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Abstract 

 
 
We introduce an alternative version of the Fama-French three-factor model of stock 
returns together with a new estimation methodology. We assume that the factor 
betas in the model are smooth nonlinear functions of observed security 
characteristics. We develop an estimation procedure that combines nonparametric 
kernel methods for constructing mimicking portfolios with parametric nonlinear 
regression to estimate factor returns and factor betas simultaneously.  The 
methodology is applied to US common stocks and the empirical findings compared 
to those of Fama and French. 
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1 Introduction

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier work by

Banz (1981), Basu (1977), Rosenberg, Reid and Lanstein (1985) and others, demonstrate that there

have been large return premia associated with size and value. Size is de�ned as market capitalization;

value is de�ned as the book-to-price ratio or a related valuation ratio such as the earnings-to-price

ratio. These size and value return premia are evident in US data for the period covered by the

CRSP/Compustat database (FF (1992)), in earlier US data (Davis (1994), and in non-US equity

markets (FF (1998), Hodrick, Ng and Sangmueller (1999)).

FF (1993,1995,1996,1998) contend that these return premia can be ascribed to a rational asset

pricing paradigm in which the size and value characteristics proxy for assets�sensitivities to pervasive

sources of risk in the economy. Haugen (1995) and Lakonoshik, Shleifer and Vishny (1994) argue that

the observed value and size return premia arise from market ine¢ ciencies rather than from rational

risk premia associated with pervasive sources of risk. They argue that these characteristics do not

generate enough nondiversi�able risk to justify the observed premia. Similarly, MacKinlay (1995)

argues that the return premia are too large relative to the return volatility of the factor portfolios

designed to capture these characteristics, and this creates a near-arbitrage opportunity in the FF

model. Daniel and Titman (1997) argue that the factor returns associated with the characteristics are

partly an artifact of the FF factor model estimation methodology. Hence the accuracy and reliability

of FF�s estimation procedure is a critical issue in this research controversy.

FF (1993) use a simple approach to estimate their factor model. They sort securities according to

the securities�size and value characteristics and construct two-dimensional fractile portfolios. They

use di¤erences between the returns on large-size and small-size fractile portfolios (adjusted for the

value characteristic) as an estimate of the size factor. Analogously, the di¤erence between high

book-to-price and low book�to-price fractile portfolios, adjusted for the size characteristic, serves as

an estimate of the value factor. They use a capitalization-weighted index as a proxy for the market

factor. Although this method is intuitively plausible and computationally simple, there is to our

knowledge no rigorous statistical theory to justify it with regard even to consistency. Furthermore,

there is no obvious way to generate consistent standard errors for these and subsequent estimates

that takes correct account of all sampling error. Also, in order to estimate the factor betas, a set of

time-series regressions must be run with the estimated factor returns as explanatory variables. This

gives rise to an errors-in-variables problem in the estimated factor betas.

In this paper we develop an alternative methodology to describe the same phenomenon as do

FF. We introduce a semiparametric characteristic-based factor model in which the factor betas are

smooth functions of a small number of characteristics. The model can be viewed as a semiparametric
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generalization of Rosenberg (1974, Section 3), where a linear such model is considered. The �exible

nonlinearity we allow is important to capture the sort of generality implicit in the FF approach and

evident in the data. The estimation methodology has two steps. The �rst step uses nonparametric

kernel methods to construct factor-mimicking portfolios associated with a set of chosen values of

the characteristics. The second step uses parametric nonlinear regression, with the collection of �rst

step portfolio returns as the independent variable, to estimate the factor returns and factor beta

functions. This new methodology facilitates a range of approximate (asymptotic) statistical results

not available with FF�s procedure. It gives simultaneously estimated, consistent and asymptotically

normal estimates of the factor returns and the factor beta functions, and approximate standard

errors for all estimated parameters. We also give an interpretation of our method as a variant of

FF�s portfolio construction approach.

The model is applied to US equities using the book-to-price ratio and the market value of equity

as characteristics and the results are compared to those of FF. Our results are qualitatively similar

to those of FF but with some improvements in model �t. For both characteristics we �nd that the

relationship between the characteristic and associated factor beta is monotonic but not linear.

Section 2 presents the new estimation methodology. Section 3 applies it to the data. Section 4

summarizes the paper and suggests some further extensions and applications of the approach. Proofs

are given in the appendix.

2 Methodology

2.1 Description of the Factor Model

We assume that there is a large number of securities, indexed by i = 1; : : : ; n; and asset returns are

observed for a �xed number of time periods t = 1; : : : ; T . We assume that the following characteristic-

based factor model generates returns:

rit = fut +

JX
j=1

gj(Cij)fjt + "it; (1)

where rit is the return to security i at time t; fut; fjt are the factor returns; gj(Cij) the factor betas,

Cij the security characteristics, which are assumed for simplicity not to vary over time, and "it are

the mean zero asset-speci�c returns whose properties we discuss further below. The factor returns

fjt are linked to the security characteristics by the characteristic-beta functions gj(�), which map
characteristics to the associated factor betas. We assume that each gj(�) is a smooth time-invariant
function of characteristic j, but we do not assume a particular functional form. This a special
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case of the unrestricted factor model [Connor and Koracyzk (1993)] rit =
PJ

j=1 �ijfjt + "it; where

�ij are factor loadings, and generalizes the linear model considered in Rosenberg (1974, section 3)

where �ij =
P

k �jkCik + uij: We also note that (1) constitutes a weighted additive nonparametric

regression model for panel data, where the factors fjt are �parametric weights�and the functions gj(�)
are univariate nonparametric functions. Some discussion of additive nonparametric models can be

found in Linton and Nielsen (1995).

The market factor fut captures that part of common return not related to the security charac-

teristics; all assets have unit beta to this factor. This factor captures the tendency of all equities to

move together, irrespective of their characteristics. It is a common element in panel data models,

see Hsiao (2003, section 3.6.2)

There are two indeterminacies in the characteristic-beta functions gj(�), re�ecting the usual rota-
tional and scale indeterminacies of factor models. The �rst indeterminacy is additive. One can add

an arbitrary constant a to any of the functions gj(�) and subtract afjt from fu, and the predictions

of the returns model (1) are unchanged. To eliminate this indeterminacy, we impose the condition

gj(0) = 0 for all j, without loss of generality.

The second indeterminacy is multiplicative. One can multiply any gj(�) by any non-zero constant
and fj by the reciprocal of the same constant and the predictions of the returns model (1) are

unchanged. We assume that gj(1) 6= 0 for each j. Without loss of generality we set gj(1) = 1.
The identi�cation constraints gj(0) = 0 and gj(1) = 1 are given intuitive content by the choice of

units of Cij. We rescale the raw characteristics linearly so that the cross-sectional average of Cij equals

zero and the cross-sectional standard deviation equals one. The constraint gj(0) = 0 means that the

factor return fu is the common-factor-related return of an asset with �average�characteristics. The

constraint gj(1) = 1 means that over the interval [0; 1] measured in units of standard deviation the

increase in factor beta equals one.1

2.2 Kernel-based Portfolio Weights for Factor-Mimicking Portfolios

In this subsection we present a new technique for creating factor-mimicking portfolios, based on

nonparametric kernel methods. Our purpose in developing this new technique is the estimation of

our factor model, but there are other potential applications. For example, the technique could be

used for the construction of benchmark portfolios in event studies or in performance measurement

of managed portfolios.

