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Abstract

We propose a smoothed least squares estimator of the parameters of a threshold regression

model. Our model generalizes that considered in Hansen (2000) to allow the thresholding to

depend on a linear index of observed regressors, thus allowing discrete variables to enter. We

also do not assume that the threshold e¤ect is vanishingly small. Our estimator is shown to

be consistent and asymptotically normal thus facilitating standard inference techniques based

on estimated standard errors or standard bootstrap for the threshold parameters themselves.

We compare our con�dence intervals with those of Hansen (2000) in a simulation study and

show that our methods outperform his for large values of the threshold. We also include an

application to cross-country growth regressions.
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1 Introduction

The threshold model (often called sample splitting or segmented regression) has wide application in

economics. Hansen (2000) brought many of those applications to the attention of econometricians.

The literature divides according to autoregression and regression, according to smooth, continuous,

or discontinuous threshold, and according to nonparametric or parametric functional form. It is

di¤erent from the regime-switching literature, see e.g. Kim and Nelson (1999) for a review, in

that the switching variable is observable. The smooth transition autoregressive models have been

widely used in macro and �nancial applications, see the recent review paper of van Dijk, Terasvirta,

and Franses (2000). The discontinuous threshold e¤ect has found applications in macro and in cross-

section growth regressions, see Hansen (2000) for discussion. There is also a nonparametric literature

in applied economics associated with the concept of �regression discontinuity design�, see for example

Hahn, Todd and van der Klauw (2001). In fact, a whole methodology has been built around this,

and there are many applications. In that case the threshold point is usually assumed known. The

paper of Delgado and Hidalgo (2000) work with the more general case of multiple unknown threshold

points in a nonparametric regression and obtain a full set of results for estimation and inference.

This paper is about the parametric threshold regression model. Unfortunately, this model does

not have a satisfactory basis for inference even in the case of least-squares estimation. It has been

established that the threshold parameter estimate converges faster than the slope parameter estimates

and that its asymptotic distribution is not Normal. On the other hand, the slope parameter estimates

converges to a Normal distribution independently of the threshold parameter estimate. In the context

of threshold autoregression, Chan (1993) establishes that the threshold parameter estimate converges

to a functional of a compound Poisson process; the distribution is too complicated to be used in

practice due to the dependence on the marginal distribution of the covariates. Hansen (2000) develops

an asymptotic distribution for the threshold parameter estimate based on the diminishing threshold

e¤ect assumption, in which the threshold model becomes the linear model asymptotically. The

limiting distribution is symmetric about zero and has moderate tails but is unbounded at zero.

Although the distribution is readily available through a simulation, the validity of the asymptotic

distribution may be limited to the �small e¤ect�case, as he calls it. It should be noted, however,

that it provides a conservative con�dence interval for the threshold estimate for the case where the

threshold e¤ect is held �xed, under the auxiliary assumption of the normality of and the independence

of the error from the regressors. These however are strong assumptions.

Recently, Gonzalo and Wolf (2005) have proposed using subsampling to conduct inference in

threshold autoregressive models. They consider the set-up of Tong (1990) and Chan (1993) but also

allow for the continuous threshold case of Chan and Tsay (1998). They allow for regime speci�c het-
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eroskedasticity as in Chan (1993) (this was excluded in Hansen (2000)) but otherwise the innovation

process is i.i.d. They establish consistency of tests about and con�dence intervals for the threshold

parameters based on the least squares estimator under constant threshold assumption.

We consider a threshold model that is more general than the one in Hansen (2000), which permits

only a pre-assigned continuous variable. In contrast, we allow the threshold variable to be a linear

combination of the regressors and/or other variables, validating the use of discontinuous variables for

sample splitting in addition to continuous variables. It may be of interest because it allows di¤erent

threshold values for subsamples divided by a discrete variable like gender. Furthermore, we can make

decision on the inclusion of a (some) variable(s) based on a test such as the t- or Wald test.1

This paper proposes the least squares estimation of the threshold model after smoothing the

objective function in the spirit of the smoothed maximum score estimator of Horowitz (1992). It is

based on the replacement of the indicator function in the objective function with an integrated kernel.

While the maximum score estimator by Manski (1975) is asymptotically distributed as the random

variable that maximizes a certain Gaussian process, the smoothed maximum score estimator exhibits

asymptotic normality. The smoothing also brings about a change in the convergence rate. Under

smoothness conditions the smoothed maximum score estimator converges faster than the maximum

score estimator.

We develop an asymptotic theory for the smoothed least-squares estimation of the threshold

model in the regression context. Unlike the previous literature, the threshold estimate is distrib-

uted as asymptotically normal. Its convergence rate to ensure the normality is slower than that

obtained in Chan (1993) and depends on the choice of bandwidth. Unlike in the maximum score

case, smoothing reduces the rate of convergence. It is worth noting that Hansen (2000) also attains a

manageable distribution at the expense of the convergence rate. The slope estimates are square root

n consistent and asymptotically normally distributed, and independent of the threshold estimate.

Our development allows for time series data, a special case being the threshold autoregression of

Tong (1983; 1990) : The consistency of the HAC estimation in Andrews (1991) is extended to allow

for the discontinuity in the threshold model.

Our set-up is more general than Gonzalo and Wolf (2005) in that we allow both regime speci�c

heteroskedasticity and covariate dependent heteroskedasticity as would be common in cross-sectional

regression applications. Also, our method has the usual advantage over subsampling that we can

work with pivotal test statistics and hence expect to obtain asymptotic re�nements.

We also investigate two slightly di¤erent implementations of the �smoothing over�approach. Al-

though the two di¤erent methods result in the same asymptotics for the slope estimates, the limiting

distribution of the threshold estimates are di¤erent, and not in general rankable.

1But we should include at least one continuous variable and the coe¢ cient is normalized to 1.
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We provide some simulation evidence on the rate of convergence and the �nite sample distribution

of our procedures. Con�dence intervals based on our procedure perform better than those of Hansen

(2000) in his design in the larger threshold case.

The paper is organized as follows. Section 2 introduces the smoothed LS estimators and their

consistency and asymptotic Normality is established in Section 3. Section 4 provides methods to

construct the asymptotic and bootstrap con�dence intervals. Section 5 discusses some extensions.

Numerical results are presented in Section 6 and an application to a cross-section growth model in

Section 7. Section 8 concludes. The proofs of Theorems are collected in an Appendix.

The following notations are used. The integral
R
is taken over (�1;1) unless speci�ed otherwise.

Let jjgjj22 =
R
g (s)2 ds for any function g: For any matrix A; let jjAjj = tr(A>A)1=2:

2 The Smoothed LS estimator

2.1 The Model

Write the model

yt = x>t � + �>ext1�q>t  > 0
	
+ "t; (1)

where xt; ext; and qt may have common variables. A leading case is where ext = xt but ext can also be
a strict proper subset of xt: Let q1t be the �rst element of qt; and q2t the other elements of qt: Let Xt

whose �rst element is q1t denote all the regressors and E ("tjXt) = 0: Furthermore, assume the �rst

element of q2t is the constant 1: Similarly, X1t denotes q1t and X2t the other elements in Xt. The

�rst element of  is normalized to 1; and the others are denoted as  ; so that q>t  = q1t + q>2t :

This model includes many considered in the literature as special cases, for example, the threshold

autoregression of Tong (1983) as used by Potter (1995). Hansen (2000) considered the special case

where q2t is only a constant. It may be the case in practice where only a few variables are employed

to construct the threshold index.

2.2 Estimators

The least squares (LS) estimator minimizes the objective function

S�n (�) =
1

n

nX
t=1

�
yt � x>t � � ~x>t �1

�
q1t + q>2t > 0

	�2
(2)

=
1

n

nX
t=1

�
yt � x>t �

�2
+
1

n

nX
t=1

n�
~x>t �
�2 � 2~x>t � �yt � x>t �

�o
1t( );
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where � =
�
�>; �>;  >

�> 2 � � Rk and 1t( ) = 1
�
q1t + q>2t > 0

	
. The solution is obtained by

pro�led least squares, see Hansen (2000). Let �LSn denote the least squares estimator.

De�ne a bounded function K (�) satisfying that

lim
s!�1

K (s) = 0; lim
s!+1

K (s) = 1:

It is worthwhile noting that this function is analogous to a cumulative distribution function rather

than a density function. Then, de�ne a smoothed objective function

Sn (�;�n) =
1

n

nX
t=1

�
yt � x>t �

�2
+
1

n

nX
t=1

n�
~x>t �
�2 � 2~x>t � �yt � x>t �

�o
K
�
q1t + q>2t 

�n

�
; (3)

and a smoothed least squares (SLS) estimator

�n =
�
�>n ; �

>
n ;  

>
n

�>
= argmin

�2�
Sn (�;�n) : (4)

We assume that the parameter space � is compact and that the true parameter �0 =
�
�>0 ; �

>
0 ;  

>
0

�>
is

an interior point of �: To distinguish the slope parameters, let �s = (�>; �>)> and �s0 = (�
>
0 ; �

>
0 )
>: In

practice, one solves the optimization problem by computing �n( ); �n( ) by an explicit least squares

formula for given  ; this is"
�n( )

�n( )

#
=

" Pn
t=1 xtx

>
t

Pn
t=1 xt~x

>
t Kt( )Pn

t=1 ~xtx
>
t Kt( )

Pn
t=1 ~xt~x

>
t Kt( )

#�1 " Pn
t=1 xtytPn

t=1 ~xtytKt( )

#
;

whereKt( ) = K(q1t+q>2t )=�n); and then optimizing the pro�led criterion over  : Practical di¢ culty
arises only in the case of large dimensional  :

There is an alternative approach, which is based on just replacing 1t( ) in (2) by Kt( ); thus
instead of (3) one has

S+n (�;�n) =
1

n

nX
t=1

�
yt � x>t � � ~x>t �K

�
q1t + q>2t 

�n

��2
(5)

and the smoothed least squares (SLS) estimator

�+n =
�
�+>n ; �+>n ;  +>n

�>
= argmin

�2�
S+n (�;�n) :

As before this optimization is done in two stages with the pro�led least squares estimators"
�+n ( )

�+n ( )

#
=

" Pn
t=1 xtx

>
t

Pn
t=1 xt~x

>
t Kt( )Pn

t=1 ~xtx
>
t Kt( )

Pn
t=1 ~xt~x

>
t K2t ( )

#�1 " Pn
t=1 xtytPn

t=1 ~xtytKt( )

#
;

which are then plugged back into (5) for optimization over  : Note that although 12t ( ) = 1t( );

K2t ( ) 6= Kt( ) and the estimators de�ned by (3) and (5) are di¤erent. In the case of the slope
coe¢ cients this di¤erence vanishes asymptotically, but in the case of the threshold parameters it

does not. In the exposition we concentrate mainly on the estimator �n; although similar comments

apply to �+n :
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3 Asymptotic Properties

3.1 Consistency

We assume the following conditions to show the consistency of the SLS estimator.

Assumption 1 (a) fXt; "tg is a sequence of strictly stationary strong mixing random variables with
mixing numbers �m; m = 1; 2; : : : ; that satisfy �m = o

�
m��0=(�0�1)

�
as m!1 for some �0 � 1:

(b) For some � > �0; E


XtX

>
t



� <1 and E kXt"tk� <1:

(c) E ("tjXt) = 0 a.s.

(d) For almost every X2t; the probability distribution of X1t conditional on X2t has everywhere positive

density with respect to Lebesgue measure.

