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Abstract 
 
 
 
We propose a test of the hypothesis of stochastic monotonicity. This hypothesis is 
of interest in many applications. Our test is based on the supremum of a rescaled 
U-statistic. We show that its asymptotic distribution is Gumbel. The proof is difficult 
because the approximating Gaussian stochastic process contains both a stationary 
and a nonstationary part and so we have to extend existing results that only apply 
to either one or the other case. 
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1 Introduction

Let Y and X denote two random variables whose joint distribution is absolutely continu-

ous with respect to Lebesgue measure on R2. Let FY jX(�jx) denote the distribution of Y
conditional on X = x. This paper is concerned with testing the stochastic monotonicity of

FY jX . Speci�cally, the paper proposes a test statistic and develops its asymptotic theory

for the following testing problem:

(1) H0 : For given y 2 Y, FY jX(yjx) � FY jX(yjx0) whenever x � x0 for x; x0 2 X ;

where Y and X , respectively, are subsets of the supports of Y and X.

This hypothesis can be of interest in a number of applied settings. If X is some policy,

one might be interested in testing whether its e¤ect on the distribution of Y is increasing in

this sense. The hypothesis implies that the regression function E(Y jX = x), when it exists,

is monotonic increasing. It also implies that all conditional quantile functions are increasing.

It is a strong hypothesis but can be reduced in strength by limiting the set of X;Y for which

this property holds. Note that the transformation regression model structure considered in

Ghosal, Sen and van der Vaart (2000) i.e., �(Y ) = m(X) + "; where " is independent of X

and both �;m are monotonic functions, implies stochastic monotonicity.

The property of stochastic monotonicity is quite fundamental in many economic prob-

lems. Blundell, Gosling, Ichimura, and Meghir (2006) have recently used this assumption

to obtain tight bounds on an unobservable cross-sectional wage distribution thus allowing

them to characterize the evolution of its inequality over time. Speci�cally, they assumed

that the distribution of wages W for employed given observed characteristics X and an in-

strument Z is increasing in Z: Their instrument was the out of work income. They derived

a bound on the implied distribution of wages given characteristics under this assumption of

stochastic monotonicity. They also suggested a test of this hypothesis based on the implied

bounds, using bootstrap to calculated critical values. They found that the hypothesis was

not rejected on their data at standard signi�cance levels, indeed the p-values were very

high. They did not provide any theory to justify their critical values, and moreover did not

test the monotonicity hypothesis itself but an implication of it.

A leading case is in time series when Y = Yt+1 and X = Yt and Yt is a Markov process

so that FY jX = Ft+1jt is the transition measure of the process Yt. In that case the property,

along with mild technical conditions, implies that the process has a stationary distribution.

The in�uential monograph of Lucas and Stokey (1989) uses the stochastic monotonicity
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property frequently in solving dynamic optimization problems of the Markov type and

characterizing the properties of the solution. It is particularly important in problems where

nonconvexities give rise to discontinuous stochastic behaviour and it provides a route to

proving the existence of stationary equilibria not requiring smoothness. Hopenhayn and

Prescott (1992) argue that it arises �in economic models from the monotonicity of decision

rules or equilibrium mappings that results from the optimizing behaviour of agents�. Pakes

(1986) assumed that the distribution of the return to holding a patent conditional on current

returns was nonincreasing in current returns. Consequently he showed that the optimal

renewal policy took a very simple form based on the realization of current returns compared

with the cost of renewing. Ericson and Pakes (1995), Olley and Pakes (1996), and Buettner

(2003) have all used a similar property in various dynamic models of market structures.

We propose a simple test of this hypothesis for observed i.i.d. data. Our statistic is based

on the supremum of a rescaled second order U-process indexed by two parameters x and

y: It generalizes the corresponding statistic introduced by Ghosal, Sen and van der Vaart

(2000) for testing the related hypothesis of monotonicity of a regression function. We prove

that the asymptotic distribution of our test statistic is a Gumbel with certain nonstandard

norming constants, thereby facilitating inference based on critical values obtained from

the limiting distribution. We also show that the test is consistent against all alternatives.

The proof technique is quite complicated and novel because the approximating Gaussian

stochastic process contains both a stationary and a nonstationary part and so we have to

extend existing results that only apply to either one or the other case. Beirlant and Einmahl

(1996) consider the asymptotics of a similar functional of a conditional empirical process

except that they only consider a �nite maximum over the covariate.

2 The Test Statistic

This section describes our test statistic. Let f(Yi; Xi) : i = 1; : : : ; ng denote a random
sample of (Y;X). Also, let 1(�) denote the usual indicator function and let K(�) denote a
one-dimensional kernel function with a bandwidth hn. Consider the following U -process:

Un(y; x) =
2

n(n� 1)
X

1�i<j�n
[1(Yi � y)� 1(Yj � y)]sgn(Xi �Xj)

�Khn(Xi � x)Khn(Xj � x);
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where Khn(�) = h�1n K(�=hn) and sgn(x) = 1(x > 0) � 1(x < 0). Note that the U -process

Un(y; x) can be viewed as a locally weighted version of Kendall�s tau statistic, applied to

1(Y � y) and that Un(y; x) is related to the U -process considered in Ghosal, Sen, and Van

der Vaart (2000, equation (2.1)).