Our new technique is founded on the earlier work of FF (1993) and we very brie�y summarize

1An alternative normalization is to assume that E[gj(Cij)] = 0 and var[gj(Cij)] = 1: This normalization has certain

advantages from a statistical point of view, but is harder to interpret.
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their approach. FF rank securities by two characteristics, size and book-to-price (BTP), and perform

a bivariate sort of the securities into fractiles. They use three fractiles for BTP and two for size, so the

bivariate sort gives a total of six fractiles: large size/high BTP, large size/medium BTP, large size/low

BTP, small size/high BTP, small size/medium BTP, small size/low BTP. They group the assets into

capitalization-weighted portfolios of the securities within each fractile. For each characteristic, the

average di¤erence between the returns on a collection of high and low fractile portfolios, screened

to preserve a common beta to the other characteristic, serves as the estimates of the factor returns

associated with that characteristic. Speci�cally they de�ne:

Size factor return = 1/3[(large size/high BTP portfolio return

-small size/high BTP portfolio return)

+(large size/medium BTP portfolio return

-small size/medium BTP portfolio return)

+(large size/low BTP portfolio return

-small size/low BTP portfolio return)] (2)

Book-to-price factor return = 1/2[(large size/high BTP portfolio return

-large size/low BTP portfolio return)

+(small size/high BTP portfolio return

-small size/low BTP portfolio return )] (3)

Our new technique can be viewed as a kernel-based variant of FF�s portfolio construction tech-

nique. Instead of target ranges for the characteristics (such as high, medium and low), we create a set

of portfolios, each one designed to capture one from a grid of target characteristic vectors. Instead

of capitalization-weighting for the portfolios, we use kernel-weighting, where the kernel weights are

constructed to trade-o¤ portfolio diversi�cation against the distance of each asset�s characteristic

vector from the target vector.

We choose M distinct target values for each of the J characteristics, where the values must

include the two values used to set the scale of the factors, zero and one, and these are listed �rst

and second. Let cm;j;m = 1; : : : ;M; j = 1; : : : ; J denote the chosen values, which are assumed to

lie in the interior of the support of the random vector C. The grid of target characteristic vectors

consists of all H = MJ combinations of the M chosen target values over the J characteristics: Now

collect all the target vectors together, and denote a typical member of this set by ch = (ch1 ; : : : ; c
h
J)
>;

where h = 1; : : : ; H: Thus each ch is a J-vector of target characteristics, where a given h corresponds
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to a unique vector (m1; : : : ;mJ) and vice versa. Collect the observed characteristics for �rm i into

J-vectors Ci = (Ci1; : : : ; CiJ)>; i = 1; : : : ; n: One can also take a di¤erent number of target values

for each characteristic but we avoid this extra complication for notational reasons.

Let !hi be �localizing�weights, depending only on the data through Ci; that concentrate on values

close to the vector ch; and de�ne the local weighted portfolio return as

brht = brt(ch) = nX
i=1

!hirit: (4)

From the perspective of �nance, this can be viewed as the return on a well-diversi�ed portfolio

designed to have (approximately) the target characteristics ch. From the perspective of statistical

theory, brht can be interpreted as a nonparametric estimator of the conditional expectation of rit given
Ci = c

h: To construct the weights !hi we use the local linear smoother approach [Fan and Gijbels

(1996)]. This method is favoured because of its attractive statistical properties like good boundary

behavior and less dependence on the covariate distribution. Let k be a (kernel) density function with

�nite second moment, and let K(u1; : : : ; uJ) =
QJ
j=1 k(uj) be the product kernel; we take k to be

the standard Gaussian density function. Then de�ne the least squares criterion function

nX
i=1

�
rit � a0 � a>(Ci � ch)

�2
K((Ci � ch)=b); (5)

where b = b(n) is a scalar bandwidth, while a0 and a = (a1; : : : ; aJ) are local intercept and local

slope parameters. Let ba0;ba be the minimizing values, which are explicit linear functions of rit of the
form (4):We let brht = ba0; and the weights !hi in (4) are correspondingly de�ned. There is an explicit
formula for these weights given in Fan and Gijbels (1996). They are similar in some respects to the

weights for the standard kernel estimator: they sum to one, but they need not be all positive. In

practice however most weights are positive for reasonable sample sizes and the magnitude of negative

weights when they do arise is small. One could avoid negative weights altogether by �tting instead

a local constant procedure.

In our empirical application we vary bandwidth with the location ch and time period t, typically

enlarging bandwidths out in the tails where there is less data. For simplicity, we ignore this in the

theoretical derivation and treat the bandwidth as �xed over ch. It would also be possible to have a

multivariate bandwidth that di¤ers across the characteristics.

Now we show that the kernel-based portfolio returns converge to linear combinations of factor

returns, with asymptotically normal and independent residuals. To do this, we apply a result from

kernel regression theory, see Masry (1996). For each t de�ne the function rt(c) = fut+
PJ

j=1 gj(cj)fjt

for any J-vector c = (c1; : : : ; cJ)>. Using (1) it follows immediately that
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rit = rt(Ci) + "it: (6)

For a given t, equation (6) can be viewed as a multivariate nonparametric regression problem. Our

kernel-based portfolio return for characteristic combination h is the local linear estimate of rt(ch):

In order to describe the statistical properties of brht we make some assumptions about the data
generating process, although it should be noted that we do not need a full speci�cation. We only rely

on large cross-section asymptotics, and so do not need to fully specify the time series dependence.

We assume that the observed characteristic J-vectors of the assets Ci; i = 1; : : : ; n are independent

and identically distributed across i. Let p(c) denote the marginal density function of Ci evaluated at

the point c; and let C denote the support of Ci. We further suppose that

Assumption A. The vector "i = ("i1; : : : ; "iT )> is independently distributed across i = 1; : : : ; n;

and satis�es E("i">i jCi = c) =Diagf�21(c); : : : ; �2T (c)g with probability one, where each function �2t (�)
is continuous at all points ch 2 C. Furthermore, for some � > 0; E[j"itj2+�] < 1 for all t: The

regression functions rt(�) are twice continuously di¤erentiable at all points ch 2 C; while the density
function p is continuous and strictly positive at each ch 2 C:The bandwidth satis�es b = �n�1=(J+4)

for some � with 0 < � <1:
De�ne for each t; ch;

�2ht = jjKjj22
�2t (c

h)

p(ch)
; � t(c

h) =
1

2
�2(k)

JX
j=1

@2rt
@c2j

(ch); (7)

where jjKjj22 =
R
K(u)2du and �2(k) =

R
k(t)t2dt: Then let br; r be the stacked TH � 1 vectors

containing all the brht and r(ch); and let � be the vector containing all the � t(ch) in the same order.
Lemma 1. Suppose that Assumption A holds. Then as n!1;

(nbJ)1=2(br � r � b2�) =) N(0;
); where 
 = diagf�2htg 2 RTH�TH :

The central limit theorem for brt(ch) is coming from the cross-sectional independence of the error

terms; this assumption is su¢ cient but not necessary. Indeed in Connor and Korajczyk (1993) a

weaker type of cross-sectional dependence, i.e., a mixing condition, was allowed. Lemma 1 carries

over to this case provided the cross-sectional mixing coe¢ cients decline fast enough. To obtain

the joint asymptotic distribution over all time points we have assumed that "it is a martingale

di¤erence sequence with respect to time, so uncorrelated over time, but we do not rule out other

sorts of temporal dependence in "it like GARCH e¤ects. This assumption is consistent with the usual

e¢ cient market assumptions, and seems like a reasonable assumption to make in this context.2