Condition (a) corresponds to Assumption B1 of Andrews (1987). Given a compact parameter

space, the generic uniform law of large numbers by Andrews (1987) is applied for the following

development of the consistency proof, supported by the strong law of large numbers of de Jong

(1995, Theorem 4). For the asymptotic normality, we need to strengthen the mixing condition. The

following theorem establishes the strong consistency of the SLS estimator.

Theorem 1 Let Assumption 1 hold. Then, �n ! �0 and �
+
n ! �0 almost surely.

3.2 Asymptotic Normality

The asymptotic distribution is developed based on the standard Taylor series expansion. Suppose

Sn (�;�n) is twice di¤erentiable with respect to �; we de�ne

Tn (�;�n) = @Sn (�;�n) =@�

Qn (�;�n) = @2Sn (�;�n) =@�@�
>:

The superscript s and  to Tn and Qn; when applied, indicate the obvious partitions of Tn and Qn

according to the slope parameter �s and the threshold parameter  :

We make a reparameterization to express the limiting distributions conveniently. Let zt = q1t +

q>2t 0: This involves decomposing ext into the part measurable with respect to zt and the part that is
not so. There is a one-to-one relation between

�
zt; X

>
2t

�>
and Xt for any  0: Let T be the mapping

such that
�
zt; X

>
2t

�>
= T Xt and let S be the selection matrix such that ~xt = SXt: Let _� = T �1

>S>�
so that

�
zt; X

>
2t

�
_� = ~x>t �: As above, we denote the �rst element of _� as _�1 and the others as _�2: For

example, if xt = ~xt = qt; whose dimension is k; then S = Ik,

T =
 
1  0

0 Ik�1

!
and _� =

 
�1

��1 + �2

!
:
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We then have �>ext1�q>t  > 0
	
= (zt _�1 + X>

2t
_�2)1(zt > 0) = zt _�11(zt > 0) + X>

2t
_�21(zt > 0); where

the �rst term on the right hand side is continuous in zt at zt = 0 with probability one, while the

second term is not.

By Assumption 1, the distribution of zt conditional on X2t has everywhere positive density with

respect to Lebesgue measure for almost every X2t: Let f (�jX2) denote this density given X2t = X2

and f (�) the density of zt: For each positive integer i; de�ne

f (i) (zjX2) = @if (zjX2) =@z
i

whenever the derivative exists.

De�ne

E
�
"2t jX2t

�
= lim

z!0+
E
�
"2t jzt = z;X2t

� Z
s>0

K0 (s)2 ds+ lim
z!0�

E
�
"2t jzt = z;X2t

� Z
s<0

K0 (s)2 ds; (6)

and

V s =

 
4
P1

s=�1Ex1x
>
s "1"s 4

P1
s=�1Ex1~x

>
s "1"s1 fz1 > 0; zs > 0g

4
P1

s=�1E~x1x
>
s "1"s1 fz1 > 0; zs > 0g 4

P1
s=�1E~x1~x

>
s "1"s1 fz1 > 0; zs > 0g

!

V  = kK0k22E
��
(X>

2t
_�2)

4 + 4
�
X>
2t
_�2

�2
E
�
"2t jX2t

��
q2tq

>
2tjzt = 0

�
f (0)

V  + = 4E
h
(X>

2t
_�2)

2E
�
"2t jX2t

�
q2tq

>
2tjzt = 0

i
f (0)

Qs =

 
2Extx

>
t 2Ext~x

>
t 1 fzt > 0g

2E~xtx
>
t 1 fzt > 0g 2E~xt~x

>
t 1 fzt > 0g

!
Q = 2K0 (0)E

h
(X>

2t
_�2)

2q2tq
>
2tjzt = 0

i
f (0)

Q + = 2 kK0k22 E
h
(X>

2t
_�2)

2q2tq
>
2tjzt = 0

i
f (0) :

If we impose a stronger assumption that f"tg is a martingale di¤erence sequence, then all the autoco-
variances drop out of V s: In contrast, the threshold estimates do not involve the long-run variance as

is the case in the dynamic binary choice model of de Jong and Woutersen (2004) and in the threshold

LAD model of Caner (2002) : If K0 is symmetric around zero,

E
�
"2t jX2t

�
= kK0k22

�
lim
z!0+

E
�
"2t jzt = z;X2t

�
+ lim

z!0�
E
�
"2t jzt = z;X2t

��
=2:

If additionally, E ("2t jzt; X2t) is continuous at zt = 0, this expression simpli�es further to kK0k22 �
E ("2t jzt = 0; X2t) :

The assumptions we need are collected in the following.
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Assumption 2 (a) For all vectors � such that j�j = 1 and r > 4; E
���X>

2t
_�2"tq

>
2t�
���r < 1 and

E
���(X>

2t
_�2)

2q>2t�
���r <1, or (a+) the condition E ���(X>

2t
_�2)

2q>2t�
���r <1 in (a) is replaced by E

���X>
2t
_�2q

>
2t�
���r <

1: (b) fXt; "tg is a sequence of strictly stationary strong mixing random variables with mixing num-
bers �m; m = 1; 2; : : : ; that satisfy �m � Cm�(2r�2)=(r�2)�� for positive C and �; as m ! 1: (c)

For some integer h � 2 and each integer i such that 1 � i � h � 1; all z in a neighborhood of
0, almost every X2; and some M < 1, f (i) (zjX2) exists and is a continuous function of z satis-

fying
��f (i) (zjX2)

�� < M . In addition, f (zjX2) < M for all z and almost every X2. Furthermore,

E ("4t jXt) < M for almost every Xt; (d) and the conditional joint density f (zt; zt�mjX2t; X2t�m) < M;

for all (zt; zt�m) and almost all (X2t; X2t�m) ; and the conditional expectation E ("t�mjXt; Xt�m) < M

for almost all (Xt; Xt�m) : (e) �0 is an interior point of a compact parameter space �: (f) And

V s; V  ; Qs; and Q are �nite and positive de�nite.

In case of Hansen�s model where zt = q1t +  , V  and Q are de�ned without q2tq>2t and the

condition (a) is simpli�ed to EjX>
2t
_�2"tjr <1 and Ej(X>

2t
_�2)

2jr <1, or to EjX>
2t
_�2jr <1 in (a+).

The moment conditions are to ensure the consistency of the variance covariance matrix estimators

that are introduced later. The condition (a+) is analogous to de Jong and Woutersen (2004) and is

slightly stronger than that of Chan (1993) or Hansen (2000), which requires a �nite fourth moment.

The mixing condition (b) is more general than �� mixing in Hansen (2000), which includes many
nonlinear time series such as TAR processes as discussed there: The conditions (c) - (f) are common

in the smoothed estimation as in Horowitz (1992), only (d) being an analogue of an iid sample to

a dependent sample. The smoothness condition here is stronger than that of Chan (1993) since

the boundedness of the �rst derivative of the density implies the uniform continuity. While (f)

is standard, the positivity of Q excludes a continuous threshold model, so does Assumption 1.7 of

Hansen (2000). The �niteness of V s can be implied by the �-mixing condition with a slightly stronger

assumption on the mixing coe¢ cient �m plus a moment condition. See Andrews (1991; Lemma 1).

Unlike Hansen (2000), we do not impose the continuity of E ("2t jzt) at zt = 0, thus allowing for
a regime speci�c heteroskedasticity. This type of heteroskedasticity is quite plausible in applications

and we would certainly want to allow for it. In such a case, one may want to employ a weighted least

squares although this requires further estimation.

It is expected that the asymptotics in Hansen (2000) can be modi�ed to allow such discontinuity,
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but then the studentizing of the threshold estimate seems to become more cumbersome.2

We make the followings assumptions regarding the smoothing function K and the bandwidth

parameter �n:

Assumption 3 (a) K is twice di¤erentiable everywhere, jK0 (�)j and jK00 (�)j are uniformly bounded,
and each of the following integrals is �nite:

R
jK0j4 ;

R
jK00j2 ;

R
jv2K00 (v) dvj : (b) For some integer

h � 2 and each integer i (1 � i � h) ;
R
jviK0 (v) dvj <1; andZ

si�1sgn (s)K0 (s) ds = 0; and
Z
shsgn (s)K0 (s) ds 6= 0;

and K (x)�K (0) ? 0 if x ? 0:
(c) For each integer i (0 � i � h) ; and � > 0; and any sequence f�ng converging to 0;

lim
n!1

�i�hn

Z
j�nsj>�

��siK0 (s)�� ds = 0; and lim
n!1

��1n

Z
j�nsj>�

jK00 (s)j ds = 0:

(d) lim sup
n!1

n�2hn <1 and

lim
n!1

��2hn

Z
j�nsj>�

jK0 (s)j ds = 0:

(e) For some � 2 (0; 1]; a positive constant C; and all x; y 2 R;

jK00 (x)�K00 (y)j � C jx� yj� :

(f) For some sequence mn � 1; and " > 0;

log (nmn)
�
n1�6=r�2nm

�2
n

��1 ! 0

��3k�1n n3=r+"�mn ! 0:

These conditions are similar to those in Horowitz (1992). Condition (b) is an analogous condition

to that de�ning the so-called hth order kernel, and requires a kernel K0 that permits negative values.
A kernel that satis�es these conditions is K (x) = � (x)+x� (x) ; where � and � are the distribution
function and the density of the standard normal, respectively. For this kernel K0(0) =

p
2=� = 0:798

and jjK0jj22 = 0:776:
2The limit distribution in Theorem 1 of Hansen (2000) is expected to change to

argmax
r
f!1 (� jrj =2 +W (r)) 1 fr > 0g+ !2 (� jrj =2 +W (r)) 1 fr < 0gg ;

where !1 and !2 are the right and left limit in (6) : Thus, !1 and !2 does not average out as it does in our case.
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Condition (e) serves to determine the rate for �n: When the data are i.i.d. and the regressors

possess a moment generating function, the conditions can be weakened to

log (n)

n�2n
! 0; (7)

since �mn = 0 and we can set mn = 1 in this case. Contrary to the smoothed maximum score

estimation, we choose the bandwidth that converges to zero as fast as permissible.

Although condition (e) in Assumption 3 provides permissible rates for the bandwidth selection,

it may not be sharp. In fact, Delgado and Hidalgo (2000) study the nonparametric estimation of

the locations and sizes of the discontinuities in conditional expectation. They establish asymptotic

normality at rate
p
n�p�1n ; where p is the number of covariates in the nonparametric regression, under

the restrictions that n�p+1n ! 1 and lim supn n�
p+5
n < 1: If one could take p = 0 (one cannot in

their theory); which would correspond to parametric regression, in their results, this would suggest

asymptotic normality holds at rates arbitrarily close to n�1:

Theorem 2 Let Assumptions 1 - 3 hold with Assumption 2(a) : Then

p
n (�sn � �s0) =) N

�
0; Qs�1V sQs�1

�
;p

n��1n ( n �  0) =) N
�
0; Q �1V  Q �1

�
;

and they are asymptotically independent.

Similarly, we have

Corollary 3 Let Assumptions 1 - 3 hold with Assumption 2(a+) : Then

p
n
�
�s+n � �s0

�
=) N

�
0; Qs�1V sQs�1

�
;p

n��1n
�
 +n �  0

�
=) N

�
0; Q +�1V  +Q +�1

�
;

and they are asymptotically independent.

Remarks.

1. The convergence rate of  n is
p
n��1n , which means that faster convergence of �n to zero

accelerates the convergence of  n: This is in contrast to the smoothed maximum score estimator for

which the faster convergence of the bandwidth reduces the convergence rate of the estimator. In the

i.i.d. case, the bandwidth �n = log n=
p
n satis�es the condition (7) and lim sup

n!1
n�2hn < 1 for any

h � 2: In this case we obtain that  n is (apart from a logarithmic factor) n�3=4 consistent. However,
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the bandwidth restrictions are su¢ cient and not necessary and it is quite plausible that one obtainsp
n��1n convergence but perhaps not asymptotic normality for smaller bandwidths.