First, notice that under usual regularity conditions, as n!1,

EUn(y; x)! hnFx(yjx)
�Z Z

ju1 � u2jK(u1)K(u2)du1du2
�
[fX(x)]

2;

where Fx(yjx) is a partial derivative of FY jX(yjx) with respect to x. Therefore, under the
null hypothesis such that Fx(yjx) � 0 for all (y; x) 2 Y � X , Un(y; x) is less than or equal
to zero on average for large n. Under the alternative hypothesis such that Fx(yjx) > 0 for
some (y; x) 2 Y � X , a suitably normalized version of Un(y; x) can be very large. In view
of this, we de�ne our test statistic as a supremum statistic

(2) Sn = sup
(y;x)2Y�X

Un(y; x)

cn(x)

with some suitably de�ned cn(x), which may depend on (X1; : : : ; Xn) but not on (Y1; : : : ; Yn).

The exact form of cn(x) will be de�ned below.

As in Ghosal, Sen, and Van der Vaart (2000, equations (2.6) - (2.7)), the type I error

probability is maximized in H0 when Fx(yjx) � 0, equivalently FY jX(yjx) = FY (y) for any

(y; x). Therefore, we consider the case that Fx(yjx) � 0 to derive the limiting distribution
under the null hypothesis.

When Fx(yjx) � 0, the projection of Un(y; x) is given by

Ûn(y; x) = 2n
�1

nX
i=1

[1(Yi � y)� F (y)]
Z
sgn(Xi � ~x)Khn(~x� x)dFX(~x)Khn(Xi � x):

Since EÛn(y; x) = 0, the variance of Ûn(y; x) is given by FY (y)[1� FY (y)]�2n(x)=n, where

�2n(x) = 4

Z � Z
sgn(�x� ~x)Khn(~x� x)dFX(~x)Khn(�x� x)

�2
dFX(�x):

As in Ghosal, Sen, and Van der Vaart (2000), �2n(x) can be estimated by a U -statistic

�̂2n(x) =
4

n(n� 1)(n� 2)
X

i�i6=j 6=k�n
sgn(Xi �Xj)sgn(Xi �Xk)

�Khn(Xj � x)Khn(Xk � x)[Khn(Xi � x)]2:

This suggests that we use the scaling factor cn(x) = �̂n(x)=
p
n.
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An alternative class of test statistics is based on explicit estimation of conditional c.d.f.�s

thus, consider Tn = supy2Y;x;x02X :x0�x[ bFY jX(yjx) � bFY jX(yjx0)]; where bFY jX(yjx) is some
e.g., kernel estimate of the conditional c.d.f., see Hall Wol¤, and Yao (1999). Under the

null hypothesis Tn 2 (�1; 0] with probability tending to one, while under the alternative
hypothesis Tn > 0: The advantage that Tn has is that it does not require smoothness

of FY jX(yjx). The disadvantage is that its limiting distribution is not pivotal and it is
di¢ cult to make it so. One might also be interested in testing second or higher order

dominance, Levy (2006), of the conditional distribution functions, which can be achieved

by straightforward modi�cation of either test statistic.

3 Asymptotic Theory

This section provides the asymptotic behaviour of the test statistic when the null hypothesis

is true and when it is false. In particular, we determine the asymptotic critical region of

the test and show that the test is consistent against general �xed alternatives at any level.

Although the test is easy to implement, the asymptotic theory for the test involves several

lengthy steps:

1. The asymptotic approximation of Un(y; x)=cn(x) by a Gaussian �eld;

2. The asymptotic approximation of the excursion probability of the maximum of the

Gaussian �eld on a �xed set;

3. The asymptotic approximation of the excursion probability of the maximum of the

Gaussian �eld on an increasing set.

We carry out step 1 by mimicking arguments of Ghosal, Sen, and Van der Vaart (2000);

step 2 by drawing on a monograph by Piterbarg (1996); step 3 by using arguments similar

to those used in Leadbetter, Lindgren, and Rootzén (1983) and Piterbarg (1996). None of

these steps is trivial, and, in particular, step 2 requires that we develop a new result for

the excursion probability of the maximum of the Gaussian �eld that has a non-standard

covariance function. To be speci�c, the approximating Gaussian �eld contains both a sta-

tionary and a nonstationary part and therefore we need to extend existing results that only

apply to either one or the other case. For example, see Section 7 of Piterbarg (1996) for the
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stationary case and Sections 8 and 9 of Piterbarg (1996) for the nonstationary case, but to

our best knowledge, there is no known result regarding our case.

3.1 Gaussian Process Approximation

As noted in the previous section, it su¢ ces to consider the case that Fx(yjx) � 0 to derive the
limiting distribution under the null hypothesis. In this section, we assume that Fx(yjx) � 0,
equivalently FY jX(yjx) = FY (y) for any (y; x). That is, Y and X are independent. Further,

assume that without the loss of generality, the support of X is X = [0; 1].

Let fX(�), FX(�), and FY (�), respectively, denote the p.d.f. and c.d.f. of X and c.d.f. of

Y . De�ne Xn = [0; 1=hn], q(u) =
R
sgn(u� w)K(w)dw, and

�(s) =

R
q(z)q(z � s)K(z)K(z � s)dzR

q2(z)K2(z)dz
:

Theorem 1. Assume that (a) Fx(yjx) � 0; (b) without the loss of generality, the set X =

[0; 1]; (c) the distribution of X is absolutely continuous with respect to Lebesgue measure

and the probability density function of X is continuous and strictly positive in [0; 1]; (d)

the distribution of Y is absolutely continuous with respect to Lebesgue measure; (e) K is a

kernel function with support [�1; 1], and is twice continuously di¤erentiable.
Let hn satisfy

hn(log n)
1=2 ! 0 and nh2n=(log n)

2 !1:

Then there exists a sequence of Gaussian processes f�n(u; s) : (u; s) 2 [0; 1] � Xng with
continuous sample paths such that

E[�n(u; s)] = 0; E[�n(u1; s1)�n(u2; s2)] = [min(u1; u2)� u1u2]�(s1 � s2);

for u; u1; u2 2 [0; 1] and s; s1; s2 2 Xn, and that

sup
(y;x)2Y�X

����n1=2Un(y; x)�̂n(x)
� �n[FY (y); h�1n x]

���� = Op

�
n�1=4h�1=2n (log n)1=2 + hn(log n)

1=2
�
:

The covariance function of �n is the product of a Brownian Bridge covariance function

and a stationary covariance function.

