
 

 

Anders Skrondal and Jouni Kuha 
Improved regression calibration 
 
Article (Accepted version) 
(Refereed) 
 
 

Original citation: 
Skrondal, Anders and Kuha, Jouni (2012) Improved regression calibration. Psychometrika . 
ISSN 0033-3123 (In Press) 
 
© 2012 The Psychometric Society 
 
This version available at: http://eprints.lse.ac.uk/44135/ 
Available in LSE Research Online: May 2012 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final manuscript accepted version of the journal article, 
incorporating any revisions agreed during the peer review process.  Some differences between 
this version and the published version may remain.  You are advised to consult the publisher’s 
version if you wish to cite from it. 
 

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=j.kuha@lse.ac.uk
http://www.springerlink.com/content/rn7670h05j71/
http://www.psychometrika.org/
http://eprints.lse.ac.uk/44135/


IMPROVED REGRESSION CALIBRATION
Anders Skrondaldivision of epidemiology, norwegian institute of publihealth, osloJouni Kuhadepartment of statistis, london shool of eonomis

February 3, 2012

Correspondene should be sent toAnders Skrondal, Division of Epidemiology, Norwegian Institute of Publi Health,P.O.Box 4404 Nydalen, N-0403 Oslo, Norway. E-Mail: anders.skrondal�fhi.noWe are grateful to H. K. Gjessing for helpful disussions and three anonymous re-viewers for onstrutive omments.

*Title Page w/ ALL Author Contact Info.



Psyhometrika Submission February 3, 2012 2
IMPROVED REGRESSION CALIBRATIONAbstratThe likelihood for generalized linear models with ovariate measurementerror annot in general be expressed in losed form whih makes maximumlikelihood estimation taxing. A popular alternative is regression alibrationwhih is omputationally eÆient at the ost of inonsistent estimation. Wepropose an improved regression alibration approah, a general pseudomaximum likelihood estimation method based on a onveniently deomposedform of the likelihood. It is both onsistent and omputationally eÆient, andprodues point estimates and estimated standard errors whih are pratiallyidential to those obtained by maximum likelihood. Simulations suggest thatimproved regression alibration, whih is easy to implement in standardsoftware, works well in a range of situations.Key words: ovariate measurement error, measurement model, generalizedlinear model, pseudo maximum likelihood estimation, regression alibration
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Psyhometrika Submission February 3, 2012 3IntrodutionGeneralized linear models (e.g., MCullagh and Nelder, 1989) are the workhorses inmany appliations of statistial methods. A tait assumption in these models is that allovariates are perfetly measured without error. Violation of this assumption willprodue inonsistent estimators unless the measurement error problem is addressed. Abody of researh has hene evolved to allow at least approximate inferene ingeneralized linear models with ovariate measurement error (see Carroll et al, 2006 andBuonaorsi, 2010 for omprehensive overviews; we will disuss some of this literature inmore detail later).In this artile we onsider strutural ovariate measurement error models, where aparametri distribution is spei�ed for the erroneously measured ovariates. An obviousapproah to estimation is then maximum likelihood whih produes onsistent estimatesif the model is orretly spei�ed (e.g., Shafer, 1987; Shafer and Purdy, 1996; Higdonand Shafer, 2001). Unfortunately, the joint likelihood of the response and the measuresannot in general be expressed in losed form and omputationally intensive methodsbased on numerial integration or simulation must be used. The omputational burdeninvolved in a full likelihood analysis is therefore often onsiderable.Regression alibration has been proposed as a omputationally eÆient approah toestimating generalized linear models with ovariate measurement error (e.g., Armstrong,1985; Rosner et al, 1989, 1990; Carroll and Stefanski, 1990). It is based on anapproximation of the likelihood funtion where the basi idea is to plug in \best"preditions for the ovariates measured with error and proeed in estimating the
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Psyhometrika Submission February 3, 2012 4generalized linear model as if the preditions were ovariates measured without error.Unfortunately, estimates of the regression parameters from regression alibration are ingeneral inonsistent. The inonsisteny is typially small when the true e�ets of theovariates measured with error are moderate and/or the measurement error varianesare small, but more pronouned when these onditions do not hold.In this artile we propose a pseudo maximum likelihood approah, alled improvedregression alibration (IRC), whih simultaneously addresses the omputationalhallenge in likelihood analysis and the inonsisteny problem in onventional regressionalibration. The basi idea is to onsider a deomposed form of the likelihood where oneomponent is expressed in losed form and trivial to maximize, and the seondomponent is aurately maximized using rude and fast numerial integration. Inontrast to onventional regression alibration, where predited ovariates measuredwith error are treated as �xed in point estimation, the random nature of the preditionsis handled by using preditive densities of the ovariates measured with error as mixingdistributions.Generalized linear models with ovariate measurement errorLet yi be the outome variable for unit i, i = 1; : : : ; N , xi an m� 1 vetor ofovariates or \exposures" measured with error by the measures wi, and zi a vetor ofperfetly measured ovariates, inluding a onstant 1.Following Clayton (1992), we an view a generalized linear model with ovariatemeasurement error as omposed of three parts: 1) an outome model g(yijxi; zi;#O), 2)
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Psyhometrika Submission February 3, 2012 5a measurement model g(wijxi; zi;#M) and 3) an exposure model g(xijzi;#E), whereg(�j�) are onditional density funtions and #O, #M and #E the orresponding parametervetors. We de�ne the omplete parameter vetor as # = (#0O;#0M;#0E)0. Throughout, wemake the standard assumption of \nondi�erential measurement error" that yi and wiare independent onditional on (xi; zi).Outome model g(yijxi; zi;#O)The outome model is a generalized linear model (e.g., MCullagh and Nelder,1989) with three parts: 1) a linear preditor, whih in the present ontext takes theform �i � z0i�z + x0i�x, 2) a link funtion g(�) that links the linear preditor to theonditional expetation of the response, given the ovariates, E(yijxi; zi) = g�1(�i), and3) a onditional distribution for the response, given the ovariates, taken from theexponential family, g(yijxi; zi;#O) = exp�yi�i � b(�i)� + (yi; �)� :Here, �i = �i(xi; zi;#O) is the anonial or natural parameter, � = �(#O) is the sale ordispersion parameter and b(�) and (�) are funtions depending on the member of theexponential family. The most ommon nonlinear instane of this is the binary logistimodel where yi follows a Bernoulli distribution and �i = �i = logfE(yi)=[1� E(yi)℄g.For this model, � = 1 and #O = � = (�0z;�0x)0. Due to its popularity we will onsider alogisti outome model in our simulations and data analysis.
