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Abstract 

 
 
Let r (x, z) be a function that, along with its derivatives, can be consistently 
estimated nonparametrically.  This paper discusses identification and 
consistent estimation of the unknown functions H, M, G and F, where r (x, z) 
= H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm is proposed 
for each of the model’s unknown components when r (x, z) represents a 
conditional mean function. The resulting estimators use marginal integration, 
and are shown to have a limiting Normal distribution with a faster rate of 
convergence than unrestricted nonparametric alternatives. Their small 
sample performance is studied in a Monte Carlo experiment. We empirically 
apply our results to nonparametrically estimate and test generalized 
homothetic production functions in four industries within the Chinese 
economy. 
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1 Introduction

For vector x ∈ <d and scalar z, let r (x, z) be a function that, along with its derivatives, can be

consistently estimated nonparametrically. As an economic model and to speed convergence rates

by reducing the curse of dimensionality as d increases (see, e.g., Stone (1980) and Stone (1986)),

assume there exist unknown functions H, G and F such that

r (x, z) = H [M (x, z)] = H [G (x) + F (z)] (1.1)

where M (x, z) ≡ G (x) + F (z) and H is strictly monotonic. This paper provides new sufficient

conditions for identification of H, M , G and F . An estimation algorithm is then proposed when

r (x, z) represents a conditional mean function for a given sample {Yi, Xi, Zi}ni=1. We provide limiting

distributions for the resulting nonparametric estimators of each component of (1.1), as well as

present evidence of their small sample performance in a some Monte Carlo experiments and an

empirical application.

This framework encompasses a large class of economic models. For example, the function r (x, z)

could be a utility or consumer cost function recovered from estimated consumer demand functions

via revealed preference theory, or it could be an estimated production or producer cost function.

Chiang (1984), Simon and Blume (1994), Bairam (1994), and Chung (1994) review popular para-

metric examples of (1.1) with H [m] = m, the identity function. In demand analysis, Goldman and

Uzawa (1964) provide an overview of the variety of separability concepts implicit in such specifica-

tions.

Many methods have been developed for the identification and estimation of strongly or addi-

tively separable models, where r (x, z) =
∑d

k=1Gk (xk) + F (z) or its generalized version r (x, z) =

H[
∑d

k=1Gk (xk) + F (z)]. Friedman and Stutzle (1981), Breiman and Friedman (1985), Andrews

(1991), Tjøstheim and Auestad (1994) and Linton and Nielsen (1995) are examples of the former

while Linton and Härdle (1996), and Horowitz and Mammen (2004) provide estimators of the latter

for known H. Horowitz (2001) uses this strong separability to identify the components of the model

when H is unknown, and proposes a kernel–based consistent and asymptotically normal estima-

tor. In contrast with Horowitz, we obtain identification by assuming the link function H is strictly

monotonic instead of by assuming that G has the additive form
∑d

k=1Gk (xk).

A related result is Lewbel and Linton (2006), who identify and estimate models in the special

case of (1.1) where F (z) = z, or equivalently where F (z) is known. Pinkse (2001) provides a

general nonparametric estimator for G̃ in weakly separable models r (x, z) = H̃
[
G̃ (x) , z

]
, however,

in Pinkse’s specification, G̃ is only identified up to an arbitrary monotonic transformation, while

our model provides the unique G and F up to sign–scale and location normalizations, and we attain

faster convergence rates.

One derivation of our model comes from ordinary partly additive regression models in which
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the dependent variable is censored, truncated, binary, or otherwise limited. These are models in

which Y ∗ = G (X) + F (Z) + ε for some unobserved Y ∗ and ε, with ε independent of (X,Z) with

an absolutely continuous distribution function, and what is observed is (Y,X,Z), where Y is some

function of Y ∗ such as Y = Y ∗1 (Y ∗ ≥ 0), or Y = Y ∗|Y ∗ ≥ 0, or Y = 1 (Y ∗ ≥ 0), in which case

r (x, z) = E [Y |X = x, Z = z] or r (x, z) =med[Y |X = x, Z = z]. The function H would then be

the distribution or a quantile function of ε. Threshold or selection equations in particular are

commonly of this form, having Y = 1 [G (X) + ε ≥ −z], where −z is some threshold, e.g., a price or

a bid, with G (X) + ε equalling willingness to pay or a reservation price. See, e.g., Lewbel, Linton,

and McFadden (2002).

Model (1.1) may arise in a nonparametric regression model with unknown transformation of

the dependent variable, F (z) = G (x) + ε, where ε has an absolutely continuous distribution

function H which is independent of x, F is an unknown monotonic transformation and G is an

unknown regression function. It follows that the conditional distribution of Z given X, FZ|X , has

the form H (F (z)−G (x)) ≡ r (z, x), where FZ|X ≡ r (z, x). For this model, Ekeland, Heckman,

and Nesheim (2004) provide an identification result that exploits separability between x and z, but

not the monotonicity of H as we do here. Monotonicity of H holds in this example because H is a

distribution function.

The identification result presented here can also be used for identifying copulas nonparametri-

cally. For example, ‘strict’ Archimedean copulas can be written as in (1.1), where the joint distri-

bution of (X,Z), FXZ (x, z), is such that FXZ (x, z) = φ−1 (φ (FX (x)) + φ (FZ (z))), where FX (x),

FZ (z) represent the marginal distributions of X and Z respectively, φ is a continuous strictly de-

creasing convex function from [0, 1] to [0,∞] such that φ (1) = 0, and φ−1 denotes the inverse. A

collection of one–parameter families of Archimedean copulas can be found in Nelsen (2006).

We also identify and estimate models of the transformed multiplicative form H [M (x, z)] =

H [G (x)F (z)], which are common in the production function literature. Particularly, if z 6= 0 then

a function r (x̃, z) is defined to be ”generalized homothetic” if and only if r (x̃, z) = H [G(x̃/z)F (z)]

where H is strictly monotonic, so by letting x = x̃/z we are providing a nonparametric estimator

of generalized homothetic functions. Ordinary homothetic models, as estimated nonparametrically

by Lewbel and Linton (2006), are the special case in which F (z) = z.

We implement our methodology to estimate generalized homothetic production functions for

four industries in the People’s Republic of China. For this, we have built an R package (see Ihaka

and Gentleman (1996)), JLLprod, containing the functions that implement the techniques proposed

here.

In most of the applications listed above the functions H, G and F are of direct economic

interest, but even when they are not our proposed estimators will still be useful for dimension

reduction and for testing whether or not functions have the proposed separability, by comparing
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r̂ (x, z) with Ĥ[Ĝ (x) + F̂ (z)], or in the production theory context, to test whether production

functions are homothetic, by comparing F (z) = z with F̂ (z). In addition, the more general model

r (x, z, w) = H [M (x, z) , w] can also be identified using our methods when M (x, z) is additive or

multiplicative and H is strictly monotonic with respect to its first argument.

Section 2 sets out the main identification results. Our proposed estimation algorithm is presented

in Section 3. Section 4 analyzes the asymptotic properties of the estimators. A Monte Carlo

experiment is presented in section 5 comparing our estimators to those proposed by Linton and

Nielsen (1995), and Linton and Härdle (1996), both of which use knowledge of H, and with Horowitz

(2001). This section also provides an empirical illustration of our methodology for the estimation of

generalized production functions in four industries within the Chinese economy for the years 1995

and 2001. Finally, Section 6 concludes and briefly outlines possible extensions.

2 Identification

The main identification idea is presented in this section. Observe that (1.1) is unchanged if G and F

are replaced by G+cG and F+cF , respectively, and H (m) is replaced by H̃ (m) = H (m− cG − cF ).

Similarly, (1.1) remains unchanged if G and F are replaced by cG and cF respectively, for some

c 6= 0 and H (m) is replaced by H̃ (m) = H (m/c). Therefore, as is commonly the case in the non-

parametric literature, location and scale normalizations are needed to make identification possible.

We will describe and discuss these normalizations below, but first, we state the following conditions

which are assumed to hold throughout our exposition.

Assumption I:

(I1) Let W ≡ (X,Z) be a (d+ 1)-dimensional random vector with support Ψx ×Ψz, where Ψx ⊆
<d, and Ψz ⊆ <, for some d ≥ 1. The distribution of W is absolutely continuous with respect

to Lebesgue measure with probability density fW (w) > 0 for all w = (x, z) ∈ Ψx×Ψz. There

exists functions r, H, G and F such that r (x, z) = H [G (x) + F (z)] for all w ≡ (x, z) ∈
Ψx ×Ψz.

(I2) (i) The function H is strictly monotonic and H, G and F are continuous and differentiable

with respect to any mixture of their arguments. (ii) F has finite first derivative, f (z), over

its entire support, and f (z0) = 1 for some z0 ∈ int (Ψz). (iii) Let H (0) = r0, where r0 is a

constant. In addition, (iv) Let r (x, z) ∈ Ψr(x,z0) for all w ≡ (x, z) ∈ Ψx ×Ψz, where Ψr(x,z) is

the image of the function r (x, z).

Assumption (I1) specifies the model. The functions M , G and F are not nonparametrically

identified if (X,Z) has discrete elements, a restriction which is common in nonparametric models
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with unknown link function (see Horowitz (2001)). Assumption (I2) defines the location and scale

normalizations required for identification. It also requires that the image of r (x, z) over its entire

support is replicated once r is evaluated at z0 for all x. This assumption implies that s (x, z) ≡
∂r (x, z) /∂z is a well defined function for all w ∈ Ψx×Ψz. Then, for the random variables r (X,Z)

and s (X,Z), define the function q (t, z) by

q (t, z) = E [s (X,Z)| r (X,Z) = t, Z = z] . (2.1)

The assumed strict monotonicity of H ensures that H−1, the inverse function of H, is well

defined over its entire support. Let h (M) = H(1) (M) be the first derivative of H.

Theorem 2.1 Let Assumption I hold. Then,

M (x, z) ≡ G (x) + F (z) =

r(x,z)∫
r0

dt

q(t, z0)
. (2.2)

Proof. It follows from Assumption (I1) that s (x, z) = h [M (x, z)] f (z), so

E [s (X,Z)| r (X,Z) = t, Z = z0] = E [h [M (X,Z)] f (Z)| r (X,Z) = t, Z = z0]

= E
[
h
[
H−1 (r (X,Z))

]
f (Z)

∣∣ r (X,Z) = t, Z = z0

]
= h

[
H−1 (t)

]
f (z0) , and

q (t, z0) = h [H−1 (t)] f (z0). Then using the change of variables m = H−1 (t), and noticing that

h [H−1 (t)] = h (m) and dt = h (m) dm, we obtain

r(x,z)∫
r0

dt

q(t, z0)
=

r(x,z)∫
r0

dt

h [H−1 (t)] f (z0)

=

H−1[r(x,z)]∫
H−1[r0]

h (m) dm

h (m) f (z0)

=
(
H−1 [r (x, z)]−H−1 [r0]

)
(1/f (z0)) = M (x, z) ≡ G (x) + F (z) ,

as required.

In the special case of an identity link function, i.e. H (m) = m, q has a simple form q (t, z0) =

f (z0) ≡ q(z0) which is constant over all t and equals 1 by Assumption (I2). It is clear from the

proof of this theorem that without knowledge of z0 and r0 in Assumptions (I2)(ii) and (I2)(iii), the

function M (x, z) could only be identified up to a sign–scale factor 1/f (z0) and a location constant

H−1 [r0] (1/f (z0)), provided |f (z0)| > 0 and |H−1 [r0]| <∞. In addition, (I2)(iv) assumes a range
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of (X,Z) that is large enough to obtain the function r (X,Z) everywhere in the interval r0 to r (x, z).

This ensures that q exists everywhere on Ψr(x,z) ×Ψz, making M (x, z) identifiable for all x and z.

Lewbel and Linton (2002) also use a similar result (2.2) in the nonparametric censored regres-

sion setup, Y = max [0,M (w)− ε]. Their estimator assumes independence between W and ε

with E (ε) = 0. For the case where their M is partly separable case, Theorem 2.1 above repli-

cates their Theorem 3 (page 769), but with additional normalizations. In particular, q (t, z0) =

Fε [F−1 (t)] f (z0), where Fε is the cumulative distribution function of ε and F (m) =
m∫

−∞
Fε (e) de. As

is in our case, their location constant must be known a priori. The assumed additive separability

with respect to z also adds an extra normalization on Ψz.

For the multiplicative model, M (x, z) = G (x)F (z), which is a more natural representation

of the model in some contexts such as production functions as discussed in the introduction, the

following alternative assumption and corollary provides the necessary identification.

Assumption I∗:

(I∗1) Let W ≡ (X,Z) be a (d+ 1)-dimensional random vector with support Ψx ×Ψz, where Ψx ⊆
<d, and Ψz ⊆ <, for some d ≥ 1. The distribution of W is absolutely continuous with respect

to Lebesgue measure with probability density fW (w) > 0 for all w = (x, z) ∈ Ψx×Ψz. There

exists functions r, H, G and F such that r (x, z) = H [G (x)F (z)] for all w ≡ (x, z) ∈ Ψx×Ψz.

(I∗2) (i) The function H is strictly monotonic and H, G and F are continuous and differentiable

with respect to any mixture of their arguments. (ii) F has finite first derivative, f (z), such

that F (z0) /f (z0) = 1 for some z0 ∈ int (Ψz). (iii) Let H (1) = r1, where r1 is a constant. In

addition, (iv) Let r (x, z) ∈ Ψr(x,z0) for all w = (x, z) ∈ Ψx ×Ψz, where Ψr(x,z) is the image of

the function r (x, z).

Corollary 2.1 Let Assumption I∗ hold. Then,

M (x, z) = G (x)F (z) = exp

 r(x,z)∫
r1

dt

q(t, z0)

 . (2.3)

Proof. See the appendix.

If rl is greater than r (x, z), for any nonnegative constant, rl, then the integrals of the form

∫ r(x,z)rl
above are to be interpreted as −∫ r(x,z)rl

, for l = 0, 1. Once M (x, z) has been pulled out of the

unknown (but strictly monotonic) function H in (2.2) or (2.3), we may recover G and F by standard

marginal integration as in Linton and Nielsen (1995). Let P1 and P2 be deterministic discrete or

continuous weighting functions with Stieltjes integrals
∫

Ψz
dP1 (z) = 1 and

∫
Ψx
dP2 (x) = 1. Let p1
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and p2 be the densities of P1 and P2 with respect to Lebesgue measure in < and <d respectively.

Then

αP1 (x) =

∫
Ψz

M (x, z) dP1 (z) , and αP2 (z) =

∫
Ψx

M (x, z) dP2 (x) .

In the additive model, αP1 (x) = G (x)+c1 and αP2 (z) = F (z)+c2, where c1 =
∫

Ψz
F (z) dP1 (z)

and c2 =
∫

Ψx
G (x) dP2 (x). While in the multiplicative case, αP1 (x) = c1G (x) and αP2 (z) = c2F (z).

Hence, αP1 (x) and αP2 (z) are, up to identification normalizations, the components of M in both

the additive (c = c1 + c2) and multiplicative structures (c = c1 × c2).

Given the definition of r (x, z), it follows that H (M (x, z)) = E [r (X,Z)|M (X,Z) = M (x, z)],

thus the function H may also be identified. If r (x, z) ≡ E [Y |X = x, Z = z] for some random Y ,

then the equality H (M (x, z)) = E [Y |M (X,Z) = M (x, z)] may also be used to identify H.

We could replace the scale–sign normalization in Assumption (I2)(ii) by the assumption that

there is a bounded, non–negative function, ω, such that∫
ω (z0)

f (z0)
dz0 = 1,

with ω integrating to one over its compact support. For the applied researcher, a normalization

restriction such as (I2) is empirically appealing because it entails the selection of a single value rather

than a whole function, and it reduces computation time. These restrictions may also arise from

economic theory. For example, the neoclassical production function of two inputs (say, capitalK and

labor L) with positive, decreasing marginal products with respect to each factor and constant returns

to scale, requires positive inputs of both factors for a positive output. If r (K,L) represents such a

function, r1 = r (0, L) = r (K, 0) ≡ min
K,L

r (K,L) is a natural choice of normalization. Furthermore,

if the production function has a multiplicative structure (see Section 5) with F (L) = L, then

f (L) = 1 and any L0 > 0 may be chosen, thereby providing all the normalizations needed for full

identification.

Strict monotonicity of the link function H plays an important role in these results. Because of

it, the conditional mean of s (x, z) given r and z is a well–defined function, with a known structure

which is separable in z. This contrasts with Horowitz (2001) and Ekeland, Heckman, and Nesheim

(2004), where strict monotonicity is neither assumed nor is it exploited for identification, rather it

is the separability of the partial derivatives of r (x, z) that is used instead. It is also worth noting

that our identification result does not require stochastic variation in s(x, z) (it could be known or

take on random values) once conditioned on r and z.
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3 Estimation

In this section, for the case r (x, z) ≡ E [Y |X = x, Z = z], we describe estimators of M , G, F and H

based on replacing the unknown functions r (x, z), s (x, z) and q (t, z) in (2.2) by multidimensional

smoothers. Since an estimator of the partial derivative of the regression surface, r (x, z) with respect

to z is needed, a natural choice of smoother will be a local polynomial estimator, which produces

estimators for r and s simultaneously. These nonparametric estimators also have better boundary

behavior and the ability to adapt to non–uniform designs, among other desirable properties (see

Fan and Gijbels (1996)).

