrium for large order flow. In the

context of our model, this can be done by studying in more depth the non-linear system

(S).

Second, in our model, trading needs are “smooth”. Indeed, normality implies that the

endowment shocks are never equal to 0, and are small when the time between trades is

small. However, in the real-world trading needs are frequently “lumpy”. Many institutions

do not trade for a period of time and then need to execute a large trade. It would be

interesting to know whether our results are robust to endowment shocks not being normal.

Finally, it would be interesting to know why our large trader reveals his information

quickly while Kyle’s insider reveals his information slowly. In Section IV.B we suggested

that this might be because our model is stationary while Kyle’s model is not. To determine

whether the stationarity is indeed the reason, one can examine a stationary model with a

risk-neutral insider who receives private information over time. Such a model is of indepen-

dent interest. For instance, a result that the insider reveals his information quickly would

suggest that markets are informationally efficient even in the presence of informational

monopolists.
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Appendix A

A. The Market Makers’ Optimization Problem

In this section we state concisely the market makers’ optimization problem, and then state

Proposition 1. The proofs of this proposition, of Propositions 2, 3, 5, 6, and of Theorem 1,

are not included in the printed version, in order to save space. They are available from the

author upon request and on the Journal of Finance web site http://www.afajof.org/.

We define the matrix N by

N =













1 0 0

0 1− ae as

0 ae 1− as













, (A1)

and the vector n by

n =













0

1

g













. (A2)

We also denote by ζ` the unexpected order flow (conditional on the market makers’ infor-

mation) i.e.

ζ` = ae(e`−1 + ε` − s`−1) + u`.

The market maker’s optimization problem, (P ), is

sup
c`,x`(p`)

−E`0(h
∞
∑

`=`0

exp(−αc` − β(`− `0)h))

subject to

d` = d`−1 + δ`,

M ` = erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)− p`x`(p`), (A3)

p` =
h

1− e−rh
d` −

Ae

B
e`−1 −

As

B
s`−1 −

1

B
ζ`, (A4)













∆e`

e`

s`













= N













∆e`−1 + x`(p`)− (ζ` + ass`−1 − aee`−1)

e`−1

s`−1













+ nζ`, (A5)

and the transversality condition26

lim
`→∞

E`0V (M `, d`, ∆e`, e`, s`)exp(−β(`− `0)h) = 0. (A6)
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To state Proposition 1 we define the following. First, the symmetric 4× 4 matrix Q
′
by

the condition that

F (Q
′
,



















z1

z2

z3

z4



















) =
1− e−rh

h

(

Ae

B
z2 +

As

B
z3 +

1

B
z4

)

(z4 + asz3 − aez2 − z1)

+F (Q, N













0

z2

z3













+ nz4) (A7)

for all (z1, z2, z3, z4). Second, the scalar R by

R = 1 + α
(

a2
e(Σ

2
e + σ2

eh) + σ2
uh
)

Q
′
4,4. (A8)

Third, the symmetric 3× 3 matrix R
′
by

R
′
= α

(

a2
e(Σ

2
e + σ2

eh) + σ2
uh
)

R
−1

Q
′
{1,2,3},{4}Q

′
{4},{1,2,3}. (A9)

Finally, the symmetric 3× 3 matrix P by

P = (Q
′
{1,2,3} −R

′ − ασ2hΓ)e−rh. (A10)

In equation (A9), Q
′
I,J denotes the matrix formed by the rows of Q

′
whose indices belong

to the set I and by the columns whose indices belong to the set J . In equation (A10),

Q
′
I denotes the matrix Q

′
I,I , and Γ is a symmetric 3 × 3 matrix whose elements are 1 for

(i, j) = (1, 1), (1, 2), (2, 1), (2, 2) and 0 otherwise.

Proposition 1 The demand in equation (5) solves (P ) and the function (18) is the value

function, if the following conditions hold. First, the “optimality conditions”

1− e−rh

h

Ae

B
+ (1− ae)Q1,2 + aeQ1,3 = 0, (A11)

1− e−rh

h

As

B
+ asQ1,2 + (1− as)Q1,3 = 0, (A12)

1− e−rh

h

1

B
+ Q1,2 + gQ1,3 = 0, (A13)

and Q1,1 < 0. Second, the “Bellman conditions”

Q = P (A14)

and

q =
log(R)e−rh

2α(1− e−rh)
+

(βe−rh − r)h

α(1− e−rh)
− 1

α
log(

h

erh − 1
). (A15)
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B. The Large Trader’s Optimization Problem

In this section we state concisely the large trader’s optimization problem, and then state

Proposition 2. We define the matrix N by

N =













1− ae(1 + g) 0 0

gae 1− as ae

ae as 1− ae













, (A16)

the vector n by

n =













−g

g

1













, (A17)

and the vector n̂ by

n̂ =













−(1 + g)

g

1













. (A18)

We also introduce ∆x`, the difference between the large trader’s market order and the

candidate market order, i.e.

∆x` = x` − (ae(e`−1 + ε` − s`−1) + ass`−1 − aee`−1) . (A19)

We will write p` and the dynamics of e`, s`, and e` in terms of ∆x` instead of x`. The large

trader’s optimization problem, (P ), is

sup
c`,x`

−E`0(h
∞
∑

`=`0

exp(−αc` − β(`− `0)h))

subject to

d` = d`−1 + δ`,

M` = erh(M`−1 + d`−1e`−1 − c`−1h)− d`

h

1− e−rh
ε` + p`x`,

p` =
h

1− e−rh
d` −

Ae

B
e`−1 −

As

B
s`−1 −

1

B
(ae(e`−1 + ε` − s`−1) + u` + ∆x`), (A20)













e` − s`

s`

e`













= N













e`−1 + ε` − s`−1

s`−1

e`−1













+ nu` + n̂∆x`, (A21)

and the transversality condition

lim
`→∞

E`0V (M`, d`, e`, s`, e`)exp(−β(`− `0)h) = 0. (A22)
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To state Proposition 2 we define the following. First, the 1× 4 vector Qu by

Qu = −1− e−rh

h

(

ae

B
,
as

B
,−ae

B
,

1

B

)

+ (ntQN, ntQn̂). (A23)

Second, the scalar Ru and the symmetric 4× 4 matrix R′
u by

Ru = 1 + ασ2
uhntQn, (A24)

and

R′
u = ασ2

uhR−1
u Qt

uQu, (A25)

respectively. Third, the symmetric 3× 3 matrix Q′ by

Q′ = −1− e−rh

h

























ae

B

As

B

Ae

B













(ae, as,−ae) +













ae

as

−ae













(

ae

B
,
As

B
,
Ae

B

)













+ N tQN − (R′
u){1,2,3}.

(A26)

Fourth, the scalar R and the symmetric 3× 3 matrix R′ by

R = 1 + ασ2
ehQ′

1,1, (A27)

and

R′ = ασ2
ehR−1Q′

{1,2,3},{1}Q
′
{1},{1,2,3}, (A28)

respectively. Finally, the symmetric 3× 3 matrix P by

P = (Q′ −R′ − ασ2hΓ)e−rh, (A29)

where Γ is as in equation (A10).

Proposition 2 The market order in equation (4) solves (P ) and the function (20) is the

value function, if the following conditions hold. First, the optimality conditions

−1− e−rh

h

(

2ae

B
,
As + as

B
,
Ae − ae

B

)

+ n̂tQN − (R′
u){4},{1,2,3} = 0 (A30)

and

−1− e−rh

h

2

B
+ n̂tQn̂− (R′

u)4,4 < 0. (A31)

Second, the Bellman conditions

Q = P (A32)

and

q =
log(RuR)e−rh

2α(1− e−rh)
+

(βe−rh − r)h

α(1− e−rh)
− 1

α
log(

h

erh − 1
). (A33)
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C. The System (S)

The system (S) consists of the following equations. First, the three optimality conditions

(A11), (A12), (A13), and the six Bellman conditions (A14) of the market makers’ optimiza-

tion problem. Second, the three optimality conditions (A30) and the six Bellman conditions

(A32) of the large trader’s problem. Finally, the two equations (14) and (16) of the market

makers’ recursive filtering problem. Having solved this system, we should check that equa-

tions Q1,1 < 0 and (A31) are satisfied. To study the small order flow case, we use σ2
u and

Σ
2
e instead of σ2

u and Σ2
e. We also replace equations (16) and (14) by (23) and (24).

D. Proofs of Propositions 4 and 7

Proof of Proposition 4: We first show that the dynamics are the sum over endowment

and noise shocks of the dynamics generated by each shock. We then determine the dynamics

generated by an endowment shock.

We define the vectors v`−1 and b by

v`−1 =













e`−1 + ε` − s`−1

s`−1

e`−1













and b =













1

0

0













. (A34)

Equation (A21) implies that in equilibrium

v` = Nv`−1 + nu` + bε`+1.

Iterating this equation between periods m0 and m′, we get

vm′ = Nm′−m0vm0
+

m′

∑

m=m0+1

Nm′−mnum +
m′

∑

m=m0+1

Nm′−mbεm+1. (A35)

The first term in equation (A35) corresponds to the dynamics generated by the endowment

and noise shocks prior to period m0. The second and third terms correspond to the dynamics

generated by the shocks between periods m0 and m′.