2In the presence of autocorrelation in "it; the estimates are still asymptotically normal but the asymptotic variance

matrix is no longer diagonal.
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Using Lemma 1, it is easy to create a parallel to FF�s factor return estimates shown in equations

(2) and (3). Consider two target characteristic vectors ch and ch
0
which are equal in all components

except that ch has characteristic j value 1 whereas ch
0
has characteristic j value 0. Using the scaling

assumptions gj(1) = 1 and gj(0) = 0, it is easy to see that the di¤erence in the target factor

betas of the two associated kernel-based portfolios equals one for factor j and zero for all other

factors. Applying Lemma 1, the return di¤erence between these two portfolios provides a consistent,

asymptotically normal estimate of factor return j. From among theH combinations of characteristics,

there are MJ�1 pairs that di¤er only in characteristic j and have values 0 and 1 respectively for this

characteristic. Hence, for each factor j, we have MJ�1 asymptotically independent estimates of the

time t factor return. In parallel with FF, we could use the average across these pairs of matched

portfolio returns as the factor return estimate, that is,

efjt = 1

MJ�1

HX
h=1

(�hj;1 � �hj;0)brht; (8)

where the dummy variable �hj;1(�hj;0) equals one if mimicking portfolio h has target characteristic

one (zero) for factor j and equals zero otherwise. The factor return estimates are consistent and

asymptotically normal, as described in Lemma 2. De�ne for j = 1; : : : ; J and t = 1; : : : ; T :

� fjt =
1

MJ�1

HX
h=1

(�hj;1 � �hj;0)� t(ch) ; �2jt = jjKjj22
1

MJ�1

HX
h=1

(�hj1 � �hj0)2
�2t (c

h)

p(ch)
:

Lemma 2. As n!1; for j = 1; : : : ; J and t = 1; : : : ; T :

(nbJ)1=2( efjt � fjt � b2� fjt) =) N(0; �2jt): (9)

The joint asymptotic distribution of the estimated factors can also be obtained; typically there

is an asymptotic covariance between efjt and efks: The FF-type estimates described in Lemma 2 have
two weaknesses. First, the estimate of each factor return uses information from only a subset of

the kernel-based portfolios and are ine¢ cient as we show below. Second, the estimator only gives

estimates of the factor returns, not the factor betas. In the next section we present an alternative

estimator that uses information from all the kernel-based portfolios simultaneously and produces

joint estimates of all the factor returns and of all the factor beta functions evaluated at the target

characteristics. The corresponding estimator bfjt is more e¢ cient than efjt:
2.3 Joint Estimation of the Factor Beta Functions and Factor Returns

Using Nonlinear Regression

In this subsection we propose an alternative estimate of the factor returns to (8), and provide

an estimate of the factor betas. We use the kernel-based portfolio returns described in the last
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subsection as dependent variables in a nonlinear regression system. The unknown parameters in this

parameterized system are the realized factor returns and the beta functions evaluated at the target

characteristics. The regression is nonlinear because it includes products of factor returns and factor

betas. The estimator of the factor returns is guaranteed to be more e¢ cient than (8). The estimation

method is a version of minimum distance discussed in Rothenberg (1974); we apply these ideas from

parametric estimation to our semiparametric problem.

Recall from the last subsection the de�nition of the kernel portfolios covering all combinations

of the M target characteristics for each of the J factors over all T time periods. The returns on

all of these kernel-based portfolios can be written as a pooled regression with H �cross-sectional�

observations (in this case �cross-sectional�means across the kernel portfolios not across individual

assets) and T time series observations:

brht = fut + JX
j=1

gj(c
h
j )fjt + buht (10)

buht = JX
j=1

f
nX
i=1

!higj(Cij)� gj(chj )gfjt +
nX
i=1

!hi"it: (11)

Note that in (10) the nonparametric functions gj(�) are each evaluated atM points, corresponding to

each target point ch: The factor model scaling assumptions gj(0) = 0 and gj(1) = 1 imply that g1j = 0

and g2j = 1 for each j. We treat the remaining (M � 2)J components of fgmjg as parameters to
estimate, along with the (J+1)T factor returns ffut; fjtg. Let � denote the q = (M�2)J+(J+1)T -
vector of free parameters arranged in some consistent order, and let �0 be the true vector. We rewrite

(10) as a nonlinear regression equation

brht = fut + JX
j=1

MX
m=1

gmj�hj;mfjt + buht; (12)

where �hj;m is a dummy variable equaling one if mimicking portfolio h has target value cmj for

factor j, and zero otherwise. Viewed as a regression equation, there are a �xed �nite number of

observations HT and q unknowns, where we assume that q < HT ; the error terms in the regression

are asymptotically independent across h; and are individually of small order in probability.

For a chosen parameter vector �, de�ne the predicted values rht(�) = fut+
PJ

j=1

PM
m=1 gmj�hj;mfjt;

and let r(�) be the HT�1 vectors containing the observations rht(�): Then de�ne b�, as any minimizer
of the minimum distance criterion

Qn(�) = (br � r(�))>bV (br � r(�)) (13)
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over � 2 Rq: The weighting matrix bV is a symmetric and positive de�nite HT � HT matrix, for
example bV = IHT : The weighting is included to take account of error heteroscedasticity; it is allowed
to be estimated from the data. The criterion functionQn(�) is a quartic polynomial in the parameters,

and under reasonable conditions will have a global minimum, which will be unique on a suitably

chosen compact set, which we denote by �. This enables us to use an iterative weighted least

squares procedure to �nd the minimum. The actual algorithm we use exploits the bilinear structure

of the regression function (12) and is described in the appendix.3

We next show the statistical properties of the estimator b�: De�ne the HT � q and q� q matrices
�(�) =

@r(�)

@�
; 	(�) = �(�)>V �(�); (14)

and let 	0 = 	(�0) and �0 = �(�0): Now we show that the least squares estimator is consistent and

asymptotically normal.

Theorem 1. Suppose that the weighting matrix bV !p V as n ! 1; where V is a symmetric

positive de�nite matrix : Then, the least squares estimate de�ned by (13) exists with probability tending

to one and b� !p �0. Suppose that 	0 is a nonsingular matrix and that �0 is an interior point of �.

Then, as n!1;

(nbJ)1=2(b� � �0 � b2	�10 �>0 V �) =) N(0;	�10 �
>
0 V 
V �0	

�1
0 ) � N(0;�):

Remarks

1. The asymptotic covariance matrix � in Theorem 1 can be consistently estimated by

b� = b	�1b�bV b
bV b�>b	�1; (15)

where b	 = 	(b�) and b� = �(b�); while b
 = diagfb�2htg is an estimate of 
; where
b�2ht = jjKjj22b�2t (ch)bp(ch)

with bp(ch) = n�1b�JPn
i=1K((Ci� ch)=b) and �̂

2
t (c

h) =
Pn

i=1 !hir
2
it� (

Pn
i=1 !hirit)

2
: Standard errors

for the factors and the betas are then obtained from the square root of the corresponding diagonal

element of b�=nbJ : The matrix b	 can be quite large - in our application it is 1422�1422 - and so
computing b	�1 can be time consuming and subject to numerical rounding error. In the appendix we
discuss how to compute the inverse b	�1 exploiting the sparsity structure in the 	 matrix, thereby

avoiding the direct inversion of a very large matrix.