2. As in the least squares estimation of the threshold model, the slope estimate �sn is not a¤ected

asymptotically by the estimation of the threshold parameter  in either case.

3. The assumption that n�2hn is bounded is imposed to ensure the asymptotic independence of

 n from �sn: With a bandwidth converging slower, we may obtain the covariances between them,

which may prove bene�cial for �nite sample inference on the slope parameters since �sn depend on

 n regardless of the choice of �n in �nite samples. It is also likely, however, that it may introduce an

asymptotic bias for  n as it is the case in the smoothed maximum score estimator. The convergence

rate of �sn is not a¤ected by this change in the rate of convergence of the bandwidth.

4. Our conditions are stronger than those of Hansen (2000) and Chan (1993) with regard to

smoothness. Speci�cally, they do not require the distribution of ztjX2t to be smooth. When the

smoothness conditions do not hold, our estimator converges at a slower rate due to the presence of a

bias term of large order. This is as found in Pollard (1993) regarding the smoothed maximum score

estimator of Horowitz (1992).

5. Although we do not explicitly treat it, the small threshold case of Hansen (2000) can be

analyzed within the same framework. Speci�cally, when �2 7! �2=n
� ! 0 one still obtains asymptotic

normality, provided �2 > 0 and � is not too large, but at a slower rate of convergence re�ecting the

presence of n�� in the score and Hessian functions. Notice that the asymptotic variance of the score

function (of  n) is somewhat simpler in this case because the term E[(X>
2t
_�2)

4q2tq
>
2tjzt = 0] is of

smaller order relative to E[4(X>
2t
_�2)

2E ("2t jX2t) q2tq
>
2tjzt = 0]. Compare with Hansen (2000).

6. If q2t consists of the constant only, then  n is the threshold estimate in the usual sense. If a

dummy such as gender or region is included in addition to the constant, then the coe¢ cient estimate

for the dummy means the di¤erence in the threshold values between two subsamples. Therefore, the

t -test on the coe¢ cient examines whether the threshold points are the same across two subsamples

or not.

7. The case where the thresholding variable is time can also be handled in this framework. The

results obtained above apply to the estimate of the break fraction � 2 (0; 1) with some modi�ca-
tions. The terms constituting the asymptotic variances are de�ned with f (0) = 1, q2t = 1; and the

conditional expectations replaced with the unconditional ones.

8. The asymptotic distributions of  n and  
+
n do not depend on the error autocorrelation function,

whereas the asymptotic distributions of the slope parameter estimates does.

9. The two estimators  n and  
+
n have di¤erent asymptotic variances. The ranking could go either

way, as the following example illustrates, and so there is nothing a priori to favour one approach over

10



the other. Consider the design of Hansen (2000)

yt = �>xt + �>xt1(qt �  ) + "t;

where xt = (1; x2t); qt � N (2; 1) ; "t � N (0; 1) ; � = (�1; �2)
>; � = 0; �1 = 0; and  = 2: In case

I, x2t = qt and in case II, x2t � N(0; 1): The theoretical asymptotic variance of the two smoothed

estimators  n and  
+
n in these designs is given below. This shows that as �2 ! 0 the asymptotic

variance increases for both estimators. For small �2;  n has slightly lower asymptotic variance but

for �2 bigger than about 0:25;  
+
n has smaller variance in cases I and II.

avar( n) avar( +n ) avar( n)=avar( 
+
n )

Case I 11�
p
2

64

�
1 + 1

�22

�
2
p
2�

11�22

121
128
�22 +

121
128

Case II 11�
p
2

64

�
3 + 4

�22

�
�8
p
2

11�22

363
512
�22 +

121
128

4 Inference Methods

The construction of the asymptotic con�dence set is straightforward by inverting the t or Wald

statistic given the asymptotic normality. Ways to estimate the asymptotic variances are described

below. We also discuss the likelihood ratio statistics. We also discuss the bootstrap con�dence

intervals.

4.1 Asymptotic Variance Estimation, t and Wald Statistics

We now discuss various estimators of the asymptotic variance of our estimators. As usual there are

many alternative estimators of the asymptotic variance depending on which information is imposed.

In the simulation experiments below we investigate some of the proposals made here.

Let

� n;t (�n) =
n�
~x>t �n

�2 � 2~x>t �n �yt � x>t �n
�o q2t

�n
K0
�
q1t + q>2t n

�n

�
� +n;t

�
�+n
�
= 2e+t ~x

>
t �n

q2t
�n
K0
�
q1t + q>2t n

�n

�
;

where e+t = yt�x>t �+n�~x>t �+nK
�
q1t+q>2t 

+
n

�n

�
: Then, the variance estimators for the threshold parameter

 are de�ned, respectively:

V̂  =
1

n

nX
t=1

� n;t (�n) �
 
n;t (�n)

> and V̂  + =
1

n

nX
t=1

� +n;t
�
�+n
�
� +n;t

�
�+n
�>
: (8)

11



These impose the absence of any theoretical autocorrelation but allow for heteroskesdasticity. We

may also make some degrees of freedom adjustment replacing n by n � k; where k is the total

number of estimated regression parameters. One may wish to impose homoskedasticity, which can

be achieved by separating out the residuals, for example replace

V̂  +
H =

1

n

nX
t=1

(e+t )
2 � 4

n�2n

nX
t=1

(~x>t �n)
2K0
�
q1t + q>2t n

�n

�2
q2tq

>
2t:

Regarding the estimation ofQ andQ + there are several possibilities. First, just takeQ 
n (�n;�n)

and Q +
n

�
�+n ;�n

�
: Second, as with nonlinear least squares one can drop some terms that are asymp-

totically zero. For example, the Hessian is

Q +
n

�
�+n ;�n

�
=
1

n

nX
t=1

@e+t
@ 

@e+t
@ >

+ e+t
@2e+t
@ @ >

; (9)

and the second term is asymptotically zero. Instead therefore, compute the OPG (outer product of

the gradient) estimate

Q̂ + =
1

n

nX
t=1

@e+t
@ 

@e+t
@ >

: (10)

Unlike Hansen (2000) we do not need to explicitly do nonparametric estimation of density and

conditional expectation.

We now turn to V s; which requires HAC estimation because the e¤ect of error autocorrelation

does not die out. Let

et = yt � x>t �n � ~x>t �nK
�
q1t + q>2t n

�n

�
� sn;t (�n) =

�
x>t ; ~x

>
t K
�
q1t + q>2t n

�n

��>
�̂j =

(
1
n

Pn
t=j+1 �

s
n;t (�n) �

s
n;t�j (�n)

> etet�j for j � 0;
1
n

Pn
t=�j+1 �

s
n;t+j (�n) �

s
n;t (�n)

> et+jet for j < 0:

Let w (�) : R! [�1; 1] be a continuous function such that w (0) = 1; w (x) = w (�x) ; and kwk22 <1:

Then, de�ne

V̂ s =
n�1X

j=�n+1
w

�
j

ln

�
�̂j;

where ln is a lag truncation parameter that is o (n). Similarly we can de�ne V̂ s+: For more discussion

regarding the choice of the kernel and lag truncation parameter, see Andrews (1991) : It should

be noted, however, that his consistency results regarding the HAC estimator do not hold for the
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threshold models due to the lack of smoothness. Finally Qs and Qs+ can be estimated by

Q̂s =

0@ 1
n

Pn
t=1 xtx

>
t

1
n

Pn
t=1 xt~x

>
t K
�
q1t+q>2t n

�n

�
1
n

Pn
t=1 ~xtx

>
t K
�
q1t+q>2t n

�n

�
1
n

Pn
t=1 ~xt~x

>
t K
�
q1t+q>2t n

�n

� 1A
Q̂s+ =

1

n

nX
t=1

� s+n;t
�
�+n
�
� s+n;t

�
�+n
�>
:

The above standard errors have imposed the block diagonal structure between the estimates of

 ; �s found in the asymptotics. In small samples it may be preferable to not impose this restriction;

indeed, Hansen (2000) proposed to use Bonferoni-type bands to take account of the small sample

e¤ect of estimation error in  on the the estimation of �s. We have a much more natural and simple

way of doing this. Instead, compute the diagonal elements of the matrix

Q̂�1NB
bVNBQ̂�1NB;

where: bVNB =  bV s V̂ s 

V̂ s > V̂  

!
; Q̂NB =

 
Q̂s p

�nQ̂
s 

Q̂s > �nQ̂
 

!
; (11)

V̂ s = Q̂s = 2

0@ 1
n

Pn
t=1 xt~x

>
t �n

q>2t
�n
K0
�
q1t+q>2t n

�n

�
1
n

Pn
t=1

�
~xt~x

>
t �n + ~xtx

>
t �n � ~xtyt

� q>2t
�n
K0
�
q1t+q>2t n

�n

� 1A :

Similarly, we may de�ne Q̂+ with

Q̂s + = 2

0@ 1
n

Pn
t=1 xt~x

>
t �

+
n
q>2t
�n
K0
�
q1t+q>2t 

+
n

�n

�
1
n

Pn
t=1

�
2~xt~x

>
t �nK

�
q1t+q>2t 

+
n

�n

�
+ ~xtx

>
t �

+
n � ~xtyt

�
q>2t
�n
K0
�
q1t+q>2t 

+
n

�n

� 1A :

The following theorem establishes the consistency of the proposed standard errors.

Theorem 4 Under Assumption 1-3, V̂ s; �nV̂
 ; Q̂s and �nQ 

n (�n) converge in probability to V
s; V  ; Qs

and Q ; respectively.

It follows that t and Wald statistics based on any of the above estimates are asymptotically

correctly sized.

4.2 Likelihood Ratio

Dufour (1997) argues that the t or Wald statistic behaves poorly when the parameter space contains a

region where identi�cation fails. Therefore, Hansen (2000) ; in which the threshold parameter is not

identi�ed asymptotically, proposes the con�dence interval for the threshold parameter  inverted
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from the LR statistic that is constructed under the auxiliary assumption that the error is i.i.d.

normal. We may de�ne

LR ( ) = n
Sn ( )� Sn ( n)

Sn ( n)
; (12)

and similarly LR ( )+ using S+n : If  is one-dimensional, the statistics are distributed as s � X 2
1

asymptotically where the scaling factors are s = V  =2Q �2 or s = V  +=2Q +�2, where �2 = var("t):

Under homoskedasticity, the scaling factor of LR ( )+ is equal to one. Apart form this special case,

one must adjust the critical values or repivot the test statistics by dividing through by an estimate of

s obtained in the previous section. The resulting con�dence region is the set C� = f : LR ( ) =bs �
X 2
1 (�)g; where X 2

1 (�) is the upper �-critical value of the X 2
1 distribution and bs is a consistent estimate

of s. Note that in �nite samples C� is not necessarily an interval and may be a union of disjoint

intervals, as happens quite often in practice, see Hansen (2000, Figure 2). In this case, one may prefer

the interval Cint
� = [ min;  max]; where  min = inf 2C�  and  max = sup 2C�  : Asymptotically, C

int
�

and C� are the same, but in �nite samples Cint
� � C�. When  is multidimensional, the adjustment

for heteroskedasticity is more complicated and this reduces the attractiveness of the likelihood ratio.