3.2 Distribution of the Test Statistic

Since the distribution of �n(u; s) does not depend on n, for the purpose of deriving the

distribution of the supremum statistic Sn, it su¢ ces to consider the asymptotic behaviour
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of the excursion probability of the maximum of a zero-mean Gaussian process that has

the same covariance function as �n(u; s). To do so, let �(u; s) denote a Gaussian process

f�(u; s) : (u; s) 2 [0; 1]� Rg with continuous sample paths such that

E[�(u; s)] = 0; E[�(u1; s1)�(u2; s2)] = [min(u1; u2)� u1u2]�(s1 � s2);

for u; u1; u2 2 [0; 1] and s; s1; s2 2 R. Then �n is the restriction of � to [0; 1]�Xn.

Theorem 2. For any x,

Pr

�
4�n

�
max

(u;s)2[0;1]�Xn
�(u; s)� �n

�
< x

�
= exp

�
� exp

�
�x� x2

8�2n

��
1 +

x

4�2n

��
+o (1) :

where �n is the largest solution to the following equation:

(3) h�1n

�
8�

�

�1=2
�n exp(�2�2n) = 1

and

� = �6
R
q(x)K2(x)K 02(x)K(x)K 00(x)dxR

q2(x)K2(x)dx
:

To use the conclusion of Theorem 2, it is necessary to compute �n. It is straightforward

to show that

(4) �n =

�
1

2
log
�
h�1n c�

��1=2
+
log
�
1
2 log

�
h�1n c�

��
8
�
1
2 log

�
h�1n c�

��1=2 + o
"

1�
log
�
h�1n c�

��1=2
#
:

where c� = (8�=�)1=2. Then one can use an approximation to �n by the �rst two terms on

the right side (4).

Assume that �n[n
�1=4h

�1=2
n (log n)1=2 + hn(log n)

1=2] ! 0. Then the following theorem

is an immediate consequence of Theorems 1 and 2.

Theorem 3.1. Assume that hn log n! 0 and nh2n=(log n)
4 !1. Then for any x,

(5) Pr (4�n(Sn � �n) < x) = exp

�
� exp

�
�x� x2

8�2n

��
1 +

x

4�2n

��
+ o (1) :

In particular,

lim
n!1

Pr (4�n(Sn � �n) < x) = exp
�
�e�x

�
:
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As in Theorem 4.2 of Ghosal, Sen, and van der Vaart (2000), the theorem suggests that

one can construct a test with an asymptotic level �:

(6) Reject H0 if Sn � �n +
1

4�n
log

�
1

log(1� �)�1

�
for any 0 < � < 1. Alternatively, one can construct an �-level test with (5):

(7) Reject H0 if Sn � �n +
1

4�n
zn;1��;

where for each n, zn;1�� is the (1 � �) quantile of the �distribution function�Fn(x) of the

form

Fn(x) = exp

�
� exp

�
�x� x2

8�2n

��
1 +

x

4�2n

��
:

In the next section, we carry out Monte Carlo experiments using both critical regions (6)

and (7). It turns out that in our experiments, a test based on (7) performs better in �nite

samples.

We now turn to the consistency of the test. It is straightforward to show that the test

speci�ed by (6) or (7) is consistent again general alternatives.

Theorem 3.2. Assume that nh3n= log h
�1
n ! 1. If Fx(yjx) > 0 for some (y; x) 2 Y � X ,

then the test speci�ed by (6) or (7) is consistent at any level.

A Monte Carlo Experiment

This section presents the results of some Monte Carlo experiments that illustrate the �nite-

sample performance of the test. For each Monte Carlo experiment, X was independently

drawn from a uniform distribution on [0; 1]. To evaluate the performance of the test un-

der the correct null hypothesis, Y was generated independently from U � N(0; 0:12). In

addition, to see the power of the test, Y was also generated from Y = m(X) + U , where

m(x) = x(1 � x). The simulation design considered here is similar to that of Ghosal et.

al (2000). To save computing time the test statistic was computed by the maximum of
p
nUn(y; x)=~�n(x) over Y �X , where Y = fY1; Y2; : : : ; Yng, X = f0:05; 0:10; : : : ; 0:85; 0:90g,

and ~�n(x) = 4h�1n [
R
q2(u)K2(u)du] � f̂3X(x). Here, f̂X(x) denotes the kernel density esti-

mator of fX(x). Notice that ~�n(x) is asymptotically equivalent to �̂n(x) but it is easier to

compute. The kernel function was K(u) = 0:75(1 � u2) for �1 � u � 1. The simulations
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used sample sizes of n = 50; 100; 200 and 500, and all the simulations were carried out in

GAUSS using GAUSS pseudo-random number generators. For each simulation, the number

of replications was 1500.