To isolate the dynamics generated by a unit endowment shock in period `, we use

equation (A35) and set m′ = `′ − 1, vm0
= 0, um = 0 for all m, εm = 0 for all m 6= `, and

ε` = 1. We get

v`′−1 = N `′−`b. (A36)
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To determine v`′−1, we need to determine the eigenvalues and eigenvectors of the matrix

N , and write b as a linear combination of the eigenvectors. The eigenvalues of N are 1,

1− as − ae, and 1− ae(1 + g), and the corresponding eigenvectors are

w1 =













0

ae

as+ae

as

as+ae













, w2 =













0

1

−1













, and w3 =













1

ae−gae

ae(1+g)−as−ae

as−ae

ae(1+g)−as−ae













.

We can write b as

b = w1 +
ae(gas − ae)

(ae(1 + g)− as − ae)(as + ae)
w2 + w3.

Equation (A36) implies that

v`′−1 = w1+(1−as−ae)
`′−` ae(gas − ae)

(ae(1 + g)− as − ae)(as + ae)
w2+(1−ae(1+g))`′−`w3. (A37)

Equation (30) follows from equation (A37), by noting that e`′−1 is the sum of the first and

second components of v`′−1. The first component of v`′−1 is e`′−1 − s`′−1 and goes to 0.

Therefore, s`′−1 has the same limit as e`′−1. Q.E.D.

Proof of Proposition 7: We use equation (30) of Proposition 4. We set `′−` = (t′− t)/h,

and replace ae, as, ae, and g, by the Taylor expansions of Proposition 6. Noting that

lim
h→0

(1− φsh− φeh)
t
′
−t

h = e−(φs+φe)(t
′−t),

and

lim
h→0

(

1− φe(1 + g0)
√

h
)

t
′
−t

h = 0,

we get equation (31). Q.E.D.
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Figure 1. The first convergence pattern. The thick solid line represents the large

trader’s stock holdings, the dotted line the price, and the thin solid line the long-run limit

of stock holdings and price. (Price is normalized so that it has the same initial value and

long-run limit as stock holdings.) The large trader’s stock holdings decrease over time. The

trading rate, which is the ratio of the slope of stock holdings to the difference between stock

holdings and the long-run limit, decreases over time. The price impact, which is the ratio

of the slope of price to the slope of stock holdings, also decreases over time. This figure is

drawn for the following parameter values. The parameter σ2
u = σ2

u/σ2
e is equal to 2, which

means that the small traders produce twice as much order flow as the large trader. The

parameter α/α is equal to 1/9, which means that the large trader is nine times as risk-averse

as the market makers as a group. The annual interest rate r, is equal to 5 percent. The time

between trading periods h, is equal to 1/5000’th of a year. Since there are approximately

250 trading days per year, our choice of h implies 20 trading periods per day. Finally, the

parameter ασσe/r is equal to 0.1. This parameter determines the ratio of price risk (price

variability due to trades) to dividend risk (price variability due to dividends). Our choice

of ασσe/r implies a ratio of approximately 10 percent.
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Figure 2. The second convergence pattern. The thick solid line represents the large

trader’s stock holdings, the dotted line the price, and the thin solid line the long-run limit of

stock holdings and price. The large trader’s stock holdings decrease and then increase over

time. First, they decrease to their long-run limit. Then, they decrease further, and increase

back to their long-run limit, as the large trader engages in a “round-trip transaction”.

Notice that the round-trip transaction is profitable, since the average price of sales exceeds

the average price of purchases. The parameter values for this figure are σ2
u = 8 (the

small traders produce eight times as much order flow as the large trader), α/α = 1/9 (the

large trader is nine times as risk-averse as the market makers as a group), r = 5 percent,

h = 1/5000’th of a year (20 trading periods per day), and ασσe/r = 0.1.
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Figure 3. The dynamics of the large trader’s stock holdings for small time

between trades h. The thick solid line represents stock holdings for h1, the dotted line

stock holdings for h2 < h1, and the thin solid line the long-run limit of stock holdings. The

dynamics consist of two phases. In the first, short phase, stock holdings decrease quickly,

while in the second, long phase, they evolve more slowly. Notice that the first phase is

shorter for h2 than for h1. The parameter values for this figure are σ2
u = 2 (the small

traders produce twice as much order flow as the large trader), α/α = 1/9 (the large trader

is nine times as risk-averse as the market makers as a group), r = 5 percent, h1 = 1/5000

and h2 = 1/50000’th of a year (20 or 200 trading periods per day), and ασσe/r = 0.1.
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Figure 4. The effects of the noise σ2
u, on the dynamics of the large trader’s

stock holdings. The thick solid line represents stock holdings for (σ2
u)1, the thick dotted

line stock holdings for (σ2
u)2 > (σ2

u)1, the thin dotted line stock holdings for (σ2
u)3 > (σ2

u)2,

and the thin solid line the long-run limit of stock holdings. As the noise increases, the

initial drop in stock holdings increases, and the large trader sells faster. For (σ2
u)3, stock

holdings drop below their long-run limit, and thus decrease and then increase over time.

The parameter values for this figure are (σ2
u)1 = 2, (σ2

u)2 = 4, and (σ2
u)3 = 8 (the small

traders produce two, four, or eight times as much order flow as the large trader), α/α = 1/9

(the large trader is nine times as risk-averse as the market makers as a group), r = 5

percent, h = 1/5000’th of a year (20 trading periods per day), and ασσe/r = 0.1.
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Figure 5. The effects of the large trader’s risk aversion α, on the dynamics of

the large trader’s stock holdings. The thick solid line represents stock holdings for α1,

the thick dotted line stock holdings for α2 < α1, the thin solid line the long-run limit of

stock holdings for α1, and the thin dotted line the long-run limit for α2. As α decreases,

the long-run limit of stock holdings increases, while the initial drop stays roughly the same.

For α2, stock holdings drop below their long-run limit, and thus decrease and then increase

over time. Since for α2 stock holdings drop below their long-run limit, the large trader

sells faster for α2 than for α1. The parameter values for this figure are σ2
u = 2 (the small

traders produce twice as much order flow as the large trader), α/α1 = 1/6 and α/α2 = 1/4

(the large trader is six or four times as risk-averse as the market makers as a group), r = 5

percent, h = 1/5000’th of a year (20 trading periods per day), and ασσe/r = 0.1.
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Figure 6. The average time of trade execution as a function of the noise. The

parameter values for this figure are α/α = 1/9 (the large trader is nine times as risk-averse

as the market makers as a group), r = 5 percent, h = 1/5000’th of a year (20 trading

periods per day), and ασσe/r = 0.1.
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Notes

1Schwartz and Shapiro (1992) estimate that in 1989 about 70 percent of the trading

volume in the NYSE was accounted for by member firms and institutional investors.

2Holthausen, Leftwich, and Mayers (1990) examine the 50 largest buy and sell trades for

109 randomly selected NYSE firms in 1983. They find a price impact of around 1 percent.

Keim and Madhavan (1996) examine block trades for small NYSE, AMEX, and Nasdaq

firms, from 1985 to 1992, and find a much larger price impact of around 8 percent. See also

Kraus and Stoll (1972), Scholes (1972), Holthausen, Leftwich, and Mayers (1987), Hausman,

Lo, and McKinlay (1992), and Chan and Lakonishok (1993).

3Chan and Lakonishok (1995) examine the trades of 37 large investment management

firms from 1986 to 1988. They find that individual trades are generally part of a sequence

or, in their terminology, a “package”, and that 53 percent of packages take four or more

days to be completed.

4Kyle’s paper has been extended in a number of directions. Holden and Subrahmanyam

(1992) assume many insiders who have the same information. Foster and Vishwanathan

(1996) and Back, Cao, and Willard (2000) assume many insiders who have different pieces

of information. Back (1992) assumes general distributions for asset payoffs. Gennotte and

Kyle (1993) assume an infinite horizon. Holden and Subrahmanyam (1994) and Baruch

(1999) assume risk-averse insiders. See also the survey by Admati (1991) and the book by

O’Hara (1995).

5For evidence on the performance of mutual and pension funds, see the survey by Fama

(1991). For evidence on turnover, see, for instance, Chevalier and Ellison (1999). They

report that the growth, and growth and income funds in the 1994 Morningstar CD turn

over 76.8 percent of their portfolios every year, but underperform the market by 0.5 percent.

6We choose risk-sharing over portfolio rebalancing and liquidity because it is easier to

model. Portfolio rebalancing requires wealth effects and a different utility function than the

exponential. Liquidity requires borrowing constraints.

7The stock endowment can be interpreted as a futures position or as a position in a

correlated stock.
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8The assumption that market makers are risk-averse was standard in the early, “inventory-

based”, market-microstructure literature. For a survey of that literature and for more recent

references, see O’Hara (1995).

9We explain why the results are different in Section IV.B.

10The time between trades h, is smaller than a day. Therefore, a criticism of the utility

in equation (2) is that it connects intraday trading decisions and consumption/savings

decisions. To address this criticism, we could assume that consumption takes place once

every given number of periods. (Traders are evaluated every quarter.) This assumption

would complicate the model but would probably not change the results.