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Psyhometrika Submission February 3, 2012 6Measurement model g(wijxi;#M)The form of the measurement model depends on the nature of the available data.Here we fous on the ase of repliation data, where at least a subsample of subjetsprovides several measures for eah fallibly measured ovariate. The main alternative isvalidation data where both xi and wi are observed for a subsample, in whih ase theproposed estimation proedures an be modi�ed in a straightforward manner.In general, the measurements wi may depend on the ovariates zi measuredwithout error as well as on xi, similarly to di�erential item funtioning in item responsetheory. This would be straightforward to handle in our suggested approah but here weomit zi for simpliity and onsider measurement models of the form g(wijxi;#M).The vetor xi is measured by fallible measures wi = (w01i; : : : ;w0mi)0, where eahwli = (wli1; : : : ; wlinli)0 is a vetor of nli repliate measurements. For the moment,onsider balaned data where nli = nl. A general multidimensional measurement modelfor m sets of ongeneri measures (e.g., J�oreskog, 1971) an be expressed aswi = � +�xi + Æi; Æi � N(0;�) (1)where 	�Cov(xi), ��Cov(Æi), and it is assumed that Cov(xi; Æi) = 0. The matrix �is partitioned as
� = 0BBBBBBBBBB�

�1 0 : : : 00 �2 : : : 0... ... . . . ...0 0 0 �m
1CCCCCCCCCCA ; (2)
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Psyhometrika Submission February 3, 2012 7where �l is a vetor of sale parameters for the measures of ovariate l. Furtheronstraints are often imposed on the parameters of the measurement model, e.g. toobtain tau-equivalent or parallel models.Exposure model g(xijzi;#E)The dependene between the exposures measured with error xi and the ovariatesmeasured without error zi is spei�ed asxi = �zi + �i; (3)where � is a regression parameter matrix, �i � N(0;	), and Cov(zi; �i) = 0. As thesale of xi is not identi�able from (1) and (3), some standard identi�ation restritionsare imposed on the parameters. The parameter vetor #M then onsists of the uniqueelements of �, � and �, and #E of the unique elements of � and 	.A generalized linear model with ovariate measurement error is shown graphiallyin Figure 1 for the simple ase of an exposure xi fallibly measured by two measures wi1and wi2, and a ovariate zi measured without error. A ommon identi�ability onstraintfor this ase is to assume �1 = �2 = 0 and �1 = �2 = 1, whih give the \lassial"measurement error model wij = xi + Æij.=========================Insert Figure 1 about here=========================The method that we propose below is not dependent on this spei� ombination
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Psyhometrika Submission February 3, 2012 8of measurement and outome models, but applies also more generally. Looking ahead tothe rest of the paper, other study designs, and orresponding hanges to measurementand outome models, a�et only Stage 1 of our two-stage estimation. For example, asituation where the number of repliate measurements is not the same for all units i isaounted for by the seletion matrix Ci inluded in equation (8), and the ase where yiis not observed for some units by omitting these from the log-likelihood omponent`2(#O;#ME) in (5). If a validation sample rather than repliation data are available,Stage 1 of the estimation ould be done by modelling the onditional moments of xigiven wi and zi (equations 11 and 12) diretly rather than via the exposure andmeasurement models; in this ase the formulas of the variane estimation in theAppendix would also be simpli�ed.Estimation methodsWe now onsider di�erent approahes to estimation of generalized linear modelswith ovariate measurement error. We start by briey desribing maximum likelihood(ML) estimation, then proeed by developing our suggested approah of improvedregression alibration (IRC) before ontrasting this with onventional regressionalibration (RC). We then onlude this setion by a disussion of previous literature onthese approahes to measurement error modelling. Throughout we onsider likelihoodsfor the response yi and the measures wi onditional on the perfetly measuredovariates zi.