3We may wish to use only subperiod or even single time period information to estimate �: In the single period case

we would minimize a criterion (brt � rt(�))> bVt(brt � rt(�)) with respect to �; of course, the degree of overidenti�cation
reduces (and hence e¢ ciency worsens) but on the other hand this approach is more robust to time series issues like

structural change etc.
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2. When V = 
�1; we have

� =
�
�0


�1�>0
��1

: (16)

The asymptotic variance in (16) is minimal amongst this class of estimators. The class of estimators

includes all those asymptotically linear combinations of the vector br and so efjt is included in this
class of estimators as a very special case. It follows that bfjt has a smaller asymptotic variance thanefjt. The e¢ cient estimator can be implemented in practice by taking bV = b
�1; where b
 is the

estimator described above. Note that even in this case the matrix � is not diagonal, which says that

estimation of the factors a¤ects in variance terms estimation of the factor betas and vice versa.

3. We have assumed for the asymptotic normality that the matrix 	0 is non-singular. In general

it is di¢ cult to provide primitive conditions to ensure that 	0 is a nonsingular matrix. However, in

the special case of homoskedastic errors a su¢ cient condition is that the vectors g1; : : : ; gJ are not

collinear with themselves or with a vector of ones.

4. We have estimated all the unknown quantities at the rate (nbJ)�1=2; which is the standard

rate for J-dimensional nonparametric regression. However, the quantities fjt can in principle be

estimated at rate n�1=2 since they are e¤ectively parametric, and the quantities gj(:) can in principle

be estimated at rate (nb)�1=2 since their arguments are only one-dimensional, see Stone (1980) and

Bickel, Klaassen, Ritov, and Wellner (1995): The slower rate we have is due to the fact that we

have taken a grid set of cardinality H that does not increase with sample size n: The theory can be

extended to allow H = H(n) ! 1 and hence yield improvements in rate. We have not done this

here because the dataset is so large and so: (a) we are limited in computational time as to how many

grid points to average over, (b) the variance is in any case small.

3 Empirical Analysis

3.1 Data

Except for the addition of recent years, our data is essentially identical to that in FF (1993). The

monthly returns data covers the period July 1963 to June 2002. To be included in the data set during

a given year (July to June) a security must have a complete monthly return record during that year

and a recorded book value of equity and market value of equity in the preceding June. All returns are

measured in excess of the Treasury Bill rate, i.e., the monthly Treasury Bill rate is subtracted from

each security�s raw return. The size (log of market value) and value (log of the book to market ratio)

of each security is �xed for the July-to-June period and comes from the preceding June. The security

returns and equity market values come from the Center for Research In Security Prices monthly

database; the equity book values are from Compustat.
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Table 1 shows some descriptive statistics for the data: the number of securities in the annual cross-

section, and the �rst four cross-sectional moments of the two characteristics. To save space the table

only shows �ve representative years (years 1, 10, 20, 30 and 39 of the sample) and 39-year averages;

the complete table of all individual years is available from the authors. The size characteristic is

leptokurtic and slightly negatively skewed relative to the normal distribution, and the opposite holds

for the value characteristic. There is fairly strong negative cross-sectional correlation between the two

characteristics, large �rms tending to have lower book-to-price ratios than small �rms. The number

of �rms in the cross-section increases substantially over the 39 year time period.

3.2 Implementation

To begin estimation of the model we need to choose a set of target characteristics, a kernel function,

and a bandwidth-setting procedure.

The choice of a set of target characteristics is analogous to FF�s choice of a set of sort portfolios.

FF use three di¤erent sets of sort portfolios: for factor estimation 3�2=6 portfolios, and for test
assets, either 5�5=25 or 10�10=100 portfolios.
For both the size and value characteristics we use target values in the range �2.00 to +3.00

inclusive, spaced at intervals of 0.5, giving eleven target values for each of the two characteristics and

therefore 11�11=121 combinations of the two. The asymmetric range of -2.00 to 3.00 was chosen to
re�ect the importance of very large capitalization stocks and (to a lesser extent) high "value" stocks

in the Fama-French theory. FF (1992, 1993) also use asymmetric rules in the construction of their

sort portfolios, for the same reason. The grid space between target points needs to be narrow enough

to give a rich set of characteristic targets yet wide enough so that there is not excessive overlap

between the target portfolios.

We chose a product Gaussian kernel throughout. The advantage of this kernel is that it is

very smooth and produces nice regular estimates, whereas, say the Epanechnikov kernel produces

estimates with discontinuities in the second derivatives. The product kernel is satisfactory provided

the bandwidths are scaled to the units of the di¤erent covariates, as they are. The bandwidth choice

involves a trade-o¤ between having kernel portfolios whose constituent asset characteristics more

closely match the target values (smaller bandwidth) versus having portfolios with lower asset-speci�c

variance (larger bandwidth). A wider bandwidth gives a more diversi�ed portfolio. A narrower

bandwidth minimizes the overlap between nearby portfolios, and ensures that the characteristics of

each portfolio closely match their target value.

After experimenting with a variety of bandwidth setting methodologies, we decided that a simple

rule-of-thumb procedure like Silverman (1986) worked best. For each target vector in each year, we
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calculated the sample density of the root-mean-squared di¤erences between all the sample charac-

teristic vectors and the target vector. For each target vector in each year we set the bandwidth

equal to the �fth percentile of this sample density. This implies that ninety-�ve percent of the ob-

servations are at least one bandwidth away from the target vector, where distance is measured by

root-mean-square. This simple procedure guarantees that the bandwidth is narrow where the data

set is locally more densely populated (e.g., near the median values of the two characteristics) and

wider where the data set is locally sparse (e.g., near the extreme values of the characteristics). It is

rather like a smooth nearest neighbors bandwidth taking 5% of the data in each marginal window.

The bandwidths range from 0.237 to 3.32 with a mean of 1.11. Figures 1 and 2 display the chosen

bandwidths and relate them to each of the two characteristics.

3.3 The Characteristic-Beta Functions

Table 2 shows the estimates of the characteristic-beta functions at the speci�ed target characteristic

values, and standard errors for each estimate. Note that the standard errors of the beta estimates

are corrected for the joint estimation error in the factor returns, unlike e.g., FF (1993). The standard

errors tend to be larger in the tails, where the data is sparser. The characteristic-beta functions are

displayed in Figures 3 and 4. Recall that both characteristic-beta functions are set to zero at zero

and to one at one, as identi�cation conditions. The pointwise functions from target characteristics

to factor betas are monotonically increasing at all points in both markets. The uniformly positive

slope of the functions has implications for analysis of both the size e¤ect and the value e¤ect in

equity markets. It implies that the marginal return premia should apply across the whole spectrum

of �rms, not just to low-capitalization �rms or to �rms with very low book-to-price ratios. This is

because, under a standard factor beta pricing model, the di¤erence in return premia between two

�rms is proportional to the di¤erence in factor beta.