11We introduce the consumption good endowment for tractability. In our model, the large

trader faces “fundamental” risk (the risk of a negative dividend shock), “price” risk (the

risk of selling at the same time as the small traders), and “endowment” risk (the risk of

receiving a small stock endowment). The latter risk depends on the large trader’s marginal

valuation of a share. Therefore, it increases in the dividend level and decreases in the

large trader’s stock holdings. The large trader can hedge this risk by increasing his stock

holdings, i.e. buying shares from the market makers. Moreover, he needs to buy more shares

when dividends are high. The consumption good endowment makes the hedging demand

independent of the dividend level, thus simplifying the model. Indeed, the consumption

good endowment represents a cost that the large trader pays in order to receive the stock

endowment. The risk of receiving a small stock endowment is accompanied by the risk of

paying a small cost. The specification of the consumption good endowment ensures that

the sum of the two risks is independent of the dividend level. The model without the

consumption good endowment was considered in an earlier version and produces similar

results. Moreover, the model with the consumption good endowment is, in a sense, more

realistic, since it captures the idea that the stock endowment does not come for “free”. If,

for instance, the stock endowment is interpreted as a position in a correlated stock, the

consumption good endowment captures the cost of establishing the position.

12Notice that the large trader is treated as an “atom”, while a market maker is treated

as part of a continuum. It is in this sense that the large trader is large, and thus strategic,

while a market maker is small (infinitesimal), and thus competitive. Notice also that a

continuum of market makers is equivalent to a single competitive market maker. We assume
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a continuum because this clarifies the exposition.

13In this paper we determine one stationary Nash equilibrium, and thus show existence

of Nash equilibrium. We do not show uniqueness.

14The large trader’s sell order depends on the market makers’ expectation s`−1, and the

market makers’ stock holdings e`−1. The large trader does not observe these variables

directly. However, he can infer them from the prices up to period `− 1. Indeed, equations

(7), (10), and (15), imply that s` and e` can be obtained recursively from s`−1, e`−1, d`,

and p`.

15 We thus assume that the variance of e`−1 conditional on I`−1 is independent of `.

This is a condition for stationarity and is satisfied if and only if Σ2
e is equal to the unique

positive root of equation

Σ2
e =

(1− ae)
2(Σ2

e + σ2
eh)σ2

uh

a2
e(Σ

2
e + σ2

eh) + σ2
uh

. (14)

Indeed, the regression of e` on x` + u` implies that the variance of e` conditional on I`

is equal to the RHS of equation (14). Notice that in our stationary equilibrium, Σ2
e is

endogenous since it is given by equation (14). The endogeneity of Σ2
e raises an important

issue. Suppose that an exogenous parameter, say σ2
u, changes from (σ2

u)1 to (σ2
u)2. Then

Σ2
e must also change, say from (Σ2

e)1 to (Σ2
e)2, since in our stationary equilibrium it is

endogenous. Suppose now that the economy starts at a finite time instead of −∞. Then

the initial value of Σ2
e is an exogenous parameter. Moreover, a ceteris paribus comparison

requires holding this initial value constant and equal to (Σ2
e)1 when σ2

u changes to (σ2
u)2.

In this case, however, we obtain a non-stationary equilibrium and not the stationary equi-

librium for (σ2
u)2. Focusing on the stationary equilibrium is valid, if it is the limit of the

non-stationary equilibrium when ` goes to ∞. Indeed, in the limit, Σ2
e is endogenous and

equal to (Σ2
e)2, and is independent of the initial value (Σ2

e)1. We studied the non-stationary

equilibrium assuming that the initial value (Σ2
e)1 is close to the stationary equilibrium value

(Σ2
e)2 and showed (numerically) that convergence indeed obtains. This “local convergence”

result ensures that comparing stationary equilibria is valid, when the change in σ2
u is small.

Indeed, the stationary equilibrium value of Σ2
e is continuous in σ2

u, and thus (Σ2
e)1 is close

to (Σ2
e)2 when (σ2

u)1 is close to (σ2
u)2. By starting the economy at −∞ we side-step the

above issue. We however implicitly assume that the economy converges to our stationary

equilibrium.
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16This is shown formally in the proof of Proposition 4.

17The risk-sharing rule is different in the presence of price risk. The large trader, who is

subject to endowment shocks, is more reluctant to take risk than the market makers.

18When stock holdings decrease and then increase over time, the trading rate and the

price impact have a complicated behavior, because their denominators can become 0.

19The parameter values for which this and the subsequent figures are drawn are in the

figures’ legends. For now, we focus on the qualitative aspects of the figures. We discuss the

parameter values and the axis markings in Section VII where we calibrate the model.

20Holden and Subrahmanyam (1994) and Baruch (1999) have shown that risk aversion

makes the insider impatient. The insider prefers to establish a position early, before the

noise traders introduce too much price volatility.

21It is worth noting that for a fixed h (i.e. not in the limit when h goes to 0) the large

trader reveals his information more slowly when he is less risk-averse. This can be seen

from Figure 5, where the first phase of the dynamics is longer when the large trader is less

risk-averse. However, in the limit when h goes to 0, the large trader reveals his information

immediately, independently of his risk aversion.

22Gennotte and Kyle (1993) and Chau (2000) study infinite-horizon models with insid-

ers. However, Gennotte and Kyle do not report any results on the speed of information

revelation, and Chau does not consider the continuous-time case.

23The proof is available from the author upon request. To show that φs + φe increases

in α and decreases in α, we need to make the plausible assumption that α < 2α, i.e. the

market makers as a group are less than twice as risk-averse as the large trader.

24We focus on the effects of the noise, because it is the parameter that affects the ATTE

the most.

25It is worth emphasizing that h affects the speed of trade only because it affects the

length of the first phase. (This length is of order
√

h.) Indeed, when h decreases, the

number of trading periods increases, but the quantity traded per period decreases. In the

first phase the first effect dominates, because the number of trading periods in a given time

interval is of order 1/h, while the quantity traded per period is of order
√

h. In the second
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phase, however, the two effects cancel, because the quantity traded per period is of order h.

26The transversality condition (A6) is standard for optimal consumption-investment prob-

lems. See, for instance, Merton (1969) and Wang (1994).
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Appendix B

A. Proof of Proposition 1

We first show that the function (18) solves the Bellman equation

V (M `−1, d`−1, ∆e`−1, e`−1, s`−1) =

sup
c`−1,x`(p`)

{

−exp(−αc`−1)h + E`−1V (M `, d`, ∆e`, e`, s`)exp(−βh)
}

, (B1)

for the demand

x`(p`) = B

(

h

1− e−rh
d` − p`

)

−Aee`−1 −Ass`−1 −∆e`−1 (B2)

and the optimal consumption. We then show that the demand in equation (B2) and the

optimal consumption satisfy the transversality condition (A6). These results will imply

that the demand in equation (B2) solves (P ) and the function (18) is the value function.

The demand in equation (B2) is equal to the demand in equation (5) minus ∆e`−1, and

produces the trade x` + u` −∆e`−1. The two demands are equal along the optimal path.

Indeed, equation (9) implies that if x`(p`) = x` + u` −∆e`−1 then ∆e` = 0.

Bellman Equation

We proceed in 3 steps. First, we show that the optimality conditions are sufficient for

the demand in equation (B2) to maximize the RHS of the Bellman equation (B1). (This

is why we refer to these conditions as “optimality conditions”.) Second, we compute the

expectation of the RHS conditional on period ` − 1 information. Finally, we show that

the Bellman conditions are sufficient for the function (18) to satisfy the Bellman equation.

(This is why we refer to these conditions as “Bellman conditions”.)

Step 1: Optimal Demand

We define the vector v`−1 by

v`−1 =













∆e`−1

e`−1

s`−1













.

A market maker chooses his demand x`(p`) to maximize the expectation of the period `

value function w.r.t. ζ`. Using the budget constraint (A3) and equation (A5), we can write

1



this expectation as

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)− 1− e−rh

h
p`x`(p`)

+d`(e`−1+∆e`−1+x`(p`))+F (Q, N(v`−1+













x`(p`)− (ζ` + ass`−1 − aee`−1)

0

0













)+nζ`)+q)),

(B3)

where p` is given by equation (A4). The market maker can condition his trade x` on ζ`,

since he can infer ζ` from the price. Therefore, his problem is the same as choosing a trade

x` to maximize equation (B3) without the expectation sign. The first-order condition is

−1− e−rh

h
p` +d` +(1, 0, 0)Q(N(v`−1 +













x` − (ζ` + ass`−1 − aee`−1)

0

0













)+nζ`) = 0. (B4)

The first-order condition determines a maximum since Q1,1 < 0. Denoting by G the row

vector formed by the LHS of equations (A11), (A12), and (A13), we can write the first-order

condition as

G













e`−1

s`−1

ζ`













+ Q1,1(x` − (ζ` + ass`−1 − aee`−1 −∆e`−1)) = 0.