For a given random sample {Yi, Xi, Zi}ni=1, estimators of M , G, F and H in the additive case,

can be constructed by following these steps:

1) Obtain a consistent estimator of r̂i = r̂ (Xi, Zi) and ŝi = ŝ (Xi, Zi) by local p1-th order poly-

nomial regression of Yi on Xi and Zi with corresponding kernel K1, and bandwidth sequence

h1 = h1 (n) for i = 1, . . . , n.

2) Obtain a consistent estimator of q (t, z), given z0 for all t, by local p2-th order polynomial

regression of ŝi on r̂i and Zi with corresponding kernel K2 and bandwidth sequence h2 = h2 (n)

for i = 1, . . . , n. Denote this estimate as q̂ (t, z0) = Ê[ ŝ|r̂(X,Z) = t, Z = z0].

3) For a constant r0, define an estimate of M (x, z) ≡ G (x) + F (z) by

M̂ (x, z) =

∫ br(x,z)
r0

dt

q̂ (t, z0)
. (3.1)

4) Estimate G (x) and F (z) consistently up to an additive constant by marginal integration,

α̂P1 (x) =

∫
Ψz

M̂ (x, z) dP1 (z) , (3.2)

α̂P2 (z) =

∫
Ψx

M̂ (x, z) dP2 (x) . (3.3)

5) Now for c̃ = (1/2)
[∫

Ψx
α̂P1 (x) dP2 (x) +

∫
Ψz
α̂P2 (z) dP1 (z)

]
, define G̃ (x) = α̂P1 (x) − c̃ ,

F̃ (z) = α̂P2 (z) − c̃ and M̃ (Xi, Zi) ≡ G̃ (Xi) + F̃ (Zi) + c̃, then we can obtain a consistent

estimator of H (m) by local p∗-th polynomial regression of Yi or r̂ (Xi, Zi) on M̃ (Xi, Zi) with

corresponding kernel k∗ and bandwidth sequence h∗ = h∗ (n) for i = 1, . . . , n. Denote this

estimate as Ĥ (m).

For estimating the alternative multiplicative M model instead, replace steps 3–5 above by:
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3∗) For a constant r1, define an estimate of M (x, z) ≡ G (x)F (z) by

M̂ (x, z) = exp

(∫ br(x,z)
r1

dt

q̂ (t, z0)

)
.

4∗) Estimate G (x) and F (z) consistently up to a scale factor by marginal integration,

α̂P1 (x) =

∫
Ψz

M̂ (x, z) dP1 (z) ,

α̂P2 (z) =

∫
Ψx

M̂ (x, z) dP2 (x) .

5∗) Now for c̃ = (1/2)
[∫

Ψx
α̂P1 (x) dP2 (x) +

∫
Ψz
α̂P2 (z) dP1 (z)

]
, define G̃ (x) = α̂P1 (x) /c̃, F̃ (z) =

α̂P2 (z) /c̃, and M̃ (Xi, Zi) ≡ G̃ (Xi) F̃ (Zi) c̃, then we can obtain a consistent estimator of

H (m) by local p∗-th polynomial regression of Yi or r̂ (Xi, Zi) on M̃ (Xi, Zi) with corresponding

kernel k∗ and bandwidth sequence h∗ = h∗ (n) for i = 1, . . . , n. Denote this estimate as Ĥ (m).

We can immediately observe how important the joint–unconstrained nonparametric estimation

of r and s is in step 1. They are not only used for estimating q in step 2, but r along with the

preset r0 (r1) also define the limits of the integral in (3.1) in step 3 (3∗). Operationally, because

of estimation error in step 1, the function q̂ (t, z0) is only observed for t ∈ range (r̂ (Xi, z0)), but

we continue it beyond this support for step 3 (3∗) using linear extrapolation, with slope equal to

the derivative of q̂ at the corresponding end of the support (this choice of extrapolation method

does not affect the resulting limiting distributions). (3.1) is then easily evaluated using numerical

integration. Convenient choices of P1 (z) and P2 (x), in (3.2) and (3.3), are Fz (z) and Fx (x), which

are the distribution functions of Z and X respectively. We can replace them by their empirical

analogs, F̂z (z) and F̂x (x), yielding α̂1 (x) ≡ n−1
∑n

i=1 M̂ (x, Zi) and α̂2 (z) = n−1
∑n

i=1 M̂ (Xi, z).

Finally, notice that Ĥ in step 5 (5∗) involves a simple univariate nonparametric regression.

Known Link Function

In many practical situations, especially with binary and survival time data, the conditional distri-

bution of Y given (X,Z) belongs to a known family with a known link function H. For example, the

logit and probit link functions are common for binary data, and the logarithm transform for Poisson

count data; see McCullagh and Nelder (1989). If the known H is twice continuously differentiable

such that h (M) = H(1) (M) ≡ ∂H (m) /∂m|m=M 6= 0 over its entire support, the function q (t, z0)

in Theorem 2.1 and Corollary 2.1 can be replaced by qadd (t) ≡ h [H−1 (t)] in the additive case, or by

qmult (t) ≡ h [H−1 (t)]H−1 (t) in the multiplicative one, so a scale normalization is then not needed.
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Specifically,

r(x,z)∫
r0

dt

qadd(t)
+H−1 [r0] =

r(x,z)∫
r0

dt

h [H−1(t)]
+H−1 [r0] (3.4)

= H−1 [r(x, z)] = M (x, z) ≡ G (x) + F (z) ,

and similarly

exp

 r(x,z)∫
r1

dt

qmult(t)
+ ln

(
H−1 [r1]

) = exp

 r(x,z)∫
r1

dt

h [H−1(t)]H−1 (t)
+H−1 [r1]

 (3.5)

= H−1 [r(x, z)] = M (x, z) ≡ G (x)F (z) ,

by a change of variables m = H−1 (t), such that dt = h (m) dm. The above equalities hold for

any rl such that H−1 [rl] < ∞ for l = 0, 1, so it does not require a location normalization as well.

Notice that q (t, z0) = qadd (t) (1/f (z0)) and q (t, z0) = qmult (t) (F (z0) /f (z0)) , in the additive and

multiplicative cases respectively.

After replacing the unknown conditional mean function r(x, z), in (3.4) and (3.5), by a local p1-th

order polynomial regression of Y on X and Z with kernel K1, and bandwidth sequence h1 = h1 (n),

we obtain M̂ (x, z) = H−1 [r̂(x, z)], which corresponds to the estimator proposed by Linton and

Härdle (1996) and to that proposed by Linton and Nielsen (1995) for the identity link. In the fully

additive case, G (x) =
∑d

k=1G (xk), they also derive the asymptotic properties of M̂ , Ĝk and F̂ .

Later, in Section 5, we compare the performance of our procedure to that of these two estimators

in the special case where they apply, which is when H is known and d = 1.

4 Asymptotic Properties

This section gives assumptions under which we present theorems providing the pointwise distribution

of our estimators of M , G, F and H for some z = z0 and r = r0. This is done for the additive

case in conditional mean function estimation as described in the previous section. The technical

issues involving the distribution of M and H are those of generated regressors, see Ahn (1995),

Ahn (1997), Su and Ullah (2004), Su and Ullah (2006), and Lewbel and Linton (2006). Once the

asymptotic normal distribution of M is established, the asymptotic properties of G and F will follow

from ordinary marginal integration results.

Assumption E:

(E1) The kernels Kl, l = 1, 2, satisfy K1 = Πd+1
j=1k1 (wj), K2 = Π2

j=1k2 (vj), and kl, l = 1, 2, are

bounded, symmetric about zero, with compact support [−cl, cl] and satisfy the property that

9



∫
< kl (u) du = 1. For l = 1 and 2, the functions Hlj = ujKl (u) for all j with 0 ≤ |j| ≤ 2pl + 1

are Lipschitz continuous. The matrices Mr and Mq, multivariate moments of the kernels K1

and K2 respectively (defined in the appendix), are nonsingular.

(E2) The densities fW of Wi, and fV of Vi for W>
i ≡

(
X>
i , Zi

)
and Vi ≡ (ri, Zi) respectively are

uniformly bounded and they are also bounded away from zero on their compact support.

(E3) For some ξ > 2, E[|εr,i|ξ] <∞, E[|εq,i|ξ] <∞, and E[|εr,iεq,i|ξ] <∞ where εr,i = Yi−r (Xi, Zi)

and εq,i = Si − q (ri, Zi). Also, E
[
ε2
r,i

∣∣Xi = x, Zi = z
]
≡ σ2

r (x, z), be such that νP1 (x) ≡∫
p2

1 (z) σ2
r (x, z) f−1

W (x, z) q−2 (r, z0) dz <∞ and νP2 (z) ≡
∫
p2

2 (x)σ2
r (x, z) f−1

W (x, z) q−2 (r, z0)

dx <∞.

(E4) The function r (·) is (p1 + 1) times partially continuously differentiable and the function q (·) is

(p2 + 1) times partially continuously differentiable. The corresponding (p1 + 1)-th or (p2 + 1)-

th order partial derivatives are Lipschitz continuous on their compact support.

(E5) The bandwidth sequences h1, and h2 go to zero as n→∞, and satisfy the following conditions:

(i) nhd+1
1 h

2(p2+1)
2 → c ∈ [0,∞),

(ii) n1/2hd+1
1 h2

2/ lnn→∞, n1/2h
2(p1+1)
1 h−2

2 → 0,

(iii) nhd+1
1 h

2(p1+1)
1 → c ∈ [0,∞), and nhd+1

1 h2p1
1 h2

2 → c ∈ [0,∞).

Assumptions (E1)–(E4) provide the regularity conditions needed for the existence of an asymp-

totic distribution. The estimation error εq,i, in Assumption (E3), is such that E[εq,i| r (Xi, z) =

r, Zi = z] = 0. However, E [εq,i|Xi = x, Zi = z] 6= 0, so we write εq,i = gq (x, z) + ηi, where

E [ηi|Xi = x, Zi = z] = 0 by construction. Assumption (E4) ensures Taylor–series expansions to

appropriate orders.

Let ν1n = n−1/2h
−(d+1)/2
1

√
lnn+hp1+1

1 and ν2n = n−1/2h−1
2

√
lnn+hp2+1

2 , then by Theorem 6 (page

593) in Masry (1996a), max
1≤j≤n

‖ r̂ (Wj)− r (Wj) ‖= Op (ν1n), max
1≤j≤n

‖ ŝ (Wj)− s (Wj) ‖= Op

(
h−1

1 ν1n

)
and sup

v
‖ q̂ (v) − q (v) ‖= Op (ν2n) if the unobserved {V1, . . . , Vn} were used in constructing q̂.

Because {V̂1, . . . , V̂n} were used instead, the approximation error is accounted for in Assumption

(E5)(ii), which implies that (h−1
2 ν1n)

2 = o(n−1/2h−1
2 ) and so h−1

2 ν1n = o (1), where the appearance

of h−1
2 is because of the use of Taylor–series expansions in our proofs. Assumption (E5) permits

various choices of bandwidths for given polynomial orders. For example, if p1 = p2 = 3, we could

set h1 ∝ n−1/9, and h2 = bb × h1 when d = 1, for a nonzero scalar bb, as in our Monte Carlo

experiment in Section 5. More generally, in view of Assumption (E5)(iii), h1 ∝ n−1/[2(p1+1)+d] and

h2 ∝ n−1/[2p2+3] will work for a variety of combinations of d, p1, and p2.
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Theorem 4.1 Suppose that Assumption I holds. Then, under Assumption E, there exists a bounded

continuous function B (x, z) such that√
nhd+1

1

(
M̂ (x, z)−M (x, z)− B (x, z)

)
d→ N

[
0,

σ2
r (x, z)

q2 (r, z0) fW (x, z)

[
M−1

r ΓrM
−1
r

]
0,0

]
,

where [A]0,0 means the upper-left element of matrix A.

Proof. The proof of this theorem, along with definitions of each component, is given in the

appendix.

We should mention that there are four sources of biases, defined in the appendix, i.e. B (x, z) =

hp1+1
1 B1 (x, z)+hp11 h2B2 (x, z)+hp2+1

2 B3 (x, z)+hp1+1
1 B4 (x, z), where B3 corresponds to the ordinary

nonparametric bias of q̂ if the unobserved r and s were used instead in step 2, and B4 corresponds to

the standard nonparametric bias while calculating r̂ in step 1 weighted by q−1 (r, z0). B1 and B2 are

because of the use of generated regressor r̂, and generated response ŝ in constructing q̂ respectively

in step 2.

Given this result, E{M̂ (x, z)}−M (x, z) = O(hp1+1
1 )+O(hp11 h2)+O(hp2+1

2 ) and V ar{M̂ (x, z)} =

O(n−1h
−(d+1)
1 ), and these orders of magnitude also hold at boundary points by virtue of using local

polynomial regression in each step. By employing generic marginal integration of this preliminary

smoother, as described in step 4, we obtain by straightforward calculation the following result:

Corollary 4.1 Suppose that Assumption I holds. Then, under Assumption E√
nhd1

(
α̂P1 (x)− αP1 (x)−

∫
B (x, z) dP1 (z)

)
d→ N

[
0, νP1 (x)

[
M−1

r Γ1
rM

−1
r

]
0,0

]
, (4.1)√

nh1

(
α̂P2 (z)− αP2 (z)−

∫
B (x, z) dP2 (x)

)
d→ N

[
0, νP2 (z)

[
M−1

r Γ2
rM

−1
r

]
0,0

]
. (4.2)

where [A]0,0 means the upper-left element of matrix A.

Proof. Given the normality of M̂ , the proof follows immediately from results in Linton and Nielsen

(1995) and Linton and Härdle (1996), and therefore is omitted.

Our procedure is similar to many other kernel–based multi–stage nonparametric procedures in

that the first estimation step does not contribute to the asymptotic variance of the final stage

estimators. See, e.g. Linton (2000) and Xiao, Linton, Carroll, and Mammen (2003). However,

the asymptotic variances of M̂ (x, z), α̂P1 (x) and α̂P2 (z) reflect the lack of knowledge of the link

function H through the appearance of the function q in the denominator, which by Assumption I is

bounded away from zero and depends on the scale normalization z0, and the conditional variance

σ2
r (x, z) of Y . They can be consistently estimated from the estimates of r (x, z0), q (r, z0) in steps 1

11



and 2, and σ2
r (x, z). For example, if Pi, l = 1, 2, are empirical distribution functions, the standard

errors of α̂P1 (Xi) and α̂P2 (Zi) can be computed as

ψ1 (k1) σ̂
2
rn

−1

n∑
j=1

[
f̂W (Xi, Zj) q̂

2 (r (Xi, Zj) , z0)
]−1

f̂Z (Zj) , and

ψ2 (k1) σ̂
2
rn

−1

n∑
j=1

[
f̂W (Xj, Zi) q̂

2 (r (Xj, Zi) , z0)
]−1

f̂X (Xj)

respectively, in which ψl (k1) ≡
[
M−1

r ΓlrM
−1
r

]
0,0

for l = 1, 2, f̂W , f̂X and f̂Z are the corresponding

kernel estimates of fW , fX and fZ , while σ̂2
r = n−1

∑n
i=1 [Yi − r̂ (Xi, Zi)]

2 or σ̂2
r = n−1

∑n
i=1[Yi −

Ĥ(M̃ (Xi, Zi))]
2.

Our estimators are based on marginal integration of a function of a preliminary (d+ 1)-dimensional

nonparametric estimator, hence the smoothness of G and F we require must increase as the dimen-

sion of X increases to achieve the rate n−p1/(2p1+1), which is the optimal rate of convergence when

G and F have p1 continuous derivatives (see Stone (1985) and Stone (1986)).

Now consider H. Define ΨM(x,z) = {m : m = G (x) + F (z) , (x, z) ∈ Ψx ×Ψz}. If G and F

were known, H could be estimated consistently by a local p∗–polynomial mean regression of Y on

M (X,Z) ≡ G (X) + F (Z). Otherwise, H can be estimated with unknown M by replacing G (Xi)

and F (Zi) with estimators in the expression for M (Xi, Zi). This is a classic generated regressors

problem as in Ahn (1995). Denote these by α̂P1 (Xi) and α̂P2 (Zi), with M̃i ≡ α̂P1 (Xi)+ α̂P2 (Zi)− c̃
and Mi ≡ αP1 (Xi) + αP2 (Zi) − c. Let h† = max(hp1+1

1 , hp2+1
2 , hp11 h2), then max

1≤j≤n
‖ M̃j −Mj ‖=

Op (ν†n), where ν†n = n−1/2h
−d/2
1

√
lnn+ h†.

To obtain the limiting distribution of Ĥ, make the following additional assumption:

Assumption F:

(F1) The kernel k∗ is bounded, symmetric about zero, with compact support [−c∗, c∗] and satisfies

the property that
∫
< k∗ (u) du = 1. The functions H∗j = ujk∗ (u) for all j with 0 ≤ j ≤ 2p∗+1

are Lipschitz continuous. The matrix MH , defined in the appendix, is nonsingular.

(F2) Let fM be the density of M (X,Z), which is assumed to exist, to inherit the smoothness

properties of M and fW and to be bounded away from zero on its compact support.