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Psyhometrika Submission February 3, 2012 9Maximum likelihood (ML) estimationThe likelihood ontribution for a single unit i isg(yi;wijzi;#) = Z g(yijxi; zi;#O)g(wijxi;#M)g(xijzi;#E)dxi; (4)the log-likelihood ontribution is `i(#) = log g(yi;wijzi;#), and the log-likelihood`(#) =PNi=1 `i(#). When � is diagonal, as is often assumed,g(wijxi;#M) =Qml=1 Qnlij=1 g(wlijjxi;#M). The ML estimator b# is obtained bymaximizing `(#) with respet to #.Unfortunately, the joint likelihood of generalized linear models with ovariatemeasurement error annot generally be expressed in losed form and requiresintegration, typially aomplished by Gaussian quadrature. In general, theperformane of Gaussian quadrature depends on the smoothness of the integrand.Aording to the fundamental theorem of Gaussian quadrature (e.g., Davis andRabinowitz, 1984; Thisted, 1988, Theorem 5.3-1), ordinary Gaussian quadrature is exatif the funtion in the integrand is a 2R�1 order polynomial (where R is the number ofquadrature points). However, a likelihood omponent inluding a produt of onditionalresponse distributions for ontinuous responses, suh as Qml=1 Qnlij=1 g(wlijjxi;#M) above,tends to produe a peaked integrand in the marginal likelihood (a tendeny exaerbatedas the number of measures and their intralass orrelation inreases). Suh likelihoodontributions are poorly approximated by low-degree polynomials and ordinaryGauss-Hermite quadrature does not work well for this situation (e.g., Albert andFollmann, 2000; Lesa�re and Spiessens, 2001). This is illustrated in the left panel of
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Psyhometrika Submission February 3, 2012 10�gure 2 where we see that all quadrature points ompletely miss the integrand.=========================Insert Figure 2 about here=========================Therefore, more omputationally demanding adaptive Gaussian quadraturemethods that align the quadrature points under the integrand are reommended whenontinuous responses are involved (e.g., Rabe-Hesketh et al, 2005). A limitation of thefull likelihood approah is hene that it beomes omputationally intensive.Improved regression alibration (IRC)As an alternative to full ML we propose to break the estimation problem into twoparts, alloating as many parameters as possible to a likelihood omponent that is easyto maximize. This is an instane of a general two-stage approah to estimation knownas pseudo maximum likelihood (PML) estimation (Gong and Samaniego, 1981).Letting #ME = (#0M;#0E)0, we �rst re-express g(wijxi;#M)g(xijzi;#E) in (4) asg(xijwi; zi;#ME)g(wijzi;#ME), and the log-likelihood as`(#) = NXi=1 log g(yijwi; zi;#O;#ME) + NXi=1 log g(wijzi;#ME) � `2(#O;#ME) + `1(#ME) (5)where g(yijwi; zi;#O;#ME) = Z g(yijxi; zi;#O) g(xijwi; zi;#ME) dxi: (6)In Stage 1 of IRC we estimate the ombined measurement and exposure modelg(wijzi;#ME) by maximizing just `1(#ME), to obtain estimates b#ME. These are not full
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Psyhometrika Submission February 3, 2012 11ML estimates, beause they omit the typially small amount of information about of#ME ontained in yi. In Stage 2 these estimates from Stage 1 are then treated as known,and estimates b#IRCO for the parameters of primary interest #O are obtained by maximizing`2(#O; b#ME). A detailed desription of the two stages is provided in the next setion.The basi idea of IRC is that maximizing the approximate deomposed likelihoodis onsiderably less demanding than maximizing the joint likelihood. In Stage 1 theomponent g(wijzi;#ME) is in losed form and trivial to maximize. In Stage 2 themixing distribution in the integral (6) is the preditive density g(xijwi; zi; b#ME) of theovariates measured with error, given their observed measures and ovariates measuredwithout error, whih is also trivial to obtain.The dimensionality of integration (the number of ovariates measured with error)in Stage 2 is the same as for full ML. At �rst glane there does hene not appear to beany omputational bene�ts to be reaped from using IRC. However, the integrand is nowthe single logisti funtion g(yijxi; zi;#O), whih due to its smoothness is wellapproximated by a low order polynomial. For instane, the seminal work on non-linearfator analysis by MDonald (1967) demonstrated that a ubi funtion suÆed forapproximating the normal ogive (whih is very lose to the logisti funtion). Wetherefore expet that rude and fast ordinary Gauss-Hermite quadrature, using just afew quadrature points, would work well for IRC. This is illustrated in the right panel of�gure 2, where all three quadrature points niely over the logisti integrand, inontrast to the ase for the likelihood in the left panel.It is likely that diret maximization of the full likelihood expressed as (5) ould also
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Psyhometrika Submission February 3, 2012 12be based on more rude Gauss-Hermite quadrature than what is required for thestandard form (4). In this artile, however, we fous on the two-stage approah to (5),sine it is straightforward to implement in publily available software.The savings ompared to ML are espeially pronouned in three settings and theirombinations: 1) large datasets, 2) when the relative number of parameters alloated tothe easily maximized likelihood omponent is large (a large number of measures and/orrealistially omplex measurement models), and 3) when the same preditivedistributions an be used in several models, so that the Stage-1 likelihood omponentsneed only be maximized one.Conventional regression alibration (RC)Conventional regression alibration is also a two-stage method whih an be seen asan approximation of pseudo-ML (IRC) estimation. Stage 1 is the same as for IRC, butestimation in Stage 2 is based on the further approximationg(yijwi; zi;#O; b#ME) � g(yije�i; zi;#O) (7)where g(yije�i; zi;#O) is of the same form as the outome model g(yijxi; zi;#O), now withthe \preditive mean" e�i = E(xijwi; zi; b#ME) used in the plae of xi. RC thus arriesonly e�i forward from Stage 1 to Stage 2 of the estimation, whereas IRC takes the wholepreditive density g(xijwi; zi; b#ME) into aount in Stage 2. In ontrast to IRC, RC isgenerally inonsistent beause it employs the approximation (7) of the likelihoodfuntion (6).