Table 1 reports results of Monte Carlo experiments using critical values obtained from

the asymptotic expansion Fn of the limiting distribution and also using those from the type

I extreme value distribution. The nominal level was 5%. First, consider the �rst panel of

the table that shows results with the critical values from Fn. When the null hypothesis

is true, each rejection proportion is below the nominal level for all the bandwidths and is

maximized at n = 500 and hn = 0:5. It can be seen that the best hn is decreasing with

the sample size and the performance of the test is less sensitive with hn as n gets large.

When the null hypothesis is false, for all values of hn, the powers of the test are high for

n = 50, almost one for n = 100, and one for n = 200. The performance of the test with

critical values from the type I extreme value distribution is uniformly worse, as seen from

the second panel of the table.

The asymptotic critical values from the asymptotic expansion Fn of the limiting dis-

tribution are easy to compute and appear to work satisfactorily in the simple numerical

example we examined. Instead one could employ a standard bootstrap resample applied

to a recentered statistic to improve the size of the test, motivated by the reasoning of Hall

(1993). This method should work better in �nite samples but is much more time consuming

than the asymptotic critical values.
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Table 1. Simulation Results

Using critical values obtained from
the asymptotic expansion Fn of the limiting distribution

Sample Bandwidth
Size hn = 0:4 h = 0:5 h = 0:6 h = 0:7

Rejection proportions when the null hypothesis is true:
n = 50 0.014 0.021 0.025 0.030
n = 100 0.028 0.033 0.034 0.034
n = 200 0.025 0.031 0.036 0.033
n = 500 0.032 0.039 0.033 0.037

Rejection proportions when the null hypothesis is false:
n = 50 0.687 0.762 0.771 0.760
n = 100 0.976 0.988 0.989 0.977
n = 200 1.000 1.000 1.000 1.000

Using critical values obtained from
the type I extreme value distribution

Sample Bandwidth
Size hn = 0:4 h = 0:5 h = 0:6 h = 0:7

Rejection proportions when the null hypothesis is true:
n = 50 0.009 0.017 0.013 0.017
n = 100 0.022 0.024 0.022 0.021
n = 200 0.015 0.021 0.022 0.021
n = 500 0.021 0.021 0.022 0.023

Rejection proportions when the null hypothesis is false:
n = 50 0.618 0.693 0.697 0.694
n = 100 0.966 0.976 0.983 0.965
n = 200 1.000 1.000 1.000 1.000
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A Appendix: Technical Proofs

Following the notation of Ghosal, Sen, and Van der Vaart (2000), for a metric spaceM with

a norm on it, let N("; S;M), " > 0, denote the "-covering number of S 2 M . Throughout
the Appendix, <� will stand for an inequality up to a constant multiple.

A.1 Proofs for Section 3.1

Proof of Theorem 1. The proof of Theorem 1 follows closely Theorem 3.1 of Ghosal, Sen,

and Van der Vaart (2000). In particular, the theorem can be proved by combining arguments

identical to those used in the proof of Theorem 3.1 of Ghosal, Sen, and Van der Vaart (2000)

with Lemmas A.1-A.4 proved below.

Lemma A.1.

sup
(y;x)2Y�X

���Un(y; x)� Ûn(y; x)��� = Op

�
n�1h�3=2n

�
:

Proof. The proof is similar to that of Lemma 3.1 of Ghosal, Sen, and Van der Vaart (2000).

Hence, we will only indicate the di¤erences. Consider a class of functions M = fm(y;x) :

(y; x) 2 Y � Xg, where

m(y;x)((y1; x1); (y2; x2)) = [1(y1 � y)� 1(y2 � y)]sgn(x1 � x2)

�Khn(x1 � x)Khn(x2 � x):

This class is contained in the product of the classes

M1 = f1(y1 � y)� 1(y2 � y) : y 2 Yg

M2 =

�
K

�
x1 � x
hn

�
: x 2 X

�
M3 =

�
K

�
x2 � x
hn

�
: x 2 X

�
M4 = fhn�2sgn(x1 � x2)1fjx1 � x2j � 2hngg:

Note that the class M1 is the di¤erence of two classes of functions y1 7! 1(y1 � y) and

y2 7! 1(y2 � y), respectively. Hence, by Example 2.5.4 of Van der Vaart and Wellner (1996)

and the fact that the 2"-covering number of the sum of the two classes is bounded by the

product of the "-covering numbers of the two classes,

N(2";M1; L2(Q)) �
4

"4
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for any probability measure Q and " � 1. Following the proof of Lemma 3.1 of Ghosal, Sen,
and Van der Vaart (2000), we have

nE

"
sup

(y;x)2Y�X

���Un(y; x)� Ûn(y; x)���#
<
�

�
E
h
hn
�41fjX1 �X2j � 2hng

i�1=2
<
�h

�3=2
n ;

which gives the conclusion of the lemma.

De�ne

�n;y;x(Y;X) = 2[1(Y � y)� FY (y)]
Z
sgn(X � ~x)Khn(~x� x)dFX(~x)Khn(X � x):

Lemma A.2. There exists a sequence of Gaussian processes Gn(�), indexed by Y �X , with
continuous sample paths and with

E[Gn(y; x)] = 0; for (y; x) 2 Y � X ;

E[Gn(y1; x1)Gn(y2; x2)] = E[�n;y1;x1(Y;X)�n;y2;x2(Y;X)];

for (y1; x1) and (y2; x2) 2 Y � X , such that

sup
(y;x)2Y�X

���n1=2Ûn(y; x)�Gn(y; x)��� = O
�
n�1=4h�1n (log n)

1=2
�

a:s:

Proof. As in the proof of Lemma 3.2 of Ghosal, Sen, and Van der Vaart (2000), we use

Theorem 1.1 of Rio (1994). Since it can be proved using arguments identical to those used

to prove Lemma 3.2 of Ghosal, Sen, and Van der Vaart (2000), we will only highlight the

di¤erences.