(F3) The bandwidth sequence h∗ goes to zero as n→∞, and satisfies the following conditions:

(i) nh
2(p∗+1)+1
∗ → c ∈ [0,∞), nh∗h

2
† → c ∈ [0,∞),

(ii) n1/2hd1h
3/2
∗ / lnn→∞, and n1/2h2

†h
−3/2
∗ → 0.
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Assumptions (F1) to (F3) are similar to those in Assumption E. As before, Assumption (F3)(ii)

implies that (h−1
∗ ν†n)

2
= o(n−1/2h

−1/2
∗ ) and also that (h−1

∗ ν†n) = o (1). Assumption (F3) imposes

restrictions on the rate at which h∗ → 0 as n→∞. They ensure that no contributions to the asymp-

totic variance of Ĥ are made by previous estimation stages. Let σ2
H (m) = E [ε2

r|M (X,Z) = m],

then we have the following theorem:

Theorem 4.2 Suppose that Assumption I holds, then, under Assumption E and F, there exists a

bounded continuous function BH (·), such that

√
nh∗

(
Ĥ(m)−H(m)− BH (m)

)
d→ N

(
0,
σ2
H (m)

fM (m)

[
M−1

H ΓHM−1
H

]
0,0

)
,

for m ∈ ΨM(x,z), where [A]0,0 means the upper-left element of matrix A.

Proof. The proof of this theorem, along with definitions of each component, is given in the

appendix.

When p∗ = 1, h∗ admits the rate n−1/5 when h1 and h2 are chosen as suggested above when

d = 1, as it is done in the application and simulations in Section 5. In which case, BH (·) simplifies to

the standard bias from a univariate local linear regression. Standard errors can be easily computed

from the formula above. By evaluating Ĥ at each data point, the implied estimator of r̂ (Xi, Zi) =

Ĥ[M̃ (Xi, Zi)] is Op(n
−1/2h

−(d−1)/2
1 ), for large h1 and d, which can be seen by a straightforward

local Taylor–series expansion around M (Xi, Zi). That is, our proposed methodology has effectively

reduced the curse of dimensionality in estimating r by 1 with respect to its fully unrestricted

nonparametric counterpart. In the next section, we compare the performance of our estimator to

that of Horowitz (2001).

5 Numerical Results

5.1 Simulations

In this section, we describe Monte Carlo experiments to study the finite sample properties of the

proposed estimator, and compare its performance with that of direct competitors in two leading

scenarios: When the link function is known and the case when it is not. Code for these simulations

was written in GAUSS. Our experimental designs are not chosen resemble common economic models,

but rather to emphasize performance issues. For simplicity we restrict attention to d = 1.
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5.1.1 Known Link Function

We first compare the performance of our estimator to those of Linton and Nielsen (1995) and Linton

and Härdle (1996). These alternative estimators are not fully efficient, but they do use knowledge

of the link function. Hence, they provide a strong benchmarks for comparison with our estimator.

The first set of experiments are as follows: A number, n, of observations (Y,X,Z) are generated

from Y = r (X,Z) + σr · ε, where the distributions of x and z are U [0, 1], ε is chosen independently

of X and Z with a standard normal distribution, and r (x, z) = H [M (x, z)] where M (x, z) =

G (x) + F (z) with

G (x) = (1/2) sin (2πx)

F (z) = −2z2 + 2z − 1/3.

The curvature and non-monotonicity of G and F provide a test for the estimators described in

Section 3. Notice that neither G nor F is homogeneous and both are chosen such that E [G (X)] =

E [F (Z)] = 0. Also, at z0 = 1/4, we have f (z0) = 1. For each scenario, σ2
r = 1 and σ2

r = 2, two

specifications of H are used,

H [m] = m (5.1)

H [m] = ln
(
m+

√
1 +m2

)
+ 3. (5.2)

In constructing our estimators M̂ , Ĝ, F̂ and Ĥ, we use the second order Gaussian kernel ki (u) =(
1/
√

2π
)
exp (−u2/2), i = 1, 2, ∗. The integral in M̂ in step 2 of section 3, is evaluated numerically

using the trapezoid method. We also fix p1 = 3, p2 = 1 and p∗ = 1. We use the bandwidth

h1 = ccŝWn
−1/9, where cc is a constant term and ŝW is the squared root of the average of the

sample variances of Xi and Zi. This bandwidth is proportional to the optimal rate for 3rd order

local polynomial estimation in the first stage, and for simplicity h2 is fixed as 3h1. The bandwidth

h∗ is set to follow Silverman’s rule (1.06n−1/5 times the squared root of the average of the regressors

variances). Three different choices of cc are considered: cc ∈ {0.5, 1, 1.5}.

Each function is estimated on a 50× 50 equally spaced grid in [0, 1]× [0, 1] when n = 150, and

at another 60 × 60 uniform grid on the same domain when n = 600. Two criteria summarizing

goodness of fit, the Integrated Root Mean Squared Error (IRMSE) and Integrated Mean Absolute

Error (IMAE), are calculated at all grid points and then averaged. Tables 1 and 2 report the median

of these averages over 2000 replications for each design, scenario and bandwidth. For comparison we

also report on these tables (on the first column from the left under each fitting criteria respectively)

the results obtained using the estimators proposed by Linton and Nielsen (1995) for H design

(5.1), and Linton and Härdle (1996) for H design (5.2). These were constructed using the same

unrestricted first stage nonparametric regression r employed by our estimator.
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As seen in the Tables, for either sample size, lack of knowledge of the link function increases the

fitting error of our estimator by roughly 5 to 85 percent relative to estimates using that knowledge.

For each scenario, the IRMSE and IMAE decline as the sample size is quadrupled for both sets of

estimators, at somewhat similar, less than
√
n rates. Larger bandwidths produce superior estimates

for all functional components in all designs. In the estimation of the additive components, G and F ,

the fitting criteria of Linton and Nielsen (1995) and Linton and Härdle (1996) are of approximately

the same magnitude, while the proposed estimator has a smaller IRMSE and IMAE when estimating

F relative to estimates of G. There does not seem to be a dramatic difference in estimates of

H between estimators in both designs. All sets of estimates deteriorate as expected when σr is

increased.

5.1.2 Unknown Link Function

As noted earlier, when d = 1, model (1.1) is nested in the class of models Horowitz (2001) considers.

We therefore compare our estimator with his in this specific case. We first replicate the Horowitz

(2001) original experiment1 which is as follows: 1000 observations (Y,X,Z) are generated from

Y = 1 (G (X) + F (Z)− ε > 0), where ε ∼ N (0, 1), X ∼ N (0, 16) and Z ∼ N (0, 16), independent

of each other. The functions G, F and H are2

G (x) = 3 sin
(π

3
x2
)

,

F (z) = 3 [exp (0.35z)− 1] , and

H (m) = Φ (m) ,

where Φ is the standard normal distribution function. This is a binary probit model, where

Pr (Y = 1|X = x, Z = z) = Φ (G (x) + F (z)) ≡ r (x, z).

Horowitz (2001) (NP2) uses the following fourth and second order kernels to estimate G, F and

H:

K (u) =
105

64

(
1− 5u2 + 7u4 − 3u6

)
1 (|u| ≤ 1) ,

KH (u) =
15

16

(
1− u2

)2
1 (|u| ≤ 1) .

The weight functions used to calculate Ĝ, F̂ and Ĥ are w2 (x) = KH (x), w1 (z) = (1/2)KH (z/2),

and wH (x, z) = w2 (x)w1 (z) respectively. He also uses bandwidths h11 = 6, h21 = 5, and hH =

3.25. He chose these bandwidths through Monte Carlo experimentation to approximately minimize

the unweighted integrated mean-square errors of his estimators of G, F and H. The additional

1The computer code we wrote to implement Horowitz (2001) estimator, was not fast enough to conduct simulations
on as large a scale as the previous experiment.

2In Horowitz (2001) notation: F ≡ f1, G ≡ f2, and H ≡ G, with x1 ≡ z, x2 ≡ x and v ≡ m.
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bandwidths his estimator needs are set using his suggested rule–of–thumb hk2 = hk1n
−1/72 for

k = 1, 2.

We implement our proposed estimator (NP1) for this design, using a second order Gaussian

kernel as before, with p1 = 0, p2 = 1, and p∗ = 1. We find the optimal bandwidths h1 = 0.925,

h2 = 2.5 and h∗ = 0.2 for this design by Monte Carlo experimentation as Horowitz (2001) did.

Figure 1 shows the standardized Q–Q plots of both set of estimators at different points in the

interior of the support of each function. These points are sufficiently far from the boundary of the

data to avoid boundary effects for both estimators. These plots are based on 300 replications. We

observe that the normal approximation of our estimator for G and F are better than Horowitz’s at

the chosen points. Similar results (not presented) hold for other points in the interior of the support

of (X,Z) for G and F . The normal approximation of our estimator for H is similar to Horowitz’s

for low values of m, while it outperforms Horowitz’s for higher values.

Finally, Figure 2 displays a visualization of the resulting output of 5000 replications of a fourth

design using only our procedure. Data are generated as before with the same G and F , but now

usingH [m] = 1+(16/7)m, with σ2
r = 1. Other information is set accordingly, in particular n = 400,

h1 = 0.15, h2 = 0.7, p1 = 3, and p2 = 1. The white plane and dashed lines represent medians of

simulations and gray planes and dotted lines represent 90% simulation envelopes.

5.2 Generalized Homothetic Production Function Estimation

Let y be the log output of a firm and (x̃, z) be a vector of inputs. Going back at least as far as

Shephard (1953) and Shephard (1970), many parametric production function models of the form

y = r∗ (x̃, z) + εr∗ have been estimated that impose either linear homogeneity (constant returns

to scale) or homotheticity for the function r. In the homogenous case, corresponding to known

H (m) = m, see, e.g., Bairam (1994) and Chung (1994) for parametric models, and Tripathi and

Kim (2003) and Tripathi (1998) for fully nonparametric options. Zellner and Ryu (1998) provide

empirical comparisons of a large number of different homothetic production functional forms. In the

nonparametric framework3, Lewbel and Linton (2006) presents an estimator for a homothetically

separable function r∗.

Consider the following generalization of homogeneous and homothetic functions:

Definition 5.1 A function M∗ : Ψw ⊂ <d+1 → < is said to be generalized homogeneous on Ψw if

3Other examples of nonparametric estimators include Varian (1984) and Primont and Primont (1994). Also,
Hanoch and Rothschild (1972) provides a test to verify whether a homothetic production function exists that could,
without statistical errors, generate a given data set. Although these papers do not assume a parametric form, by
assumption they have no statistical errors. Consequently, they also have no associated distribution theory.
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and only if the equation M∗ (λw) = g (λ)M∗ (w) holds for all (λ,w) ∈ <++×Ψw such that λw ∈ Ψw.

The function g : <++ → <++ is such that g (1) = 1 and ∂g (λ) /∂λ > 0 for all λ.

Definition 5.2 A function r∗ : Ψw ⊂ <d+1 → < is said to be generalized homothetic on Ψw if

and only if r∗ (w) = H [M∗ (w)], where H : < → < is a strictly monotonic function and M∗ is

generalized homogeneous on Ψw.

Homogeneity of degree κ and homotheticity are the special cases of definitions 5.1 and 5.2,

respectively, in which the function g takes the functional form g (λ) = λκ. Given a generalized

homothetic production function we have

r∗ (x̃, z) = H [M∗ (x̃, z)] = H
[
M∗ (x̃/z, 1) g (1/z)−1]

= H [G (x)F (z)] = H [M (x, z)] ≡ r (x, z) , (5.3)

where x = x̃/z and F (z) = 1/g (1/z). WhenH is assumed known and equal to the identity function,

Tripathi and Kim (2003) and Tripathi (1998) use the assumption that M (x, z) is a homogeneous

function of degree one, i.e. F (z) = 1/z, to identify the model and achieve dimension reduction.

Lewbel and Linton (2006) uses the same functional assumption regarding F but with an unknown

strictly monotonic link function H. In contrast, our proposed estimator identifies M , G, F and H

in models such as (5.3), i.e. y = r (x, z) + εr, without imposing any such parametric specification

of F , instead exploiting the partial separability of M with respect to z and f (z) > 04. Like these

other estimators, our estimator reduces the dimensionality by one as described earlier.

We have constructed an R package, JLLprod, which can be freely downloaded from the author’s

websites. The package includes access to an Ecuadorian production data set5, and to the Chinese

data set described below. We use this software to estimate generalized homothetic production

functions for four industries in mainland China in two time periods, 1995 and 2001. For each firm

in each industry we observe the net value of real fixed assets K, the number of employees L, and

Y defined as the log of value-added real output. K and Y are measured in thousands of Yuan

converted to the base year 2000 using a general price deflator for the Chinese economy. For details

regarding the collection and construction of this data set, see Jefferson, Hu, Guan, and Yu (2003).

We consider both nonparametric and parametric estimates of the production function r (k, L) ∈
P , which is a set of smooth production functions, and k = K/L as in (5.3). To eliminate extreme

outliers (which in some cases are likely due to gross measurement errors in the data) we sort the

data by k and remove the top and bottom 2.5% of observations in each industry and year. Both

regressors are also normalized by their respective median prior to estimation.

4As ∂g (λ) /∂λ > 0, and λ = z−1, it follows that F (z) is strictly increasing, i.e. f (z) = ∂F (z) /∂z > 0 over its
entire domain.

5This is data on 406 firms in the Petroleum, Chemical and Plastics industries in Ecuador in 2002.
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5.2.1 Parametric Modeling

Consider a general production function (P1) in which log output Y = rψP1
(k, L) + εr, where rψP1

is an unrestricted quadratic function in ln (k) and ln (L+ γ), so

rψP1
(k, L) = θ0 + θ1 ln (k) + θ2 ln (L+ γ) + θ3 [ln (k)]2

+ θ4 ln (k) ln (L+ γ) + θ5 [ln (L+ γ)]2 , (5.4)

and ψP1 = (θ0, θ1, θ2, θ3, θ4, θ5, γ)
>. When γ = 0, (5.4) reduces to the ordinary unrestricted Translog

production function. When 2θ1θ5− θ2θ4 = 0 and θ2
1θ5− θ2

2θ3 = 0, (5.4) is equivalent to the following

generalized homothetic production function (P2) specification,

M (k, L) = kα (L+ γ)

rψP2
(k, L) = H (M) = β0 + β1 ln (M) + β2 [ln (M)]2 , (5.5)

where ψP2 = (α, β0, β1, β2, γ)
>. If we impose both (P2) and γ = 0, then the model reduces to

M (k, L) = kαL

rψP3
(k, L) = H (M) = β0 + β1 ln (M) + β2 [ln (M)]2 , (5.6)

where ψP3 = (α, β0, β1, β2)
>, which is the homothetic Translog production function proposed by

Christensen, Jorgenson, and Lau (1973).

Figure 3 shows isoquants for P2 with ψP2 = (1/2, 10, 1/2, 1, γ)>, where γ = −1, 0,+1. At any

level of output, these isoquants are steeper at high levels of k for negative γ than for positive γ.

However, as in the (P3) homothetic case of γ = 0, the slopes of these level surfaces are constant

along rays through the origin. This important property of homothetic models is preserved by the

generalized homothetic specification (P2).

Fitting these models by nonlinear least squares in each year yields the parameter estimates

reported in Tables 3–5 (Heteroskedasticity robust standard errors are in parentheses).

Specification Test

Two sets of parametric restrictions are tested on model (5.4) for each year and industry. In order to

assess whether model (5.4) may be further simplified by (5.5), H0 : 2θ1θ5−θ2θ4 = 0; θ2
1θ5−θ2

2θ3 = 0

is tested by means of a Wald statistic, W12 which is distributed under H0 as χ(2). The further

simplification (5.6) is also tested by a Wald statistic, W13, which under the H0 : 2θ1θ5 − θ2θ4 = 0;

θ2
1θ5 − θ2

2θ3 = 0; γ = 0, is distributed as χ(3). The results of these tests are presented below.
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Industry 1995 2001

W12 p-value W13 p-value W12 p-value W13 p-value

Chemical 1.280 0.527 2.244 0.523 17.286 0.000 1,095 0.000

Iron 8.834 0.012 14.261 0.003 2.272 0.321 2.343 0.504

Petroleum 1.790 0.409 3.076 0.380 0.791 0.673 0.813 0.846

Transportation 1.735 0.420 1.997 0.573 7.980 0.019 8.252 0.041

Models (5.5) and (5.6) appear to be valid parametric simplifications of the production function

(5.4), except for the iron industry in 1995 and the chemical and transportation industries in 2001.

The suitability of the parametric Generalized Homothetic and Homothetic Translog production

function fits, r bψP2
(k, L) and r bψP3

(k, L), in these industries may be also judged by the use of a residual

based test. For this purpose, we employ the test proposed by Zheng (1996) for the hypothesis

H0 : r ∈ P {r ∈ P| r = rψPl
for some ψPl}. For l = 2, 3, their test statistics are given by

UPl =
1

λ2n2

n∑
i=1

n∑
j=1
j 6=i

(
Yi − r bψPl

(ki, Li)
)(

Yj − r bψPl
(kj, Lj)

)
K

(
kj − ki
λ

)
K

(
Lj − Li

λ

)
, (5.7)

with kernel K (·), the Gaussian kernel here, and bandwidth λ, set equal to h1 in all cases. Given

standard regularity conditions, under the null hypothesis that the parametric specification is correct,

nλUPl ∼ N

(
0, 2

∫
K2 (u) du

∫ [
σ2
r (k, L) p (k, L)

]2
dkdL

)
. (5.8)

Replacing integrals by sums and unknown functions by their nonparametric estimates in (5.7) and

(5.8), we obtain the following test results:

Industry 1995 2001

λ UP2 p-value λ UP2 p-value

Chemical 5.125 -0.7698 0.7793 2.25 -0.4728 0.6818

Iron 4.250 -0.7532 0.7743 4 -0.7367 0.7693

Petroleum 2.750 -0.8117 0.7915 11 -0.7325 0.7681

Transportation 1.750 -0.6519 0.7428 4.37 -0.7124 0.7619

λ UP3 p-value λ UP3 p-value

Chemical 5.125 -0.7721 0.7800 2.25 -0.4130 0.6602

Iron 4.250 -0.7195 0.7641 4 -0.7417 0.7709

Petroleum 2.750 -0.8088 0.7907 11 -0.7327 0.7681

Transportation 1.750 -0.6503 0.7422 4.37 -0.7065 0.7601
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We fail to reject both H0 for all industries in both years at any level of significance. In all cases,

test results are not altered by the choice of smoothing parameter λ. Both sets of tests justify the use

of both models as sensible parametric simplifications of the data6 against which we may compare our

more flexible specification. Other kernel–based specification tests that could be employed include

Bierens (1990), Härdle and Mammen (1993), Gozalo (1993) and Horowitz and Spokoiny (2001).