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Psyhometrika Submission February 3, 2012 13ML, PML and RC in the measurement error literatureThe books by Carroll et al. (2006) and Buonaorsi (2010) provide exellentsummaries of methods of estimation in measurement error modelling. The use of fullML estimation has been advoated in a series of papers by Daniel Shafer andoauthors. Shafer (1993), for binary probit models, and Shafer and Purdy (1986), fornormal linear models, onsider ases where the likelihood an be evaluated in a losedform. For ases where this is not possible, suh as binary logisti regression, Shafer(1987) uses a losed-form approximation to avoid numerial integration, while Higdonand Shafer (2001) employ ordinary Gauss-Hermite quadrature to evaluate thelikelihood. Rabe-Hesketh et al. (2003) propose using more aurate adaptive quadraturein this setting. Another possibility is to estimate the models in a Bayesian framework,using simulation-based MCMC methods (e.g., Stephens and Dellaportas 1992;Rihardson and Gilks 1993; Kuha 1997; Gustafson 2004).Key referenes for regression alibration inlude Armstrong (1985), Rosner et al.(1989, 1990), Carroll and Stefanski (1990) and Gleser (1990), and the overview inCarroll et al. (2006). Buonaorsi (2010) points out that RC too is a \pseudo-type",two-stage method, whih an also be thought as an approximation of the PMLestimation.The possibility of PML estimation for regression models with ovariates measuredwith error was noted early, for example by Carroll et al. (1984), who apply it for abinary probit model, and Armstrong (1985). PML estimation has been suggested forsome spei� models where its implementation is relatively straightforward, suh as
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Psyhometrika Submission February 3, 2012 14probit models with a single ovariate (Burr 1988) and linear models (Buonaorsi et al.2000 for mixed models, and Skrondal and Laake 2001 for strutural equation modelswith latent variables). For other models, however, the approah has not been developed,perhaps beause of a pereption that its implementation requires \speializedprogramming" (Buonaorsi 2010; p. 227). The IRC method proposed here provides ageneral approah to PML for ovariate measurement models whih largely avoids suhprogramming. The anatomy of improved regression alibrationWe will now have a loser look at eah of the stages of IRC.Stage 1: Estimation of the MIMIC model g(wijzi;#ME)We an view (1) as representing the measurement model for a possibly hypothetialomplete set of repliate measurements wi, where the numbers of measurements in wliare nl for eah unit i. The numbers of atually observed repliates may in fat benli < nl for some i; l, due to design and/or nonresponse. The most ommon ase ofunbalaned data by design is one where repliate measurements are only olleted for asubsample, so that nli = 1 outside the subsample. De�ning ni =Pl nli and n =Pl nl,the model for suh possibly inomplete measurements is obtained by multiplying theright-hand side of (1) by an ni � n seletion matrix Ci. We will heneforth inlude Ciwhere appropriate in the formulae sine this is required for obtaining orret results inthe unbalaned ase where the nli are not onstant.
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Psyhometrika Submission February 3, 2012 15Together the measurement and exposure models onstitute a multiple-indiatormultiple-ause (MIMIC) model (e.g., Robinson, 1974; J�oreskog and Goldberger, 1975).To obtain g(wijzi;#ME), we substitute the exposure model into the measurement model,produing the redued form MIMIC modelwi = Ci(� +��zi +��i + Æi); (8)for whih the onditional �rst and seond order moments are�i � E(wijzi) = Ci(� +��zi) and (9)�i � COV(wijzi) = Ci(�	�0 +�)C0i: (10)The density for the measures, given the perfetly measured ovariates, beomeswijzi � N(�i;�i), and the log-likelihood `1(#ME) for the ombined measurement andexposure model an be expressed in losed form.The estimates b#ME that maximize `1(#ME) an be obtained in a veryomputationally eÆient manner using standard methods for moment struturemodelling (e.g., Bentler, 1983). The estimates are onsistent as N!1 for �xed niunder mild regularity onditions, not requiring the normality assumptions imposedabove (e.g., Shapiro, 2007). They remain onsistent also when measurements aremissing at random (MAR) in the sense of Rubin (1976), although MAR is slightly morerestritive here than for full ML sine yi is not a part of the Stage-1 likelihood.
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Psyhometrika Submission February 3, 2012 16Stage 2: Estimation of the model g(yijwi; zi;#O; b#ME)Under the models (1) and (3) assumed in Stage 1, the preditive density of theovariates measured with error given their observed measures and the ovariatesmeasured without error beomes xijwi; zi � N(�i;
i), with the onditional mean andvariane matrix�i � E(xijwi; zi;#ME) = �zi +	�0C0i��1i (wi � �i) and (11)
i � Cov(xijwi; zi;#ME) = 	�	�0C0i��1i Ci�	; (12)where we note the role of the seletion matrix Ci. Substituting estimates b#ME for theparameters in (11) and (12), we obtain empirial Bayes (EB) preditions e�i for xi foreah unit i, and their preditive varianes b
i (e.g., Skrondal and Rabe-Hesketh,2004:C.6, 2009). The EB preditions are idential to the empirial best linear unbiasedpreditions (EBLUP) whih do not hinge on distributional assumptions (e.g., Robinson,1991).We �nally estimate the parameters of primary interest #O. Note that, onditionalon (wi; zi) and given the estimates b#ME, we an write xi = e�i + ui where ui � N(0; b
i),independent of wi and zi. Substituting this into (6) givesg(yijwi; zi;#O; b#ME)= Z g(yijxi; zi;#O) g(xijwi; zi; b#ME) dxi = Z g�(yije�i; zi;ui;#O) g(ui; b
i) dui (13)where g�(yije�i; zi;ui;#O) is a generalized linear model of the same kind asg(yijxi; zi;#O), but with the linear preditor�i = z0i�z + (e�i + ui)0�x = z0i�z + e�0i�x + u0i�x; (14)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Psyhometrika Submission February 3, 2012 17whih inludes the vetor of random e�ets ui. For the ase of a single ovariate ximeasured with error, the linear preditor an be expressed as �i = z0i�z + �xe�i + �xui;where ui � N(0; !̂i) and !̂i = b