Therefore, the optimal trade is

x` = ζ` + ass`−1 − aee`−1 −∆e`−1. (B5)

The demand in equation (B2) is optimal since it produces the optimal trade. Substituting

p` from equation (A4), and using the definition of Q
′
, we can write equation (B3), evaluated

for the optimal trade, as

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 + d`−1(e`−1 + ∆e`−1)h− c`−1h)

+d`(e`−1 + ∆e`−1) + F (Q
′
,





v`−1

ζ`



) + q)). (B6)

Step 2: Computing the Expectation

2



We have to compute the expectation of equation (B6) conditional on period `− 1 infor-

mation, i.e. w.r.t. δ` and ζ`. Computing the expectation w.r.t. δ` is straightforward. We

get

−Eζ`
exp(−α(

1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

−1

2
ασ2h(e`−1 + ∆e`−1)

2 + F (Q
′
,





v`−1

ζ`



) + q)). (B7)

To compute the expectation w.r.t. ζ`, we use the formula

E(exp(−α(ax +
1

2
bx2))) = exp(−α(−1

2
αΣ2(1 + αΣ2b)−1a2 +

1

2α
log(1 + αΣ2b))), (B8)

where x is normal with mean 0 and variance Σ2, and a and b are constants. (Equation

(B8) gives simply the moment generating function of the normal distribution for b = 0.

We can always assume b = 0 by also assuming that x is normal with mean 0 and variance

Σ2(1 + αΣ2b)−1.)

We set x = ζ`, Σ2 = a2
e(Σ

2
e + σ2

eh) + σ2
uh, a = Q

′
{4},{1,2,3}v`−1, and b = Q

′
4,4. Using the

definitions of R and R
′
, we can write equation (B7) as

−exp(−α(
1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

−1

2
ασ2h(e`−1 + ∆e`−1)

2 + F (Q
′
{1,2,3} −R

′
, v`−1) +

1

2α
log(R) + q)).

Finally, using the definition of P , we can rewrite this equation as

−exp(−α(
1− e−rh

h
erh(M `−1−c`−1h)+erhd`−1(e`−1+∆e`−1)+erhF (P , v`−1)+

1

2α
log(R)+q)).

Step 3: Bellman Equation

To compute the RHS of the Bellman equation, we have to maximize w.r.t. c`−1

−exp(−αc`−1)h− exp(−α(
1− e−rh

h
erh(M `−1 − c`−1h) + erhd`−1(e`−1 + ∆e`−1)

+erhF (P , v`−1) +
1

2α
log(R) + q)− βh). (B9)

Simple calculations show that the maximum is

−exp(−α(
1− e−rh

h
M `−1 + d`−1(e`−1 + ∆e`−1) + F (P , v`−1)

+
1

2α
log(R)e−rh + qe−rh +

(βe−rh − r)h

α
− 1

α
(1− e−rh)log(

h

erh − 1
))). (B10)

This is equal to the period `− 1 value function from equations (A14) and (A15).
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Transversality Condition

It is easy to check that, by substituting the optimal c`−1 in the second term of equation

(B9), we find equation (B10) times e−rh. Therefore, the expectation of the period ` value

function in period `− 1, is the period `− 1 value function times e−rh. Recursive use of this

equation implies equation (A6). Q.E.D.

B. Proof of Proposition 2

We show that the function (20) solves the Bellman equation for the market order in equation

(4) and the optimal consumption. The proof that the market order in equation (4) and the

optimal consumption satisfy the transversality condition (A22) is as in Section A.

We proceed in 4 steps. First, we compute the expectation of the RHS of the Bellman

equation w.r.t. u`. Second, we use the optimality conditions to show that the market order

in equation (4) maximizes the RHS. Third, we compute the expectation of the RHS w.r.t.

the remaining information revealed in period ` , i.e. δ` and ε`. Finally, we use the Bellman

conditions to show that the function (20) satisfies the Bellman equation. Notice that we

take expectations w.r.t. u` before determining the optimal market order. This is because

the large trader does not know u` and, unlike the market makers, cannot condition his order

on price.

Step 1: Expectation w.r.t. u`

We have to compute the expectation of the period ` value function w.r.t. u`. Using the

budget constraint (19), equations (12) and (A21), and the vector v`−1 defined by equation

(A34), we have to compute

−Eu`
exp(−α(

1− e−rh

h
erh(M`−1 + d`−1e`−1h− c`−1h) +

1− e−rh

h
p`x`

+d`(e`−1 − x`) + F (Q, Nv`−1 + nu` + n̂∆x`) + q)),

where p` and x` are given by equations (A20) and (A19), respectively. The term inside the

exponential is a quadratic function of u`. The coefficient of u2
`/2 is ntQn, and equations

(A19) and (A20) imply that the coefficient of u` is

Qu





v`−1

∆x`



 .
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To compute the expectation, we use equation (B8) and set x = u`, Σ2 = σ2
uh, a the

coefficient of u`, and b the coefficient of u2
`/2. The expectation is

−exp(−α(
1− e−rh

h
erh(M`−1 + d`−1e`−1h− c`−1h) +

1− e−rh

h
p`x` + d`(e`−1 − x`)

+F (Q, Nv`−1 + n̂∆x`)− F (R′
u,





v`−1

∆x`



) +
1

2α
log(Ru) + q)), (B11)

where p` is evaluated for u` = 0.

Step 2: Optimal Market Order

The large trader chooses ∆x` to maximize equation (B11). Since dp`/d∆x` = −1/B

and dx`/d∆x` = 1, the first-order condition is

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQ (Nv`−1 + n̂∆x`)− (R′
u){4},{1,2,3,4}





v`−1

∆x`



 = 0. (B12)

The first-order condition determines a maximum because of equation (A31). Denoting by G

the LHS of equation (A30) and by G the LHS of equation (A31), we can write the first-order

condition as

Gv`−1 + G∆x` = 0.

Therefore, ∆x` = 0, i.e. the market order in equation (4) is optimal. Substituting p` and

x` from equations (A20) and (A19), and using the definition of Q′, we can write equation

(B11), evaluated for ∆x` = 0, as

−exp(−α(
1− e−rh

h
erh(M`−1 +d`−1e`−1h− c`−1h)+d`e`−1 +F (Q′, v`−1)+

1

2α
log(Ru)+ q)).

(B13)

Step 3: Expectation w.r.t. δ` and ε`

We have to compute the expectation of equation (B13) w.r.t. δ` and ε`. Computing

the expectation w.r.t. δ` is straightforward. To compute the expectation w.r.t. ε`, we use

equation (B8) and set x = ε`, Σ2 = σ2
eh,

a = Q′
{1},{1,2,3}













e`−1 − s`−1

s`−1

e`−1













,

and b = Q′
1,1. Proceeding as in Section A, and using the definitions of R, R′, and P , we get

−exp(−α(
1− e−rh

h
erh(M`−1 − c`−1h) + erhd`−1e`−1

5



+erhF (P,













e`−1 − s`−1

s`−1

e`−1













) +
1

2α
log(RuR) + q)).

Step 4: Bellman Equation

We proceed as in Section A. Q.E.D.

C. Proof of Theorem 1

We prove Theorem 1 in Sections C.1, C.2, and C.3. In Section C.1 we replace (S) by an

equivalent system, (S ′), which is easier to solve. In Section C.2 we show that for σ2
e = 0,

(S′) collapses to (s), and that (s) has a solution. In Section C.3 we extend the solution of

(S′) for small σ2
e .

C.1. The Equivalent System

To form the system (S ′), we replace the Bellman conditions (A32) of the large trader’s

optimization problem, by a new set of conditions, the “envelope conditions”. Under both

the Bellman and the envelope conditions, the matrix Q can be interpreted as a matrix of

marginal benefits. The coefficient Q1,2, for instance, is the marginal benefit of increasing

e` − s`, the “first” state variable, when s`, the “second” state variable is 1 and the other

state variables are 0. The Bellman conditions compute this marginal benefit under the

assumption that the large trader changes his strategy in response to the change in e` − s`,

while the envelope conditions assume that the large trader does not change his strategy.

The Bellman and the envelope conditions are of course equivalent, when the large trader’s

strategy is optimal, i.e. when the optimality conditions hold. We use the envelope conditions

instead of the Bellman conditions because they are much easier to solve.

To state the envelope conditions, we define the matrix Ne by

Ne =













1 as(1 + g) −ae(1 + g)

0 1− as(1 + g) ae(1 + g)

0 0 1












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and the matrix Q̂′ by

Q̂′ = −1− e−rh

h













0

As−as

B

Ae+ae

B













(ae, as,−ae) + N t
eQN − (R′

u){1,2,3} +













ae

as

−ae













(R′
u){4},{1,2,3}.

(B14)

We also define the scalar R̂ and the matrices R̂′ and P̂ by proceeding as in Section B and

using Q̂′ instead of Q′. The envelope conditions are Q = P̂ . Notice that the matrices Q̂′

and P̂ are not symmetric a priori. Therefore, the system (S)′ consists of 23 equations (since

there are nine envelope conditions) and 23 unknowns (since the matrix Q is not symmetric

a priori). We first show that the solution of (S ′) produces a symmetric matrix Q. We then

show that the solution of (S ′) satisfies the Bellman conditions, and is thus the solution of

(S).

The Matrix Q is Symmetric

We use the vector v`−1 defined by equation (A34). We define the vector a by

a =













ae

as

−ae













. (B15)

Finally, we denote by p` and x` those given by equations (A20) and (A19) for u` = ∆x` = 0.