5.2.2 Nonparametric Modeling

Figures 4 to 11 show generalized homothetic nonparametric estimates M̂ (k, L), Ĝ (k), F̂ (L) and

Ĥ (M) for both years. For each industry and year, we use local quadratic regression with a Gaussian

kernel and bandwidths h1 given by a standard unrestricted leave–one–out cross validation method

for regression functions. In the second stage, we set bandwidth h2 to be the same in local linear re-

gressions across industries and time. We also choose the location and scale normalizations to obtain

estimated surfaces M̂ with approximately the same range, yielding the following normalizations:

Industry 1995 2001

n lnL0 r0 n lnL0 r0

Chemical 1560 3.40 7 1637 3.06 7.0

Iron 376 −0.37 7 341 4.06 8.0

Petroleum 93 2.73 7 119 2.27 8.5

Transportation 989 3.44 7 1230 4.04 7.5

The nonparametric fits of the generalized homogeneous component, M̂ , shown in Figures 4 and

8, are quite similar. They are both increasing in k and L with ranges varying more with labor

than with respect to capital to labor ratios, as we would expect7. Nonparametric estimates of the

functions G and F differ from the parametric Translog model estimates (P3) in Figures 5, 6, 9 and

108, but they are roughly similar to the parametric generalized homothetic model (P2) at low levels

of L. The Nonparametric estimates are all strictly increasing in their arguments, but show quite a

bit more curvature, departing most markedly from the parametric models for F in 1995 and G in

2001 for most industries. Comparing the nonparametric estimator of F in Figures 6 and 10 with the

parametric estimates also provides a quick check for the presence of homotheticity in the data set.

If homotheticity were present, i.e. F (L) = L, all curves would be close to each other, as happens

for the chemical and transportation industry in 1995 and petroleum and transportation industries

in 2001. In any case, they are all strictly increasing functions in labor, implying a generalized

6Although the appropriateness of these parametric models may change through time, see Konishi and Nishiyama
(2002).

7It was a similar observation by Cobb and Douglas (1928) that motivated the use of homogeneous functions in
production theory, see Douglas (1967).

8The means of the observed ranges were subtracted from both sets of curves before plotting.
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homogeneous structure for M as conjectured. Figures 7 and 11 show parametric and nonparametric

fits of the unknown link function H, obtained by a local linear regression of r̂ on M̂ with a normal

kernel and bandwidth h∗ given by Silverman’s rule. They also show fits from the unconstrained

estimator of the function r used in the construction of our estimator in the first stage for each

(k, L) for which M̂ was calculated. The nonparametric fits of r and those of H are quite similar in

all industries and years, indicating that the imposition of generalized homotheticity is reasonable

for these industries. The parametric fits are also broadly similar to the nonparametric ones, but

showing more curvature in 2001 for the chemical and iron industries.

Specification Test

We are interested in testing our proposed nonparametric generalized homothetic specification against

a general unrestricted nonparametric regression alternative, that is H0 : r ∈ P{r ∈ P| r = H[G (k)

F (L)] for some H, G and F}. Given Ĥ, Ĝ and F̂ , the implied restricted estimator of the regression

surface is r̂ (k, L) = Ĥ[Ĝ (k) F̂ (L)]. As before, we employ a U–statistic based test as suggested in

Fan and Li (1996). That is,

UNP =
1

λ2n2

n∑
i=1

n∑
j=1
j 6=i

(Yi − r̂ (ki, Li)) (Yj − r̂ (kj, Lj))K

(
kj − ki
λ

)
K

(
Lj − Li

λ

)
,

which under the null hypothesis that the generalized homothetic specification proposed in this paper

is correct,

nλUNP ∼ N

(
0, 2

∫
K2 (u) du

∫ [
σ2
r (k, L) p (k, L)

]2
dkdL

)
.

The results are as follows:

Industry 1995 2001

λ UNP p-value λ UNP p-value

Chemical 5.125 -0.7702 0.7794 2.25 -0.1448 0.5575

Iron 4.250 -0.7578 0.7757 4 -0.2274 0.5899

Petroleum 2.750 -0.8458 0.8012 11 -0.7334 0.7684

Transportation 1.750 -0.6472 0.7413 4.37 -0.7047 0.7595

As in the parametric case, at all levels of significance we fail to reject the hypothesis that our

specification is a correct nonparametric simplification of the data for all industries and years.
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Substitutability and Returns to Scale

Important properties of production functions are measures of substitutability of inputs and returns

to scale. A standard measure of the substitutability of inputs for production is the Technical Rate of

Substitution, σ∗, defined as the slope of the isoquants in Figure 3, that is, σ∗ = − (dK/dL)|r(k,L)=r,

for some constant level of output r. For an arbitrary production function E [Y | k, L] = r (k, L), an

equivalent measure of input substitutability that is more convenient for our empirical application is

T (k, L) ≡ ln

(
σ∗

k

)
= ln

(
∂r (k, L)

∂ lnL

)
− ln

(
∂r (k, L)

∂ ln k

)
. (5.9)

If r (k, L) is generalized homothetic (NP), so r (k, L) = H [M (k, L)], then T (k, L) = ln(∂ lnF (L) /

∂ lnL) − ln(∂ lnG (k) /∂ ln k). For the parametric generalized homothetic model (P2), this mea-

sure simplifies to T (k, L) = ln (L/ (L+ γ)) − ln (α), and for the Homothetic Translog model (P3)

T (k, L) = − ln (α), a constant.

To estimate T (k, L) in the nonparametric model (NP) we use the approximation T̂ (k, L) =

ln[(ln F̂ (Lj) − ln F̂ (Lj−1))/ (lnLj − lnLj−1)] − ln[(ln Ĝ (kj) − ln Ĝ (kj−1))/ (ln kj − ln kj−1)] after

ordering the estimation grid points j, and approximations for (P2) and (P3) are obtained by re-

placing unknown quantities with their parametric estimates. Table 6 provides their averages along

with standard deviations in parentheses.

Another property of production that is empirically important is economies of scale, defined as

ε∗ (K,L) = (∂r∗ (cK, cL) /∂ ln c)|c=1, which by (5.3), simplifies to ε (k, L) = ∂r (k, L) /∂ lnL. If

r (k, L) is generalized homothetic, then ε (k, L) = RTS (M (k, L) , L) (Returns to Scale), where

RTS (M,L) =
∂H (M)

∂ lnM

∂ lnF (L)

∂ lnL
. (5.10)

For model (P2), RTS (M,L) = [β1 + 2β2 ln (M)] (L/ (L+ γ)), and RTS (M,L) = β1 + 2β2 ln (M)

for the Translog model (P3). These were calculated by replacing the unknown parameters with

their respective parametric estimates. In the nonparametric model this measure is estimated as

R̂TS (M,L) = [(Ĥ(M̂j)−Ĥ(M̂j−1))/(ln M̂j−ln M̂j−1)]×[(ln F̂ (Lj)−ln F̂ (Lj−1))/ (lnLj − lnLj−1)],

using the same ordering as before. Table 7 provides summary statistics for all four industries in

both years.

Calculating these measures in our data set generates mixed results. The parametric model

estimates have similar average T (k, L) in each year, but differ from the nonparametric model

estimates, which show a sizeable increase in 2001 relative to their values in 1995 for all sectors

but the petroleum industry (which may be caused by the small number of observations for this

industry in 1995, n = 93). This industry is also the only one for which the three averages coincide

in 2001, because of the closeness of the parametric models to the nonparametric fit in Figures 9

and 10. However, all models show a reduction in economies of scales for all industries from 1995
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to 2001. Although average increasing returns to scale, RTS (M,L) > 1, are predicted for some

sectors in 1995, no industries show increasing returns in 2001. The chemical and iron industries

seem to have decreasing returns to scale, RTS (M,L) < 1, in 2001, while the remaining sectors

report approximately constant returns to scale, RTS (M,L) ' 1 in 2001.

Economically, homotheticity (P3) generalizes the idea that pure economic profit will be zero.

Since this situation is descriptive of the long–run equilibrium under perfect competition, a possible

explanation for the observed decrease in returns to scale over time may be the substantial ownership

reform during this period. Many more firms in the Chinese industrial sectors were state–owned in

1995 than in 2001, resulting in substantial restructuring of these industries and increased exposure

to competitive pressures. This would explain the move towards constant returns to scale in 2001,

and coupled with the hetereogenity regarding different firms specializing in different products in

each industry may can create the appearance of decreasing returns on average for some industries

in 2001. The changes in production functions over time may more generally be due to changes in

technology, demand, and other aspects of China’s increasing economic liberalization and growth

over this time period.

On caveat regarding these estimates is that they assume inputs are exogenously determined.

Firms with positive productivity shocks may respond by using more inputs, resulting in endogeneity.

More generally, when returns to scale are not constant, selection of input levels will depend in part

on the profit associated with different output levels, again inducing potential endogeneity. In the

next section, we discuss how our estimator could be modified to deal with this potential problem in

a more general framework.

6 Conclusion and Extensions

We have provided a general nonparametric estimator for a transformed partly additive or multiplica-

tively separable model. Its small sample properties were analyzed in some Monte Carlo experiments,

and found to compare favorably with other estimators. We have shown that many popular empirical

models implied by economic theory share this partly separable structure. We empirically applied

our model to estimate generalized homothetic production functions, and tested its validity. We now

conclude by describing some extensions.

Additional Regressors

Consider identification of G (x) and F (z) in the model r (x, z, w) = H [M (x, z) , w] ≡ H[G (x) +

F (z) , w], where H is strictly monotonic on its first element, (x, z) ∈ <d+1, and w ∈ ΨW ⊆ <dw

is a vector of additional regressors. It is straightforward to extend Theorem 2.1 or Corollary 2.1
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in these cases. Specifically, let s (x, z, w) ≡ ∂r (x, z, w) /∂z, and define the function q (t, z, w) by

q (t, z, w) = E[s (X,Z,W )| r (X,Z,W ) = t, Z = z,W = w]. Then, the desired identification is

achieved by replacing q (t, z0) in (2.2) or (2.3) by q (t, z0, w). For example, in the additive case,

s (x, z, w) = h [M (x, z) , w], where h now represents the first derivative of H with respect to its first

argument, and consequently q (r, z) = h [H−1 (r, w) , w] f (z). It follows that

r(x,z,w)∫
r0,w

dt

q (t, z0, w)
=

r(x,z,w)∫
r0,w

dt

h [H−1 (t, w) , w] f (z0)

=

H−1[r(x,z,w),w]∫
H−1[r0,w,w]

h (m,w) dm

h (m,w) f (z0)

=
(
H−1 [r (x, z, w) , w]−H−1 [r0,w, w]

)
(1/f (z0))

=
(
H−1 [H [M (x, z) , w] , w]

)
≡M (x, z) ,

where the second equality follows from the change of variables m = H−1 (t, w), so dt = h (m,w) dm,

and the last equality follows after assuming that f (z0) = 1 and that r0 = H [0, w] for all w. This

result holds for all w ∈ ΨW and (x, z), so it holds in expectation replacing w with W̃ , thereby

yielding

M (x, z) = E

 r(x,z,fW )∫
r
0,fW

dt

q(t, z0, W̃ )

 .

A consistent estimator of M (x, z) and therefore, by virtue of marginal integration, of G (x) and

F (z), is then given by

M̂ (x, z) =
1

n

n∑
i=1

 br(x,z,Wi)∫
r0

dt

q̂ (t, z0,Wi)

 , (6.1)

and a consistent estimator of h is then given by a nonparametric regression of r̂ (x, z, w) on

(M̃ (x, z) , w), as before. The asymptotic properties of these estimators can be analyzed using

similar tools as in Lewbel and Linton (2006).

Endogenous Regressors

Consider estimation of M (x, z) ≡ G (x) + F (z) in the model y = H∗ [M (x, z) , ε] where ε is now

unobserved and H∗ is strictly monotonic in its first argument. If ε is independent of (X,Z),

then r (x, z) = E [Y |X = x, Z = z] = H [M (x, z)], and our estimator can be applied. How-

ever, when some of the covariates (X,Z) are endogenous, and so correlated with ε, estimation

of M (x, z) is still possible, under the following conditions. For an observed vector T of exoge-
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nous covariates9, which may include exogenous elements of (X,Z), define mx (t) = E [X|T = t],

Ux = X −mx (t), mz (t) = E [Z|T = t], Uz = Z −mz (t) and let U = (Ux, Uz). Then by construc-

tion ε|X,Z, T ∼ ε|U, T . Define r (x, z, u) ≡ E [Y |X = x, Z = z, U = u] and H [M (x, z) , u] =

E [H∗ [M (x, z) , ε]|X = x, Z = z, T = t, U = u]. If we then assume that

ε|U, T ∼ ε|U , (6.2)

which is the form of endogeneity analyzed in the control function models of Blundell and Powell

(2003)10, it then follows that r (x, z, u) = H [M (x, z) , u]. If U were observed, then the estimator

proposed in (6.1) could be employed by redefining W as U . Otherwise, U must be estimated, that

is, first estimate m̂x (Ti) and m̂z (Ti) by nonparametric regressions of X and Z on T respectively.

Then compute r̂ as a nonparametric regression of Y on (X,Z, Ûi), and construct (6.1) by replacing

Wi everywhere with Ûi = (Ûx,i, Ûz,i), where Ûx,i = Xi − m̂x (Ti), Ûz,i = Zi − m̂z (Ti). Consistency

of the resulting estimator of the functions M and H will follow from uniform consistency of the

nonparametric estimators involved.

Once M (x, z) is estimated in this way, it can be treated as an observed endogenous regressor,

and estimation of H∗ (or any identifiable functional of H∗ that is of applied interest) then reduces

to estimation of a nonparametric triangular system. Examples of estimators of such systems are

Blundell and Powell (2003), Imbens and Newey (2002) and Chesher (2001).

Further Testing

In production theory, homotheticity of production functions can be assessed by comparing the

estimated component F̂ with the parametric model, F (L) = L. The assumed separability may

also be tested by comparing the unrestricted nonparametric estimator r̂ (k, L) with the implied

estimator for r given by the proposed structure, that is, r̂(M̂ (k, L)). Such tests can be performed

as in Gozalo and Linton (2001), by using asymptotic critical values or by direct implementation

of their bootstrap procedure. Nonetheless, their theoretical justification in our framework would

require considerable further work, and so remains a topic of future research.

9In production theory, they could include investment as in Olley and Pakes (1996), or intermediate inputs as
suggested by Levinsohn and Petrin (2003).

10Assumption (6.2) also yields a nonparametric triangular system similar to Newey, Powell, and Vella (1999) and
Imbens and Newey (2002)
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Appendix A: Main Proofs

Preliminaries

We use the notation as well as the general approach introduced by Masry (1996b). For the sample

{Yi, Xi, Zi}ni=1, let Wi =
(
X>
i , Zi

)>
so we obtained the p1–th order local polynomial regression of Yi

on Wi by minimizing

Qr,n (θ) = n−1h
−(d+1)
1

n∑
i=1

K1

(
Wi − w

h1

)Yi − ∑
0≤|j|≤p1

θj (Wi − w)j

2

, (A-1)

where the first element in θ denotes the minimizing intercept of (A-1), θ0, and

θj =
1

j!

∂|j|r (w)

∂j1w1 · · · ∂jdwd∂jd+1wd+1

.

We also use the following conventions:

j= (j1, . . . , jd, jd+1)
> , j! = j1!× . . .× jd × jd+1!, |j| =

d+1∑
k=1

jk

aj = aj11 × . . .× ajdd × a
jd+1

d+1∑
0≤|j|≤p1

=

p1∑
k=0

k∑
j1=0

· · ·
k∑

jd=0

k∑
jd+1=0

j1+...+jd+jd+1=k

where w = (x>, z)>. Let Nr,(l) = (l + k − 1)!/ (l! (k − 1)!) be the number of distinct k−tuples j

with |j| = l, where k = d+ 1. After arranging them in the corresponding lexicographical order, we

let φ−1
l denote this one-to-one map. For each j with 0 ≤ |j| ≤ 2p1, let

µj (K1) =

∫
<d+1

ujK1 (u) du,

γj (K1) =

∫
<d+1

ujK2
1 (u) du,

γ1
k,l (K1) =

∫
<d

∫
<

∫
<

(ud, u1)
k (ud, ũ1)

lK1 (ud, u1)K1 (ud, ũ1) du1dũ1, and

γ2
k,l (K1) =

∫
<

∫
<d

∫
<d

(ud, u1)
k (ũd, u1)

lK1 (ud, u1)K1 (ũd, u1) duddũd,
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where ud and u1 represent the first d and last element of the d+ 1 vector u respectively. Define the

Nr ×Nr dimensional matrices Mr and Γr, and the Nr ×Nr,(p1+1) matrix Br by

Mr =


Mr;0,0 Mr;0,1 . . . Mr;0,p1

Mr;1,0 Mr;1,1 . . . Mr;1,p1
...