To apply Rio�s theorem, we rewrite 'n;y;x(Y;X) as

�n;y;x(Y;X) = 'n;u;x(U;X) = 2[1(U � u)� u]
Z
sgn(X � ~x)Khn(~x� x)dFX(~x)Khn(X � x);

where U = FY (Y ) and u = FY (y). Then U is uniformly distributed in [0; 1] � U . Thus,
Theorem 1.1 of Rio (1994) can be applied to a normalized empirical process associated with

'n;u;x(U;X).
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First, we verify that the class of functions (v; t) 7! hn'n;u;x(v; t), indexed by (u; x) 2
U �X , is uniformly of bounded variation (UBV). By the de�nition of Rio (1994), it su¢ ces
to show that

sup
(u;x)2U�X

sup
g2D2([0;1]2)

�Z
R2

hn'n;u;x(v; t) div g(v; t) dv dt= kgk1
�
<1;

where D2([0; 1]2) denotes the space of C1 functions with values in R2 and with compact

support included in [0; 1]2, div denotes the divergence, and kgk1 = sup(v;t)2R2 kg(v; t)k
with k�k being the usual Euclidean norm.

To do so, note thatZ
R2

'n;u;x(v; t) div g(v; t) dv dt

=

Z
R2

2[1(v � u)� u]
Z
sgn(t� ~x)Khn(~x� x)dFX(~x)Khn(t� x)

�
@g(v; t)

@v
+
@g(v; t)

@t

�
dv dt

=

Z
R

Z
R
2[1(v � u)� u]@g(v; t)

@v
dv

Z
sgn(t� ~x)Khn(~x� x)dFX(~x)Khn(t� x) dt

+

Z
R2

2[1(v � u)� u]
Z
sgn(t� ~x)Khn(~x� x)dFX(~x)Khn(t� x)

@g(v; t)

@t
dv dt:

Then it is straightforward to verify that

sup
g2D2([0;1]2)

�Z
R2

hn'n;u;x(v; t) div g(v; t) dv dt= kgk1
�
= O

�
h�1n

�
uniformly over (u; x) 2 U � X . This implies that the class of functions fhn'n;u;x : (u; x) 2
U � Xg satis�es the UBV condition of Rio (1994).

Furthermore, it is also straightforward to verify that

sup
g2D2([a;b]2)

�Z
R2

hn'n;u;x(v; t) div g(v; t) dv dt= kgk1
�
= O

�
h�1n [b� a]

�
uniformly over (u; x) 2 U � X . This implies that the class of functions fhn'n;u;x : (u; x) 2
U � Xg also satis�es the LUBV condition of Rio (1994).

We now verify that the class of functions fhn'n;u;x : (u; x) 2 U �Xg is a VC class. The
function hn'n;u;x is bounded by a constant uniformly in (u; z) 2 U �X and is obtained by

taking an average of

2hn[1(v � u)� 1(~u � u)]sgn(~x� t)Khn(~x� t)Khn(t� x)

over (~u; ~x).

12



Then it is easy to show that fhn'n;u;x : (u; x) 2 U�Xg is a VC class by using arguments
similar to those used in the proof of Lemma 3.2 of Ghosal, Sen, and Van der Vaart (2000,

in particular equation 8.5). Finally, by applying Theorem 1.1 of Rio (1994), there exists a

sequence of centered Gaussian processes Gn(u; x) with covariance

E[Gn(u1; x1)Gn(u2; x2)] = E['n;u1;x1(U;X)'n;u2;x2(U;X)]:

By switching back to the original variable Y and its corresponding index y, we obtain the

desired result.

De�ne

�2(x) = 4

�Z
q2(u)K2(u)du

�
[fX(x)]

3:

Lemma A.3.

(a) sup
x2X

��hn�2n(x)� �2(x)�� = o(1):

(b) lim inf
n!1

hn inf
x2X

�2n(x) > 0:

(c) sup
x2X

���̂2n(x)� �2n(x)�� = Op

�
n�1=2h�2n

�
:

Proof. Since our �̂2n(x) is just three times �̂
2
n(t) de�ned in the equation (2.13) of Ghosal,

Sen, and Van der Vaart (2000), the lemma follows directly from Lemma 3.3 of Ghosal, Sen,

and Van der Vaart (2000).

Lemma A.4. For the sequence of Gaussian processes fGn(y; x) : (y; x) 2 Y �Xg obtained
in Lemma A.2, there corresponds a sequence of Gaussian processes f�n(u; s) : (u; s) 2
[0; 1]�Xng with continuous sample paths such that

E[�n(u; s)] = 0; E[�n(u1; s1)�n(u2; s2)] = [min(u1; u2)� u1u2]�(s1 � s2);

for u; u1; u2 2 [0; 1] and s; s1; s2 2 Xn, where �(�) is de�ned by

�(s) =

R
q(z)q(z � s)K(z)K(z � s)dzR

q2(z)K2(z)dz

and

sup
(y;x)2Y�X

����Gn(y; x)�n(x)
� �n[FY (y); h�1n (x� x0)]

���� = Op

�
hn

q
log h�1n

�

13



Proof. Let Gn denote the class of functions fgn;u;x : (u; x) 2 U � Xg, where gn;u;x(U;X) =
'n;u;x(U;X)=�n(x). Also, let ~Gn denote the class of functions f~gn;u;x : (u; x) 2 U � Xg,
where