4.3 Bootstrap

An alternative approach to inference here is based on the bootstrap. In the i.i.d. case this is

particularly simple. Let fWtgnt=1 be the dataset, where Wt = (yt; Xt). Then let fW �
t gnt=1 be a

random sample drawn with replacement from fWtgnt=1: Compute ��n from fW �
t gnt=1 in the same way

as �n was computed from fWtgnt=1: Suppose that one wants a two-sided symmetric level � con�dence
interval for the scalar quantity �(�): The �rst method is to just obtain the empirical quantiles xn;� of

the distribution of �(��n) conditional on fWtgnt=1; and then let the interval be [�(�n)� xn;�=2; �(�n) +
xn;1��=2]: This would be called the percentile method. A perhaps more desirable approach is based

on the statistic T = (�(�n)� �(�))=s�n; where s�n is an estimate of the asymptotic standard deviation
of �(�n): In the event that � is di¤erentiable we would have

s�n = r�(�n)> bQ�1bV bQ�1r�(�n);
where bV and bQ are the matrices with sub-blocks V̂ s and V̂  and bQs and bQ described above (in the

i.i.d. case one does not compute the covariances). By the bootstrap simulation one obtains the critical

values zn;�=2 of T � = (�(�
�
n)� �(�n))=s

��
n and then the interval [�(�n)� zn;�=2s

�
n; �(�n) + zn;1��=2s

�
n]:

This is usually called the bootstrap-t method. This con�dence interval is asymptotically correct,

refer to Theorem 2.2 of Horowitz (2001) : Since the asymptotic distribution of T does not depend

on nuisance parameters, we can expect the bootstrap to achieve asymptotic re�nements, see Shao
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and Tu (1995) and Horowitz (2001). Similar comments apply to the likelihood ratio statistics or the

repivoted likelihood ratio statistics.

In the time series case, one generally has to use a more complicated resampling method like

the block bootstrap to capture the e¤ect of the dependence structure on the limiting distribution.

However, in the special case of the threshold parameter or functions thereof, one can obtain consistent

con�dence intervals from the i.i.d. resampling because the limiting distribution of the estimator is not

a¤ected by the dependence structure. On the other hand, one does not obtain asymptotic re�nements

by this method.

In order to obtain asymptotic re�nements for the threshold parameters or to compute consistent

intervals for the slopes we may use the non-overlapping (viz., Carlstein (1986)) and overlapping

(viz., Künsch (1989)) block bootstrap procedures. The observations to be bootstrapped are the

vectors fWt : t = 1; : : : ; ng as before. Let L denote the length of the blocks satisfying L _ n


for some 0 < 
 < 1. With non-overlapping blocks, block 1 is observations fWj : j = 1; : : : ; Lg;
block 2 is observations fWL+j : j = 1; : : : ; Lg; and so forth. There are B di¤erent blocks, where

BL = n:With overlapping blocks, block 1 is observations fWj : j = 1; : : : ; Lg; block 2 is observations
fW1+j : j = 1; : : : ; Lg; and so forth. There are T � L + 1 di¤erent blocks. The bootstrap sample

fW �
t : t = 1; : : : ; ng are obtained by sampling B blocks randomly with replacement from either the

B non-overlapping blocks or the n � L + 1 overlapping blocks and laying them end-to-end in the

order sampled.

5 Some Extensions

5.1 The Continuous Case

Suppose that
_�2 = 0; (13)

where _�2 was de�ned in section 3.2. Then, the model (1) becomes continuous, since ~x>t � =
�
zt; X

>
2t

�
_�:

In this case, the formula Q +�1V  +Q +�1 we gave for the asymptotic variance of the threshold

parameter estimate is not well-de�ned, since V  and Q are zero; however, lower order terms can be

found that are non-zero in both quantities. Let

V = 4_�
2

1 � E
�
�E
�
"2t jX2t

�
q2tq

>
2tjzt = 0

�
f (0)

Q = _�
2

1

Z
�s2sgn (s)K00 (s) ds � E

�
q2q

>
2 jzt = 0

�
f (0)

A = �A _�
2

1 (1= (h� 2)!)
Z
f
(h�2)
zjX2 (0jX2) q2dFX2(X2);
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where �E ("2t jX2t) =
R
s>0

s2K0 (s)2 ds limz!0+ E ("
2jz;X2) +

R
s<0

s2K0 (s)2 ds limz!0� E ("
2jz;X2) and

�A =
R
shsgn (s)K0 (s) ds: Then, Theorem 2 can be modi�ed as follows.

Corollary 5 Let Assumptions 1 - 3 hold with V  and Q replaced by V and Q respectively.

Furthermore, assume (13) and
p
n�2h�1n has a �nite limit �: Then,

p
n (�sn � �s0) =) N

�
0; Qs�1V sQs�1

�
;

p
n�n ( n �  0) =) N

�
��Q �1A;Q �1V Q �1

�
;

and they are asymptotically independent.

Note that the convergence rate of the threshold estimate  n is changed from
p
n��1n to

p
n�n:

This rate is slower than that of the unsmoothed LSE of a TAR model in Gonzalo and Wolf (2005) ;

where both the slope and threshold estimates are jointly asymptotically normally distributed with

the
p
n rate and they are correlated.

The bias correction is straightforward since
p
n��1n Tn (�n) is a consistent estimator of A and the

studentizing can be done as described in Section 4. When the con�dence interval is constructed as in

Section 4 with the bandwidth �n satisfying (7) ; it will be an asymptotically correct one even when

the true model is continuous since � = 0 in that case. We can also construct a test for the continuity

of the model. Since _� = T �1>S>�; we can test the hypothesis (13) by the X 2 test, utilizing the

delta-method and Theorem 5.

5.2 Multiple Threshold Case

Suppose that there are multiple thresholds determined by variables q>tj j that enter in an additively

separable fashion

yt = x>t � +

pX
j=1

~x>t �j1
�
q>tj j > 0

	
+ "t:

Then, the estimation strategy and theoretical results are essentially as before. Speci�cally, let

Ktj = Kj

 
qj1t + q>j2t j

�nj

!
; j = 1; : : : ; p

and de�ne for given  = ( 1; : : : ;  p);
b�s( ) = (W ( )>W ( ))�1W ( )>y; where W ( ) is the n �

k(1 + p) matrix with rows wt = (x>t ; ~x
>
t Kt1; : : : ; ~x>t Ktp)>: Then de�ne  n to minimize

S+n ( ) =
nX
t=1

�
yt � w>t ( )

b�s( )�2 :
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In this case, we expect the rate of convergence of  n to be the same as before, although the asymptotic

variance will be di¤erent. Bai (1997) has shown, in the structural change context, that a sequential

strategy can work: estimate a single threshold model and then a second threshold conditioning on the

�rst one and so on. This is very convenient computationally. Simulations show that this approach

also works in this case: the dominant threshold is identi�ed in the �rst round etc.

On the other hand if one has thresholds of the type

yt = x>t � + ~x
>
t �1

�
q>t1 1 > 0; : : : ; q

>
tp p > 0

	
+ "t;

then the smoothing based method will su¤er severely from curse of dimensionality because the

smoothing operation is of dimension p:

5.3 Alternative Estimation Criteria

The least squares method can sometimes be strongly in�uenced by outliers and one may wish to use

a more robust method for estimating parameters like the LAD. Our second method can easily be

adapted to this case. Thus for example consider the criterion

SLAD+n (�;�n) =
1

n

nX
t=1

����yt � x>t � � ~x>t �K
�
q1t + q>2t 

�n

�����
and let �LAD+n = (�LAD+>n ; �LAD+>n ;  LAD+>n )> = argmin�2� S

LAD+
n (�;�n) : Although there is not an

explicit formula for the pro�led slope estimators in this case, the pro�led slopes are regular LAD

regression estimators and can be computed e¢ ciently by linear programming, Koenker (1997). The

threshold estimate can easily be computed in the scalar case by grid search but otherwise it requires

some care. It can be shown that �LAD+n is consistent and asymptoptically normal with the same rates

as the least squares estimators, under some conditions.

6 Numerical Results

6.1 Monte Carlo

We investigated again the design of Hansen (2000). In this case,

yt = �>xt + �>xt1(qt �  ) + "t;

where xt = (1; x2t); qt � N (2; 1) ; "t � N (0; 1) ; � = (�1; �2)
>; � = 0; �1 = 0; and  = 2: In case I,

x2t = qt and in case II, x2t � N(0; 1): We compute  n;  
+
n using the kernel K(x) = �(x) + x�(x);

where � and � are the standard Gaussian c.d.f. and density functions respectively. The estimators
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are computed by grid search over the sample of observed threshold values. We consider parameter

values �2 2 f0:25; 0:5; 1:0; 1:5; 2:0g and sample sizes n 2 f50; 100; 250; 500; 1000g and do ns = 1000
replications for each experiment. In other work we have examined larger sample sizes, and we

comment on these results.

6.1.1 Performance of the Estimator

In this section we describe the performance of the unsmoothed and smoothed threshold estimators.

We take bandwidth parameter �n = (log n)n�1=2: In Table 1a we report results for the estimates of

 ; while in Table 1b we present the results for the estimates of �2:We present the interquartile range

divided by 1.35, which is a robust estimate of the standard deviation of the estimates. The biases

are very small in all cases and are not reported. There are several main results:

1. Results improve with sample size and with the value of �2

2. The small sample variability of all estimates is much higher than predicted by the asymp-

totic theory, but this overprediction reduces considerably with sample size and with �2: This

overprediction is also implicitly true for the unsmoothed least squares estimator.

3. The estimator  +n is nearly always better than  n

We have also examined the case with very large sample sizes and �nd that with n = 10; 000 the

mean squared errors are within 5% of the asymptotic predictions. Also in this case q-q plots reveal

that normality is a good approximation.

6.1.2 Performance of the Con�dence Intervals

We next compare our con�dence intervals with those of Hansen (2000). We compute the estimators

by the two di¤erent smoothing methods and we investigated three di¤erent t-statistic con�dence

intervals: those based on estimates of the asymptotic variance, those based on the percentile boot-

strap, and those based on the pivotal bootstrap using the asymptotic standard errors to studentize.

Hansen (2000) used the likelihood ratio, which can be expected to work particularly well in this

design as it assumes normality and homoskedasticity. We report results for the parameter  and

�2 for the �fty di¤erent combinations of sample sizes (n 2 f50; 100; 250; 500; 1000g) and parameter
values (�2 2 f0:25; 0:5; 1:0; 1:5; 2:0g) for case I and II. We implemented the two methods as in the
previous section.

The results of the simulations are shown in the tables. In Table 2abc we give the coverage rate

for  n intervals based on percentile bootstrap, pivotal bootstrap, and asymptotic method. In Table
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3abc we give the same for intervals based on  +n : These tables correspond to Table II of Hansen

(2000). Apart from the smallest value of �2; the bootstrap coverage rates are close to the nominal

rate and because of the small number of replications are generally within 2 standard errors of the

target value (0.02) except for the small �2 case. The coverage rates of the asymptotic intervals are

less satisfactory for smaller samples sizes, but improve steadily with sample size and are competitive

for n = 1000. There does not seem to be much di¤erence between the intervals based on  n and the

intervals based on  +n . In Table 4ab and 5ab we give the bootstrap intervals for �2 based on the two

estimators. These correspond to Table III of Hansen (2000).3 The coverage rates of the bootstrap

intervals are close to the nominal throughout.

We also investigated the bootstrap for the unsmoothed estimator. The coverage rates were

very low (and not reported here) even in the largest sample sizes and we take this as evidence of

inconsistency.