...
...

Mr;p1,0 Mr;p1,1 . . . Mr;p1,p1

 ,

Γr =


Γr;0,0 Γr;0,1 . . . Γr;0,p1

Γr;1,0 Γr;1,1 . . . Γr;1,p1
...

...
...

Γr;p1,0 Γr;p1,1 . . . Γr;p1,p1

 ,Br =


Mr;0,p1+1

Mr;1,p1+1

...

Mr;p1,p1+1

 (A-2)

where Nr =
∑p1

l=0Nr,(l), Mr;i,j and Γr;i,j are Nr,(i)×Nr,(j) dimensional matrices whose (l,m) elements

are µφi(l)+φj(m) and γφi(l),φj(m) respectively. Γ1
r and Γ2

r are defined similarly by the Nr,(i) × Nr,(j)

matrices Γ1
r;i,j, Γ2

r;i,j, whose (l,m) elements are given by γ1
φi(l),φj(m) and γ2

φi(l),φj(m) respectively. The

elements of Mr = Mr (K1, p1) and Br = Br (K1, p1) are simply multivariate moments of the kernel

K1.

Similarly, for the generated sub-sample set {ŝ (Xi, Zi) , r̂ (Xi, Zi) , Zi}ni=1, an estimator of the

function q, defined as q (t, z) = E [S| r (X,Z) = t, Z = z], is obtained by the intercept of the follow-

ing minimizing problem,

Qq,n (θ) = n−1h−2
2

n∑
i=1

K2

(
V̂i − v

h2

)Ŝi − ∑
0≤|j|≤p2

θj

(
V̂i − v

)j

2

,

where V̂i = (r̂i, Zi)
> and v = (t, z)>, define Vi = (ri, Zi)

> accordingly. Let Nq,(l) = (l + k − 1)!/(l!×
(k − 1)!) be the number of distinct k−tuples j with |j| = l, where k = 2. After arranging them in

the corresponding lexicographical order, we let φ−1
l denote this one-to-one map. For each j with

0 ≤ |j| ≤ 2p2, let

µj (K2) =

∫
<2

ujK2 (u) du, and

γj (K2) =

∫
<2

ujK2
2 (u) du.
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Define the Nq ×Nq dimensional matrices Mq and Γq, and the Nq ×Nq,(p2+1) matrix Bq by

Mq =


Mq;0,0 Mq;0,1 . . . Mq;0,p2

Mq;1,0 Mq;1,1 . . . Mq;1,p2
...

...
...

Mq;p2,0 Mq;p2,1 . . . Mq;p2,p2

 ,

Γq =


Γq;0,0 Γq;0,1 . . . Γq;0,p2

Γq;1,0 Γq;1,1 . . . Γq;1,p2
...

...
...

Γq;p2,0 Γq;p2,1 . . . Γq;p2,p2

 ,Bq =


Mq;0,p2+1

Mq;1,p2+1

...

Mq;p2,p2+1

 (A-3)

where Nq =
∑p2

l=0Nq,(l), Mq;j,k and Γq;j,k are Nq,(j) × Nq,(k) dimensional matrices whose (l,m)

elements are µφq;j(l)+φq;k(m) and γφq;j(l),φq;k(m) respectively. The elements of Mq = Mq (K2, p2) and

Bq = Bq (K2, p2) are simply multivariate moments of the kernel K2. To facilitate the proof, let

K2,i (v) be a Nq×1 vector, K(1)
2,i (v) be a Nq×2 matrix, and Mq,n (v) be a symmetric Nq×Nq matrix

such that

K2,i (v) =


K2,i;0 (v)

K2,i;1 (v)
...

K2,i;p2 (v)

 , K(1)
2,i (v) =


K(1)

2,i;0 (v)

K(1)
2,i;1 (v)

...

K(1)
2,i;p2

(v)

 (A-4)

Mq,n (v) =


Mq,n;0,0 (v) Mq,n;0,1 (v) . . . Mq,n;0,p2 (v)

Mq,n;1,0 (v) Mq,n;1,1 (v) . . . Mq,n;1,p2 (v)
...

...
...

Mq,n;p2,0 (v) Mq,n;p2,1 (v) . . . Mq,n;p2,p2 (v)

 ,

where K2,i;l (v) is a Nq,(l) × 1 dimensional subvector whose l0–th element is given by [K2,i;l (v)]l0

= ((Vi − v) /h2)
φq;l(l0) K2((Vi − v) /h2). The Nq,(l) × 1 matrix K(1)

2,i;l (v) has l0 element being the

partial derivative of [K2,i;l (t, z)]l0 with respect to r, and Mq,n;j,k (v) is a Nq,(j) ×Nq,(k) dimensional

submatrix with the (l, l0) element given by

[Mq,n;j,k (v)]l,l0 =
1

nh2
2

n∑
i=1

(
Vi − v

h2

)φq;j(l)+φq;k(l0)

K2

(
Vi − v

h2

)
.

K̂2,i (v) and M̂q,n (v) are defined similarly as K2,i (v) and Mq,n (v) respectively, but with the gen-

erated regressors {r̂i}ni=1 in place of the unobserved variables {ri}ni=1. Let us define the functions

K̃2,i (z) =
∫
h−1

2 K2,i (t, z) dt and ζ (t, z) = ∂ [fV (t, z) q2 (t, z)]
−1
/∂t, which are well defined given
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Assumptions (E1) and (E2). Thus, by integration by parts, it follows that

r(x,z)∫
r0

h−1
2 K(1)

2,i (t, z)
[
fV (t, z) q2 (t, z)

]−1
dt =

{
K2,i (r, z)

[
fV (r, z) q2 (r, z)

]−1 −K2,i (r0, z)×

[
fV (r0, z) q

2 (r0, z)
]−1
}
−

r(x,z)∫
r0

K2,i (t, z) ζ (t, z) dt

≡ %0
i,1 − %0

i,2. (A-5)

Similarly, let us define dQ (t) = 1 (r0 ≤ t ≤ r (x, z)) dt, so we can write∫
h−1

2 K2,i (t, z)
[
fV (t, z) q2 (t, z)

]−1
dQ (t) ≡ %1

i,1 − %1
i,2,

where %1
i,1 and %1

i,2 are like %0
i,1 and %0

i,2 in (A-5), but with K1
2,i (r, z) replacing K2,i (r, z), where

K1
2,i (r, z) =

∫ r
−∞K2,i (s, z) ds, a Nq × 1 vector with well-defined functions as elements by virtue of

Assumption (E1). Furthermore, n−1h2
2

∑n
i=1K1

2,i (r, z) converges to M1
q,0fV (r, z) in mean squared,

where M1
q,0 is aNq×1 vector with l0 element given by

∫
uφq:l(l

0)K1
2 (u) du, andK1

2 (u) =
∫ u
−∞K2 (v) dv.

Similarly, n−1h2
2

∑n
i=1K2,i (r, z) converges in mean squared to M0

q,0fV (r, z).

Let also arrange the Nr,(m) and Nq,(m) elements of the derivatives

Dmr (w) ≡ ∂mr (w)

∂m1w1, . . . , ∂mkwk
, Dmq (v) ≡ ∂mq (v)

∂m1v1, . . . , ∂mkvk
, for |m| = m

as the Nr,(m) × 1 and Nq,(m) × 1 column vectors r(m) (w) and q(m) (v) in the lexicographical order

mentioned above.

Let ι1 = (1, 0, . . . , 0)> ∈ <Nr and ι∗1 = (0, 1, 0, . . . , 0)> ∈ <Nr , then by equation (2.13) (page

574) and Corollary 2(ii) (page 580) in Masry (1996a), we can write

r̂ (w)− r (w) = ι>1 [Mrf (w)]−1 {1 + op (1)}

×

n−1h
−(d+1)
1

n∑
j=1

K1,j (w)

εr,j +
∑

|k|=p1+1

1

k!
Dkr(w) (Wi − w)k

+ γn (w)

 , (A-6)

ŝ (w)− s (w) = h−1
1 ι∗>1 [Mrf (w)]−1 {1 + op (1)}

×

n−1h
−(d+1)
1

n∑
j=1

K1,j (w)

εr,j +
∑

|k|=p1+1

1

k!
Dkr(w) (Wi − w)k

+ γn (w)

 (A-7)

uniformly in w, where

γn (w) ≡ (p1 + 1)n−1h
−(d+1)
1

1

k!

∑
|k|=p1+1

K1,j (w) (Wj − w)k

×
∫ 1

0

{Dkr(w + τ (Wi − w))−Dkr(w)} (1− τ)p1 dτ .
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As before K1,i (w), a Nr × 1 dimensional vector, is defined analogously as K2,i (v) in (A-4), with a

Nr,(l)×1 dimensional subvector with l0–th element given by [K1,i;l (w)]l0 = ((Wi−w)/h1)
φr;l(l0)K1((Wi

− w)/h1), such that n−1h
−(d+1)
1

∑n
j=1K1,j (w) converges in mean squared to Mr,0fW (w). Define

γ (w) = E [γn (w)], then by Proposition 2 (page 581) and by Theorem 4 (page 582) in Masry

(1996a), it follows that

sup
w
|γ (w) | = o(hp1+1

1 ),

sup
w
|h−(p1+1)

1 γn (w)− γ (w) | = hp1+1
1 Op(n

−1/2h
−(d+1)/2
1

√
lnn). (A-8)

Let

βn (w) ≡ n−1h
−(d+1)
1

n∑
j=1

K1,j (w)
1

k!

∑
|k|=p1+1

Dkr(w) (Wi − w)k , and

β (w) = Brr
(p1+1)(w)fW (w) ,

then by Theorem 2 (page 579) in Masry (1996a), it follows that

sup
w
|h−(p1+1)

1 βn (w)− β (w) | = Op(n
−1/2h

−(d+1)/2
1

√
lnn). (A-9)

For the set {Yi, M̃i}ni=1, as discussed in the main text, an estimator of the function H is obtained

by the intercept of the following minimizing problem

QH,n (θ) = n−1h−1
∗

n∑
i=1

k∗

(
M̃i −m

h∗

)[
Yi −

∑
0≤j≤p∗

θj

(
M̃i −m

)j]2

.

Because this is a simple univariate nonparametric regression, its associated matrices MH , M0
H,0,

ΓH , BH , MH,n(m), M̂H,n(m), and vector K∗,i;l(m) have simpler forms. They are as those previously

described but replacing the responses by Yi and the conditioning variables by Mi or M̃i accordingly.

Proof of Corollary 2.1

As before, given Assumption I∗, it follows that s (x, z) = h [G (x)F (z)]G (x) f (z), consequently

q (t, z0) = h [H−1 (t)]H−1 (t) [f (z0) /F (z0)], and using the change of variables m = H−1 (t), after
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noticing that h [H−1 (t)] = h (m) and dt = h (m) dm, we obtain

r(x,z)∫
r1

dt

q(t, z0)
=

r(x,z)∫
r1

F (z0)

h [H−1 (t)]H−1 (t) f (z0)
dt

=

H−1(r(x,z))∫
H−1(r1)

F (z0)

h (m)mf (z0)
h (m) dm

=

[
F (z0)

f (z0)

] [
ln
(
H−1 [r (x, z)]

)
− ln

(
H−1 [r1]

)]
= ln (M (x, z)) ≡ ln (G (x)F (z)) .

This proves the result.

Proof of Theorem 4.1

Rearranging terms, we have

M̂ (x, z)−M (x, z) =

∫ br(x,z)
r0

dt

q̂ (t, z0)
−
∫ r(x,z)

r0

dt

q (t, z0)

=

(∫ br(x,z)
r0

−
∫ r(x,z)

r0

)
dt

q (t, z0)
+

∫ br(x,z)
r0

(
q̂ (t, z0)− q (t, z0)

q̂ (t, z0) q (t, z0)

)
dt.

By mean value expansions of the first term, in the last equality above, and after some manipulation

we obtain,

M̂ (x, z)−M (x, z) l
1

q (r, z0)
(r̂ (x, z)− r (x, z)) +

∫ r(x,z)

r0

q̂ (t, z0)− q (t, z0)

q2 (t, z0)
dt (A-10)

+

∫ br(x,z)
r(x,z)

q̂ (t, z0)− q (t, z0)

q2 (t, z0)
dt−

∫ br(x,z)
r0

(q̂ (t, z0)− q (t, z0))
2

q̂ (t, z0) q2 (t, z0)
dt (A-11)

l M1,n (x, z) +M2,n (x, z) +RM,n (x, z) . (A-12)

The terms in (A-10), M1,n (x, z) and M2,n (x, z), are linear in the estimation error from the two

nonparametric regressions, while the remaining terms in (A-11), RMn (x, z), are both quadratic in

such errors, and thus they will be shown to be of smaller order. M1,n (x, z) is just a constant times

the estimation error of r̂ (x, z), the unconstrained first–stage nonparametric estimator of r (x, z),

and under Assumption E, it can be analyzed directly using Theorem 4 (page 94) in Masry (1996b),

given that q (r (x, z) , z) > 0 over Ψx ×Ψz. That is,√
nhd+1

1

(
M1,n (x, z)− hp1+1

1 B4 (x, z)
) d→ N

[
0,

σ2
r (x, z)

q2 (r, z0) fW (x, z)

[
M−1

r ΓrM
−1
r

]
0,0

]
,

B4 (x, z) =
[
M−1

r Brr
(p1+1) (x, z)

]
0,0
q−1 (r, z0) (A-13)
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where [A]0,0 is the upper-left element of matrix A. In order to analyze the second term, M2,n (x, z),

we first notice that for any two symmetric nonsingular matrices A1 and A2, we have that A−1
1 −A−1

2 =

A−1
2 (A2 − A1)A

−1
1 , which implies

q̂ (t, z)− q (t, z)

q2 (t, z)
= ι>2 M̂−1

q,n (v)
[
q2 (v)

]−1
Ṽq,n (v) + ι>2 M̂−1

q,n (v)
[
q2 (v)

]−1
B̂q,n (v)

= ι>2 M̂−1
q,n (v)

[
q2 (v)

]−1
V̂q,n (v) + ι>2 M̂−1

q,n (v)
[
q2 (v)

]−1
V̂ ∗
q,n (v)

+ ι>2 M̂−1
q,n (v)

[
q2 (v)

]−1
B̂q,n (v)

= ι>2
[
fV (v) q2 (v)Mq

]−1
V̂q,n (v) + ι>2

[
fV (v) q2 (v)Mq

]−1
V̂ ∗
q,n (v)

+ ι>2
[
fV (v) q2 (v)Mq

]−1
B̂q,n (v)

− ι>2
[
fV (v) q2 (v)Mq

]−1
[
M̂q,n (v)− fV (v)Mq

]
M̂−1

q,n (v) V̂q,n (v)

− ι>2
[
fV (v) q2 (v)Mq

]−1
[
M̂q,n (v)− fV (v)Mq

]
M̂−1

q,n (v) V̂ ∗
q,n (v)

− ι>2
[
fV (v) q2 (v)Mq

]−1
[
M̂q,n (v)− fV (v)Mq

]
M̂−1

q,n (v) B̂q,n (v)

≡ Tq,n,1 (v) + Tq,n,2 (v) + Tq,n,3 (v)− Tq,n,4 (v)− Tq,n,5 (v)− Tq,n,6 (v)

where Mq is defined in (A-3). We have also defined Ṽq,n (v) = V̂q,n (v) + V̂ ∗
q,n (v), where the Nq × 1

vectors V̂q,n (v), V̂ ∗
q,n (v), and B̂q,n (v) are

V̂q,n (v) = n−1h−2

n∑
i=1

K̂2,i (v) εq,i,

V̂ ∗
q,n (v) = n−1h−2

n∑
i=1

K̂2,i (v) [Ŝi − Si],

B̂q,n (v) = n−1h−2

n∑
i=1

K̂2,i (v) ∆̂q,i (v) , and

∆̂q,i (v) ≡ q(V̂i)−
∑

0≤|m|≤p2

1

m!
(Dmq) (v) (V̂i − v)m.