~gn;u;x(U;X) = ~'n;u;x(U;X)=~�n;x(X);

~'n;u;x(U;X) = [1(U � u)� u]
Z
sgn(X � ~x) Khn(~x� x)d~xKhn(X � x);

~�n;x(X) =

"Z �Z
sgn(�x� ~x)Khn(~x� x)d~x

�2 �
Khn(�x� x)

�2
d�x

#1=2
[fX(X)]

1=2:

As explained in Remark 8.3 of Ghosal, Sen, and Van der Vaart (2000), it is possible to extend

Lemma A.2 in that there exists a sequence of Gaussian processes, say fBn(g) : g 2 Gn[ ~Gng,
with

E[Bn(g)] = 0; E[Bn(g1)Bn(g2)] = cov(g1; g2)

for all g; g1; g2 2 Gn [ ~Gn and with continuous sample paths with respect to the L2-metric
such that

Gn(u; x) = �n(x)Bn('n;u;x);

where Gn(u; x) is de�ned in the proof of Lemma A.2.

Now let ~�n(u; x) = Bn(~gn;u;x) and 
n(u; x) = Gn(u; x)=�n(x)�~�n(u; x). As in the proof
of Lemma 3.4 of Ghosal, Sen, and Van der Vaart (2000), note that 
n(u; x) is a mean zero

Gaussian process with

E[
n(u1; x1)
n(u2; x2)] = E[(gn;u1;x1 � ~gn;u1;x1)(gn;u2;x2 � ~gn;u2;x2)]:

Then the lemma can be proved using identical arguments used in the proof of Lemma 3.4

of Ghosal, Sen, and Van der Vaart (2000).

A.2 Proofs for Section 3.2

A.2.1 Asymptotic Behaviour of the Excursion Probability on the Fixed Set

We �rst consider the asymptotic behaviour of the tail probability of the maximum of �(u; s)

on a �xed set [0; 1]� I, where I � [0; L] is an interval with a �xed length L. De�ne

	(a) =
1p
2�

Z 1

u
exp

�
�1
2
x2
�
dx:

14



Theorem A.1. Let � denote the quantity de�ned in Theorem 2. In addition, let I = [0; L].

Then

Pr

�
max

(u;s)2[0;1]�I
�(u; s) > a

�
= L

�
8�

�

�1=2
a exp(�2a2)[1 + o(1)]

as a!1.

The following Lemmas are useful to prove Theorem A.1.

Lemma A.5. Let �� = [1=2� �(a); 1=2 + �(a)], where �(a) = a�1 log a. Then

Pr

�
max

(u;s)2[0;1]�I
�(u; s) > a

�
= Pr

�
max

(u;s)2���I
�(u; s) > a

�
[1 + o(1)]

as a!1.

Proof. For all su¢ ciently large a,

Pr
�

max
(u;s)2���I

�(u; s) > a

�
� Pr

�
max

(u;s)2[0;1]�I
�(u; s) > a

�
� Pr

�
max

(u;s)2���I
�(u; s) > a

�
+ Pr

�
max

(u;s)2f[0;1]n��g�I
�(u; s) > a

�
:

(8)

Note that

E[�(u1; s1)� �(u2; s2)]2 = u1(1� u1) + u2(1� u2)� 2[min(u1; u2)� u1u2]�(s1 � s2):

Furthermore, by some straightforward manipulation,

E[�(u1; s1)� �(u2; s2)]2 <� ju1 � u2j+ js1 � s2j:

Thus, Assumption E3 of Piterbarg (1996, p.118) is satis�ed.

Then since

max
(u;s)2f[0;1]n��g�I

�2(u; s) � 1=4� �(a)2;

by Theorem 8.1 of Piterbarg (1996, p.119), there exists a constant C such that

Pr
�

max
(u;s)2f[0;1]n��g�I

�(u; s) > a

�
� Cmes(f[0; 1] n��g � I) a4	

�
a

[1=4� �(a)2]1=2

�
:(9)

Note that by (D.8) of Piterbarg (1996, p.15), as a!1,

a4	

�
a

[1=4� �(a)2]1=2

�
� 1p

2�
a3 exp

�
�a2=2

1=4� �(a)2

�
;
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where A � B stands for A=B ! 1. Also, for some �xed interior point �s 2 I, we have

Pr (�(1=2; �s) > a) = 	(a=2) � 2p
2�
a�1 exp

�
�a2=2
4

�
;

Then it is easy to show that as a ! 1, the probability on the left-hand side of
(9) converges to zero at a rate of exp

�
�a2=8�O(flog ag2)

�
and Pr (�(1=2; �s) > a) con-

verges to zero at a rate of exp
�
�a2=8�O(log a)

�
. Thus, the probability on the left-hand

side of (9) converges to zero faster than Pr (�(1=2; �s) > a). Since Pr (�(1=2; �s) > a) �
Pr
�
max(u;s)2���I �(u; s) > a

�
,

Pr
�

max
(u;s)2f[0;1]n��g�I

�(u; s) > a

�
= o

�
Pr
�

max
(u;s)2���I

�(u; s) > a

��
:

Then the lemma follows immediately from (8).

Let �2(u; s) = u(1�u) and r[(u1; s1); r(u2; s2)] = [min(u1; u2)�u1u2]�(s1� s2), respec-
tively, denote the variance and covariance functions of �(u; s).