The results suggest that the small threshold case, �2 = 0:25; is problematic. Indeed the asymptotic

intervals are considerably undercovered for this case, although the bootstrap intervals are overcovered.

This suggests that a combination of the two intervals may be useful in practice. Figure 1 shows a

typical sample from this process - the threshold e¤ect is indeed very small in this case. We investigated

some di¤erent asymptotic con�dence intervals for the special case z = q; �2 = 0:25; �n = 1:06n
�1=5:

The results are reported in Tables 6 and Tables 7. We consider bandwidths �n = 1:06n�1=5 and

�n = (log n)n
�1=2: The results suggest that larger bandwidth gives better coverage. It also suggests

that the Likelihood ratio intervals have the most accurate coverage, followed by the �non-block

diagonal� con�dence intervals. We also report the median length of the con�dence intervals; the

smaller bandwidth procedures gives smaller length.

6.2 Application

6.2.1 Growth with multiple equilibria

We illustrate our methodology by examining the hypothesis that initial conditions may determine

cross-section growth behavior using the Summers-Heston data set. Durlauf and Johnson (1995)

studied it by a regression tree method due to Breiman et al. (1984) and Hansen (2000) by a threshold

regression using the same data set. We specify the model similarly to the previous studies. Let yi;t
be real GDP per member of the population aged 15-64 in year t; �i be investment to GDP ratio, ni be

growth rate of the working-age population, and Si be the fraction of working-age population enrolled

in secondary school. The variables other than yi;t are the annual averages over the period 1960-1985.

3In Table III of Hansen, the critical level of the table is 95%. And the con�dence interval is constructed as union

of con�dence intervals based on a given set of threshold values that is a con�dence interval for the threshold estimate.
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Then, the log real GDP growth, ln yi;1985� ln yi;1960, is explained by ln yi;1960; ln �i; ln (ni + 0:05) ; and
lnSi:

Durlauf-Johnson proposed the initial output yi;1960 and the literacy rate (lri) at the year 1960

as the possible threshold variables. Hansen examined each variable separately by the Lagrange

multiplier test of Hansen (1996) and found some evidence for the presence of a threshold e¤ect based

on the initial output. Multiple threshold variables are not allowed in Hansen (1960) nor in Hansen

(2000) : Thus, he took a sequential approach in which he estimates the threshold with the initial

output and test for the further threshold within the subsamples splitted by the threshold estimate.

This procedure is repeated until we cannot �nd further evidence of threshold. He reports the �rst

sample split at the output level of $863 and the second at the initial literacy rate of 45% within the

subsample whose initial output is larger than $863.

We �rst estimate the model where the output is the threshold variable. The SLS estimate  +n
is $1781 with the standard error of $316. There are a couple of di¤erent methods to compute the

standard error as explained in Section 4.1. The ones reported here are the most conservative and are

robust to heteroskedasticity4. The 95% bootstrap con�dence interval is [0; 6675] ; much wider than

the asymptotic interval. Figure 2 displays the smoothed sum of squares residuals as a function of

the threshold in output. There are 47 of the 96 countries below the threshold. The second split is

also based on the initial output of $777 with the standard error of $33. See Figure 3 for the sum of

squared residuals.Unlike in Hansen, we could not �nd evidence for the threshold in the literacy rate

in the subsamples generated by the initial output of $1781 using the LM test of Hansen (1996) : We

also estimate the model with the threshold in the linear combination of the initial output and the

initial literacy rate. The coe¢ cient of the output is normalized to 1, and the estimates are obtained

by bivariate grid search. The estimated splitting line is

y1960 = 46 � lr � 294;

which reduces the sum of squared residuals by approximately 10% compared to that of one threshold

in output above. The coe¢ cient of lr appears signi�cant as its standard error is 20 and its 95%

bootstrap con�dence interval is [14:7; 390] : On the contrary to the sequential approach, this indicates

that both the initial output and the initial literacy rate may be related to the determination of the

growth path.

The estimates for slope parameters are reported in Table 8. We observe that the initial output

and the population growth have negative e¤ect on the growth rate. In the subsample where the

output is above $1781, 54% additional growth rate is expected while the average is 44%. And in the

4The heteroskedasticity appears clear. For example, the sample variance in the regime in which the output is below

the threshold $1781 is 0.10 while that of the other regime is 0.07.
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subsample where y1960 > 46 � lr � 294; the 57% increase is expected.

7 Conclusions

We have shown that the smoothed threshold estimator is asymptotically normal albeit at a slower

rate than the corresponding unsmoothed estimator. This is born out by simulations. On the other

hand, our simulations show that our con�dence intervals can be more accurate than the con�dence

intervals of Hansen (2000) especially for larger thresholds. It may be possible to show that the

rate at which the estimator (or corresponding test statistics) approaches its limit is quite fast, see

Hall (1992) for corresponding results for density and regression estimators and Horowitz (1998) for

results for smoothed LAD (SLAD) estimators, and perhaps faster than is the case for the unsmoothed

estimator. Furthermore, we expect the smoothed estimation will enable the higher-order correction

by the pivotal bootstrap, as is the case in the SLAD estimation in Horowitz (1998): He shows that the

SLAD estimator has much simpler higher-order asymptotics than the LAD estimator and thus the

bootstrap can correct the second-order term. Since the smoothing also makes the objective function

of the threshold estimation di¤erentiable, which is necessary for the Taylor-series expansion, we

can expect a simpler expansion and the higher-order correctibility of the bootstrap. This would

provide a theoretical rationale for the simulation results and give one motivation for preferring our

estimator/test statistic over the unsmoothed one.

In practice, it is important to have some strategy for choosing the smoothing parameter �n: The

answer is likely to depend on the purpose to which the estimation is put. For estimation itself, a

small �n of the order (log n)n�1=2 seems to perform well. For testing problems bandwidth is likely

to a¤ect size and power in di¤erent ways so small is not necessarily best.
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A Proofs of Theorems

Lemma 1. Suppose that Assumption 1 holds. The following convergences hold almost surely uni-

formly over the parameter space:

(i)
1

n

nX
t=1

1
���q1t + q>2t 

�� < �
	
! Pr

���q1t + q>2t 
�� < �

	
for any � > 0;

(ii)
1

n

nX
t=1

xtx
>
t 1
�
q1t + q>2t > 0

	
! Extx

>
t 1
�
q1t + q>2t > 0

	
(iii)

1

n

nX
t=1

xt"t1
�
q1t + q>2t > 0

	
! Ext"t1

�
q1t + q>2t > 0

	
Proof of Lemma 1. We apply the generic uniform law of large numbers by Andrews (1987,

Corollary 1). Assumption A1 and B1 of that paper are also assumed here. Assumption B2 is trivially

satis�ed in (i) since the indicator function is bounded, and in (ii) and (iii) ; since:

E

 
sup
 2� 

��xtx>t 1�q1t + q>2t > 0
	��!�

� E
��xtx>t ��� <1

E

 
sup
 2� 

��xt"t1�q1t + q>2t > 0
	��!�

� E jxt"tj� <1:

Next, 1
���q1t + q>2t 

�� < �
	
and 1

�
q1t + q>2t > 0

	
satisfy Assumption A3 as shown in de Jong and

Wootersen (2004, Lemma 4). Then, by Cauchy-Schwarz inequality, (ii) and (iii) satisfy Assumption

A3, which completes the proof of Lemma.

Proof of Theorem 1. First, we show that jS�n (�;�n)� Sn (�;�n)j ! 0 almost surely uniformly

over � 2 �: To do that, note that

jS�n (�)� Sn (�;�n)j

=

����� 1n
nX
t=1

n�
~x>t �
�2 � 2~x>t � �yt � x>t �

�o �
1
�
q1t + q>2t > 0

	
�K

�
q1t + q>2t 

�n

�������
�

vuut 1

n

nX
t=1

n�
~x>t �
�2 � 2~x>t � �yt � x>t �

�o2vuut 1

n

nX
t=1

�
1
�
q1t + q>2t > 0

	
�K

�
q1t + q>2t 

�n

��2
;

the �rst term of which almost surely converges to a �nite number uniformly over
�
�>; �>

�> 2 �����
by Lemma 1. For the convergence of the second term, note that the same reasoning as in Lemma 4

of Horowitz (1992) applies. Then, it is su¢ cient to show that, for any � > 0; (A4) in that paper, i.e.,

1

n

nX
t=1

1
���q1t + q>2t 

�� < �
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converges to Pr
���q1t + q>2t 

�� < �
	
; almost surely uniformly over  2 � ; which follows from Lemma

1. Next, we show that ��n = argmin� S
�
n (�) is consistent, which is su¢ cient for the consistency of

�n: For a �xed  ; the least squares estimator of � and � are the OLS estimators, which are denoted

as ��n ( ) and �
�
n ( ) respectively. Let S

�
n ( ) = S�n (�

�
n ( ) ; �

�
n ( ) ;  ) : Let "t ( ) = yt � x>t � ( ) �

~x>t � ( ) 1
�
q1t + q>2t > 0

	
such that E (xt"t ( )) = 0 and E

�
xt1
�
q1t + q>2t > 0

	
"t ( )

�
= 0: Let X 

be the matrix stacking x>t and ~x
>
t 1
�
q1t + q>2t > 0

	
and " with "t ( ) : Then,

S�n ( ) =
1

n
"> " �

1

n
"> X 

�
1

n
X>
 X 

��1
1

n
X>
 " ! E"t ( )

2 ;

almost surely uniformly over  2 � ; by Lemma 1. Note that � = � ( 0) and � = � ( 0) ; and

that E"t ( )
2 is uniquely minimized at  =  0; since �0 de�nes the conditional expectation, which

minimizes MSE, and the threshold index zt ( ) includes at least one continuous random variable. By

the latter, E"t ( )
2 is continuous on  2 � : Therefore,  �n, which also minimizes S�n ( ) ; converges

to  0 almost surely. Furthermore, it in turn implies that �n and �n converge to �0 and �0 almost

surely by Lemma 1.

Proof of Theorem 2. The asymptotic distribution developed here is based on the Taylor

series expansion of Tn (�;�n) :

Tn (�n;�n) = Tn (�0;�n) +Qn(~�;�n) (�n � �0) = 0;

where ~� = (~�
>
; ~�
>
; ~ 

>
)> lies between �n and �0: Let the dimension of �

s be ks and de�ne a k-

dimensional diagonal matrix Dn whose �rst ks elements are 1 and the others are
p
�n and note

that

p
nD�1

n (�n � �0) =

0@ Qs
n

�
~�; �n

� p
�nQ

s 
n

�
~�; �n

�
p
�nQ

s >
n

�
~�; �n

�
�nQ

 
n

�
~�; �n

� 1A�1 p
nT sn (�0; �n)p
n�nT

 
n (�0; �n)

!
:

The following is useful for the development belown�
~x>t �
�2 � 2~x>t � �yt � x>t �

�o
=

�
~x>t �0

�2 � 2~x>t �0 �yt � x>t �0
�
+Rnt (�)

=
�
~x>t �0

�2 � 2~x>t �0 �~x>t �01 fzt > 0g+ "t
�
+Rnt (�)

=
�
~x>t �0

�2
(1� 2 � 1 fzt > 0g)� 2~x>t �0"t +Rnt (�)

= �
��
~x>t �0

�2
sgn (zt) + 2~x

>
t �0"t

�
+Rnt (�) ; (14)

where

Rnt (�) = 2�
>~xtx

>
t (� � �0) +

�
(� + �0)

> ~xt~x
>
t � 2~x>t 1 fzt > 0g � 2~x>t "t

�
(� � �0) ;
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and sgn (s) = 1 if s is positive, and �1 otherwise. Then,

T sn (�0; �n) =

0@ 1
n

Pn
t=1 2

�
yt � x>t �0

�
(�xt) + 1

n
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t=1 2~x
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�
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K
�
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� 1A
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n
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n
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>
t �0

�
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�
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� 2
n
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�
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n
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>
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�
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�n
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1

n

nX
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K0
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= � 1
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and
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1
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o
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where the last equality follows from (14) :We show the convergences of T sn and Q
s
n and the others in

the following sequence of Lemma�s.