The characteristic-beta function is relatively �at at the high end of the value characteristic, so

the marginal increase in return premia is small over this region. FF( 1993,1996) argue that the value

factor is related to an economy-wide "�nancial distress" risk in capital market. Note however that we

�nd that the value factor beta function has a steeper slope below zero (�low-value��rms) than above

zero (�high-value��rms). This seems to imply that the value factor betas capture something other

than just sensitivity to �nancial distress. The marginal increase in sensitivity to �nancial distress

for a marginal change in the book-to-price ratio should be fairly small for �low-value��rms.
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3.4 The Estimated Factors

In this subsection we analyze the estimated factors, and compare them to the factor portfolio returns

from the original FF procedure. The FF factors are publicly provided (including updates for recent

history) by Ken French.4 In addition to the value-weighted market index used by FF, we also

include the equally-weighted market index for comparison purposes. Table 3 shows the correlation

matrix for all the factors. There is a very high positive correlation between the pairs of equivalent

factors estimated by the two methods; these are highlighted using bold font. Our unit-beta factor

has extremely high correlation with the equally-weighted market index and high, but not extremely

high, correlation with the value-weighted market index. Brown (1989) shows analytically that the

dominant statistical factor in a large asset market is approximately identical to the equally-weighted

index return; Connor and Korajczyk (1988) show empirically that this near-equivalence holds for

US equity returns with statistically-derived factors. Given these earlier �ndings, the extremely high

correlation between our unit-beta factor and the equally-weighted index return is not surprising.

Note that our "size" factor has a negative correlation with the SMB factor since "size" in our

model is a positive monotonic transformation of capitalization and therefore is de�ned oppositely

from "Small Minus Big" as used by FF. This is merely a sign reversal and has no substantive e¤ect.

An estimated factor return is a linear combination of the sample of asset returns and so it can

be expressed as a vector of "portfolio weights," although these weights will not typically sum to one,

and will di¤er each period. It is possible to compare the FF factors and our factors by examining the

portfolio weights which underlie the estimated factors. Figures 5-8 compare the "portfolio weights"

underlying our size and value factors and the analogous FF factors, for the middle month of the

sample (November 1982). Figures 5 and 6 show the two "size" factor portfolios as functions of

the size characteristic and Figures 7 and 8, the two "value" factor portfolios as functions of the

value characteristic. Other functional representations (each factor portfolio as a function of the

other characteristic, and the market and zero-beta portfolios as a function of each characteristic) are

available from the authors. Note that our estimation methodology results in much more diversi�ed

portfolios than the FF method (in this regard it is important to take note of the di¤ering scales in

the �gures). Due to the capitalization weighting, the FF portfolios are dominated by the relatively

small number of high-capitalization securities.

The remaining analysis in this subsection is based on a simple time-series regression formulation:

each time-series of returns in a panel of asset returns is regressed on an intercept and the time-series

returns of three factors:
4See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for the datasets and details on their construction.

13



rit = b�i + b�i1f1t + b�i2f2t + b�i3f3t + b"it; (17)

whether f1; f2; f3 are either our estimated factors or the three FF factors. For the panel of dependent

variables rit we consider individual securities, portfolios sorted by the characteristics, and industry

portfolios. The performance of the factor model can be judged either by its ability to explain the

time-series of asset returns (small values of b"it), or its ability to explain the cross-section of mean
returns (b�i � 0). We will consider both of these criteria.
We use six sets of dependent variables in the analysis. The �rst set is the full collection of

individual asset returns. The next two sets are 100 portfolios sorted by size and value, provided by

Ken French. The �rst of these uses value-weighting and the second equal-weighting in the portfolio

constructions.5 The fourth and �fth are sets of 30 value-weighted and equally-weighted industry

portfolios, again provided by Ken French. The last set is the 121 kernel portfolios which come from

the �rst stage of our estimation procedure.

Table 4 shows average R-squared statistics and mean-square residuals from the time-series re-

gressions (17) using the six sets of dependent variables. For the individual assets the time-series

regressions are over the 12-month subperiods used to de�ne the balanced panels of assets returns,

and the "averages" are over both assets and years. For the remaining �ve sets of dependent variables

the time-series regression are over the full 39-year period.

The factors estimated by our method outperform the Fama-French factors in terms of explana-

tory power for four of the six cases, the exceptions being the value-weighted sort portfolios and

value-weighted industry portfolios. Using value-weighted portfolios on both sides of (17) induces an

errors-in-variables bias, since the idiosyncratic return of the small number of very high-capitalization

securities appears nonnegligibly in both the factor return estimates and in the asset returns. It is no-

table how much more well-diversi�ed are the 121 kernel portfolios compared to the 100 Fama-French

value-weighted and equally-weighted sort portfolios. This is demonstrated by the much high average

R
2
values when the kernel portfolios are regressed on the factor returns.

In the �rst panel of Table 5, we re-estimate (17) for individual securities after dropping the

intercept and each factor separately. The di¤erence between the adjusted R-squared statistic with

and without a given factor is a simple descriptive measure of the marginal explanatory power of the

factor. We show the average of these di¤erences across all assets. The intercept has no explanatory

power: due to the adjustment for degrees of freedom it actually lowers average R
2
and the average

residual variance. In both cases (our factors and the FF factors), each of the three factors has

nonnegligible explanatory power, with the market factor by far the strongest, then the value factor

5See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for details on the construction of these size and

value sorted portfolios.
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and last the size factor. We use a small sample t-test of the signi�cance of each coe¢ cient, and

calculate the proportion signi�cant at 95% con�dent.

In the next �ve panels we repeat this regression exercise for the other �ve sets of assets. We can

reach no clear conclusions from the comparisons of the aggregated intercept tests: the estimation

and interpretation of the intercepts in this type of factor-return regression is notoriously di¢ cult.

The ability to reject the hypothesis that the intercepts are zero in some cases partly re�ects the very

high power of these tests (note the very high R
2
as shown in Table 4) rather than the magnitude of

the estimated intercepts. On the other hand, we can state de�nitively that each of the three factors

shows a pervasive in�uence on each set of asset returns, with the same ordering of relative in�uence

as for individual assets: market, value, and size. This holds both for the FF factors and our new

estimated factors.

4 Summary

This paper describes a characteristic-based factor model along the lines of the Fama and French

(1993) three-factor model, and develops a new estimation methodology that is a mixture of parametric

and nonparametric methods. The methodology has two steps. The �rst step uses nonparametric

kernel methods to construct mimicking portfolios for a chosen grid of values of the characteristics.

The second step uses parametric nonlinear regression to estimate factor betas and factor returns

simultaneously, using the collection of �rst-step mimicking portfolio returns as the dependent variable.

This new methodology allows for a range of approximate (asymptotic) statistical results not available

with Fama and French�s procedure.

The model is applied to essentially the same dataset as in Fama and French (1993) and the

results are compared. In terms of explanatory power the factors estimated by our method and those

from Fama and French perform comparably, with some evidence for marginal outperformance by our

factors. The mimicking portfolios created by our procedure appear much better diversi�ed than the

bivariate size and value sort portfolios provided by Fama and French.

Unlike the original Fama and French model, our model gives explicit estimates of the relationship

between security characteristics and the associated factor betas. We �nd that for both value and

size these relationships are monotonic, but not linear.

There are a number of possible extensions and applications of our �ndings. Daniel, Grinblatt

and Titman (1997) provide a framework for using characteristic-based benchmarks in performance

measurement. Our newmethodology for the construction of characteristic-based mimicking portfolios

has obvious applications there. Constructing normal performance benchmarks in event studies is a

closely related problem, and our new methodology might prove useful.
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We have assumed that the characteristic-beta functions are constant through time; it would be

interesting and worthwhile to extend the model to allow time-varying betas; both cyclically (possibly

related to business cycle indicators) and in terms of secular trends.