Consequently,

M2n (x, z) = Tq,n,1 (x, z) + Tq,n,2 (x, z) + Tq,n,3 (x, z) +Rq,n (x, z) ,

where Tq,n,l(x, z) =
∫
Tq,n,l (t, z0) dQ (t) for l = 1, 2, 3 and dQ (t) = 1 (r0 ≤ t ≤ r (x, z)) dt. These

terms, along with the remainder Rq,n (x, z) =
∑6

l=4

∫
Tq,n,l (t, z0) dQ (t) are dealt with in Lemmas
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B-1 to B-4, from which we conclude that

M2n (x, z) = hp1+1
1 ι>2 M−1

q M0
q,0ι

>
1 M−1

r Br

[
E
[
r(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
r(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]

+ hp11 h2ι
>
2 M−1

q M1
q,0ι

>
1 M−1

r Br

[
E
[
r(p1+1)(X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
r(p1+1)(X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]

+ hp2+1
2 ι>2 M−1

q Bq

r(x,z)∫
r0

q(p2+1) (t, z0)

q2 (t, z0)
dt+ op(n

−1/2h
−(d+1)/2
1 )

= hp1+1
1 B1 (x, z) + hp11 h2B2 (x, z) + hp2+1

2 B3 (x, z) + op(n
−1/2h

−(d+1)/2
1 ). (A-14)

Finally, the last term in (A-12), RM,n (x, z) = Op (ν1n)Op(h
−1
2 ν1n+h−1

1 ν1n+ν2n)+Op((h
−1
2 ν1n+

h−1
1 ν1n + ν2n)

2), by Theorem 6 (page 594) in Masry (1996a) and Lemma B-5. Therefore, it fol-

lows from Assumption (E5) that RM,n (x, z) = op(n
−1/2h

(d+1)/2
1 ). By grouping terms, BM (x, z) ≡

hp1+1
1 B1 (x, z)+hp11 h2B2 (x, z)+hp2+1

2 B3 (x, z)+hp1+1
1 B4 (x, z), we conclude the proof of the theorem.

Proof of Theorem 4.2

As before, we can write

Ĥ(m)−H(m) = ι>∗ M̂−1
H,n(m)ṼH,n(m) + ι>∗ M̂−1

H,n(m)B̂H,n(m)

= ι>∗ [fM(m)MH ]−1 ṼH,n(m) + ι>∗ [fM(m)MH ]−1 B̂H,n(m)

− ι>∗ [fM(m)MH ]−1
[
M̂H,n(m)− fM(m)MH

]
M̂−1

H,n(m)ṼH,n(m)

− ι>∗ [fM(m)MH ]−1
[
M̂H,n(m)− fM(m)MH

]
M̂−1

H,n(m)B̂H,n(m)

= ι>∗ [fM(m)MH ]−1 V̂H,n(m) + ι>∗ [fM(m)MH ]−1 V̂ ∗
H,n(m)

+ ι>∗ [fM(m)MH ]−1 B̂H,n(m)

− ι>∗ [fM(m)MH ]−1
[
M̂H,n(m)− fM(m)MH

]
M̂−1

H,n(b)V̂H,n(b)

− ι>∗ [fM(m)MH ]−1
[
M̂H,n(m)− fM(m)MH

]
M̂−1

H,n(m)V̂ ∗
H,n(m)

− ι>∗ [fM(m)MH ]−1
[
M̂H,n(m)− fM(m)MH

]
M̂−1

H,n(m)B̂H,n(m)

≡ TH,n,1(m) + TH,n,2(m) + TH,n,3(m)− TH,n,4(m)− TH,n,5(m)− TH,n,6(m),
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where

ṼH,n(m) ≡ V̂H,n(m) + V̂ ∗
H,n(m),

V̂H,n(m) = n−1h−1
∗

n∑
i=1

K̂∗,i(m)εr,i,

V̂ ∗
H,n(m) = n−1h−1

∗

n∑
i=1

K̂∗,i(m)[H(Mi)−H(M̃i)], and

B̂H,n(m) = n−1h−1
∗

n∑
i=1

K̂∗,i(m)∆̂H,i(m), with

∆̂H,i(m) ≡ H(M̂i)−
∑

0≤j≤p∗

1

j!
(∂jH (m) /∂mj)(M̂i −m)j.

We analyze the properties of TH,n,l(b), l = 1, . . . , 6 in Lemmas B-7 to B-10, which show that

TH,n,1(m) = Op(n
−1/2h

−1/2
∗ ) and that TH,n,2(m)

p→ BH2 (m), TH,n,3(m)
p→ BH3 (m), where

BH2 (m) ≡ −ι>∗ M−1
H M0

H,0E
[
H(1) (M (X,Z)) β (X,Z)

∣∣H (M (X,Z)) = m
]
,

BH3 (m) ≡ hp∗+1
∗ ι>∗ M−1

H BHH
(p∗+1) (m) ,

with β (w) ≡
∫
B (x, z) dP1 (z) +

∫
B (x, z) dP2 (x) +

∫ ∫
B (x, z) dP1 (z) dP2 (x) which is O (h†) by

construction. By defining BH (m) ≡ BH2 (m) + BH3 (m), the proof is completed.

Appendix B: Technical Lemmas

Lemma B-1 Under Assumption E, we have

sup
t,z
|Tq,n,1 (t, z)| = Op

(
h−1

2 ν1n + n−1/2h−1
2

√
lnn
)

, and (B-1)

r(x,z)∫
r0

Tq,n,1 (t, z) dt = Op

(
n−1/2h

−(d+1)/2
1

)
. (B-2)

Proof. We may rewrite

V̂q,n (t, z) = nh−2
2

n∑
i=1

K2,i (v) εq,i + nh−2
2

n∑
i=1

[K̂2,i (v)−K2,i (v)]εq,i.

Then, by Theorem 5 (page 593) in Masry (1996a), it follows that the first term is

nh−2
2

n∑
i=1

K2,i (v) εq,i = Op

(
n−1/2h−1

2

√
lnn
)

.

39



In the other hand, after a Taylor–series expansion, the second term is bounded by

nh−2
2

n∑
i=1

[K̂2,i (v)−K2,i (v)]εq,i

≤ {n−1h−3
2

n∑
i=1

|K(1)
2,i (t, z)| |εq,i|}max

1≤i≤n
|r̂i − ri|+Op

(
h−2

2 ν2
1n

)
= Op(h

−1
2 ν1n) + op(n

−1/2h
−(d+1)/2
1 ),

by Assumption (E5(ii)). After collecting terms, (B-1) follows.

By using (A-6), we can further write

V̂q,n (v)− Vq,n (v) = [Vq,n,b (v) + Vq,n,c (v) + Vq,n,d (v)] {1 + op (1)}+ op(n
−1/2h

−(d+1)/2
1 ),

where

Vq,n,b (v) ≡ n−2h
−(d+1)
1 h−2

2

n∑
i=1

n∑
j=1

α̃n (Wi,Wj; v) ,

Vq,n,c (v) ≡ n−1h−2
2

n∑
i=1

h−1
2 K(1)

2,i (v) εq,iβ̃n (Wi) , and

Vq,n,d (v) ≡ n−1h−2
2

n∑
i=1

h−1
2 K(1)

2,i (v) εq,iγ̃n (Wi) ;

where, we have defined

α̃n (Wi,Wj; v) ≡ K(1)
2,i (v) ι>1 [Mrf (Wi)]

−1K1,j (Wi) εq,iεr,j ,

β̃n (w) ≡ n−1h
−(d+1)
1 ι>1 [Mrf (w)]−1

n∑
j=1

K1,j (w)
1

k!

∑
|k|=p1+1

Dkr(w) (Wi − w)k , and

γ̃n (w) ≡ n−1h
−(d+1)
1 ι>1 [Mrf (w)]−1 γn (w) .

Thus, we have∫
Tq,n,1 (t, z) dQ (t) = Tq,n,1a + (Tq,n,1b + Tq,n,1c + Tq,n,1d) {1 + op (1)}+ op(n

−1/2h
−(d+1)/2
1 ),
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where

Tq,n,1a =
1

nh2

n∑
i=1

εq,iι
>
2 M−1

q

r(x,z)∫
r0

h−1
2 K2,i (v)

[
fV (v) q2 (v)

]−1
dt,

Tq,n,1b =
1

n2h
(d+1)
1 h2

2

n∑
i=1

n∑
j=1

ι>2 M−1
q

r(x,z)∫
r0

h−1
2 α̃n (Wi,Wj; v)

[
fV (v) q2 (v)

]−1
dt,

Tq,n,1c =
1

nh2
2

n∑
i=1

εq,iι
>
2 M−1

q

r(x,z)∫
r0

h−1
2 K(1)

2,i (v) β̃n (Wi)
[
fV (v) q2 (v)

]−1
dt, and

Tq,n,1d =
1

nh2
2

n∑
i=1

εq,iι
>
2 M−1

q

r(x,z)∫
r0

h−1
2 K(1)

2,i (v) γ̃n (Wi)
[
fV (v) q2 (v)

]−1
dt.

Firstly, by the law of iterated expectations, notice that E [Tq,n,1a] = 0. While using representation

(A-5), we are able to rewrite

Tq,n,1a = n−1h−1
2

n∑
i=1

εq,iι
>
2 M−1

q %1
i,1 + n−1

n∑
i=1

εq,iι
>
2 M−1

q h−1
2 %1

i,2

≡ T (I)
q,n,1a + T (II)

q,n,1a.

By another change of variable and integration by parts, it is not difficult to see that T (II)
q,n,1a =

Op

(
n−1/2h2

)
which is clearly op(n

−1/2h
−(d+1)/2
1 ). Moreover, T (I)

q,n,1a satisfies the Linderberg–Feller

Central Limit Theorem by virtue of Assumption E (see Härdle (1990)), thus T (I)
q,n,1a = Op

(
n−1/2

)
and we conclude that

√
nhd+1

1 Tq,n,1a = op (1).

Now, under Assumptions (E1) – (E5), it is straightforward to extend the proof of Lemmas 3.1

(page 24) and 3.3 (page 26) in Lewbel and Linton (1999) to show that

Tq,n,1b = Op(n
−1h

−(d+1)/2
1 h−1

2 ),

= op(n
−1/2h

−(d+1)/2
1 ).

Let β̃ (w) = ι>1 M−1
r Brr

(p1+1)(w), then

sup
w
|h−(p1+1)

1 β̃n (w)− β̃ (w) | = Op(n
−1/2h

−(d+1)/2
1

√
lnn),
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by (A-9). Therefore, we can write (recall v = (t, z))

Tq,n,1c ≡ T (I)
q,n,1c + T (II)

q,n,1c, where

T (I)
q,n,1c = hp1+1

1 n−1h−2
2

n∑
i=1

εq,iι
>
2 M−1

q

∫
h−1

2 K(1)
2,i (v) β̃ (Wi)

[
fV (v) q2 (v)

]−1
dQ (t) , and

T (II)
q,n,1c = hp1+1

1 n−1h−2
2

n∑
i=1

εq,iι
>
2 M−1

q

×
∫
h−1

2 K(1)
2,i (v) (h

−(p1+1)
1 β̃n (Wi)− β̃ (Wi))[fV (v) q2 (v)]−1dQ (t) .

Recall εq,i = gq (Wi) + ηi with E [ηi|Wi] = 0, then we can further write

T (I)
q,n,1c ≡ T (I−a)

q,n,1c + T (I−b)
q,n,1c , where

T (I−a)
q,n,1c = hp1+1

1 n−1h−2
2

n∑
i=1

gq (Wi) ι
>
2 M−1

q %0
i,1β̃ (Wi)

− hp1+1
1 n−1h−1

2

n∑
i=1

gq (Wi) ι
>
2 M−1

q h−1
2 %0

i,2β̃ (Wi) ,

and T (I−b)
q,n,1c is like T (I−a)

q,n,1c , but with ηi replacing gq (Wi). It follows by Bochner’s Lemma that

T (I−a)
q,n,1c = hp1+1

1 ι>2 M−1
q M0

q,0

[
E
[
ι>1 M−1

r Brr
(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
ι>1 M−1

r Brr
(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]
+ op(n

−1/2h
−(d+1)/2
1 )

= hp1+1
1 B1 (x, z) + op(n

−1/2h
−(d+1)/2
1 ), by Assumption (E5(iii)).

Similarly, by construction T (I−b)
q,n,1c has mean zero and by the Cauchy–Schwarz inequality,

|T (I−b)
q,n,1c | = Op(h

p1+1
1 n−1/2h−1

2 ) +Op(h
p1+1
1 n−1/2)

= op(n
−1/2h

−(d+1)/2
1 ),

by Assumption (E5). With regards to T (II)
q,n,1c, this term may be written as

T (II)
q,n,1c = T (II−a)

q,n,1c + T (II−b)
q,n,1c ,

which are like T (I−a)
q,n,1c and T (I−b)

q,n,1c , but with h
−(p1+1)
1 β̃n (Wi)− β̃ (Wi) replacing β̃ (Wi). Then by using

similar arguments as above, we can show that

T (II−a)
q,n,1c = Op(h

p1+1
1 )Op(n

−1/2h
−(d+1)/2
1

√
lnn) +Op(h

p1+1
1 h2)Op(n

−1/2h
−(d+1)/2
1

√
lnn)

= op(h
p1+1
1 h2) + op(h

p1+1
1 h2

2), by Assumption (E5(ii)),

= op(n
−1/2h

−(d+1)/2
1 ) by Assumption (E5(iii)).
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Define γ̃ (w) = E [γ̃n (w)], then by result (A-8), it follows that

sup
w
|γ̃ (w) | = o(hp1+1

1 ), and

|h−(p1+1)
1 γ̃n (w)− γ̃ (w) | = hp1+1

1 Op(n
−1/2h

−(d+1)/2
1

√
lnn) uniformly over w.

Therefore, we can write

Tq,n,1d = T (I)
q,n,1d + T (II)

q,n,1d,

where T (I)
q,n,1d and T (II)

q,n,1d are like T (I)
q,n,1c and T (II)

q,n,1c, but with γ̃ (Wi) and h
−(p1+1)
1 γ̃n (Wi) − γ̃ (Wi)

replacing β̃ (Wi) and h
−(p1+1)
1 β̃n (Wi)− β̃ (Wi) respectively. Then by the Cauchy–Schwarz inequality,

|T (I)
q,n,1d| = hp1+1

1 op(n
−1/2h

−(d+1)/2
1 ) + hp11 h2op(n

−1/2h
−(d+1)/2
1 ) by Assumption (E5(iii)).

Similarly, by Assumption (E5(ii)),

T (II)
q,n,1d = op(n

−1/2h
−(d+1)/2
1 ).

Thus,
√
nhd+1

1 Tq,n,1d = op (1).

Lemma B-2 Under Assumption E, we have

sup
t,z
|Tq,n,2 (t, z)| = Op

(
h−1

1 ν1n

)
, and (B-3)

r(x,z)∫
r0

Tq,n,2 (t, z) dt = Op

(
n−1/2h

−(d+1)/2
1

)
. (B-4)

Proof. Let Ŝi − Si = |D̂|1,0|r (Xi, Zi)−D|1,0|r (Xi, Zi) |. Then, by Theorem 6 (page 594) in Masry

(1996a),

max
1≤i≤n

|Ŝi − Si| = Op

(
h−1

1 ν1n

)
.

We now write

V̂ ∗
q,n (v) = nh−2

2

n∑
i=1

K2,i (v) (Ŝi − Si) + nh−2
2

n∑
i=1

[K̂2,i (v)−K2,i (v)](Ŝi − Si).

The first term is clearly

nh−2
2

n∑
i=1

K2,i (v) (Ŝi − Si) = Op

(
h−1

1 ν1n

)
uniformly in v.

The second term, after a Taylor–series expansion, is

nh−2
2

n∑
i=1

[K̂2,i (v)−K2,i (v)](Ŝi − Si)

≤ {n−1h−3
2

n∑
i=1

|K(1)
2,i (t, z) |}max

1≤i≤n
|r̂i − ri| max

1≤i≤n

∣∣∣Ŝi − Si

∣∣∣+Op

(
h−1

1 ν1n

)
Op

(
h−2

2 ν2
1n

)
,

= Op

(
h−1

2 ν1n

)
Op

(
h−1

1 ν1n

)
+Op

(
h−1

1 ν1n

)
Op

(
h−2

2 ν2
1n

)
, by Assumption (E5(ii)),

= op(n
−1/2h

−(d+1)/2
1 ).
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Therefore, (B-3) follows immediately.

We can write

V̂ ∗
q,n (v) = [V ∗

q,n,a (v) + V ∗
q,n,b (v) + V ∗

q,n,c (v)] {1 + op (1)}+ op(n
−1/2h

−(d+1)/2
1 )

by using (A-7), where

V ∗
q,n,a (v) ≡ n−2h

−(d+2)
1 h−2

2

n∑
i=1

n∑
j=1

α̃∗n (Wi,Wj; v, w) ,

V ∗
q,n,b (v) ≡ n−1h−2

2

n∑
i=1

K2,i (v) β̃
∗
n (Wi) , and

V ∗
q,n,c (v) ≡ n−1h−2

2

n∑
i=1

K2,i (v) γ̃
∗
n (Wi)

with

α̃∗n (Wi,Wj; v) ≡ K2,i (v) ι
∗>
1 [MrfW (Wi)]

−1K1,j (Wi) εr,j ,

β̃∗n (w) ≡ n−1h
−(d+1)
1 ι∗>1 [MrfW (w)]−1

n∑
j=1

K1,j (w)

× 1

k!

∑
|k|=p1+1

Dkr(w) (Wi − w)k , and

γ̃∗n (w) ≡ n−1h
−(d+1)
1 ι∗>1 [MrfW (w)]−1 γn (w) .

Thus, we have∫
Tq,n,2 (t, z) dQ (t) = (Tq,n,2a + Tq,n,2b + Tq,n,2c) {1 + op (1)}+ op(n

−1/2h
−(d+1)/2
1 ),

where

Tq,n,2a =
h2

n2h
(d+2)
1 h2

2

n∑
i=1

n∑
j=1

ι>2 M−1
q

r(x,z)∫
r0

h−1
2 α̃∗n (Wi,Wj; v)

[
fV (v) q2 (v)

]−1
dt,

Tq,n,2b =
h2

nh1h2
2

n∑
i=1

ι>2 M−1
q

r(x,z)∫
r0

h−1
2 K2,i (v) β̃

∗
n (Wi)

[
fV (v) q2 (v)

]−1
dt, and

Tq,n,2c =
h2

nh1h2
2

n∑
i=1

ι>2 M−1
q

r(x,z)∫
r0

h−1
2 K2,i (v) γ̃

∗
n (Wi)

[
fV (v) q2 (v)

]−1
dt.