We will show that Q = Qt. Using the envelope conditions and the fact that R̂′ is

symmetric, we get

Q−Qt = (Q̂′ − (Q̂′)t)e−rh.

Using the definition of Q̂′ and noting that atv`−1 = x`, we get

Q̂′v`−1 = −1− e−rh

h













0

As−as

B

Ae+ae

B













x` + N t
eQNv`−1 − (R′

u){1,2,3}v`−1 + a(R′
u){4},{1,2,3}v`−1.

(B16)

Equations (A20) and (A19) imply that

−As − as

B
s`−1 −

Ae + ae

B
e`−1 = p` +

x`

B
− h

1− e−rh
d`.

Using this fact we get

(Q̂′)tv`−1 = a

(

1− e−rh

h

(

p` +
1

B
x`

)

− d`

)

+N tQtNev`−1−(R′
u)t
{1,2,3}v`−1+(R′

u){1,2,3},{4}x`.

(B17)
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Since the first-order condition (B12) holds for ∆x` = 0, we have

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQNv`−1 − (R′
u){4},{1,2,3}v`−1 = 0. (B18)

We subtract equation (B17) from equation (B16), add the transpose of equation (A30)

times x`, and subtract equation (B18) times a. Noting that the matrix R′
u is symmetric,

and that

Ne + n̂at = N, (B19)

we get

(Q̂′ − (Q̂′)t)v`−1 = N t(Q−Qt)Nv`−1.

Since this holds for all v`−1, we get

Q−Qt = (Q̂′ − (Q̂′)t)e−rh = N t(Q−Qt)Ne−rh.

It is easy to check that this equation produces a system of three linear equations in Q1,2 −

Q2,1, Q1,3 − Q3,1, and Q2,3 − Q3,2. Moreover, the solution of this system is zero provided

that 1− ae(1 + g) and 1− as − ae ∈ [0, 1). In Section C.2 we will show that the solution of

(S′) indeed satisfies 1− ae(1 + g) and 1− as − ae ∈ [0, 1).

The Bellman Conditions Hold

We only need to show that Q′ = Q̂′. We subtract equation (B14) from equation (A26),

and add the vector a times equation (A30). Using equation (B19), we get Q′ = Q̂′.

C.2. The Solution for σ
2
e = 0

We first assume that (s) has a solution as, ae, g, and Σ
2
e, such that 1−ae(1+g), 1−as(1+g),

and 1 − as − ae ∈ (0, 1). (We define ae by equation (25).) Starting from this solution, we

construct a solution of (S ′). We then show that (s) has a solution with the above properties.

The Solution of (S ′)

We proceed in three steps. First, we use the equations of the market makers’ optimiza-

tion problem to solve for Ae, As, B, and Q. Second, we use the envelope conditions of the

large trader’s problem to solve for Q. Finally, we show that the optimality conditions of

the large trader’s problem are satisfied.

Step 1: The Market Makers’ Problem

We first use the Bellman conditions to solve for Q, as a function of Ae, As, and B. We

then plug Q1,2 and Q1,3 into the optimality conditions, and solve for Ae, As, and B.

8



For σ2
e = 0, R

′
= 0. Therefore, the Bellman conditions (A14) become

Q = (Q
′
{1,2,3} − ασ2hΓ)e−rh.

The equation for Q1,1 is Q1,1 = −ασ2he−rh < 0. The equations for Q1,2 and Q1,3 are

Q1,2 = −1− e−rh

h

Ae

B
e−rh − ασ2he−rh (B20)

and

Q1,3 = −1− e−rh

h

As

B
e−rh, (B21)

respectively. The equations for Q2,2, Q2,3, and Q3,3 form a system of three linear equations.

We omit the solution of this system, since we do not use it in what follows.

Plugging Q1,2 and Q1,3 into the optimality conditions (A11) and (A12), we get a system

of two linear equations in Ae/B and As/B. Solving this system, we get

As

B
=

asασ2h2e−rh

(1− e−rh)2D1
, (B22)

where

D1 = 1− (1− as − ae)e
−rh.

We omit Ae/B since we do not use it in what follows. To determine 1/B, we multiply

the optimality condition (A13) by as, and subtract it from the optimality condition (A12).

Plugging Q1,3 in the resulting equation, we get

As − as

B
= (1− as(1 + g))

As

B
e−rh. (B23)

Combining equations (B22) and (B23), we get

1

B
=

D2ασ2h2e−rh

(1− e−rh)2D1
, (B24)

where

D2 = 1− (1− as(1 + g))e−rh.

Step 2: The Envelope Conditions

For σ2
e = 0, R′

u and R′ are equal to 0. Therefore, the envelope conditions become

Q = (Q̂− ασ2hΓ)e−rh = (−1− e−rh

h













0

As−as

B

Ae+ae

B













(ae, as,−ae) + N t
eQN − ασ2hΓ)e−rh.

(B25)
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Equation (B25) produces a system of nine linear equations in the elements of the matrix Q.

We will “break” this system into three subsystems of three equations each. To obtain the

first subsystem, we multiply equation (B25) from the left by the vector (−1, 1, 0). We get

(−1, 1, 0)Q = (−1− e−rh

h

As − as

B
(ae, as,−ae) + (1− as(1 + g))(−1, 1, 0)QN)e−rh, (B26)

i.e. a system in Q2,1 −Q1,1, Q2,2 −Q1,2, and Q2,3 −Q1,3. The solution of this system is

Q2,1 −Q1,1 = −1− e−rh

h

As − as

B

ae(1− (1− as(1 + g))2e−rh)e−rh

D3D4
, (B27)

Q2,2 −Q1,2 = −1− e−rh

h

As − as

B

ase
−rh

D3
, (B28)

and

Q2,3 −Q1,3 =
1− e−rh

h

As − as

B

aee
−rh

D3
, (B29)

where

D3 = 1− (1− as(1 + g))(1− as − ae)e
−rh

and

D4 = 1− (1− as(1 + g))(1− ae(1 + g))e−rh.

To obtain the second and third subsystems, we multiply equation (B25) from the left by

the vectors (1, 0, 0) and (0, 0, 1), respectively. The second subsystem is in Q1,1, Q1,2, and

Q1,3. The third subsystem is in Q3,1, Q3,2, and Q3,3, and in Q2,1 − Q1,1, Q2,2 − Q1,2, and

Q2,3−Q1,3 that we already have determined. We omit the solutions of the second and third

subsystems, since we do not use them in what follows.

Step 3: The Optimality Conditions

We proceed in three steps. First, we show that the equations of (S ′) imply the market

maker and large trader equations (26) and (27). Second, we show that the three optimality

conditions (A30) are satisfied. Finally, we show that equation (A31) is satisfied.

Step 3.1: The Market Maker and Large Trader Equations

We first derive the market maker equation (26). Plugging the optimal trade of equation

(B5) into the first-order condition (B4), and using equation (A5), we get

−1− e−rh

h
p` + d` + (1, 0, 0)Q













0

e`

s`













= −1− e−rh

h
p` + d` +

(

Q1,2e` + Q1,3s`

)

= 0. (B30)
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Substituting Q1,2 and Q1,3 from equations (B20) and (B21) into equation (B30), we get

−1− e−rh

h
p` + d` − ασ2he−rhe` −

1− e−rh

h

(

Ae

B
e` +

As

B
s`

)

e−rh = 0. (B31)

Equation (A4) implies that

E`p`+1 = E`

(

h

1− e−rh
d`+1 −

Ae

B
e` −

As

B
s` −

1

B
ζ`+1

)

=
h

1− e−rh
d`−

Ae

B
e`−

As

B
s`. (B32)

Combining equations (B31) and (B32), we get equation (26).

We next derive the large trader equation (27). We use the vectors v`−1 and a defined by

equations (A34) and (B15), respectively. We denote by p`, x`, and (e`, s`, e`) those given

by equations (A20), (A19), and (A21) for u` = ∆x` = 0. Finally. we denote by p`+1 and

x`+1 those given by equations (A20) and (A19) for u`+1 = ∆x`+1 = 0.

For σ2
e = 0, R′

u = 0. Since the first-order condition (B12) holds for ∆x` = 0, we have

1− e−rh

h

(

p` −
1

B
x`

)

− d` + n̂tQNv`−1 = 0. (B33)

Equation (B25) implies that

n̂tQNv`−1 = n̂t(−1− e−rh

h













0

As−as

B

Ae+ae

B













at + N t
eQN − ασ2hΓ)e−rhNv`−1. (B34)

Combining equation (B33) with equation (B34), and noting that

atNv`−1 = atE`v` = E`a
tv` = E`x`+1,

n̂tN t
e = n̂t − (gas − ae)(1 + g)(−1, 1, 0),

and

n̂tΓNv`−1 = −(1, 1, 0)Nv`−1 = −e`,

we get

1− e−rh

h

(

p` −
1

B
x`

)

− d` −
1− e−rh

h

(

g
As − as

B
+

Ae + ae

B

)

E`x`+1e
−rh

+
(

n̂t − (gas − ae)(1 + g)(−1, 1, 0)
)

QN2v`−1e
−rh + ασ2he`e

−rh = 0. (B35)

Noting that E`v` = Nv`−1, we can write the expectation in period `, of equation (B33) in

period ` + 1, as

1− e−rh

h

(

E`p`+1 −
1

B
E`x`+1

)

− d` + n̂tQN2v`−1 = 0. (B36)
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We multiply equation (B36) by e−rh and subtract it from equation (B35). To simplify the

resulting equation, we use two facts. The first fact is

1

B
− g

As − as

B
− Ae + ae

B
= (gas − ae)(1 + g)

As − as

B

1

1− as(1 + g)
.