i is a salar.Model (13) is a speial ase of a generalized linear latent and mixed model(GLLAMM), see for instane Rabe-Hesketh et al (2004a) and Skrondal andRabe-Hesketh (2004, 2007). It di�ers from a onventional generalized linear mixedmodel (GLMM) in several regards. First, the model is for single-level data instead ofmultilevel or lustered data. The model is identi�ed beause the ovariane matrix b
iof ui is treated as known from Stage 1, and �x is onstrained to be equal to theoeÆients of e�i (a model simply introduing level-1 random e�ets with a free varianematrix, without any parameter restrition, is not identi�ed). Seond, the mixingdistribution is the preditive density of the unobserved xi. Third, the random e�ets aremultiplied by unknown parameters. An important pratial merit of IRC is that model(13) an be estimated using the gllamm program (e.g., Rabe-Hesketh et al, 2004b).Properties of improved regression alibrationThe IRC estimator b#IRCO is the value of #O whih maximizes the seond-stagelog-likelihood `2(#O; b#ME) where b#ME is a onsistent estimator of #ME obtained bymaximizing `1(#ME) in the �rst stage. This is an instane of a general approah toestimation where the parameters of a model are divided into two sets, one of whihontains the parameters of interest and the other involves only nuisane parameters.The nuisane parameters are �rst estimated by some onsistent and omputationally
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Psyhometrika Submission February 3, 2012 18onvenient estimators, and the parameters of interest are then estimated by maximizingan appropriate objetive funtion with the estimates of the nuisane parameters fromthe �rst step treated as known. This is known as pseudo maximum likelihood (PML)estimation when, as here, the seond-stage objetive funtion is a likelihood (Gong andSamaniego, 1981), and more generally as quasi generalized extremum estimation(Gourieroux and Monfort, 1995).It is well known that suh two-stage estimators are onsistent and asymptotiallynormally distributed under very general regularity onditions. The onditions and aproof of the onsisteny are given by Gourieroux and Monfort (1995; S. 24.2.4 and24.2.2). In the notation of our problem, denote the true parameter value by#� = (#�0O ;#�0ME)0. Then b#IRCO is onsistent for #�O if, �rst, standard regularity onditionshold so that the ML estimator of the whole of # is itself onsistent for #� and, seond,that (i) #O and #ME an vary independently of eah other, and (ii) b#ME is onsistent for#�ME. All of these onditions are satis�ed in the ase onsidered here.Let u(#) = �`(#)=�# be the sore funtion, partitioned asu(#) = ��`(#)�#0O ; �`(#)�#0ME �0 = (u#O(#)0; u#ME(#)0)0;and de�ne the mean sore as �u(#) = (�u#O(#)0; �u#ME(#)0)0 = N�1 u(#). De�ne theFisher information matrixI(#�) = limN!1E#� �� ��u(#)�#0 ����#=#�� = 2664 IO;OIME;O IME;ME3775with partitions orresponding to #O and #ME. For the asymptoti normality of b#IRCO , it is
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Psyhometrika Submission February 3, 2012 19further supposed thatN1=2 2664 �u#O(#�O;#�ME)b#ME � #�ME 3775 L�! N0BB�0; 2664 IO;OVME;O VME;ME37751CCA : (15)Then N1=2 (b#IRCO � #�O) L�! N(0;�) (16)where � = I�1O;O + I�1O;O I 0ME;OVME;ME IME;O I�1O;O: (17)The relatively simple form of (17) follows from the fat that for PML estimatorsVME;O = 0 in general, so terms involving VME;O disappear from the expression (Parke,1986). The asymptoti ovariane matrix of the IRC estimator, whih also takes intoaount the unertainty of the stage-1 estimates, is then given as ACOV(b#IRCO ) = N�1�.In (17), N�1 I�1O;O is the asymptoti ovariane matrix of b#IRCO if #ME were known. Anestimate of it is obtained as a by-produt of �tting model (13), and an estimate ofN�1VME;ME similarly from �tting (8). The remaining part of (17) is IME;O, whih weestimate by bIME;O = N�1 NXi=1 u#ME;i(b#IRC) u#O;i(b#IRC)0 (18)where u#O;i(b#IRC) and u#ME;i(b#IRC) are the gradients of the log-likelihood `i(#) for unit i,evaluated at the parameter estimates b#IRC = (b#IRC0O ; b#0ME)0. How to obtain the requiredgradients is demonstrated in the Appendix.In summary, the di�erene between ML and IRC does not onern onsisteny asboth estimators are onsistent. Rather, the di�erene is the loss of eÆieny, ompared
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Psyhometrika Submission February 3, 2012 20to ML, that is inurred by IRC when it disards the data on yi in estimating #ME in the�rst stage. However, we would expet this ineÆieny to be slight, beause very littleinformation about #ME is ontained in the yi in the sample. This is examined further inthe next setion. SimulationsWe use a simulation study to ompare the performane of maximum likelihood(ML), improved regression alibration (IRC) and onventional regression alibration(RC) estimators. This is done in two parts, omparing �rst ML and IRC | whih turnout to be virtually idential | and then IRC with RC.For the exposure model we simulate a ovariate measured with error xi asxi = 0:3zi + �i; with zi � N(0; 1), independently distributed of �i � N(0;  ), where = 1. For the measurement model we onsider ni = 2 measures wij of xi for eah i,and simulate from a parallel or lassial linear measurement model wij = xi + Æij;where Æij � N(0; �). Finally, for the outome model we simulate from the logistiregression model logitfPr(yi = 1jxi; zi)g = �0 + �zzi + �xxi:Three values of the oeÆient �x of the fallibly measured ovariate are onsidered:a moderate magnitude �x = 0:5, a high magnitude �x = 1, and a very high magnitude�x = 1:5, whih orrespond respetively to odds ratios of 1.65, 2.72 and 4.48 for onestandard deviation hange in x. The very high magnitude ase is inluded in the spiritof Buzas and Stefanski (1995: 546) to provide a tough test. For the measurement errorvariane �, we use values � = 1 and � = 0:33. These give two di�erent values for the