A Appendix

A.1 Proofs

Proof of Lemma 1. Following the arguments of Masry (1996), it can be shown that for each t; ch;

brt(ch)� rt(ch) = nX
i=1

e!hi"it + b2� t(ch) + op(n�2=(J+4));
where e!hi are the weights e!hi = 1

nbJ
1

p(ch)
K

�
Ci � ch
b

�
: (18)

It then follows that for each t; ch, (nbJ)1=2
Pn

i=1 e!hi"it ) N(0; jjKjj22�2t (ch)=p(ch)) by Lindeberg�s
central limit theorem. The estimates brt(ch); brt(ch0) are asymptotically independent for ch 6= ch

0

because of the localizing property of e!hi :
E

"
nX
i=1

e!hi"it nX
i=1

e!h0i"it# = E

"
nX
i=1

e!hie!h0i"2it
#

=
1

nb2J
1

p(ch)p(ch0)

Z
K

�
c� ch
b

�
K

�
c� ch0

b

�
p(c)dc

=
1

nbJ
1

p(ch)p(ch0)

Z
K(u)K

�
u+

ch � ch0

b

�
p(ch + ub)du

=
1

nbJ
o(1);

because:
R
K(u)K

�
u+ ch�ch0

b

�
du ! 0 as n ! 1 for any ch 6= ch0 by dominated convergence, and

p(c) is bounded away from zero and bounded: The independence across time follows from the fact that

"it are uncorrelated, since for t 6= s; E[
Pn

i=1 e!hi"itPn
i=1 e!hi"is] = E[Pn

i=1 e!2hiE ("it"isjCi)] = 0 using
the law of iterated expectation. Therefore we have for any vector � 2 RJ ; (nbJ)1=2�>(br� r� b2�))
N(0; �>
�); which by Cramèr�s theorem implies the result.

Proof of Lemma 2. Consider two combinations ch and ch
0
with j values 1 and 0 respectively

and chj0 = c
h0
j0 for all j

0 6= j. Using the de�nition of rt(�) gives rt(ch)�rt(ch
0
) = fjt. The �nal estimate of

fjt is the average of these di¤erences across allMJ�1 such h, h0 pairs. The distribution limit of a �xed

�nite linear combination of sequences of random variables is the linear combination of the distribution
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limits. By Lemma 1 each sequence has a normal distribution limit and they are asymptotically

independent. Using the formula for the variance of a linear combination of independent random

variables gives (9).

Proof of Theorem 1. Note that given brht and using the de�nition of rht(�), Qn(�) is a
multivariate polynomial in �. Also note that Qn(�) is a sum of squared terms times some positive

weights and therefore is nonnegative everywhere. Hence it has a well-de�ned minimum (which need

not be unique). Since Qn(�) is a multivariate polynomial it has derivatives to every order, and so

when evaluated at any minimum the �rst-order condition

@

@�
Qn(b�) = 0: (19)

must hold. The local uniqueness of the minimizers follows from the fact, discussed below, that the

variables � are not collinear, and are of dimensions less than or equal to the number of observations.

Now we show that b� !p �0. Since Qn(�) is nonnegative and has a minimum at b� we have
0 � Qn(b�) � Qn(�0): Note that Qn(�0) !p 0 as n ! 1; by virtue of the consistency of the
kernel estimator at each point, and therefore Qn(b�) !p 0. We must show that this implies b� !p �.

Recall the de�nition of the target characteristic vectors ch and consider the h0 such that ch
0
= 0J .

For each t consider the term in Qn(b�) associated with h0, and note that 0 � bvt(ch0)(rh0t � brh0t)2 �
Qn(b�) with probability tending to one, because bvt(ch0) has a positive probability limit, and therefore
(rh0t�brh0t)2 !p 0. Using the de�nitions of brh0t and rh0t gives ( bfut�fut�buh0t)2 !p 0, and since buh0t !p 0

this implies bfut !p fut. Next consider h0 associated with the target characteristic vector such that

ch
0
j = 1 and c

h0
j0 = 0 for all j

0 6= j. Using that quadratic functions of probability limits converge we
have (brh0t� rh0t)2 !p 0. Using the de�nitions of brh0t and rh0t gives ( bfut+ bfjt� fut� fjt� buh0t)2 !p 0,

and since buh0t !p 0 and bfut !p fut this implies bfjt !p fjt. Last, we show that brhj !p rhj for

m = 3; : : : ;M; j = 1; : : : ; J . Consider h0 associated with the target characteristic vector such that

ch
0
j = rhj and ch

0
j0 = 0 for all j0 6= j. By the same argument as in the last paragraph we have

( bfut + brhj bfjt � fut � rhjfjt � buh0t)2 !p 0. By assumption there is at least one t such that fjt 6= 0 and
using this t we have ( bfut + brhj bfjt � fut � rhjfjt � buh0t)2 !p 0 implies brhj !p rhj.

Rewriting Qn(�) in matrix form and taking the derivative with respect to ��, evaluated at b�
@

@�
Qn(b�) =

@

@�

�br � r(b�)�> bV �br � r(b�)� (20)

= �2�(b�)bV �br � r(b�)� :
Note that this vector of derivatives equals the zero vector by (19) as proven above. Consider a

�rst-order Mean Value expansion of r(b�) around �0
r(b�) = r(�0) + �>(e�)(b� � �0); (21)
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where e� lies between b� and �0. The appropriate value of e� may di¤er for each element of b� (see
Davidson and Mackinnon (1993) p. 154). Note that br� r(�0) = bu; where bu is the vector with typical
element buht. Inserting (21) into (20), setting it equal to zero, then cancelling and rearranging terms,
gives �(e�)>bV �(b�)(b� � �0) � �(b�)V bu = 0: Because �(�) is a �xed continuous function and e� !p �0

and bV !p V; we obtain

	0(nb
J)1=2(b� � �0)� �0V (nbJ)1=2bu = op(1):

By Lemma 1, (nbJ)1=2(bu�b2�) is asymptotically normal with zero mean vector and covariance matrix

. If the di¤erence in the probability limit of two random variables is zero then their distributional

limits are the same (White (1984), Lemma 4.7, p. 63). Using that 	0 is invertible completes the

proof.

A.2 Estimation Algorithm

Here we describe the estimation algorithmwe use to compute b� = (bg>; bf>)>; where bf = ( bf>u ; bf>1 ; : : : ; bf>J )>
and bg = (bg>

1
; : : : ; bg>

J
)> with bfj; bgj being T � 1 and (M � 2)� 1 vectors respectively. It is an iterative

weighted least squares procedure, a variant on partitioned regression. It is designed to exploit the

bilinear structure and to thereby reduce computational time.

We �rst rewrite the estimating equations to give some insight into its algebraic structure. We

introduce the quantities of interest: f = (f>u ; f
>
1 ; : : : ; f

>
J )

> and g = (g>1 ; : : : ; g
>
J )

T with each fj
being T � 1 and each gj being M � 1: De�ne the corresponding unrestricted elements of g by
g = (g>

1
; : : : ; g>

J
)>; where each g

j
is an (M�2)�1 vector. This removes the zero and one components

of g which are �xed for identi�cation purposes and not estimated parameters. We can also represent

the factor information as f� = (f 1>; : : : ; fT>)>; where f t = (fut; f1t; : : : ; fJt)
> are (J + 1) � 1

parameter vectors, so that f� is just a rearrangement of f:

Suppose that the target values are arranged according to the following order

f(c1;1; : : : ; c1;J); : : : ; (cM;1; : : : ; c1;J); (c1;1; : : : ; c2;J); : : :g; i.e.,

rt(�) =

2666664
fut + f1tg1(c1;1) + f2tg2(c1;2) + � � �

...

fut + f1tg1(cM;1) + f2tg2(c1;2) + � � �
...