Lemma A.6. As u! 1=2,

�2(u; s) =
1

4
�
�
u� 1

2

�2
[1 + o(1)](10)

Furthermore, as (u1; u2)! (1=2; 1=2) and js1 � s2j ! 0,

r[(u1; s1); r(u2; s2)] =
1

4
� 1
2
ju1 � u2j [1 + o(1)]�

�

8
(s1 � s2)2 [1 + o(1)]

� 1
2

�
u1 �

1

2

�2
[1 + o(1)]� 1

2

�
u2 �

1

2

�2
[1 + o(1)]:

(11)

Proof. The �rst result (10) follows easily from a second-order Taylor series expansion of the

variance of �(u; s) with respect to u. We now consider the second result (11). In view of

the proof of Theorem 9.2 of Piterbarg (1996, p.138), note that as (u1; u2)! (1=2; 1=2),

min(u1; u2)� u1u2p
u1(1� u1)u2(1� u2)

= 1� 1
2

ju1 � u2jp
u1(1� u1)u2(1� u2)

+ o (ju1 � u2j) :(12)

Note that by (4.9) of Ghosal, Sen, and van der Vaart (2000),

�(s1 � s2) = 1�
�(s1 � s2)2

2
+ o

�
js1 � s2j2

�
;(13)

as js1 � s2j ! 0. As in (10), a Taylor series expansion of �(u; s) around u = 1=2 gives

�(u; s) =
1

2
�
�
u� 1

2

�2
[1 + o(1)]; as u! 1

2

16



for any s 2 I. Thus, we have

p
u1(1� u1)u2(1� u2) =

1

4
� 1
2

�
u1 �

1

2

�2
[1 + o(1)]� 1

2

�
u2 �

1

2

�2
[1 + o(1)];(14)

as (u1; u2) ! (1=2; 1=2). Then the lemma follows from combining (12) and (13) with

(14).

Let " > 0 be a �xed constant. De�ne Gaussian processes  �1 (u) and  
+
1 (u) such that

 �1 (u) =
��1 (u)

23=2[1 + 4(1 + ")(u� 0:5)2]
and  +1 (u) =

�+1 (u)

23=2[1 + 4(1� ")(u� 0:5)2]

where ��1 (u) and �+1 (u) are Gaussian stationary processes with zero means and the co-

variance functions r�1 (u) = exp [�4(1� ")juj] and r
+
1 (u) = exp [�4(1 + ")juj]. In addition,

de�ne mean-zero stationary Gaussian processes  �2 (s) and  
+
2 (s) such that they are inde-

pendent of  �1 (u) and  
+
1 (u) and have the the covariance functions of the form

r�2 (s) =
1

8

�
1� �(1� ")s2 + o(s2)

�
;

r+2 (s) =
1

8

�
1� �(1 + ")s2 + o(s2)

�
;

respectively. Finally, de�ne

 �(u; s) =  �1 (u) +  
�
2 (s) and  +(u; s) =  +1 (u) +  

+
2 (s):

Lemma A.7. Let " > 0 be any �xed, arbitrarily small, constant. Then for all su¢ ciently

large a,

Pr

�
max

(u;s)2���I
 �(u; s) > a

�
� Pr

�
max

(u;s)2���I
�(u; s) > a

�
� Pr

�
max

(u;s)2���I
 +(u; s) > a

�
:

Proof. As noted in the proofs of Theorems D.4 and 8.2 of Piterbarg (1996, p.23 and p.133),

the lemma follows from the fact that the distribution of the maximum is monotone with re-

spect to the variance and the Slepian inequality (see, for example, Theorem C.1 of Piterbarg

(1996, p.6)).

Lemma A.8. Let " > 0 be any �xed, arbitrarily small, constant. As a!1,

Pr

�
max
u2��

23=2 �1 (u) > a

�
= 21=2

(1� ")
(1 + ")1=2

exp(�a2=2)[1 + o(1)];(15)

Pr

�
max
u2��

23=2 +1 (u) > a

�
= 21=2

(1 + ")

(1� ")1=2
exp(�a2=2)[1 + o(1)]:(16)
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Proof. This lemma can be proved by one of results given in the proof of Theorem D.4 of

Piterbarg (1996, p.21). In particular, using the notation used in the proof of of Theorem

D.4 of Piterbarg (1996), the excursion probability of 23=2 �1 (u) can be obtained by the

result of Case 1 with � = 1, � = 2, b = 4(1 + "), and d = 4(1 � "). It follows from the

second display on page 22 of Piterbarg (1996) that as a!1,

Pr
�
max
u2��

23=2 �1 (u) > a

�
=
H1�(1=2)[4(1� ")]
[4(1 + ")]1=2

a	(a)[1 + o(1)];

where H1 is the Pickands�constant with � = 1 (de�ned on pages 13 and 16 of Piterbarg

(1996)) and �(�) is the Gamma function. Note that �(1=2) =
p
�. Furthermore, by (9.6) of

Piterbarg (1996, p.138), H1 = 1 and by (D.8) of Piterbarg (1996, p.15),

a	(a) � (2�)�1=2 exp(�a2=2)

as a ! 1. Therefore, (15) follows immediately. The excursion probability of 23=2 +1 (u)
can be obtained analogously.