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Psyhometrika Submission February 3, 2012 21reliabilities � =  =( + �), a moderate reliability ase where � = 0:5 and a highreliability ase where � = 0:75. The parameters �z and �0 are �xed at 0.5 and -2,respetively, throughout all simulations. We onsider the sample sizes N = 200,N = 1000 and N = 5000. For eah setting, 1000 repliations of datasets are simulated.ML estimation was arried out using numerial integration with 8 point adaptivequadrature. For IRC we used 3 point ordinary Gaussian quadrature, motivated by theearlier disussion of rude and fast quadrature approximation in this setting. Therewere, however, a handful of ases where the latter was not aurate enough, indiatedby learly divergent estimates from ML and IRC. To retify this, we re-estimated themodels using adaptive quadrature whenever the IRC estimate of �x or �z was largerthan 3 in absolute value, whih was required only for four data sets in one simulationsetting. This deision rule is straightforward to apply also in the analysis of real data,sine the ML estimates need not be known.=========================Insert Table 1 about here==================================================Insert Table 2 about here=========================We �rst ompare ML and IRC estimators, and also assess the performane ofestimators of the variane (17) of the IRC estimator. These results are reported in
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Psyhometrika Submission February 3, 2012 22Tables 1 and 2. It is lear that the estimates of the regression oeÆients from IRC arealmost idential to those from ML, regardless of the sample size and the parametervalues. This is the ase not only on average, but also for nearly every individual dataset. As a result, the simulation standard deviations of the estimators are also verysimilar. There thus appears to be virtually no loss of eÆieny from the two-stagemethod of estimation employed by IRC.On the other hand, omputing times for the two approahes an be very di�erent.On a desktop PC with a 2.4GHz Intel Core 2 proessor and 2GB RAM, estimation forone dataset of sample sizes 200, 1000 and 5000, respetively, took around 15, 45 and 360seonds for ML, and around 1, 3 and 15 seonds for IRC. It thus appears that therelative advantage in omputing time of IRC over ML inreases as the sample sizesinrease. The same is true when the number of repliate measurements wij is inreased.In tests with ni = 3 repliates (not shown here), the omputing times for IRC wereessentially unhanged, while the times for ML inreased to about 17, 55 and 520seonds for N = 200, 1000 and 5000, respetively.The estimated standard errors of the IRC estimates, taking into aountunertainty from both stages of the estimation, are obtained by estimating (17) asshown in the Appendix. It an be seen that this approah performs well. In the mostdiÆult ases, with small sample size, large e�ets and low reliability of measurement,the standard errors somewhat underestimate the true sampling variation. This ismainly due to right-skewed sampling distributions of the estimates in these ases, whihis also reeted in a small upward bias of both ML and IRC estimates. The tails of the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Psyhometrika Submission February 3, 2012 23sampling distribution do not a�et the overage of the Wald-based 95% on�deneintervals for the parameters, whih is 93.6{97.1% aross all the simulations.The last two olumns of Tables 1 and 2 examine a simpli�ed estimate of thestandard errors of the IRC estimates that is obtained by using only the �rst term on theright-hand side of (17), and omitting the seond. In other words, this simply ignores theunertainty in the estimated parameters of the exposure and measurement models fromthe �rst stage. Suh an approah would be very onvenient in pratie, beause itentails using the estimated standard errors from the seond-stage model diretly,without any further adjustment. In the ases onsidered here, this simpli�ation woulddo us little harm sine the overage of the on�dene intervals (shown in the olumn\C95-2" of the tables) is still quite satisfatory. The reason for this is indiated by thelast olumn of the tables, whih shows the average perentage that the seond term of(17) ontributes to the full estimated standard error. This is mostly around 2%, risingto 6.4% in the most hallenging on�guration onsidered here.Tables 3 and 4 ompare the simulation results for IRC and RC estimators, omittingthe full ML estimators beause they are so similar to IRC. The fous here is on the�nite-sample means and variabilities of the estimators, to examine their relativeperformanes in di�erent settings. We note also that omputing times for IRC and RCwere very similar, typially around 10% higher for IRC.=========================Insert Table 3 about here=========================
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Psyhometrika Submission February 3, 2012 24=========================Insert Table 4 about here=========================The results show that best performanes our in di�erent irumstanes for thetwo estimators. IRC (and ML) estimators have an upward bias in small samples, due tothe right-skewness of their sampling distributions, but the bias disappears in largersamples beause these estimators are onsistent. In ontrast, RC estimators have a biasdue to their approximate nature, whih is largest when the reliability of measurement islow or when the regression oeÆients are large. Taking into aount both the biasesand sampling varianes, root mean squared errors tend to be smaller for RC when thesample size is small or moderate, and for IRC when the sample size is reasonably large.The bias of RC means that in the most diÆult ases the overage of on�deneintervals based on them is substantially below the nominal level, while for IRC theoverage levels are always adequate.In summary, the simulation study suggests, �rst, that we an generally replae MLwith pseudo-ML (IRC) estimation, with essentially no loss in eÆieny of estimation butwith a substantial gain in omputational speed. Seond, when omparing IRC with RC,we �nd that the preferred estimator an depend on the irumstanes of the analysis.RC tends to perform best with smaller samples and relatively mild measurement errorproblems, whereas IRC does best when the sample sizes are large, measurement error issevere or the e�ets being estimated are strong. The hoie between RC and IRC is notinformed by speed of omputation, whih is essentially the same for both of them.