Using (A-5), ∫
h−1

2 α̃∗n (Wi,Wj; v)
[
fV (v) q2 (v)

]−1
dQ (t)

≡ α∗n,1 (Wi,Wj; r, r0, z0)− α∗n,2(Wi,Wj; r, r0, z0),
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where

α∗n,1 (Wi,Wj; r, r0, z0) ≡ %1
i,1ι

∗>
1 [MrfW (Wi)]

−1K1,j (Wi) εr,j , and

α∗n,2 (Wi,Wj; r, r0, z0) ≡ %1
i,2ι

∗>
1 [MrfW (Wi)]

−1K1,j (Wi) εr,j .

By the law of iterated expectations, E
[
α∗n,1

]
= E

[
α∗n,2

]
= 0, and by applying a second order U -

statistic theory for random samples (e.g. Powell, Stock, and Stoker (1989)), it is not difficult but

lengthy to show that

Tq,n,2a = Op(n
−1h

−(d+2)/2
1 ) +Op(n

−1h
−(d+2)/2
1 h2).

Thus, by Assumption (E5),
√
nhd+1

1 Tq,n,2a = op (1).

By (A-9),

sup
w
|h−(p1+1)

1 β̃∗n (w)− β̃∗ (w) | = Op(n
−1/2h

−(d+1)/2
1

√
lnn),

where β̃∗ (w) = ι∗>1 M−1
r Brr

(p1+1)(w). Therefore, we can write

Tq,n,2b = T (I)
q,n,2b + T (II)

q,n,2b, where

T (I)
q,n,2b = hp11 n

−1h−1
2

n∑
i=1

ι>2 M−1
q

∫
h−1

2 K2,i (v) β̃
∗ (Wi)

[
fV (v) q2 (v)

]−1
dQ (t) ,

T (II)
q,n,2b = hp11 n

−1h−1
2

n∑
i=1

ι>2 M−1
q

×
∫
h−1

2 K2,i (v) (h
−(p1+1)
1 β̃∗n (Wi)− β̃∗ (Wi))[fV (v) q2 (v)]−1dQ (t) .

Then, by using representation (A-5), we may further write

T (I)
q,n,2b = n−1h−1

2 hp11

n∑
i=1

ι>2 M−1
q %1

i,1β̃
∗ (Wi)− n−1hp11

n∑
i=1

ι>2 M−1
q h−1

2 %1
i,2β̃

∗ (Wi) .

The right hand side of the above expression converges in mean squared to (by Bochner’s Lemma)

T (I)
q,n,2b = hp11 h2ι

>
2 M−1

q M1
q,0

[
E
[
ι>1 M−1

r Brr
(p1+1)(X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
ι>1 M−1

r Brr
(p1+1)(X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]
+ op(n

−1/2h
−(d+1)/2
1 )

= hp11 h2B2 (x, z) + op(n
−1/2h

−(d+1)/2
1 ), by Assumption (E5(iii)).

Furthermore, T (II)
q,n,2b is like T (I)

q,n,2b, but with h
−(p1+1)
1 β̃∗n (w)−β̃∗ (w) replacing β̃∗ (Wi). Then, it follows

by Cauchy–Schwarz inequality, that

|T (II)
q,n,2b| = Op(h

p1
1 h2)Op(n

−1/2h
−(d+1)/2
1

√
lnn) +Op(h

p1
1 h

2
2)Op(n

−1/2h
−(d+1)/2
1

√
lnn),

= Op(h
p1
1 h2)op (h2) +Op(h

p1
1 h

2
2)op (h2) , by Assumption (E5(ii)),

= op(n
−1/2h

−(d+1)/2
1 ) by virtue of Assumption (E5(iii)).
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Consequently,
√
nhd+1

1 Tq,n,2b = Op (1).

Define γ̃∗ (w) = E [γ̃∗n (w)], then by result (A-8), it follows that

sup
w
|γ̃∗ (w) | = o(hp1+1

1 ), and

|h−(p1+1)
1 γ̃∗n (w)− γ̃∗ (w) | = hp1+1

1 Op(n
−1/2h

−(d+1)/2
1

√
lnn) uniformly in w.

Therefore, we can write

Tq,n,2c = T (I)
q,n,2c + T (II)

q,n,2c,

where these two terms are like T (I)
q,n,2b and T (II)

q,n,2b, but with γ̃∗ (Wi) and h
−(p1+1)
1 γ̃∗n (Wi) − γ̃∗ (Wi)

replacing β̃∗ (Wi) and h
−(p1+1)
1 β̃∗n (Wi)− β̃∗ (Wi) respectively. Then by the Cauchy–Schwarz inequal-

ity,

|T (I)
q,n,2c| = Op(h

p1
1 h2)op(n

−1/2h
−(d+1)/2
1 )

+Op(h
p1
1 h

2
2)op(n

−1/2h
−(d+1)/2
1 ) by Assumption (E5(iii)).

Similarly, by Assumption (E5(ii)) and (E5(iii)),

|T (II)
q,n,2c| = Op(h

p1
1 h2)h

p1+1
1 Op(n

−1/2h
−(d+1)/2
1

√
lnn)

+Op(h
p1
1 h

2
2)h

p1+1
1 Op(n

−1/2h
−(d+1)/2
1

√
lnn)

= op(n
−1/2h

−(d+1)/2
1 ).

Thus,
√
nhd+1

1 Tq,n,2c = op (1).

Lemma B-3 Under Assumption E, we have

sup
t,z
|Tq,n,3 (t, z)| = Op

(
hp2+1

2

)
, and (B-5)

r(x,z)∫
r0

Tq,n,3 (t, z) dt = Op

(
n−1/2h

−(d+1)/2
1

)
. (B-6)

Proof. Define

∆q,i (v) = q (Vi)−
∑

0≤|k|≤p2

1

k!
Dkq (v) (Vi − v)k ,

and ∆̂q,i (v) is like ∆q,i (v) but with V̂i in place of Vi = (r (Xi, Zi) , Zi)
>. Then by Assumption (E4),

∆q,i (v) =
∑

|k|=p2+1

1

k!
Dkq(v∗) (Vi − v)k

for some v∗ that lies between Vi and v, also

∆̂q,i (v) =
∑

|k|=p2+1

1

k!
Dkq(v̂∗) (Vi − v)k ,
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where v̂∗ lies between V̂i and v. It is also clear that ‖v̂∗ − v∗‖ = Op (ν1n) and |∆q,i (v) | = Op(h
p2+1
2 )

for ‖Vi − v‖ ≤ ch2. These observations along with Assumption (E5(ii)) imply that

∆̂q,i (v)−∆q,i (v) =
∑

|k|=p2+1

1

k!
Dkq (v̂∗) [(V̂i − v)k − (Vi − v)k]

+
∑

|k|=p2+1

1

k!

[
Dkq (v̂∗)−Dkq (v∗)

]
(Vi − v)k ,

= Op(h
p2
2 ν1n) = op(n

−1/2h
−(d+1)/2
1 ),

uniformly in v and i such that ‖Vi − v‖ ≤ ch2. So we conclude that

|∆̂q,i (v) | = Op(h
p2+1
2 ) + op(n

−1/2h
−(d+1)/2
1 )

uniformly in v and i for ‖Vi − v‖ ≤ ch2.

We now write∣∣∣B̂q,n (t, z)−Bq,n (t, z)
∣∣∣ ≤ { 1

nh2
2

n∑
i=1

|K2,i (t, z)|

}
max
1≤i≤n

sup
v
|∆̂q,i (v)−∆q,i (v) | (B-7)

+

{
1

nh2
2

n∑
i=1

∣∣∣K̂2,i (t, z)−K2,i (t, z)
∣∣∣} max

1≤i≤n
sup
v
|∆̂q,i (v) |. (B-8)

It is clear that (B-7) is op(n
−1/2h

−(d+1)/2
1 ) . The order in probability of (B-8), after a Taylor–series

expansion, is given by

{n−1h−3
2

n∑
i=1

|K(1)
2,i (t, z) |}max

1≤i≤n
|r̂i − ri| max

1≤i≤n
sup
v
|∆̂q,i (v) |+Op

(
h−2

2 ν2
1n

)
max
1≤i≤n

sup
v
|∆̂q,i (v) |

= Op(h
−1
2 ν1n)Op(h

p2+1
2 ) +Op(h

−2
2 ν2

1n)Op(h
p2+1
2 )

= op(n
−1/2h

−(d+1)/2
1 ), by Assumption (E5(ii))

Therefore,

sup
v
|B̂q,n (v) | ≤ sup

v
|Bq,n (v)|+ sup

v
|B̂q,n (v)−Bq,n (v) |

= Op(h
p2+1
2 ) +Op(h

p2+1
2 ν1n),

proving (B-5). Furthermore, we can rewrite

Tq,n,3 (t, z0) = hp2+1
2 ι>2 M−1

q Bqq
(p2+1) (t, z0) q

−2 (t, z0)

+ hp2+1
2 ι>2 M−1

q [Bq,n (t, z0)−BqfV (t, z0)]q
(p2+1) (t, z0) q

−2 (t, z0)

+ op(n
−1/2h

−(d+1)/2
1 ).
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Clearly, the first term of the above equation is Op(h
p2+1
2 ), and the second is op(h

p2+1
2 ) by Corollary

2 (page 580) in Masry (1996a). Then,

r(x,z)∫
r0

Tq,n,3 (t, z) dt = hp2+1
2 i>2 M−1

q Bq

r(x,z)∫
r0

q(p2+1) (t, z0)

q2 (t, z0)
dt+ op(n

−1/2h
−(d+1)/2
1 )

= hp2+1
2 B3 (x, z) + op(n

−1/2h
−(d+1)/2
1 )

follows.

Lemma B-4 Under Assumption E, we have

Rq,n (x, z) =

∫
Tq,n,4 (t, z0) dQ (t) +

∫
Tq,n,5 (t, z0) dQ (t) +

∫
Tq,n,6 (t, z0) dQ (t)

= op(n
−1/2h

−(d+1)/2
1 ).

Proof. A typical element of M̂q,n (v)−Mq,n (v) is given by

[M̂q,n,j,k (v)]l,l0 − [Mq,n,j,k (v)]l,l0

=
1

nh2
2

n∑
i=1

( V̂i − v

h2

)φq;j(l)+φq;k(l0)

K2

(
V̂i − v

h2

)
−
(
Vi − v

h2

)φq;j(l)+φq;k(l0)

K2

(
Vi − v

h2

) .

After a Taylor–series expansion of the last expression at Vi, it is not difficult to show that

sup
t,z
|[M̂q,n,j,k (t, z)]l,l0 − [Mq,n,j,k (t, z)]l,l0 | = Op

(
h−1

2 ν1n

)
.

By the triangle inequality, we have

sup
t,z
|M̂q,n (t, z)− fV (t, z)Mq| ≤ sup

t,z
|M̂q,n (t, z)−Mq,n (t, z) |+ sup

t,z
|Mq,n (t, z)− fV (t, z)Mq|.

The first term of the right hand side of the inequality is Op

(
h−1

2 ν1n

)
= op (1), while the second is,

by Corollary 2 (page 580) in Masry (1996a), Op(n
−1/2h−1

2

√
lnn + h2) = op (1). Furthermore, by

Assumption (E1), M̂−1
q,n (v) = Op (1) with probability approaching one. Therefore, results (B-2),

(B-4) and (B-6) imply that∫
Tq,n,4 (t, z0) dQ (t) = op (1)Op(n

−1/2h
−(d+1)/2
1 ),∫

Tq,n,5 (t, z0) dQ (t) = op (1)Op(n
−1/2h

−(d+1)/2
1 ), and∫

Tq,n,6 (t, z0) dQ (t) = op (1)Op(n
−1/2h

−(d+1)/2
1 ),

respectively.
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Lemma B-5 Under Assumption E, we have

sup
t,z
|q̂ (t, z)− q (t, z)| = Op

(
h−1

2 ν1n + h−1
1 ν1n + ν2n

)
.

Proof. This result follows from (B-1), (B-3), (B-5) and Lemma B-4.

Lemma B-6 Let Assumptions E and F hold, then the estimators α̂P1 (x) and α̂P2 (z) satisfies the

following asymptotic expansions:

α̂P1 (x)− αP1 (x) = ι>1 M−1
r {1 + op (1)}

×

{
n−1h−d1

n∑
j=1

[∫
h−1

1 K1,j (x, z)
dP1 (z)

q (r, z0) fW (x, z)

]
εr,j

}

+

∫
B (x, z) dP1 (z) +RP1,n (x) ,

α̂P2 (z)− αP2 (z) = ι>1 M−1
r {1 + op (1)}

×

{
n−1h−1

1

n∑
j=1

[∫
h−d1 K1,j (x, z)

dP2 (x)

q (r, z0) fW (x, z)

]
εr,j

}

+

∫
B (x, z) dP2 (x) +RP2,n (z) ,

where op (1)’s are uniformly in x and z, and the remainder terms RP1,n (x), and RP2,n (z) satisfy

sup
x
|RP1,n (x)| = op(n

−1/2h−1/2
∗ ), and

sup
z
|RP2,n (z)| = op(n

−1/2h−1/2
∗ ) respectively.

Proof. This result follows from Lemmas B-1–B-5 and Assumption (F3).

Lemma B-7 Let Assumptions E and F hold, then√
nh∗TH,n,1 (m)

d→ N

(
0,
σ2
H (m)

fM (m)

[
M−1

H ΓHM−1
H

]
0,0

)
.

Proof. Let VH,n (m) = nh−1
∗
∑n

i=1K∗,i (m) εr,i, then we have

V̂H,n (m)− VH,n (m) =
1

nh∗

n∑
i=1

[K̂∗,i (m)−K∗,i (m)]εr,i

=
1

nh2
∗

n∑
i=1

K(1)
∗,i (m) (M̃i −Mi)εr,i +Op

(
h−2
∗ ν2

†n
)

=
1

nh2
∗

n∑
i=1

K(1)
∗,i (m) {[α̂P1 (Xi)− αP1 (Xi)]

+ [α̂P2 (Zi)− αP2 (Zi)]− [c̃i − ci]} εr,i
+ op(n

−1/2h(d+1)/2
∗ ),
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where the second equality follows from a Taylor–series expansion and Assumption (F3), and the

last by Assumption (F3(ii)). So,

T̂H,n (m) = TH,n,a (m) + TH,n,b (m) {1 + o (1)}
+ TH,n,c (m) + TH,n,d (m) + op(n

−1/2h−1/2
∗ ),

where

TH,n,a (m) =
1

nh∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K∗,i (m) εr,i

TH,n,b (m) =
1

n2h2
∗

n∑
i=1

n∑
j=1

ι>∗ [fM(m)MH ]−1 αn (ξi, ξj;m) , (B-9)

TH,n,c (m) =
1

nh2
∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K(1)
∗,i (m) εr,iβ (Wi) , (B-10)

TH,n,d (m) =
1

nh2
∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K(1)
∗,i (m) εr,iRn (Wi) . (B-11)

We now discuss the properties of each term above.

Firstly, let FW and FH be the sigma algebras generated by W> = (X>, Z) and r (W ) =

H [M (W )] respectively, then by the tower property of conditional expectations, i.e. Theorem

(34.3) in Billingsley (1986), we have E [εr,i| r (Wi)] = 0, which implies that E [ςi] = 0 by the law of

iterated expectations, where

ςi = h−1
∗ ι>∗ [fM(m)MH ]−1K∗,i (m) εr,i.

Therefore, by Theorem 4 (page 94) in Masry (1996b), it follows that

√
nh∗TH,n (m) =

1

n1/2h
1/2
∗

n∑
i=1

ςi

d→ N

(
0,
σ2
M (m)

fM (m)

[
M−1

H ΓHM−1
H

]
0,0

)
,

where σ2
H (b) = E[ε2

r,i|B (Wi) = b]. The term αn in (B-9) may be written as

αn (ξi, ξj; b) ≡ αIn (ξi, ξj; b) + αIIn (ξi, ξj; b)− αIIIn (ξi, ξj; b) , with

αIn (ξi, ξj;m) ≡ h−d1 K(1)
∗,i (m) εr,i

∫
h−1

1 ι>1 M−1
r K1,j (Wi)

dP1 (Zi)

q (ri, z0) fW (Wi)
εr,j,

αIIn (ξi, ξj;m) ≡ h−1
1 K(1)

∗,i (m) εr,i

∫
h−d1 ι>1 M−1

r K1,j (Wi)
dP2 (Xi)

q (ri, z0) fW (Wi)
εr,j,

αIIIn (ξi, ξj;m) ≡ K(1)
∗,i (m) εr,i

∫ ∫
h
−(d+1)
1 ι>1 M−1

r K1,j (Wi)
dP1 (Zi) dP2 (Xi)

q (ri, z0) fW (Wi)
εr,j,
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where ξi ≡ (W>
i , εr,i)

>. Thus, by applying a second order U -statistic theory for random samples

(e.g. Powell, Stock, and Stoker (1989)), we can show that under Assumptions E and F,

TH,n,b (m) = Op(n
−1h

−d/2
1 h−3/2

∗ ) +Op(n
−1h

−1/2
1 h−3/2

∗ ) +Op(n
−1h−3/2

∗ ).

Consequently, by Assumption (F3(ii)),√
nh∗TH,n,b (m) =

√
nh∗Op(n

−1h
−d/2
1 h−3/2

∗ )

+
√
nh∗Op(n

−1h
−1/2
1 h−3/2

∗ ) +
√
nh∗Op(n

−1h−3/2
∗ )

= Op(n
−1/2h

−d/2
1 h−1

∗ ) +Op(n
−1/2h

−1/2
1 h−1

∗ ) +Op(n
−1/2h−1

∗ ) = op (1) .