Lemma A.9. Let " > 0 be any �xed, arbitrarily small, constant. As a!1,

Pr

�
max
s2I

23=2 �2 (s) > a

�
=
[(�=2)(1� ")]1=2L

�
exp(�a2=2)[1 + o(1)];(17)

Pr

�
max
s2I

23=2 +2 (s) > a

�
=
[(�=2)(1 + ")]1=2L

�
exp(�a2=2)[1 + o(1)]:(18)

Proof. Recall that I = [0; L]. By Theorem D.2 of Piterbarg (1996, p.16) and a simple

scaling of  �2 (u),

Pr
�
max
s2[0;L]

23=2 �2 (s) > a

�
= H2L

�a	(a)[1 + o(1)]

whereH2 is the Pickands�constant with � = 1 and L� = [�(1�")]1=2L. By (F.4) of Piterbarg
(1996, p.31), H2 = 1=

p
�. Then (17) follows immediately. The excursion probability of

23=2 +2 (u) can be obtained similarly.

Proof of Theorem A.1. Let " > 0 be any �xed, arbitrarily small, constant. Note that

 �(u; s) and  +(u; s) are convolutions of  �1 (u) and  
�
2 (s) and of  

+
1 (u) and  

+
2 (s), re-

spectively. Then an application of Lemma 8.6 of Piterbarg (1996, p.128) with Lemmas A.8

18



and A.9 gives

Pr
�

max
(u;s)2���I

23=2 �(u; s) > a

�
= L

(1� ")3=2

(1 + ")1=2

�
�

�

�1=2
a exp(�a2=4)[1 + o(1)];(19)

Pr
�

max
(u;s)2���I

23=2 +(u; s) > a

�
= L

(1 + ")3=2

(1� ")1=2

�
�

�

�1=2
a exp(�a2=4)[1 + o(1)]:(20)

Then as a!1,

Pr
�

max
(u;s)2[0;1]�I

23=2�(u; s) > a

�
= L

�
�

�

�1=2
a exp(�a2=4)[1 + o(1)]

since the choice of " can be made arbitrarily small and the constants on the right-hand sides

of (19) and (20) are continuous at " = 0. Therefore, the theorem follows immediately.

A.2.2 Asymptotic Behaviour of the Excursion Probability on the Increasing
Set

Proof of Theorem 2. Note that the covariance function of �(u; s), that is r[(u1; s1); r(u2; s2)],

has compact support and in particular it is zero when js1 � s2j > 2. As in the proof of

Theorem G.1 of Piterbarg (1996), de�ne an increasing sequence mn such that mn !1 but

mnhn ! 0 as n ! 1. That is, mn converges to in�nity slower than h�1n . Further, de�ne

sequences of sets

Ik =
�
k(mnhn)

�1; (k + 1)(mnhn)
�1 � 2

�
;

Jk =
�
(k + 1)(mnhn)

�1 � 2; (k + 1)(mnhn)
�1� ;

for k = 0; 1; : : : ;mn � 1. Then as in (G.3) of Piterbarg (1996), we have

Pr
�

max
(u;s)2[0;1]�Xn

�(u; s) < a

�
= Pr

 
max

(u;s)2[0;1]�[
S
k Ik]

�(u; s) < a

!

� Pr
 

max
(u;s)2[0;1]�[

S
k Ik]

�(u; s) < a; max
(u;s)2[0;1]�[

S
k Jk]

�(u; s) � a

!
:

(21)

We �rst consider the �rst probability on the right-hand side of (21). Let c� =
�
8�
�

�1=2
.

Following the idea in the proof of Theorem G.1 of Piterbarg (1996), for each x, choose

an = �n + x=(4�n), where �n is the largest solution to the following equation:

h�1n c��n exp(�2�2n) = 1:(22)
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Since Ik�s are separated by the diameter of the support and the distribution of �(u; s) is

stationary in the direction of s, it follows from Theorem A.1 that

Pr

 
max

(u;s)2[0;1]�[
S
k Ik]

�(u; s) < an

!

=

�
1� Pr

�
max

(u;s)2[0;1]�I0
�(u; s) � an

��mn

= exp

�
mn log

�
1� Pr

�
max

(u;s)2[0;1]�I0
�(u; s) � an

���
= exp

�
�mnPr

�
max

(u;s)2[0;1]�I0
�(u; s) � an

��
+O

 
mn

�
Pr
�

max
(u;s)2[0;1]�I0

�(u; s) � an

��2!
= exp

�
�mn[(mnhn)

�1 � 2]c�an exp(�2a2n)[1 + o(1)]
	
+O

�
m�1
n

�
;

so that

Pr

 
max

(u;s)2[0;1]�[
S
k Ik]

�(u; s) < an

!
= exp

�
� exp

�
�x� x2

8�2n

��
1 +

x

4�2n

��
+ o (1) :(23)

Now consider the second probability on the right-hand side of (21). As in the proof of

Theorem G.1 of Piterbarg (1996), note that again using Theorem A.1 and the fact that the

distribution of �(u; s) is stationary in the direction of s,

Pr

 
max

(u;s)2[0;1]�[
S
k Ik]

�(u; s) < an; max
(u;s)2[0;1]�[

S
k Jk]

�(u; s) � an

!

� Pr
 

max
(u;s)2[0;1]�[

S
k Jk]

�(u; s) � an

!

� mnPr
�

max
(u;s)2[0;1]�J1

�(u; s) � an

�
= mnPr

�
max

(u;s)2[0;1]�[0;2]
�(u; s) � an

�
= O (mnhn) = o(1):

This and (23) together prove the theorem.

Proof of Theorem 3.2. The theorem can be proved by arguments identical to those used to

prove Theorem 5.1 of Ghosal, Sen, and Van der Vaart (2000). In fact, when Fx(yjx) > 0

for some (y; x), Sn is of order Op(n1=2h
3=2
n ) and the consistency follows from the restriction

that nh3n= log h
�1
n !1.
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