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Psyhometrika Submission February 3, 2012 25Empirial illustration: Ability and high earningsTo illustrate ovariate measurement error modelling in pratie, we apply theinvestigated methods to a dataset on 935 non-blak men from the 1980 wave of theYoung Men's Cohort of the U.S. National Longitudinal Survey (NLS), previouslyanalysed by Grilihes (1976) and Blakburn and Neumark (1992), among others.The binary outome yi we onsider here is being a high earner, de�ned as having asalary above the 90% fratile of the sample distribution. The ovariate of main interestis ability xi, also denoted [Ability℄, whih is measured with error. Three ovariateswhih are assumed measured without error are also inluded: working experiene inyears zi1 [Exper℄ (sample mean 11.6, s.d. 4.4), a dummy variable for living in an urbanarea zi2 [Urban℄ (71.8% of the sample) and a dummy variable for being blak zi3 [Blak℄(12.8%).Under the standard assumptions previously stated, the outome model islogitfPr(yi = 1jxi; zi1; zi2; zi3)g = �z0 + �z1zi1 + �z2zi2 + �z3zi3 + �xxi;and the exposure model isxi = 0 + 1zi1 + 2zi2 + 3zi3 + �i; �i � N(0;  ):The mens' abilities are measured by two fallible measures. The �rst measure is anIQ test wi1 [IQ℄, olleted as part of a survey of the respondents' shools onduted in1968. Sine a wide variety of IQ tests were used in di�erent states these were reodedinto \IQ equivalents" by the Center for Human Resoures Researh at the Ohio StateUniversity whih administers the NLS. The seond measure is a test of \Knowledge of
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Psyhometrika Submission February 3, 2012 26World of Work" wi2 [Know℄, whih examines respondents' knowledge of the labormarket, overing the duties, eduational attainment, and relative earnings of tenoupations. It is intended to reet both the quantity and quality of shooling,intelligene, and motivation (uriosity about the outside world). The seminal paper byGrilihes (1976) provides a luid disussion of the data, variables and spei�ationissues.We use versions of the two fallible measures standardized to have sample mean 0and variane 1. Denoting these standardized variables by wi1 and wi2, we onsider thelassial measurement modelwij = xi + Æij; Æij � N(0; �); j=1; 2:This is obtained from the general model (1) for a salar xi by assuming �1 = �2 = 1,and then setting �1 = �2 = 0 and �1 = �2 = 1 beause the marginal means and varianesof wi1 and wi2 are equal. Note that for identi�ability the model thus spei�es that thetwo measures have equal loadings, i.e., that on the sale of the standardized measuresthey are equally disriminating measures of ability. This assumption ould be relaxed ifmore than two fallible measures were available.=========================Insert Table 5 about here=========================Estimates from ML, IRC and RC are shown in Table 5. The parameter estimatesfor the outome model are pratially idential for ML and IRC, whereas the estimates
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Psyhometrika Submission February 3, 2012 27from RC are smaller as expeted. In partiular, the estimate for the parameter of maininterest �x from IRC, �̂x = 2:50, is essentially idential to the ML estimate whereas theestimate from RC is �̂x = 2:35.The estimated standard errors of estimates of � are pratially idential for MLand IRC, apart from numerial di�erenes. This indiates that the loss of eÆieny inestimating the parameters of the exposure and measurement models from only Stage 1of IRC is e�etively nill; indeed, estimates of these parameters and assoiated estimatedstandard errors are idential to the full ML results to at least three deimal plaes.Unertainty from Stage 1, i.e. the seond term of the variane matrix (17), ontributesaround 8% of the estimated standard error of �̂x for IRC. We also note that the sum ofthe maximized log-likelihood omponents for IRC of ` = �2738:41 is very lose to themaximum of the log-likelihood ` = �2738:38.From the estimated exposure model, the ability measure is signi�antly assoiatedwith urbanity, rae and working experiene. Its onditional variane given theseovariates is  ̂ = 0:29. The estimated measurement error variane is �̂ = 0:58, and theonditional reliability of the measures (given the ovariates) is thus  ̂=( ̂ + �̂) = 0:33.Regarding the outome model, there is a strong estimated assoiation between theability measure and high earnings when ontrolling for working experiene, urbanity,and rae. The estimated oeÆient of �̂x = 2:50 translates to an odds ratio of 3.8 forbeing a high earner orresponding to an inrease of one onditional standard deviationin ability. The other ovariates are retained in the model, but they ould possibly alsohave been omitted beause they do not have statistially signi�ant assoiations with
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Psyhometrika Submission February 3, 2012 28high earnings at the 5% level. It is worth noting that if the model was simpli�ed byomitting some ontrol variables, we ould still hoose to use the predited values e�i andvarianes !̂i onditional on all of them, without re-alulating these preditions. Thisonly requires the modi�ation that in the alulation of the standard errors (as shownin the Appendix) the orresponding elements of �z are set to 0.DisussionIn this artile we have proposed an improved regression alibration approah to theestimation of generalized linear models with ovariate measurement error, a pseudomaximum likelihood method that simultaneously addresses the omputational hallengeof maximum likelihood and the inonsisteny of onventional regression alibration. Adeomposed form of the likelihood was exploited, where the omponent for themeasurement and exposure models is in losed form and trivial to maximize and theomponent for the outome model is aurately maximized using rude and fastnumerial integration.Our simulations show that improved regression alibration produes parameterestimates that are pratially indistinguishable from those produed by maximumlikelihood. Interval estimation based on the asymptoti ovariane matrix for improvedregression alibration that was derived in this artile has exellent performane. Eveninterval estimation based on the naive estimator of the asymptoti ovariane matrix(ignoring the unertainty inurred in the �rst step) usually performs well. Compared toonventional regression alibration, improved regression alibration o�ers little or no
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Psyhometrika Submission February 3, 2012 29advantage when sample sizes are small, but performs best when samples are reasonablylarge and espeially when the measurement error or the e�ets are not small.Both the fallibly measured ovariates and their measures are ontinuous in themodels onsidered here. Improved regression alibration an also be used when theobserved measures are ategorial, in whih ase ategorial fator models would beused as measurement models. Sine the preditive distributions are then no longernormal it is not obvious that improved regression alibration would work well. If boththe fallibly measured ovariates and their measures are ategorial, the problem is oneof mislassi�ation where integration is replaed by summation and maximumlikelihood estimation beomes omputationally straightforward.