To derive this fact, we multiply the optimality conditions (A11), (A12), and (A13) by −1,

−g and 1 + gas − ae, respectively, and add them up. We then use equations (B21) and

(B23). The second fact is

(−1, 1, 0)QNv`−1 = (−1− e−rh

h

As − as

B
E`x`+1 + (1− as(1 + g))(−1, 1, 0)QN 2v`−1)e

−rh.

(B37)

To derive this fact, we multiply equation (B26) by Nv`−1. Using these two facts, we get

1− e−rh

h

(

p` −
1

B
x` − d`h− E`p`+1e

−rh

)

+ ασ2he`e
−rh

−(gas − ae)(1 + g)

1− as(1 + g)
(−1, 1, 0)QNv`−1 = 0. (B38)

Combining equations (B37) and (B38), and noting that E`v` = Nv`−1, we get equation

(27).

Step 3.2: The Three Optimality Conditions (A30)

We will show that the three optimality conditions (A30) are equivalent to equations

(21), (22), and (25), which are satisfied. To show the equivalence, we first show that

G(1−Ne−rh)v`−1 = (αe` − αe`)σ
2he−rh +

1− e−rh

h

(

E`p`+1 − E`p`+1

)

e−rh

−1− e−rh

h

1

B
x` −

(gas − ae)(1 + g)

1− as(1 + g)
(−1, 1, 0)QNv`−1, (B39)

where G is the row vector formed by the LHS of the three optimality conditions (A30), E` is

the expectation w.r.t. the market makers’ information, and E` is the expectation w.r.t. the

large trader’s information. In Section B we wrote the LHS of the first-order condition (B12)

as Gv`−1 +G∆x`. Therefore, the LHS of equation (B33) is equal to Gv`−1. Moreover, since

E`v` = Nv`−1, the LHS of equation (B36) is equal to GNv`−1, and the LHS of equation

(B38) is equal to the LHS of equation (B39). The LHS of equation (B38) is also equal to

the RHS of equation (B39). This follows by substituting the price p` from equation (26)

into the LHS of equation (B38).
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We next evaluate the RHS of equation (B39) for three values of v`−1, the column vectors

of the matrix

N̂ =













1 0 0

0 1 ae

1−e−rh

0 0 as

1−e−rh













.

We divide the result by σ2he−rh/(1−e−rh), and denote it by Ĝe for the first column vector,

Gs for the second, and Ge for the third. We have

G(1−Ne−rh)N̂ =
σ2he−rh

1− e−rh
(Ĝe, Gs, Ge).

Since 1− ae(1 + g) and 1− as − ae ∈ (0, 1), the matrices 1−Ne−rh and N̂ are invertible.

Therefore, the three optimality conditions (A30), i.e. G = 0, are equivalent to Ĝe = Gs =

Ge = 0. We will show that Gs = 0 and Ge = 0 are equations (22) and (25), respectively.

Moreover, we will show that Ĝe = keGe + ksGs + keGe, where Ge is the LHS of equation

(21), and ke 6= 0. Therefore, the three optimality conditions (A30) will be equivalent to

equations (21), (22), and (25).

We first compute Ge. Equation (A19) implies that x` = 0. Equation (A21) implies that













e` − s`

s`

e`













= Nv`−1 =













0

ae

1−e−rh

as

1−e−rh













.

Equations (A20) and (B32) imply that

E`p`+1 − E`p`+1 =
1

B
ae(e` − s`) = 0. (B40)

Plugging into equation (B38), we find that Ge is the LHS of equation (25).

We next compute Gs. Equation (A19) implies that x` = as. Equation (A21) implies

that (e` − s`, s`, e`) = (0, 1 − as, as). Equation (B40) implies that E`p`+1 − E`p`+1 = 0.

Equations (B22), (B23), (B28), and (B29), imply that

(1− as)(Q2,2 −Q1,2) + as(Q2,3 −Q1,3) = −(1− as(1 + g))
a2

s(1− as − ae)ασ2he−3rh

(1− e−rh)D1D3
.

Plugging into equation (B38), we get

Gs = (α(1− as)− αas)(1− e−rh)− asD2α

D1
+ (gas − ae)(1 + g)

a2
s(1− as − ae)αe−2rh

D1D3
.

It is easy to check that Gs is in fact the LHS of equation (22).

13



We finally compute Ĝe. Equation (A19) implies that x` = ae. Equation (A21) implies

that (e`−s`, s`, e`) = (1−ae(1+g), gae, ae). Equation (B40) implies that E`p`+1−E`p`+1 =

ae(1− ae(1 + g))/B. Plugging into equation (B38), we get

Ĝe = (α(1− ae)− αae)(1− e−rh) +
ae(1− ae(1 + g))D2αe−rh

D1
− aeD2α

D1

+(gas − ae)(1 + g)asae
(1− ae(1 + g))D3 + gas − ae

D1D3D4
αe−2rh.

Setting

ke = − D2D6

D1D4(1− as − ae)
,

ks = − 1

D1D4



(gas − ae)(1 + g)aee
−rh +

(

α
α
− g

)

D3ae(1− (1− ae(1 + g))e−rh)

1− as − ae



 ,

ke =
1

D1D4

[

ae(1 + g)(1− e−rh)D2 +
ae(1− (1− ae(1 + g))e−rh)

1− as − ae

k̂e

]

,

k̂e =
α

α
D5 + (1− e−rh)

(

α

α
− g

)

D3 − (1− as − ae)(1− e−rh)(1 + g),

D5 = 1− (1− as(1 + g)(2− as − ae))e
−rh,

and

D6 = 1− (1− ae(1 + g))(1− as − ae)e
−rh,

we have the identity Ĝe = keGe + ksGs + keGe. The proof of this identity is omitted, and

is available from the author upon request. For the solution of (s), we have 1 − ae(1 + g),

1− as(1 + g), and 1− as − ae ∈ (0, 1). Therefore, ke = −D2D6/D1D4(1− as − ae) < 0.

Step 3.3: Equation (A31)

We use the vector b defined by equation (A34). We also define the vector b̂ by

b̂ =













0

1

−1













. (B41)

We can write the first of the three optimality conditions (A30) as

−1− e−rh

h

2ae

B
+ n̂tQ(aen̂ + b) = 0.

Therefore, equation (A31) is equivalent to n̂tQb > 0, or, since Q is symmetric, btQn̂ > 0.

Using the envelope conditions (B25), we get

btQn̂ = bt(Q̂′ − ασ2hΓ)e−rhn̂ = (btQNn̂ + ασ2h)e−rh

14



= (btQ((1− ae(1 + g))n̂ + (ae − gas)b̂) + ασ2h)e−rh.

Therefore,

btQn̂ =

(

(ae − gas)b
tQb̂ + ασ2h

)

e−rh

1− (1− ae(1 + g))e−rh
.

Using the envelope conditions again, we get

btQb̂ = ((1− as − ae)b
tQb̂− ασ2h)e−rh.

Therefore, btQb̂ = −ασ2h/D1, and

btQn̂ =
D2ασ2h

D1(1− (1− ae(1 + g))e−rh)
> 0.

The Solution of (s)

We proceed in three steps. First, we use equations (23) and (24) to solve for g and Σ
2
e,

as functions of ae ∈ (0, 1). Second, we use equation (22) to solve for as as a function of g.

Finally, we plug as and g into equation (21), obtain an equation only in ae, and show that

this equation has a solution ae ∈ (0, 1).

Step 1: Determination of g and Σ
2
e

We define the function f(ae) by

f(ae) =
2σ2

u − aeσ
2
u + ae

2(1− ae)
,

and the function F (x, ae) by

F (x, ae) = x2 + 2f(ae)x− σ2
u.

Since ae ∈ (0, 1), we have f(ae) > 0 and f ′(ae) > 0. Moreover, equation F (x, ae) = 0 has a

unique positive solution, that we denote by x(ae).

We can write equation (24) as

F

(

aeΣ
2
e

(1− ae)h
, ae

)

= 0 ⇒ Σ
2
e =

(1− ae)hx(ae)

ae
.

Dividing equation (23) by equation (24), we get

g =
aeΣ

2
e

(1− ae)hσ2
u

⇒ g =
x(ae)

σ2
u

.

We will show that 0 > dg/dae > −(1 + g)/ae, a fact that we will use in step 3. Differ-

entiating equation F (x(ae), ae) = 0, we get

dg

dae
=

1

σ2
u

dx(ae)

dae
= − f ′(ae)x(ae)

σ2
u(x(ae) + f(ae))

= − f ′(ae)g

x(ae) + f(ae)
< 0.