Lemma 2 Suppose (
~ � 0)
�n

= o (1) : Then,
p
nT sn (�0; �n) =) dN (0; V s) ;

Qs
n

�
~�; �n

�
! pQs:

Proof of Lemma 2. Assumption 3 (d) implies that����1 fs > 0g � K� s

�n

����� = o
�
n�1
�

(15)

for all nonzero s 2 R. Therefore, it follows from the dominated convergence theorem that the

followings are op (1) : 1p
n

Pn
t=1 xtx

>
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�
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�n

�
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>
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�
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�
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�
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): Then,

p
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Furthermore, there is a ~ between  0 and ~ such that

1

n

nX
t=1

xtx
>
t K
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~ 
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=
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due to the dominated convergence theorem and (15) : The LLN yields the desired results.

Lemma 3. The covariances between
p
nT sn (�0; �n) and

p
n�nT

 
n (�0; �n) are asymptotically neg-

ligible and
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n
E
�p
n�nT
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�
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n
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Proof of Lemma 3. Note that
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�
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sgn (z)

o q2
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�
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�
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where s = z
�n
and FX2(X2) is the marginal distribution of X2t: A Taylor series expansion about

�ns = 0 yields, for � between 0 and �ns;

f (�nsjX2) =

h�3X
j=0

(1=j!) f
(j)
zjX2 (0jX2) (�ns)

j + (1= (h� 2)!) f (h�2)zjX2 (�jX2) (�ns)
h�2 :

By Assumption 2, there is an � > 0 such that the derivatives exist and uniformly bounded for

almost every X2 if j�nsj � �: Let Cn = fs : j�nsj � �g and Cc
n denote the complement of Cn: Then

E
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by the dominated convergence theorem, and
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by Assumption 3 (c), and 2.
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To study var
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But, it follows from the same reasoning as above that
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where s = z=�n. 5
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where E ("2t jX2t) is de�ned in (6) : This last step follows by the law of iterated expectation and

reversing the order of expectations.

Next, by the mixing inequality (Davidson 1994, corollary 14.3); for p � 2;
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2t] <1: But it can be weakened to E[

�
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] <1 under the model where the threshold variable

is a single variable instead of linear combination of xt.
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But, for any vector � s.t. j�j = 1;
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by the same reasoning as the convergence of E
�
��hn T n (�0; �n)

�
provided that the boundedness of

E ("t�mjXt; Xt�m) and f (zt; zt�mjX2t; X2t�m) : Then, for the same reason as Lemma 7 of de Jong

and Wouterson (2004; p:24),
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Therefore, we conclude
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By the same reasoning as for this, we can show that the covariances between
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n (�0; �n) are asymptotically negligible.

Lemma 4.
p
n�nT

 
n (�0; �n) converges in distribution to N

�
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�
:

Proof of Lemma 4. See Lemma 6 of Horowitz (1992) and Theorem 2 of de Jong (1997).6

Lemma 5. ��1n ( n �  0) = op (1) :

Proof of Lemma 5. The proof consists of two steps: First we show that

sup
�2�n

��T n (�)� ET n (�)
��!p 0; (16)

where �n is a neighborhood of �0; and then show that for any � ! �0;
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Z �
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is zero and T n (�) is uniformly continuous, ET

 
n (�) converges

uniformly to zero in �n; which implies that �Qn = o (1) : We conclude � n = o (1) by contradiction as

below.
6mixing condition: �m � Cm�s=(s�2)��:
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Proof of (16). Note that,
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�

����� 1n�n
nX
t=1

�
gnt (�)� gCnnt (�)

������ > 0
)

� nPr fjgnt (�)j > Cng

� nCE jxtjr C�r=3n ! 0:

And, for a sequence mn and �n as de�ned in Assumption 3(e),

Pr

(����� 1n�n
nX
t=1

�
gCnnt (�)� EgCnnt (�)

������ > "

)
� O

�
��3kn

�
mn exp

�
�"2n�2nC�2n m�2

n

�
+O

�
��3kn ��1n Cn�mn

�
= o (1) ;

by the same reasoning in the proof of Lemma 11 of De Jong and Woutersen (2004). Next, it is

straightforward from the proof of (17) below that

1

n�n

nX
t=1

�
EgCnnt (�)� Egnt (�)

�
! 0;

uniformly in �; provided that Cn !1: In the same manner, we can proceed for the parts associated

with 2~x>t �"t and Rnt (�) :

Proof of (17) : Since E ("tjXt) = 0,

ET n (�) = �
1

n

nX
t=1

E
�
~x>t �
�2
sgn (zt)

q2t
�n
K0
 
zt + ( �  0)

> q2t
�n

!
+ o (1) :
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Let � n = ( �  0)=�n and s =
z
�n
+ � 

>
n q2; and note that

�E
(�
~x>t �
�2
sgn (zt)

q2t
�n
K0
 
zt + ( �  0)

> q2t
�n

!)
= �

Z �
�n

�
s� � >n q2

�
+X>

2
_�2

�2
sgn

�
s� � >n q2

�
q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

= �
Z �

X>
2
_�2

�2
sgn

�
s� � >n q2

�
q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

��2n
Z �

s� � >n q2
�2
sgn

�
s� � >n q2

�
q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

�2�n
Z �

s� � >n q2
�
X>
2
_�2sgn

�
s� � >n q2

�
q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

= I1 + I2 + I3:

Due to Assumption 3(b) ; for any � n;

I3 � o (1) + �n

���� n���C1 = o (1) :

Similarly,

I2 � o (1) + �2n

����� n���C2 + ���� n���2C3� = o (1) :

Let �I1 = J1 + J2; where J 0is are de�ned below. Let An =
n
�n

�
s� � >n q2

�
< �
o
for some � > 0;

and

J1 =

Z �
X>
2
_�2

�2
sgn (s) q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

=

Z
ACn

�
X>
2
_�2

�2
sgn (s) q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

+

Z
An

�
X>
2
_�2

�2
sgn (s) q2K0 (s) fzjX2 (0jX2) dsdFX2(X2)

+

Z
An

�n

�
s� � >n q2

��
X>
2
_�2

�2
sgn (s) q2K0 (s) fzjX2 (�jX2) dsdFX2(X2);

where � lies between zero and �n
�
s� � >n q2

�
: The �rst term is o (1) due to Assumption 3(c) ; so are

the second and third due to Assumption 3(b) and the dominated convergence theorem. Then, for a

constant C > 0;

J2 =

Z �
X>
2
_�2

�2 �
sgn

�
s� � >n q2

�
� sgn (s)

�
q2K0 (s) fzjX2

�
�n

�
s� � >n q2

�
jX2

�
dsdFX2(X2)

= 2

Z
(X>

2
_�2)

2(1f0 < s < � 
>
n q2g � 1f� 

>
n q2 < s < 0g)q2K0 (s) fzjX2(�n(s� � 

>
n q2)jX2)dsdFX2(X2)

= 2

Z
(K
�
� 
>
n q2

�
�K (0))

�
X>
2
_�2

�2
q2fzjX2 (0jX2) dFX2(X2) +RJ ;
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and

RJ � �nC

Z �
�� >n q2

��
X>
2
_�2

�2
q2dFX2(X2):

Therefore, we conclude that, for any � n;

�Qn = 2

Z �
K
�
� 
>
n q2

�
�K (0)

��
X>
2
_�2

�2
q2fzjX2 (0jX2) dFX2(X2) = o (1) : (18)

Now consider � 
>
n
�Qn=

���� n��� : By Assumption 3(b) ;�
K
�
� 
>
n q2

�
�K (0)

�
� 
>
n q2=

���� n��� = ����K �� >n q2��K (0)� � >n q2��� = ���� n���
and

� 
>
n
�Qn=

���� n��� = Z �X>
2
_�2

�2
fzjX2 (0jX2)

����K �� >n q2��K (0)� � >n q2������� n��� dFX2(X2) + o (1) > 0;

which leads to contradiction unless
���� n��� ! 0. If

���� n��� ! 0; applying the dominated convergence

theorem,

�Qn = 2

Z K
�
� 
>
n q2

�
�K (0)

� 
>
n q2

�
X>
2
_�2

�2
q2q

>
2
� nfzjX2 (0jX2) dFX2(X2)

= 2

Z
K0 (0)

�
X>
2
_�2

�2
q2q

>
2 fzjX2 (0jX2) dFX2(X2)� n + o (1)

= Q� n + o (1) = o (1) :

No contradiction.

Lemma 7 Let f~�g be any sequence in � such that (~� � �0)=�n ! 0 as n ! 1. Then
p
�nQ

s 
n

�
~�; �n

�
= op (1) and

�nQ
 
n

�
~�; �n

�
!p Q:

Proof of lemma 7: Let � n =
�
~ �  0

�
=�n and s = z=�n+q

>
2
� n: For

p
�nQ

s 
n (
~�; �n) = op (1) ;

it is su¢ cient to note thatZ ����x~x>~�q>2 K0� z

�n
+ q>2

� n

����� fzjX2 (zjX2)
dz

�n
dFX2(X2)

=

Z ���x~x>~�q>2 K0 (s)��� fzjX2 ��s� q>2
� n

�
�njX2

�
dsdFX2(X2)

� 1:
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Now we derive the limit of �nQ 
n : Since

�
~� � �0

�
=�n ! 0; it follows from the boundedness of

moments and K00 that

�n
1

n

nX
t=1

Rnt

�
~�
� q2tq>2t

�2n
K00
0@zt + q>2t

�
~ �  0

�
�n

1A = op (1) :

By Lemma 5;

�n
1

n

nX
t=1

~x>t �"t
q2tq

>
2t

�2n
K00
0@zt + q>2t

�
~ �  0

�
�n

1A = op (1) :

Let feng be a sequence such that en !1 and en� n ! 0 as n!1: De�ne Cn = fq2 : jq2j � eng ;

Q 
nt

�
~�
�
= ��n

�
~x>t �
�2
sgn (zt)

q2tq
>
2t

�2n
K00
0@zt + q>2t

�
~ �  0

�
�n

1A ;

and note that,

EQ 
nt

�
~�
�

= ��n
Z
Cn

�
~x>�
�2
sgn (z)

q2q
>
2

�2n
K00
�
z
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+ q>2
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�
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��n
Z
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�
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�2
sgn (z)

q2q
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2

�2n
K00
�
z

�n
+ q>2

� n

�
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= �
Z
Cn=f0g

��
�ns _�1 +X>

2
_�2

�2
sgn

�
s� q>2

� n

��
q2q

>
2 K00 (s) fzjX2

��
s� q>2

� n

�
�njX2

�
dsdFX2(X2)

�
Z
Ccn

��
�ns _�1 +X>

2
_�2

�2
sgn

�
s� q>2

� n

��
q2q

>
2 K00 (s) fzjX2

��
s� q>2
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�
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�
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= 2K0 (0)
Z ��

X>
2
_�2

�2�
q2q

>
2 fzjX2 (0jX2) dFX2(X2) + o (1) ;

where o (1) follows from Assumption 3 (c) and the dominated convergence theorem. And for some

� > 0;

sup
jcnj<�

����� 1n
nX
t=1

Q 
nt

�
� n

�
� EQ 

nt

�
� n

������! 0

by the same reasoning as for (16) :

Now, we prove the consistency of the variance estimators.