3777775 ;
where rt(�) is the H � 1 containing the rht(�) in consistent order. De�ne the H � 1 vector Pu =�

J iM

�
= iM 
 � � � 
 iM and the H �M matrices of zeros and ones:

P1 = (
J�1iM)
 IM ; P2 = (
J�2iM)
 IM 
 iM ; : : : ; PJ = IM 
 (
J�1iM):
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Then

r(�) = fu 
 Pu +
JX
j=1

fj 
 (Pjgj);

where we stack the T vectors rt(�) on top of each other to give r(�): Note that there are the

identi�cation restrictions �xing the �rst two values of each gj; these can be written as

gj = �gj + e2;

where e2 is an M � 2 � 1 vector with one in its second position and zero else and � = (0; IM�2)
>

with 0 representing a (M � 2)� 2 vector of zeros.
Combining these equations we have the following conditional linear relationships:

r(�) = fu 
 Pu +
JX
j=1

fj 
 (Pjgj)

= (IT 
 Pu)fu +
JX
j=1

(IT 
 (Pjgj))fj = Xgf (22)

= (fu 
 IH)Pu +
JX
j=1

(fj 
 IH)Pj�gj +
JX
j=1

(fj 
 IH)Pje2 = Xfg + cf ; (23)

where Xg = IT 
(Pu; P1g1; : : : ; ; PJgJ) is HT �(J+1)T , while Xf = ((f1
IH)P1�; : : : ; (fJ
IH)PJ�)
is HT � (M � 2)J and cf = (fu 
 IH)Pu +

PJ
j=1(fj 
 IH)Pje2 is HT � 1: We exploit this structure

in our estimation algorithm. This is:

1. Choose starting values for f [0]: We use the consistent estimates described in Lemma 2.

2. Estimate g in (23) by weighted least squares using bV ;Xf [0] = ((f
[0]
1 
IH)P1�; : : : ; (f

[0]
J 
IH)PJ�);

g[1] = (X>
f [0]
bV Xf [0])

�1X>
f [0]
bV (br � cf [0]) (24)

3. Estimate f in (22) by weighted least squares using bV ;Xg[0] = IT 
 (Pu; P1g[0]1 ; : : : ; ; PJg
[0]
J );

where g[0]j = �g[0]
j
+ e2;

f [1] = (X>
g[0]
bV Xg[0])

�1X>
g[0]
bV br (25)

4. Continue steps 2 and 3 until convergence criteria is met, e.g., until

jj�[r+1] � �[r]jj < �

for some prespeci�ed small � > 0: Call the �nal value b�:
Note that correct standard errors for bf; bg cannot be obtained from the above algorithm directly;

in the next section we discuss a strategy for obtaining standard errors at minimal computational

cost.
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A.3 Asymptotic Variance and Standard Errors

Here we discuss the form of the asymptotic variance, with a view to computing standard errors. We

must �nd the derivatives of r(�) with respect to the components of � and thence the quadratic forms

	0 and�:Wework with a rearrangement of �; given by � = (g>; f>� )
>; where f� = ((f 1)>; : : : ; (fT )>)>:

De�ne the generic TH � TH diagonal weighting matrix V: Then

	0 =
@r

@�>
V
@r

@�
=

24 @r
@g>V

@r
@g

@r
@g>V

@r
@f�

@r
@f>�
V @r
@g

@r
@f>�
V @r
@f�

35 � " 	gg 	gf�

	f�g 	f�f�

#
; (26)

where 	gg is (M � 2)J � (M � 2)J; 	f�f� is (J + 1)T � (J + 1)T and 	gf� ;	f�g have consistent
dimensions. The asymptotic variance depends on the inverse of this large matrix, which we now seek

to �nd. In practice, 	f�f� has larger dimensions than 	gg; but happily there is an analytical formula

for 	�1f�f� ; which we can exploit. We use the partitioned inverse formula

	�10 =

264
�
	gg �	gf�	�1f�f�	f�g

��1
�
�
	gg �	gf�	�1f�f�	f�g

��1
	gf�	

�1
f�f�

�	�1f�f�	f�g
�
	gg �	gf�	�1f�f�	f�g

��1
	�1f�f�

�
I +	f�g

�
	gg �	gf�	�1f�f�	f�g

��1
	gf�	

�1
f�f�

�
375 :

The general strategy is to compute 	�1f�f� analytically, and then let the computer calculate the inverse

(	gg �	gf�	�1f�f�	f�g)
�1 and everything else, as these are of smaller dimensions.

We have

@r

@fu
= IT 
 Pu ;

@r

@fj
= IT 
 (Pjgj) ;

@rt

@f s
=

(
G if t = s

0 else
;

being HT � T; HT � T; and H � (J + 1) matrices respectively. Here, G = (Pu; P1g1; : : : ; PJgJ): It
follows that:

	f�f� =
@r

@f>�
V
@r

@f�
=

2664
G>V1G 0

0
. . .

0 G>VTG

3775
so that

	�1f�f� =

2664
(G>V1G)

�1 0

0
. . .

0 (G>VTG)
�1

3775 :
This just involves computing T inverses of matrices G>VtG each with dimensions (J + 1)� (J + 1):
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Table 1 
Distributions of the Security Characteristics 

 
Log(market value) Log(book-to-price ratio) Year (five 

selective 
years shown) 

Number of 
securities Mean Variance Skewness Excess 

kurtosis 
Mean Variance Skewness Excess 

kurtosis 

Correlation 
between the 
characteristics 

7/63-6/64 963 3.79 3.44 0.314 -0.373 -0.506 0.781 -4.377 64.024 -0.282 
7/72-6/73 2163 4.21 2.89 0.372 -0.218 -0.477 0.606   -0.575   0.820 -0.350 
7/82-6/83 4002 3.62 3.64 0.342 -0.342 -0.163 0.777 -0.959 2.133 -0.063 
7/92-6/93 4661 4.47 4.15 0.366 -0.242 -0.716 1.133 -1.198 4.522 -0.165 
7/01-6/02 4738 5.40 4.58 0.330 -0.170 -0.615 1.050 -0.284 0.829 -0.490 
Average over 
all years 

3737 4.23 3.63 0.355 -0.221 -0.550 0.823 -1.023 4.691 -.234 

 
For five selected years (the first, last, and three intermediate years at ten-year intervals) the table shows the number of firms, the first four cross-
sectional moments of the unstandardized size and value characteristics, and the cross-sectional correlation between the two characteristics.  The 
last row shows the average across all 39 annual cross-sections. 
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Figure 1
Bandwidths Related to Target Points of the Size 

Characteristic
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The figure shows the 4719 bandwidths (one for each of the 121 kernel portfolios for each of the 39 years) sorted by the target value of the size 
characteristic. 
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Figure 2
Bandwidths Related to Target Points of the Value 

Characteristic
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The figure shows the 4719 bandwidths (one for each of the 121 kernel portfolios for each of the 39 years) sorted by the target value of the value 
characteristic. 
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Table 2 
Estimated Characteristic-Beta Functions 