Similarly,

β (w) ≡
∫
B (x, z) dP1 (z) +

∫
B (x, z) dP2 (x) +

∫ ∫
B (x, z) dP1 (z) dP2 (x) ,

= O (h†) by construction.

Then, by Assumption (F3(ii)), (B-10) is h†Op(n
−1/2h

−3/2
∗ ), so√

nh∗TH,n,c (m) = Op

(
h†h

−1
∗
)

= op (1) .

Finally, the term (B-11) satisfies∣∣∣∣∣n−1h−2
∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K(1)
∗,i (m) εr,iRn (Wi)

∣∣∣∣∣
≤ 3× sup

x
|RP1,n (x)|

{
n−1h−2

∗

n∑
i=1

∣∣∣ι>∗ [fM(m)MH ]−1K(1)
∗,i (m) εr,i

∣∣∣} ,

and the right hand side is op(n
−1/2h

−1/2
∗ ) by Lemma B-6, completing the proof.

Lemma B-8 Let Assumptions E and F hold, then

TH,n,2 (m) = Op

(
n−1/2h−1/2

∗
)
.

Proof. Firstly, max
1≤i≤n

|H(Mi)−H(M̃i)| = Op (ν†n) by Assumption (I2). Let

V ∗
H,n(m) = n−1h−1

∗

n∑
i=1

K∗,i(m)[H(Mi)−H(M̃i)],

then after a Taylor–series expansion,

V̂ ∗
H,n(m)− V ∗

H,n(m) = n−1h−1
∗

n∑
i=1

{
K̂∗,i(m)−K∗,i(m)

}
[H(Mi)−H(M̃i)]

= n−1h−2
∗

n∑
i=1

K(1)
∗,i (m)[M̃i −Mi][H(Mi)−H(M̃i)] +Op(h

−2
∗ ν3

†n)

= Op(h
−1
∗ ν2

†n) +Op(h
−2
∗ ν3

†n) = op(n
−1/2h−1/2

∗ ),
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by Assumption (F3(ii)). Consequently, after a further Taylor–series expansion,

TH,n,2 (m) = n−1h−1
∗

n∑
i=1

K∗,i(m)[H(Mi)−H(M̃i)] + op(n
−1/2h−1/2

∗ )

= −n−1h−1
∗

n∑
i=1

K∗,i(m)
∂H (Mi)

∂b
[M̃i −Mi] +Op

(
ν2
†n
)

+ op(n
−1/2h−1/2

∗ )

= −n−1h−1
∗

n∑
i=1

K∗,i(m)H(1) (Mi) [M̃i −Mi] + op(n
−1/2h−1/2

∗ ),

where the last equality follows from Assumption (F3(ii)). Therefore, by Lemma B-6, we have

TH,n,2 (m) = TH,n,2a (m) {1 + op (1)}
+ TH,n,2b (m) + TH,n,2c (m) + op(n

−1/2h−1/2
∗ ),

where

TH,n,2a (m) = − 1

n2h∗

n∑
i=1

n∑
j=1

ι>∗ [fM(m)MH ]−1 α∗n (Wi,Wj;m) ,

TH,n,2b (m) = − 1

nh∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K∗,i(m)H(1) (Mi) β (Wi) ,

TH,n,2c (m) = − 1

nh∗

n∑
i=1

ι>∗ [fM(m)MH ]−1K∗,i(m)H(1) (Mi)Rn (Wi) ,

with β (·), and Rn (·) defined as in Lemma B-7, and

α∗n (Wi,Wj;m) ≡ α∗In (Wi,Wj;m) + α∗IIn (Wi,Wj;m)− α∗IIIn (Wi,Wj;m), with

α∗In (Wi,Wj;m) ≡ h−d1 K∗,i (m)

∫
h−1

1 ι>1 M−1
r K1,j (Wi)

dP1 (Zi)

q (ri, z0) fW (Wi)
εr,j,

α∗IIn (Wi,Wj;m) ≡ h−1
1 K∗,i (m)

∫
h−d1 ι>1 M−1

r K1,j (Wi)
dP2 (Xi)

q (ri, z0) fW (Wi)
εr,j,

α∗IIIn (Wi,Wj;m) ≡ K∗,i (m)

∫ ∫
h
−(d+1)
1 ι>1 M−1

r K1,j (Wi)
dP1 (Zi) dP2 (Xi)

q (ri, z0) fW (Wi)
εr,j.

Again, by applying a second order U–statistic theory (e.g. Powell, Stock, and Stoker (1989)), we

can show that under Assumptions E and F,

TH,n,2a (m) = Op(n
−1h

−d/2
1 h−1/2

∗ ) +Op(n
−1h

−1/2
1 h−1/2

∗ ) +Op(n
−1h−1/2

∗ )

= op(n
−1/2h−1/2

∗ ).

By Bochner’s Lemma and Lemma B-6, it follows that TH,n,2b (m) converges in mean squared to

BH2 (m) ≡ −ι>∗ M−1
H M0

H,0E
[
H(1) (M (X,Z)) β (X,Z)

∣∣H (M (X,Z)) = m
]
,
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which is O (h†). Finally, the last term is bounded by

|TH,n,2c (m)| ≤ max
1≤i≤n

|Rn (Wi)| max
1≤i≤n

∣∣H(1) (Mi)
∣∣{n−1h−1

∗

n∑
i=1

∣∣ι>∗ [fM(m)MH ]−1K∗,i(m)
∣∣} ,

where the right hand side is op(n
−1/2h

−1/2
∗ ).

Lemma B-9 Let Assumptions E and F hold, then

TH,n,3(m) = Op

(
n−1/2h−1/2

∗
)
.

Proof. As in Lemma B-3, by Assumption (E4), we can write

∆̂H,i (m)−∆H,i (m) =
∑

j=p∗+1

1

j!

(
∂jH(m̂∗)/∂mj

)
[(M̂i −m)j − (Mi −m)j]

+
∑

j=p∗+1

1

j!

[
∂jH(m̂∗)/∂mj − ∂jH(m∗)/∂mj

]
(Mi −m)j , (B-12)

where (m̃∗,m∗) lie between (M̃i,Mi) and m, such that ||m̃∗−m∗|| = Op (ν†n). For ‖Mi −m‖ ≤ ch∗,

|∆H,i (m) | = Op(h
p∗+1
∗ ). These observations imply that (B-12) is Op(h

p∗
∗ ν†n), which by Assumption

(F3(ii)), is op(n
−1/2h

−1/2
∗ ). Therefore, we conclude that

|∆̂H,i (m) | = Op(h
p∗+1
∗ ) + op(n

−1/2h−1/2
∗ )

uniformly in m and i for ‖Mi −m‖ ≤ ch∗. Now, we write by the triangle inequality∣∣∣B̂H,n (m)−BH,n (m)
∣∣∣ ≤ { 1

nh∗

n∑
i=1

|K∗,i (m)|

}
max
1≤i≤n

sup
b
|∆̂H,i (m)−∆H,i (m) |

+

{
1

nh∗

n∑
i=1

∣∣∣K̂∗,i (m)−K∗,i (m)
∣∣∣} max

1≤i≤n
sup
b
|∆̂H,i (m) |.

The sup of the first term is op(n
−1/2h

−1/2
∗ ), and by Taylor–series expansion, the second term is

1

nh2
∗

n∑
i=1

∣∣∣K(1)
∗,i (m)

∣∣∣ ∣∣∣M̃i −Mi

∣∣∣ |∆̂H,i (m) |+Op(
(
h−1
∗ ν†n

)2
)max
1≤i≤n

sup
b
|∆̂H,i (m) |

= Op

(
h−1
∗ ν†n

)
Op(h

p∗+1
∗ ) +Op(

(
h−1
∗ ν†n

)2
)Op(h

p∗+1
∗ )

= op(n
−1/2h−1/2

∗ ) uniformly in m by Assumption (F3).

Therefore, we conclude that

B̂H,n (m) = BH,n (m) + op(n
−1/2h−1/2

∗ )

uniformly in m, and by Kolmogorov’s Law of Large numbers, it follows that

TH,n,3(m) = hp∗+1
∗ ι>∗ M−1

H BHH
(p∗+1) (m) + op(n

−1/2h−1/2
∗ ),

as required.
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Lemma B-10 Let Assumptions E and F hold, then

RH,n (m) = TH,n,4 (m) + TH,n,5 (m) + TH,n,6 (m)

= op
(
n−1/2h−1/2

∗
)
.

Proof. For a typical element of M̂H,n (m)−MH,n (m) is given by

[M̂H,n,j,k (m)]l,l0 − [MH,n,j,k (m)]l,l0

=
1

nh∗

n∑
i=1

(M̃i −m

h∗

)φH;j(l)+φH;k(l0)

K2

(
M̃i −m

h∗

)

−
(
Mi −m

h∗

)φH;j(l)+φH;k(l0)

K2

(
Mi −m

h∗

)]
.

After expanding the last expression at Mi, it is not difficult to show that

sup
m
|[M̂H,n,j,k (m)]l,l0 − [MH,n,j,k (m)]l,l0 | = Op

(
h−1
∗ ν†n

)
.

By the triangle inequality, we have

sup
b
|M̂H,n (m)− fM (m)MH | ≤ sup

b
|M̂H,n (m)−MH,n (m) |

+ sup
b
|MH,n (m)− fM (m)MH |

= Op

(
h−1
∗ ν†n

)
+Op(n

−1/2h−1/2
∗

√
lnn+ h∗) = op (1) ,

where the last equality follows from Assumption (F3(ii)) and Corollary 2 (page 580) in Masry

(1996a). Furthermore, by Assumption (F1), M̂−1
H,n (m) = Op (1) with probability approaching one.

Therefore, Lemmas B-7–B-9 imply

TH,n,4 (m) = op (1)Op(n
−1/2h−1/2

∗ ),

TH,n,5 (m) = op (1)Op(n
−1/2h−1/2

∗ ), and

TH,n,6 (m) = op (1)Op(n
−1/2h

−1/2
1 ),

respectively.
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Table 1: Median of Monte Carlo fit criteria over grid for Design 1.

M̂ vs M σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.2491 0.4526 0.2027 0.3119 0.3511 0.6744 0.2855 0.4795

600 0.1299 0.2101 0.1067 0.1669 0.1826 0.3230 0.1493 0.2412

1 150 0.2491 0.4073 0.2028 0.2942 0.3512 0.6486 0.2854 0.4606

600 0.1299 0.2026 0.1067 0.1592 0.1827 0.3028 0.1494 0.2264

1.5 150 0.2470 0.3888 0.2004 0.2854 0.3471 0.6292 0.2821 0.4405

600 0.1250 0.1860 0.1024 0.1473 0.1752 0.2631 0.1434 0.2025

Ĝ vs G σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.1600 0.2863 0.1301 0.2420 0.2243 0.4374 0.1833 0.3415

600 0.0854 0.1546 0.0697 0.1334 0.1192 0.2173 0.0972 0.1849

1 150 0.1600 0.2651 0.1301 0.2267 0.2242 0.3821 0.1832 0.3116

600 0.0855 0.1467 0.0696 0.1247 0.1191 0.2028 0.0973 0.1731

1.5 150 0.1583 0.2558 0.1291 0.2170 0.2223 0.3988 0.1808 0.3198

600 0.0820 0.1401 0.0671 0.1201 0.1136 0.1890 0.0926 0.1626

F̂ vs F σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.1573 0.2359 0.1289 0.1878 0.2220 0.3223 0.1826 0.2532

600 0.0815 0.1118 0.0661 0.0917 0.1153 0.1744 0.0937 0.1428

1 150 0.1571 0.2113 0.1289 0.1709 0.2221 0.2978 0.1823 0.2314

600 0.0817 0.1050 0.0662 0.0865 0.1154 0.1624 0.0937 0.1323

1.5 150 0.1554 0.2028 0.1279 0.1608 0.2195 0.2849 0.1801 0.2262

600 0.0775 0.0944 0.0628 0.0768 0.1094 0.1401 0.0886 0.1124

Ĥ vs H σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.2491 0.2874 0.2027 0.2241 0.3511 0.3939 0.2855 0.3089

600 0.1299 0.1607 0.1067 0.1263 0.1826 0.2275 0.1493 0.1786

1 150 0.2491 0.2876 0.2028 0.2232 0.3512 0.3958 0.2854 0.3114

600 0.1299 0.1607 0.1067 0.1262 0.1827 0.2270 0.1494 0.1784

1.5 150 0.2470 0.2816 0.2004 0.2178 0.3471 0.3908 0.2821 0.3044

600 0.1250 0.1474 0.1024 0.1142 0.1752 0.2082 0.1434 0.1611
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Table 2: Median of Monte Carlo fit criteria over grid for Design 2.

M̂ vs M σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.2836 0.5179 0.2297 0.3518 0.4210 0.7313 0.3378 0.5354

600 0.1421 0.2325 0.1148 0.1800 0.2023 0.3690 0.1643 0.2644

1 150 0.2834 0.4762 0.2297 0.3393 0.4206 0.7035 0.3382 0.5139

600 0.1422 0.2172 0.1149 0.1710 0.2023 0.3334 0.1640 0.2454

1.5 150 0.2804 0.4545 0.2268 0.3245 0.4155 0.6845 0.3344 0.5064

600 0.1363 0.1994 0.1109 0.1574 0.1923 0.2877 0.1566 0.2187

Ĝ vs G σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.1801 0.3243 0.1461 0.2702 0.2661 0.4954 0.2141 0.4090

600 0.0925 0.1696 0.0752 0.1426 0.1301 0.2391 0.1058 0.1999

1 150 0.1800 0.3052 0.1461 0.2559 0.2663 0.4605 0.2141 0.3677

600 0.0925 0.1588 0.0752 0.1334 0.1302 0.2218 0.1061 0.1842

1.5 150 0.1778 0.2939 0.1442 0.2495 0.2614 0.4745 0.2112 0.3775

600 0.0887 0.1491 0.0723 0.1260 0.1243 0.2025 0.1014 0.1732

F̂ vs F σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.1801 0.2553 0.1440 0.2027 0.2679 0.3525 0.2119 0.2812

600 0.0908 0.1261 0.0741 0.1034 0.1300 0.1926 0.1061 0.1533

1 150 0.1800 0.2371 0.1439 0.1922 0.2678 0.3215 0.2124 0.2601

600 0.0909 0.1153 0.0742 0.0934 0.1301 0.1734 0.1060 0.1392

1.5 150 0.1774 0.2272 0.1410 0.1822 0.2625 0.3105 0.2086 0.2533

600 0.0861 0.1038 0.0701 0.0847 0.1229 0.1557 0.0999 0.1262

Ĥ vs H σ2
r = 1 σ2

r = 2

cc n IRMSE IMAE IRMSE IMAE

0.5 150 0.2582 0.2875 0.2098 0.2240 0.3717 0.3910 0.3030 0.3083

600 0.1321 0.1625 0.1069 0.1272 0.1869 0.2298 0.1525 0.1794

1 150 0.2582 0.2870 0.2099 0.2228 0.3717 0.3948 0.3031 0.3101

600 0.1323 0.1626 0.1070 0.1273 0.1870 0.2283 0.1526 0.1788

1.5 150 0.2556 0.2818 0.2077 0.2183 0.3673 0.3890 0.2992 0.3038

600 0.1263 0.1483 0.1032 0.1146 0.1777 0.2087 0.1457 0.1608
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Table 6: Average Substitutability, T (k, L).

Industry P2 P3 NP

1995 2001 1995 2001 1995 2001

Raw chemical materials 0.728 0.384 0.738 0.390 0.795 1.328

(Chemical) (0.042) (0.135) – – (0.135) (0.762)

Smelting and processing 0.163 0.474 0.081 0.480 0.383 1.188

of ferrous metals (Iron) (0.376) (0.108) – – (0.510) (0.244)

Petroleum processing 0.286 0.234 0.442 0.228 0.451 0.255

(Petroleum) (0.165) (0.023) – – (0.259) (0.158)

Transportation equipment 0.351 0.473 0.352 0.470 0.147 0.834

(Transportation) (0.020) (0.049) – – (0.321) (0.842)

Table 7: Average Return to Scale, RTS (M,L).

Industry P2 P3 NP

1995 2001 1995 2001 1995 2001

Raw chemical materials 0.962 0.796 0.968 0.799 1.016 0.752

(Chemical) (0.074) (0.120) (0.073) (0.077) (0.166) (0.181)

Smelting and processing 1.186 0.881 1.035 0.881 1.034 0.828

of ferrous metals (Iron) (0.428) (0.178) (0.049) (0.179) 0.373) (0.201)

Petroleum processing 1.231 1.020 1.258 1.016 1.162 0.946

(Petroleum) (0.279) (0.124) (0.060) (0.126) (0.173) (0.147)

Transportation equipment 0.934 0.901 0.932 0.896 0.944 0.964

(Transportation) (0.153) (0.183) (0.152) (0.182) (0.291) (0.328)
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Figure 1: Q−Q plots for G, F and H.
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Figure 2: Simulation Envelopes for M , G and F .
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Figure 5: Generalized Homogeneous Component G.
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Figure 6: Generalized Homogeneous Component F .
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Figure 7: Strictly Monotonic Component H.
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Figure 9: Generalized Homogeneous Component G.
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Figure 10: Generalized Homogeneous Component F .
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Figure 11: Strictly Monotonic Component H
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