15



To show that dg/dae > −(1 + g)/ae we will show that

1 + g

ae
+

dg

dae
=

1

ae
+ g

(

1

ae
− f ′(ae)

x(ae) + f(ae)

)

> 0.

Since F (x(ae), ae) = 0, we have x(ae) < σ2
u/2f(ae), i.e. g < 1/2f(ae) Therefore, it suffices

to show that
1

ae
+

1

2f(ae)

(

1

ae
− f ′(ae)

f(ae)

)

> 0.

Noting that f ′(ae)/f(ae) < 1/ae(1− ae), it is easy to show this result.

Step 2: Determination of as

We can write equation (22) as

Gs(as, g) ≡ −as
D5

D3
α + (α(1− as)− αas)(1− e−rh) = 0, (B42)

where D3 and D5 were defined in Section C.2, and ae = asα/α. For as ∈ (0, α/(α + α)),

1 − as − ae ∈ (0, 1) and D3 > 0. The function Gs(as, g)D3 is a third-order polynomial in

as, which is strictly positive for as = 0, strictly negative for as = α/(α + α), and goes to ∞

when as goes to ∞. Therefore, equation (B42) has a solution as ∈ (0, α/(α + α)), which is

unique in (0, α/(α + α)). Moreover, at the solution we have ∂Gs(as, g)/∂as < 0.

We will show that das/dg < 0, a fact that we will use in step 3. Noting that

Gs(as, g) = −as



1 +
as

(

g − α
α

)

e−rh

D3



α + (α(1− as)− αas)(1− e−rh), (B43)

we get

∂Gs(as, g)

∂g
= −a2

s

1− (1− as

(

1 + α
α

)

)2e−rh

(D3)2
αe−rh < 0. (B44)

Differentiating equation Gs(as, g) = 0, we get das/dg < 0.

We will also show that for g > α/α and 1 − as(1 + g) ∈ [0, 1), we have das/dg >

−as/(1 + g). Using equation (B43) and noting that

∂

∂as

a2
s

D3
=

as

(D3)2
(2− (2− as

(

2 + g +
α

α

)

)e−rh) > 0,

we get ∂Gs(as, g)/∂as < −α. Using equation (B44) and noting that

D3 > 1− (1− as

(

1 +
α

α

)

)2e−rh > 0,

and D3 > as(1 + g)e−rh, we get ∂Gs(as, g)/∂g > −asα/(1 + g). Differentiating equation

Gs(as, g) = 0, we get das/dg > −as/(1 + g).
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Step 3: Determination of ae

We denote by Ge(ae, as, g) the LHS of equation (21), and by Ge(ae) the LHS when we

plug g and as as functions of ae. The function Ge(ae) is continuous in ae ∈ (0, 1). When

ae goes to 0, g goes to a limit g(0) > 0, and as goes to a limit as(0) ∈ (0, α/(α + α)). The

function Ge(ae) goes to

−(1− as(0)

(

1 +
α

α

)

)(1− e−rh)α < 0.

When ae goes to 1, g goes to 0, and as goes to a limit as(1) ∈ (0, α/(α + α)). The function

Ge(ae) goes to

(1− as(1))α > 0.

Therefore, equation (21) has a solution ae ∈ (0, 1). Since as ∈ (0, α/(α + α)), we have

1− as − ae ∈ (0, 1). Equation (23) implies that g < (1− ae)/ae. Therefore, 1− ae(1 + g) ∈

(0, 1). Finally, equation (21) implies that 1−as(1+g) > 0. Therefore, 1−as(1+g) ∈ (0, 1).

We will show that at the solution ae, we have dGe(ae)/dae > 0. This fact implies that

the solution is unique and, as we show in Section C.3, allows us to use the implicit function

theorem. We have

dGe(ae)

dae
=

∂Ge(ae, as, g)

∂ae
+

(

∂Ge(ae, as, g)

∂g
+

∂Ge(ae, as, g)

∂as

das

dg

)

dg

dae
.

Since ∂Ge(ae, as, g)/∂ae > 0 and 0 > dg/dae > −(1 + g)/ae, we have dG(ae)/dae > 0 if

∂Ge(ae, as, g)

∂ae
−
(

∂Ge(ae, as, g)

∂g
+

∂Ge(ae, as, g)

∂as

das

dg

)

1 + g

ae
> 0.

We have

∂Ge(ae, as, g)

∂ae
− ∂Ge(ae, as, g)

∂g

1 + g

ae
= (1− (1− ae(1 + g))e−rh)α,

and

∂Ge(ae, as, g)

∂as
= −ae(1− (1−ae(1+g))e−rh)(1+g)α+(1−ae(1+g))

(

1 +
α

α

)

(1− e−rh)α.

Using equation (21), we can write ∂Ge(ae, as, g)/∂as as

−ae(1− (1− ae(1 + g))e−rh)α

1− as

(

1 + α
α

)

(

g − α

α

)

.

Therefore, we have dGe(ae)/dae > 0 if

1 +
(1 + g)

(

g − α
α

)

1− as

(

1 + α
α

)

das

dg
> 0.

If g ≤ α/α, this condition is satisfied, since das/dg < 0. If g > α/α, this condition is

satisfied since das/dg > −as/(1 + g).
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C.3. The Solution for Small σ
2
e

We first prove Lemma 1. To state the lemma, we use the following notation. Consider a

function F (x, y), where x is a 1×N vector, y a 1×M vector, and F a K × 1 vector. We

denote by JxF (x, y) the K × N matrix of partial derivatives of F (x, y) w.r.t. x, i.e. the

Jacobian matrix of F (x, y) w.r.t. x.

Lemma 1 Consider a function

F (x, y) =





F1(x, y)

F2(x, y)



 ,

where x is a 1 × N vector, y a 1 × M vector, F1(x, y) a N × 1 vector, and F2(x, y) a

M × 1 vector. Suppose that (i) there exists a function y(x) such that F2(x, y(x)) = 0, (ii)

JyF2(x, y) is invertible, and (iii) JxF1(x, y(x)) is invertible. Then Jx,yF (x, y) is invertible

for y = y(x).

In words, Lemma 1 says that the Jacobian matrix of F (x, y) w.r.t. (x, y) is invertible

if (i) we can solve equation F2(x, y) = 0 for y, and (ii) the Jacobian matrix of the function

F1(x, y(x)), that we obtain by plugging y(x) in the function F1(x, y), is invertible. Lemma

1 allows us to “eliminate” the function F2(x, y) and consider a smaller Jacobian matrix.

Proof: We have

Jx,yF (x, y) =





JxF1(x, y) JyF1(x, y)

JxF2(x, y) JyF2(x, y)



 .

The matrix Jx,yF (x, y) is invertible if the matrix obtained by multiplying the last M columns

by JyF2(x, y)−1JxF2(x, y) and subtracting them from the first N , is invertible. This matrix

is




JxF1(x, y)− JyF1(x, y)JyF2(x, y)−1JxF2(x, y) JyF1(x, y)

0 JyF2(x, y)



 ,

and is invertible if the matrix

JxF1(x, y)− JyF1(x, y)JyF2(x, y)−1JxF2(x, y)

is invertible. We will show that for y = y(x), this matrix is JxF1(x, y(x)). Differentiating

F2(x, y(x)) = 0, we get

JxF2(x, y(x)) + JyF2(x, y(x))Jxy(x) = 0 ⇒ Jxy(x) = −JyF2(x, y(x))−1JxF2(x, y(x)).
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Therefore,

JxF1(x, y(x)) = JxF1(x, y(x)) + JyF1(x, y(x))Jxy(x)

= JxF1(x, y(x))− JyF1(x, y(x))JyF2(x, y(x))−1JxF2(x, y(x)).

Q.E.D.

To extend the solution of (S ′) for small σ2
e , we use the implicit function theorem. We

denote by z the 1 × 23 vector of unknowns ae, as, ae, g, Σ
2
e, Ae/B, As/B, 1/B, Q, and

Q. We denote by K(z, σ2
e) = 0 the 23 × 1 vector of optimality conditions of the large

trader’s problem, equations (23) and (24) of the recursive filtering problem, equations of

the market makers’ problem, and envelope conditions of the large trader’s problem. Finally,

we denote by z0 the solution of (S ′) for σ2
e = 0. The function K(z, σ2

e) is C1 at (z0, 0), and

K(z0, 0) = 0. The implicit function theorem applies if the matrix JzK(z, 0) is invertible for

z = z0.

To show that JzK(z, 0) is invertible, we use Lemma 1. We set (x, y) = z and F (x, y) =

K(z, 0), denote by y the 1 × 15 vector of unknowns Ae/B, As/B, 1/B, Q, and Q, and by

F2(x, y) = 0 the 15 × 1 vector of equations of the market makers’ problem and envelope

conditions of the large trader’s problem. In Section C.2 we solved equation F2(x, y) = 0

for y. Since F2(x, y) is linear in y, and since we could solve for y, the matrix JyF2(x, y) is

invertible. Lemma 1 implies that JzK(z, 0) is invertible if JxF1(x, y(x)) is invertible.

In Section C.2 we showed that the optimality conditions of the large trader’s problem

are connected to equations (21), (22), and (25), though an invertible linear transformation.