 Coefficients Standard Errors of the 
Coefficients 

Standardized 
Characteristic 

Size factor 
betas 

Value factor 
betas 

Size factor 
betas 

Value factor 
betas 

-2.0 -1.36683 -2.58113 0.344935 0.843173
-1.5 -1.2521 -2.13233 0.327413 0.730035
-.1.0 -0.98441 -1.53518 0.288445 0.583113
-.5 -0.54118 -0.79766 0.227904 0.411341
-0 0 0  0 0  
.5 0.542428 0.652333 0.126254 0.223383
1.0 1 1  0 0  
1.5 1.326042 1.142241 0.15248 0.282011
2.0 1.524904 1.21038 0.171697 0.298094
2.5 1.63813 1.247786 0.183848 0.309015
3.0 1.705015 1.270598 0.191337 0.316954

 
The table shows the estimated factor betas for each point on the selected grid of characteristic values.  The model is estimated by weighted 
nonlinear regression using a three-factor model that is based on two characteristics (value and size).  The factor betas are set to zero and one for 
standardized characteristic values zero and one (respectively) as an identification condition of the nonlinear regression model.      
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Figure 3 
Characteristic-Beta Function for the Size Characteristic 
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The figure displays the relationship between the size factor betas and the standardised size characteristic; see Table 2 columns one and two. 
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Figure 4 
Characteristic-Beta Function for the Value Characteristic 
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The figure displays the relationship between the value factor betas and the standardised value characteristic; see Table 2 columns one and three. 
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Table 3 

Correlations between the factor returns 
 

 fu fs fv EWMKT VWMKT SMB HML 
fu 1 -0.539 -0.254 0.998 0.840 0.698 -0.220 
fs  1 0.014 -0.523 -0.069 -0.781 0.093 
fv   1 -0.288 -0.430 -0.140 0.789 

EWMKT    1 0.849 0.700 -0.255 
VWMKT     1 0.304 -0.371 

SMB      1 -0.252 
HML 1        

 
The table shows the time-series contemporaneous correlation coefficients between our three factors, fu , fs , fv (unit-beta factor, size factor, and 
value factor), the equally-weighted market index, EWMKT, and the three factors provided by Ken French, VWMKT, SMB and HML 
(capitalization-weighted market index, small-minus-big size factor, and high-minus-low value factor).  The correlations are calculated over the 
468 month sample period and each has an asymptotic standard error of 0.046.  
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Figure 5: Size factor portfolio weights related to size characteristic 
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The figure shows the portfolio weights of the size factor plotted against the size characteristic, for the middle month of the sample (November 
1982). 
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Figure 6: Value factor portfolio weights related to value characteristic 
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The figure shows the portfolio weights of the value factor plotted against the value characteristic, for the middle month of the sample (November 
1982). 
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Figure 7: Fama-French SMB portfolio weights related to size characteristic 
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This figure shows the Fama-French SMB (Small Minus Big) portfolio weights plotted against the size characteristic, for the middle month of the 
sample (November 1982). 

 33 



Figure 8: Fama-French HML portfolio weights related to value characteristic 
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The figure shows the Fama-French HML (High Minus Low) portfolio weights plotted against the value characteristic for the middle month of 
the sample (November 1982). 
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Table 4 
Factor Model Fit Using Time-Series Regressions 

 
Average Adjusted R2 Average Residual Variance  

CL FF CL FF 
Individual Assets .2030 .1935 .02471 .02557 

100 Value-weighted Sort Portfolios .7629 .7639 .00279 .00275 
100 Equally-weighted Sort Portfolios .7943 .7683 .00269 .00278 

30 Value-Weighted Industry Portfolios .5135 .5212 .00119 .00117 
30 Equally-Weighted Industry Portfolios .6446 .6133 .00088 .00102 

121 Kernel Portfolios .9817 0.9035 7.742e-05 4.147e-04 
 
The table reports the average fit from sets of time-series regressions with asset returns as dependent variables and three factors plus intercept as 
independent variables.  We use two alternative sets of factors in the regressions.  The columns labelled CL use the three factors  fu , fs , fv (unit-
beta factor, size factor, and value factor) derived by our model.  The columns labelled FF use the three factors provided by Ken French, 
VWMKT, SMB and HML (capitalization-weighted market index, small-minus-big size factor, and high-minus-low value factor).  The first set of 
dependent variables are all the individual asset returns. The next two sets of dependent variables are 100 value-weighted and equally-weighted 
sort portfolios (doubly sorted by capitalization and book-to-price) provided by Ken French.  The next two are 30 value-weighted and equally-
weighted industry portfolios also provided by Ken French.  The six and final set of dependent variables are the 121 kernel portfolios derived in 
our model. Both R2 and residual variance are degrees-of-freedom adjusted.      
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Table 5 

 Model Fit After Deleting Each Explanatory Variable 
Decrease in 

Average 
Adjusted R2

Increase in Average 
Residual Variance 

Proportion of 
assets rejecting 
the restriction at 
95% confidence 

 Variable 
Deleted 

CL FF CL FF CL FF 
 Intercept .0068 .0126 -2.813e-04 -6.379e-05 .0484 .0528 
 Market  .1109 .0783 2.114e-03 1.528e-03 .2057 .1601 
 Value  .0262 .0303 7.792e-04 1.106e-03 .0885 .0909 

Individual 
Assets: 

 Size  .0130 .0136 3.838e-04 6.179e-04 .0696 .0715 
 Intercept .0025 .0101 1.028e-04 1.342e-04 .2500 .8600 
 Market  .5928 .4647 2.074e-03 1.630e-03 .9800 1.000 
 Value  .0967 .1148 3.007e-04 5.005e-04 .9300 .8600 

100 Value-
Weighted 

Sort 
Portfolios:  Size  .0307 .0427 1.613e-04 1.660e-04 .8600 .8800 

 Intercept .0024 .0094 1.113e-04 1.316e-04 .2800 .8600 
 Market  .6182 .4835 2.240e-03 1.760e-03 .9800 1.000 
 Value  .1028 .1167 3.351e-04 5.341e-04 .9100 .8600 

100 Equally-
Weighted 

Sort 
Portfolios:  Size  .0299 .0495 1.587e-04 1.888e-04 .8700 .8500 

 Intercept .0017 .0066 5.517e-06 2.171e-05 .1389 .5833 
 Market  .4448 .4168 1.540e-03 1.410e-03 .8333 .8333 
 Value  .1105 .0179 3.412e-04 7.091e-05 .8333 .6944 

30 Value-
Weighted 
Industry 

Portfolios:  Size  .0127 .0193 4.939e-05 6.519e-05 .4167 .6667 
 Intercept .0010 .0036 4.339e-06 1.414e-05 .3333 .5278 
 Market  .4250 .3001 1.700e-03 1.190e-03 .8333 .8333 
 Value  .0146 .1551 4.474e-05 6.803e-04 .5556 .8056 

30 Equally-
Weighted 
Industry 

Portfolios:  Size  .0122 .0345 5.186e-05 1.243e-04 .5278 .7222 
 Intercept .0013 .0092 5.623e-05 3.629e-04 .6860 .8843 
 Market  .6575 .5043 2.183e-03 1.635e-03 1.000 1.000 
 Value  .0946 .1859 2.852e-04 8.153e-04 .9835 .9422 

121 Kernel 
Portfolios: 

 Size  .0347 .0496 1.831e-04 1.557e-4 .9669 .7107 
 

The table shows the change in the results for sets of time-series regressions described in 
Table 4 when one of the independent variables is deleted.  Both R2 and residual variance are 
degrees-of-freedom adjusted.  The last two columns summarize the results from the set of t-
tests of the hypothesis that the true coefficient on the associated independent variable is zero.   

 