Proof of Theorem 4. We �rst examine the convergence of V̂ s: Let

� st =

 
�xt"t
�~xt"t1 fzt > 0g

!
;�j = E� st�

s>
t�j; and V

s
n =

n�1X
j=�n+1

�j:
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And also de�ne ~V s
n =

Pn�1
j=�n+1w

�
j
ln

�
~�j and ~V s

n =
Pn�1

j=�n+1w
�
j
ln

�
~�j where

~�j =

(
1
n

Pn
t=j+1 �

s
t�
s
t�j

> for j � 0;
1
n

Pn
t=�j+1 �

s
t+j�

s
t
> for j < 0;

~�j =

(
1
n
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t=j+1 �

s
n;t (�0) �

s
n;t�j (�0)

> for j � 0;
1
n

Pn
t=�j+1 �

s
n;t+j (�0) �

s
n;t (�0)

> for j < 0;

It follows from Andrews (1991 : Proposition 1 (c) and Theorem 1 (c)) that ~V s
n � V s

n !p 0 and V̂ s
n �

~V s
n !p 0: Then, it remains to show that ~V s

n � ~V s
n !p 0: Since

~V s
n � ~V s

n =

n�1X
j=�n+1

w

�
j
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��
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�
;

and
Pn�1

j=�n+1w
�
j
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�
< 1; it su¢ ces to show that supj

���~�j � ~�j

��� = op (1) : But, for any nonzero a

and �; ����1 fa > 0; � > 0g � K� a

�n

�
K
�
�

�n

�����
� 2

�
1�K

�
a

�n
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�
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;

which is su¢ cient for the purpose since, for any wt s.t. E jwtj2 <1;

sup
j

�����n�1
nX
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�
1 fzt > 0g 1 fzt�j > 0g � K

�
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by the dominated convergence theorem.

Next,
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Then, since
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Therefore,
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For the variance of ~V  ; note that
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since the integral is bounded. And the cross product terms are negligible for the same reason as the

proof of Lemma 3, which completes the proof that

~V  !p V  :
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B Figures and Tables

B.1 Monte Carlo

z = q z is N(0; 1)

0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 1.2514 0.8047 0.2335 0.1076 0.0793 1.0039 0.3917 0.0614 0.0441 0.0410

n=100 1.1387 0.4255 0.1020 0.0539 0.0364 0.9337 0.1230 0.0296 0.0217 0.0205b LS n=250 0.7991 0.1400 0.0371 0.0201 0.0155 0.2845 0.0300 0.0103 0.0083 0.0087

n=500 0.2960 0.0590 0.0167 0.0099 0.0077 0.0785 0.0139 0.0054 0.0046 0.0046

n=1000 0.1516 0.0272 0.0086 0.0051 0.0034 0.0278 0.0068 0.0026 0.0021 0.0021

n=50 1.4526 0.8655 0.2274 0.1241 0.1061 1.3251 0.5302 0.1012 0.0704 0.0646

n=100 1.2934 0.3735 0.1159 0.0765 0.0607 1.1106 0.1498 0.0597 0.0402 0.0364b + n=250 0.8721 0.1287 0.0527 0.0380 0.0317 0.4307 0.0558 0.0271 0.0227 0.0185

n=500 0.2895 0.0673 0.0307 0.0223 0.0198 0.0934 0.0306 0.0175 0.0119 0.0113

n=1000 0.1257 0.0379 0.0191 0.0151 0.0131 0.0402 0.0176 0.0103 0.0074 0.0064

n=50 1.5129 1.1006 0.2645 0.1461 0.1423 1.4388 1.2621 0.1870 0.1282 0.1075

n=100 1.5580 0.5378 0.1359 0.0934 0.0839 1.8743 0.8384 0.0892 0.0724 0.0580b n=250 1.3445 0.1480 0.0633 0.0521 0.0444 1.9138 0.0766 0.0379 0.0309 0.0278

n=500 0.3638 0.0742 0.0384 0.0291 0.0273 0.1721 0.0361 0.0228 0.0185 0.0183

n=1000 0.1366 0.0372 0.0243 0.0196 0.0186 0.0475 0.0196 0.0126 0.0120 0.0105

n=50 0.4984 0.2492 0.1246 0.0831 0.0623 0.2492 0.1246 0.0623 0.0415 0.0312

n=100 0.3216 0.1608 0.0804 0.0536 0.0402 0.1608 0.0804 0.0402 0.0268 0.0201

asb + n=250 0.1771 0.0885 0.0443 0.0295 0.0221 0.0885 0.0443 0.0221 0.0148 0.0111

n=500 0.1117 0.0559 0.0279 0.0186 0.0140 0.0559 0.0279 0.0140 0.0093 0.0070

n=1000 0.0700 0.0350 0.0175 0.0117 0.0088 0.0350 0.0175 0.0088 0.0058 0.0044

n=50 0.4958 0.2640 0.1603 0.1324 0.1212 0.2498 0.1355 0.0857 0.0728 0.0677

n=100 0.3199 0.1703 0.1034 0.0854 0.0782 0.1611 0.0874 0.0553 0.0470 0.0437

asb n=250 0.1762 0.0938 0.0569 0.0470 0.0430 0.0887 0.0481 0.0304 0.0259 0.0241

n=500 0.1111 0.0592 0.0359 0.0297 0.0272 0.0560 0.0304 0.0192 0.0163 0.0152

n=1000 0.0697 0.0371 0.0225 0.0186 0.0170 0.0351 0.0190 0.0120 0.0102 0.0095

Table 1a: std of estimates of  along with asymptotic predictions
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z = q z is N(0; 1)

0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.8073 0.4849 0.2930 0.3083 0.2978 1.3119 0.8594 0.6130 0.5061 0.5341

n=100 0.4971 0.2362 0.2020 0.1862 0.2072 0.8628 0.4635 0.3507 0.3775 0.3469b�2LS n=250 0.2012 0.1163 0.1256 0.1281 0.1292 0.4133 0.2280 0.2154 0.2195 0.1984

n=500 0.0959 0.0852 0.0876 0.0911 0.1017 0.1957 0.1587 0.1493 0.1472 0.1426

n=1000 0.0616 0.0649 0.0630 0.0616 0.0677 0.1223 0.1073 0.1028 0.1138 0.1057

n=50 0.9516 0.5244 0.3132 0.2946 0.2986 1.9424 1.0380 0.6577 0.6658 0.7245

n=100 0.5319 0.2433 0.2063 0.1883 0.2088 1.0608 0.5103 0.3957 0.4332 0.4330b�+2 n=250 0.2024 0.1133 0.1231 0.1277 0.1327 0.4253 0.2335 0.2403 0.2447 0.2460

n=500 0.0954 0.0866 0.0879 0.0879 0.1002 0.2113 0.1635 0.1619 0.1624 0.1583

n=1000 0.0607 0.0642 0.0645 0.0607 0.0662 0.1178 0.1143 0.1037 0.1178 0.1163

n=50 1.1238 0.6689 0.3491 0.3505 0.3341 7.7863 6.1208 1.3128 1.2141 1.2464

n=100 0.7613 0.2886 0.2303 0.2127 0.2235 8.2338 1.4964 0.6105 0.5978 0.6238b�2 n=250 0.2972 0.1292 0.1343 0.1338 0.1392 1.9394 0.3259 0.2766 0.2929 0.2934

n=500 0.1091 0.0925 0.0881 0.0942 0.1014 0.3161 0.1806 0.1734 0.1797 0.1827

n=1000 0.0671 0.0661 0.0639 0.0631 0.0722 0.1302 0.1131 0.1121 0.1228 0.1306

n=50 0.2000 0.2000 0.2000 0.2000 0.2000 0.4692 0.4692 0.4692 0.4692 0.4692

n=100 0.1414 0.1414 0.1414 0.1414 0.1414 0.3318 0.3318 0.3318 0.3318 0.3318

as n=250 0.0894 0.0894 0.0894 0.0894 0.0894 0.2098 0.2098 0.2098 0.2098 0.2098

n=500 0.0632 0.0632 0.0632 0.0632 0.0632 0.1484 0.1484 0.1484 0.1484 0.1484

n=1000 0.0447 0.0447 0.0447 0.0447 0.0447 0.1049 0.1049 0.1049 0.1049 0.1049

Table 1b: std of estimates of �2 along with asymptotic predictions
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z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9713 0.9952 0.9665 0.9426 0.9282 0.9856 0.9713 0.9426 0.9330 0.9282

n=100 0.9904 0.9904 0.9282 0.9187 0.9234 0.9856 0.9809 0.9426 0.9234 0.9282

n=250 0.9952 0.9617 0.9091 0.9139 0.8660 0.9904 0.9139 0.9139 0.9043 0.9474

n=500 0.9809 0.9569 0.9043 0.8469 0.8947 0.9713 0.9234 0.9139 0.9234 0.9378

n=1000 0.9617 0.9330 0.8947 0.8804 0.9091 0.9234 0.8852 0.9187 0.8995 0.8947

Table 2a. Percentile Bootstrap based on  n

z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9282 0.9426 0.9569 0.9665 0.9187 0.9378 0.9713 0.9617 0.9474 0.9187

n=100 0.9330 0.9522 0.9426 0.9282 0.9234 0.9617 0.9713 0.9713 0.9522 0.9234

n=250 0.9569 0.9713 0.9282 0.8995 0.9091 0.9474 0.9522 0.9474 0.9330 0.9665

n=500 0.9713 0.9569 0.9330 0.8612 0.8900 0.9665 0.9474 0.9234 0.9569 0.9474

n=1000 0.9617 0.9474 0.9234 0.9043 0.9330 0.9234 0.8995 0.9187 0.9139 0.9091

Table 2b. Pivotal Bootstrap based on  n

z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.1483 0.3158 0.5167 0.6794 0.6746 0.1914 0.4163 0.6411 0.6986 0.7321

n=100 0.1340 0.3780 0.6603 0.7464 0.7608 0.2727 0.5933 0.7799 0.7703 0.7560

n=250 0.2727 0.6411 0.7943 0.8230 0.7560 0.4258 0.8182 0.8469 0.7847 0.8804

n=500 0.4019 0.7512 0.8852 0.8182 0.8373 0.6651 0.8900 0.8708 0.9139 0.8900

n=1000 0.5694 0.8612 0.8660 0.8660 0.8995 0.7943 0.8995 0.8756 0.8804 0.8708

Table 2c. Asymptotic interval based on  n
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z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9904 0.9904 0.9952 0.9474 0.9187 1.0000 0.9952 0.9904 0.9856 0.9904

n=100 1.0000 0.9904 0.9569 0.9378 0.9282 0.9952 0.9952 0.9761 0.9713 0.9856

n=250 0.9952 0.9761 0.9139 0.9234 0.8852 1.0000 0.9809 0.9522 0.9426 0.9139

n=500 0.9809 0.9713 0.9187 0.8660 0.8612 1.0000 0.9617 0.9091 0.9282 0.8947

n=1000 0.9761 0.9569 0.9091 0.8660 0.8947 0.9569 0.8852 0.9043 0.8900 0.8708

Table 3a. Percentile Bootstrap based on  +n

z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9856 0.9809 0.9856 0.9426 0.9187 0.9904 1.0000 0.9952 0.9713 0.9330