Therefore, we can assume that F1(x, y(x)) = 0 consists of equations (21), (22), (25), (23),

and (24).

To show that JxF1(x, y(x)) is invertible, we use Lemma 1 for the function F1(x, y(x)).

The “new” (x, y) is the “old” x, the new F (x, y) is F1(x, y(x)), the new y is the 1×4 vector

of unknowns as, ae, g, and Σ
2
e, and the new F2(x, y) = 0 is the 4 × 1 vector of equations

(22), (25), (23), and (24). In Section C.2 we solved F2(x, y) = 0 for y. Using the results of

this section, it is easy to check that the matrix JyF2(x, y) is invertible. Lemma 1 implies

that Jx,yF (x, y) is invertible if JxF1(x, y(x)) is invertible. Using the notation of Section

(25), JxF1(x, y(x)) = dGe(ae)/dae > 0. Q.E.D.
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D. Proofs of Propositions 3, 5, and 6

Proof of Proposition 3: We denote by a∗e and a∗s, the ae and as that solve (S). We will

show that a∗e > a∗s for σ2
e = 0, and conclude by continuity. We proceed by contradiction

and assume that a∗e ≤ a∗s. As in Section C.2, we fix ae ∈ (0, 1) and define g and Σ
2
e from

equations (23) and (24), and as from equation (22). Since as < α/(α + α) < 1, there exists

ae ≥ a∗e such that ae = as. For this ae we have Ge(ae) ≥ 0, since equation Ge(ae) = 0 has

a unique solution a∗e ∈ (0, 1), and the function Ge(ae) goes to a strictly positive limit when

ae goes to 1.

Noting that as = ae and ae = asα/α, we have

Ge(ae) = (1− ae(1 + g))
(

ae(1− (1− ae(1 + g))e−rh)α− (α(1− ae)− αae)(1− e−rh)
)

.

Using equation (22), we get

Ge(ae) = (1− ae(1 + g))aeαF,

where

F = 1− (1− ae(1 + g))e−rh −
1− (1− ae(1 + g)(2− ae

(

1 + α
α

)

))e−rh

1− (1− ae(1 + g))(1− ae

(

1 + α
α

)

)e−rh
.

= −(1− ae

(

1 +
α

α

)

)e−rh 1− (1− ae(1 + g))2e−rh

1− (1− ae(1 + g))(1− ae

(

1 + α
α

)

)e−rh
.

Since 1−ae(1+α/α) = 1−as(1+α/α) ∈ (0, 1) and 1−ae(1+g) ∈ (0, 1), we have Ge(ae) < 0,

a contradiction. Q.E.D.

Proof of Proposition 5: We first show that if gas − ae ≥ 0, the large trader’s stock

holdings decrease over time. Since ae > as, we have

ae(1 + g)− as − ae > gas − ae ≥ 0.

The coefficients of (1−as−ae)
`′−` and (1−ae(1+g))`′−` in equation (30) are thus positive,

and stock holdings decrease over time.

We next show that if gas− ae < 0, stock holdings decrease and then increase over time.

Stock holdings are equal to 1 for `′ = `, and go to ae/(as + ae) < 1 when `′ goes to ∞.

Their derivative w.r.t. `′ changes sign at most once. Therefore, stock holdings decrease

and then increase over time if they increase for large `′. We distinguish two cases. If

ae(1 + g)− as − ae > 0, then 1− as − ae > 1− ae(1 + g). Stock holdings are approximately

ae

as + ae

+
ae(gas − ae)

(ae(1 + g)− as − ae)(as + ae)
(1− as − ae)

`′−`
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for large `′, and they increase. If ae(1 + g)− as − ae < 0, stock holdings are approximately

ae

as + ae

+
ae − as

ae(1 + g)− as − ae

(1− ae(1 + g))`′−`,

and they also increase.

We next show that if gas − ae ≥ 0, the trading rate decreases over time. The trading

rate is
x`′

∑

`′′≥`′ x`′′
=

x`′

e`′−1 − e∞
.

Equation (A37) implies that

x`′ = ae(e`′−1 − s`′−1) + ass`′−1 − aee`′−1

=
ae(gas − ae)

ae(1 + g)− as − ae

(1− as − ae)
`′−` +

ae(1 + g)(ae − as)

ae(1 + g)− as − ae

(1− ae(1 + g))`′−`. (B45)

Using equations (30) and (B45), we can write the trading rate as

gas − ae + (1 + g)(ae − as)f(`′)
gas−ae

as+ae

+ ae−as

ae
f(`′)

,

where

f(`′) =
(1− ae(1 + g))`′−`

(1− as − ae)`′−`
.

Using the inequalities ae > as and ae(1 + g) − as − ae > 0, it is easy to check that the

trading rate increases in f(`′), and that f(`′) decreases in `′. Therefore, the trading rate

decreases over time.

We finally show that if gas−ae ≥ 0, the price impact decreases over time. We can write

the expected price change, p`′−1 − p`′ , successively as

(

h

1− e−rh
Q1,2 +

Ae

B

)

e`′−1 +

(

h

1− e−rh
Q1,3 +

As

B

)

s`′−1 +
ae

B
(e`′−1 − s`′−1)

=
h

1− e−rh
(Q1,3 −Q1,2)(ass`′−1 − aee`′−1) +

ae

B
(e`′−1 − s`′−1)

=
h

1− e−rh
(Q1,3 −Q1,2)

ae(gas − ae)

ae(1 + g)− as − ae
(1− as − ae)

`′−`

+

(

− h

1− e−rh
(Q1,3 −Q1,2)

ae(gas − ae)

ae(1 + g)− as − ae
+

ae

B

)

(1− ae(1 + g))`′−`. (B46)

For the first equality we use equation (8) for p`′ and equation (B30) for p`′−1, for the second

equality we use the optimality conditions (A11) and (A12), and for the third equality we

use equation (A37). Using equations (B45) and (B46), we can write the price impact as

h
1−e−rh (Q1,3 −Q1,2)(gas − ae) +

(

− h
1−e−rh (Q1,3 −Q1,2)(gas − ae) + ae(1+g)−as−ae

B

)

f(`′)

gas − ae + (1 + g)(ae − as)f(`′)
.
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The function f(`′) decreases in `′. Therefore, the price impact decreases over time if it

increases in f(`′). It is easy to check that the price impact increases in f(`′) if and only if

1

B
− h

1− e−rh
(Q1,3 −Q1,2) > 0. (B47)

Substituting 1/B from the optimality condition (A13), we can write inequality (B47) as

h

1− e−rh
(1 + g)Q1,3 < 0.

This inequality holds as long as Q1,3 < 0. Equations (B21) and (B22) imply that for σ2
e = 0,

Q1,3 < 0. Therefore, for small σ2
e , Q1,3 < 0. Our numerical solutions confirm that Q1,3 < 0

for large σ2
e . Q.E.D.

Proof of Proposition 6: We replace (S ′) by an equivalent system (S ′c), that we obtain as

follows. We set ae = φe

√
h, as = φsh, ae = φeh, and Σ

2
e = φΣ

√
h, and replace the unknowns

ae, as, ae, and Σ
2
e, by φe, φs, φe, and φΣ. We divide the Bellman conditions of the market

makers’ problem by h, the envelope conditions of the large trader’s problem by
√

h if they

correspond to Q1,1, Q2,1, and Q3,1, and by h otherwise, and equation (24) of the recursive

filtering problem by h. Finally, we multiply the optimality conditions of the large trader’s

problem by the invertible matrix

(1−Ne−rh)N̂
1− e−rh

σ2h2e−rh













ke 0 0

ks 1 0

ke 0 1













−1

.

For σ2
e = 0, we get equations Ge/h = Gs/h = Ge/h = 0. We denote by z the vector of

unknowns of (S ′c) and by K(z, σ2
e , h) = 0 the vector of equations.

We will use the implicit function theorem for σ2
e = h = 0. It is easy to check the

following. First, the function K(z, σ2
e , h) can be extended by continuity for h = 0, and

is C1. (We use the fact that the matrices R
′
, R′

u, and R′, are “of order” h.) Second,

for σ2
e = h = 0, the optimality conditions of the market makers’ problem, the equations

obtained from the Bellman conditions of the market makers’ problem, and the equations

obtained from the envelope conditions of the large trader’s problem, are linear in Ae/B,

As/B, 1/B, Q, and Q, and can be solved in these unknowns. Third, for σ2
e = h = 0, the

equations obtained from the optimality conditions of the large trader’s problem, equation

(23), and the equation obtained from equation (24), become

(φe)
2(1 + g)α− rα = 0,
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−φs
r + 2φs(1 + g)

r + φs(2 + g) + φe
α + rα = 0,

φeα− φsα = 0,

g − φeφΣ

σ2
u

= 0,

and

(φeφΣ)2 + 2σ2
uφeφΣ − σ2

u = 0,

respectively. Fourth, the φe, φs, φe, and g0 of the Proposition solve these equations. There-

fore, for σ2
e = h = 0, we have a solution, z0, to K(z, σ2

e , h) = 0. To show that the matrix

JzK(z, 0, 0) is invertible for z = z0, we proceed as in Section C.3. Q.E.D.
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