n=100 0.9809 0.9952 0.9761 0.8995 0.9043 0.9952 1.0000 0.9761 0.9474 0.9282

n=250 0.9856 0.9809 0.9043 0.8995 0.8565 1.0000 0.9809 0.9139 0.9043 0.8995

n=500 0.9904 0.9904 0.8995 0.8660 0.8612 1.0000 0.9378 0.8995 0.9378 0.9043

n=1000 0.9809 0.9569 0.8947 0.8708 0.9234 0.9665 0.8947 0.9043 0.8756 0.8708

Table 3b. Pivotal Bootstrap based on  +n
z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.1340 0.2823 0.4354 0.5694 0.6124 0.1148 0.3014 0.5167 0.5502 0.6459

n=100 0.0718 0.2679 0.6124 0.6746 0.7177 0.1770 0.4163 0.6746 0.6842 0.7033

n=250 0.1818 0.5598 0.7847 0.8038 0.7943 0.3158 0.6507 0.7416 0.7656 0.8086

n=500 0.3062 0.7081 0.8278 0.7990 0.7895 0.5120 0.8565 0.8182 0.8469 0.8373

n=1000 0.4641 0.8325 0.8373 0.8421 0.8612 0.7033 0.8373 0.8469 0.8182 0.8325

Table 3c. Asymptotic interval based on  +n
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z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9665 0.9426 0.9665 0.9378 0.9378 1.0000 0.9952 0.9665 0.9617 0.9426

n=100 0.9474 0.9617 0.9282 0.8995 0.8804 1.0000 0.9809 0.9426 0.9187 0.9282

n=250 0.9330 0.9617 0.9187 0.8947 0.8469 0.9952 0.9617 0.8756 0.9378 0.8995

n=500 0.9282 0.9234 0.8852 0.8565 0.8852 0.9952 0.8947 0.8565 0.9139 0.9139

n=1000 0.8756 0.9426 0.8995 0.8804 0.8565 0.9522 0.8995 0.9139 0.8947 0.9091

Table 4a. Percentile Bootstrap based on �2n

z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9665 0.9330 0.9665 0.9378 0.9187 0.9952 0.9856 0.9569 0.9569 0.9426

n=100 0.9378 0.9713 0.9330 0.8947 0.8947 1.0000 0.9665 0.9282 0.9234 0.9043

n=250 0.9330 0.9665 0.9234 0.8995 0.8421 0.9904 0.9426 0.8900 0.9474 0.9043

n=500 0.9378 0.9187 0.8804 0.8708 0.8852 0.9713 0.9043 0.8660 0.9234 0.9139

n=1000 0.8804 0.9474 0.8995 0.8756 0.8612 0.9426 0.8995 0.9139 0.9043 0.8947

Table 4b. Pivotal Bootstrap based on �2n
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z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.9617 0.9569 0.9522 0.9282 0.8804 1.0000 0.9952 0.9856 0.9617 0.9856

n=100 0.9809 0.9617 0.9282 0.9091 0.9043 1.0000 1.0000 0.9904 0.9809 0.9426

n=250 0.9569 0.9330 0.9282 0.8900 0.8995 1.0000 0.9952 0.9330 0.9569 0.9282

n=500 0.9617 0.9378 0.9139 0.8852 0.9139 1.0000 0.9569 0.8756 0.9187 0.9043

n=1000 0.8852 0.9617 0.9426 0.9187 0.9091 0.9809 0.9139 0.9139 0.8804 0.8995

Table 5a. Percentile Bootstrap based on �+2n

z = q z is N(0; 1)

�2 0.25 0.50 1.0 1.5 2.0 0.25 0.50 1.0 1.5 2.0

n=50 0.8900 0.8565 0.9234 0.8900 0.9043 0.9091 0.8900 0.8804 0.8900 0.9282

n=100 0.8804 0.8852 0.9043 0.8804 0.8660 0.9522 0.8804 0.9330 0.9043 0.9234

n=250 0.9043 0.8756 0.8995 0.8947 0.8900 0.9569 0.8947 0.8469 0.9234 0.8995

n=500 0.8900 0.8900 0.8708 0.8852 0.9043 0.9426 0.8804 0.8421 0.9139 0.8995

n=1000 0.8469 0.9474 0.9426 0.9187 0.9091 0.9282 0.8804 0.9139 0.8660 0.8995

Table 5b. Pivotal Bootstrap based on �+2n
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ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8

n=50 0.1790 0.2280 0.2330 0.1650 0.4190 0.2700 0.4920 0.7200

n=100 0.2150 0.2550 0.2670 0.1480 0.4160 0.3020 0.5310 0.7300

n=250 0.3090 0.3510 0.3550 0.1930 0.4710 0.3770 0.5740 0.7320

n=500 0.4560 0.5100 0.5160 0.2990 0.5980 0.5330 0.6820 0.7750

n=1000 0.6780 0.6910 0.6980 0.4720 0.7280 0.7120 0.8280 0.8500

Table 6a. Coverage of intervals for  

ci1 ci2 ci3 ci4 ci5 ci6

n=50 0.4135 0.4975 0.5916 0.5974 1.0453 0.8201

n=100 0.4131 0.5384 0.6041 0.5336 0.9457 0.7365

n=250 0.3896 0.4991 0.5310 0.4410 0.8149 0.6022

n=500 0.3481 0.4467 0.4578 0.3650 0.6639 0.4982

n=1000 0.3070 0.3553 0.3574 0.3169 0.4768 0.3852

Table 6b. Length of Intervals for  

The intervals are all for the case z = q; �2 = 0:25; �n = 1:06n
�1=5: c1 is using b + and Hessian; c2

is using  + and OPG; c3 is using  + and imposes homoskedasticity; c4 is using b ; c5 is non-block
diagonal using b + and Hessian; c6 is non-block diagonal using b + and OPG; c7 is the likelihood
ratio based on b +; c8 is the likelihood ratio based on b ;
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ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8

n=50 0.5340 0.3820 0.6040 0.4640 0.5080 0.5090 0.6600 0.6100

n=100 0.5940 0.4620 0.6650 0.5260 0.4530 0.4550 0.6700 0.6440

n=250 0.6580 0.5920 0.7170 0.6620 0.4400 0.4550 0.7490 0.7250

n=500 0.7680 0.7410 0.8090 0.7830 0.5140 0.5130 0.8230 0.8110

n=1000 0.8620 0.8570 0.8760 0.8650 0.6000 0.5980 0.8760 0.8740

Table 6c. Coverage of Intervals for �2

ci1 ci2 ci3 ci4 ci5 ci6

n=50 1.2045 0.8195 1.4895 1.1650 3.5939 4.5767

n=100 0.8245 0.6531 0.9664 0.7782 2.7405 3.8182

n=250 0.4676 0.4445 0.4774 0.4665 1.1578 1.2445

n=500 0.3062 0.3021 0.3010 0.3002 0.3800 0.3837

n=1000 0.2105 0.2095 0.2067 0.2057 0.2118 0.2139

Table 6d. Length of intervals for �2

The intervals are all for the case z = q; �2 = 0:25; �n = 1:06n�1=5: c1 is using b�2LS imposing
homoskedasticity; c1 is using b�2LS not imposing homoskedasticity; c3 is using b�+2 and imposing

homoskedasticity; c4 is using b�+2 and not imposing homoskedasticity; c5 is using b�2 and imposes
homoskedasticity; c6 is using b�2 not imposing homoskedasticity; c7 is non-block diagonal using b�+2
and Hessian; c8 is non-block diagonal using b�+2 and OPG.
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ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8

n=50 0.1250 0.1940 0.2020 0.1450 0.3430 0.2420 0.4470 0.3830

n=100 0.1480 0.2120 0.2170 0.1280 0.3510 0.2400 0.4330 0.3600

n=250 0.2050 0.2710 0.2810 0.1860 0.3930 0.2920 0.4710 0.3990

n=500 0.2930 0.3690 0.3840 0.2770 0.4950 0.3760 0.5940 0.5330

n=1000 0.4630 0.5440 0.5510 0.4450 0.6460 0.5550 0.7110 0.6660

Table 7a. Coverage of intervals for  

ci1 ci2 ci3 ci4 ci5 ci6

n=50 0.2298 0.3350 0.4315 0.3389 0.5941 0.5048

n=100 0.2119 0.3463 0.4191 0.2752 0.5791 0.4387

n=250 0.1898 0.3227 0.3583 0.2111 0.4865 0.3629

n=500 0.1662 0.2636 0.2869 0.1775 0.4300 0.2807

n=1000 0.1399 0.2050 0.2130 0.1414 0.3172 0.2114

Table 7b. Length of Intervals for  

The intervals are all for the case z = q; �2 = 0:25; �n = (log n)n
�1=2: c1 is using b + and Hessian;

c2 is using  + and OPG; c3 is using  + and imposes homoskedasticity; c4 is using b ; c5 is non-block
diagonal using b + and Hessian; c6 is non-block diagonal using b + and OPG; c7 is the likelihood
ratio based on b +; c8 is the likelihood ratio based on b ;
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ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8

n=50 0.5760 0.4070 0.5950 0.4100 0.5460 0.4850 0.5910 0.5760

n=100 0.5790 0.4520 0.5980 0.4830 0.5360 0.4830 0.6270 0.5960

n=250 0.6710 0.6170 0.7210 0.6430 0.6090 0.5830 0.7230 0.7000

n=500 0.7770 0.7410 0.8070 0.7680 0.7170 0.6920 0.8120 0.7820

n=1000 0.8650 0.8540 0.8900 0.8860 0.8170 0.8140 0.8960 0.8920

Table 7c. Coverage of Intervals for �2

ci1 ci2 ci3 ci4 ci5 ci6

n=50 1.1594 0.8138 1.3097 0.9753 1.7240 1.4020

n=100 0.8234 0.6513 0.8868 0.7384 1.1802 0.9662

n=250 0.4693 0.4424 0.4756 0.4555 0.5362 0.4997

n=500 0.3071 0.3021 0.3044 0.3016 0.3084 0.3076

n=1000 0.2111 0.2096 0.2091 0.2083 0.2098 0.2093

Table 7d. Length of intervals for �2

The intervals are all for the case z = q; �2 = 0:25; �n = (log n)n�1=2: c1 is using b�2LS imposing
homoskedasticity; c1 is using b�2LS not imposing homoskedasticity; c3 is using b�+2 and imposing

homoskedasticity; c4 is using b�+2 and not imposing homoskedasticity; c5 is using b�2 and imposes
homoskedasticity; c6 is using b�2 not imposing homoskedasticity; c7 is non-block diagonal using b�+2
and Hessian; c8 is non-block diagonal using b�+2 and OPG.
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Figure 1.
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B.2 Application

First Split Second Split Split with index

Variable Estimate s.e. Estimate s.e. Estimate s.e.

constant 5.09 1.85 3.55 2.42 2.30 5.13

GDP1960 -0.53 0.20 -0.66 0.27 -0.11 0.34

INV/GDP 0.38 0.11 0.29 0.09 0.97 0.40

POP -0.26 0.51 -0.48 0.51 -0.13 0.84

SCHOOL 0.25 0.08 -0.07 0.11 -0.19 0.15

�

constant -1.25 2.28 -1.14 2.90 -0.08 5.24

GDP1960 0.12 0.26 0.45 0.27 -0.18 0.36

INV/GDP 0.26 0.20 -0.06 0.24 -0.64 0.39

POP -0.28 0.59 -0.01 0.72 -0.65 0.83

SCHOOL -0.15 0.16 0.49 0.13 0.50 0.15

Table 8. Slope Estimates of Growth model

Figure 2. First Sample Split
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Figure 3. Second Sample Split
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