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Psyhometrika Submission February 3, 2012 30AppendixHere we desribe the alulation of the estimate (18) of the matrix IME;O, whih isused in the alulation of the variane matrix (17) of b#IRCO . Let us �rst introdue someonvenient shorthand notation for the logarithm of the likelihood ontribution (6):log g(yi;wijzi;#)| {z }� gi = log Z � gyiz }| {g(yijxi; zi;#O) � gxiz }| {g(xijwi; zi;#ME) dxi| {z }� g1i + log g(wijzi;#ME)| {z }� g2i :Here gxi and g2i are multivariate normal density funtions with parameters�1i = (�0i; ve(
i)0)0 and �2i = (�0i; ve(�i)0)0 respetively, as de�ned by (11){(12) and(9){(10). These in turn are funtions of the parameters� = (� 0; ve(�)0; ve(�)0; ve(�)0; ve(	)0)0, and #ME are the distint, unknown elementsof �.The required gradients for (18) areu#O;i(#) = � log gi�#O = 1g1i �g1i�#O and (A1)u#ME;i(#) = � log gi�#ME = 1g1i � �g1i��01i ��1i��0 ���#0ME�0 + �� log g2i��02i ��2i��0 ���#0ME�0 ; (A2)where g1i = Z gyi gxi dxi; (A3)�g1i�#O = Z �gyi�#O gxi dxi and (A4)�g1i��01i = Z gyi �gxi��01i dxi: (A5)Estimated values for these quantities, and thus for the estimated matrix bIME;O givenby (18), are obtained by substituting estimates b#IRC of the parameters.
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Psyhometrika Submission February 3, 2012 31Starting with (A2), we note that eah element of � is either a known onstant orequal to a single element of #ME; for illustration, onsider � as shown in (2). Supposethat � is of length t and #ME of length u. Then ��=�#0ME is a t� u matrix whose (i; j)thelement is 1 if the ith element of � is equal to the jth element of #ME, and 0 otherwise.Next, the elements of ��2i=��0 in (A2) are��i�� 0 = Ci;��i�ve(�)0 = (�zi)0 
Ci;��i�ve(�)0 = 0;��i�ve(�)0 = z0i 
 (Ci�);��i�ve(	)0 = 0;�ve(�i)�� 0 = 0;�ve(�i)�ve(�)0 = [(Ci�	)
Ci℄ + [Ci 
 (Ci�	)℄Krm;�ve(�i)�ve(�)0 = Ci 
Ci;�ve(�i)�ve(�)0 = 0;�ve(�i)�ve(	)0 = (Ci�)
 (Ci�);and the elements of ��1i=��0 are��i�� 0 = ��i��0i ��i�� 0 ;��i�ve(�)0 = f[C0i��1i (wi � �i)℄0 
	gKrm+ ��i��0i ��i�ve(�)0 + ��i�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(�)0 ;��i�ve(�)0 = ��i�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(�)0 ;
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Psyhometrika Submission February 3, 2012 32��i�ve(�)0 = z0i 
 Im + ��i��0i ��i�ve(�)0 ;��i�ve(	)0 = [�0C0i��1i (wi � �i)℄0 
 Im+ ��i�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(	)0 ;�ve(
i)�� 0 = 0;�ve(
i)�ve(�)0 = ��[(	�0C0i��1i Ci)
	℄Krm + [	
 (	�0C0i��1i Ci)℄	+ �ve(
i)�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(�)0 ;�ve(
i)�ve(�)0 = 0;�ve(
i)�ve(�)0 = �ve(
i)�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(�) ;�ve(
i)�ve(	)0 = Im2 � (Im2 +Kmm)[(	�0C0i��1i Ci�)
 Im℄+ �ve(
i)�ve(��1i )0 �ve(��1i )�ve(�i)0 �ve(�i)�ve(	) ;where ��i��0i = �	�0C0i��1i ;��i�ve(��1i )0 = (wi � �i)0 
 (	�0C0i);�ve(
i)�ve(��1i )0 = �(	�0C0i)
 (	�0C0i);�ve(��1i )�ve(�i)0 = ���1i 
��1i ;
and ve(�) denotes the olumn-by-olumn vetorization operator, 
 the Kronekerprodut, Im an m�m identity matrix, and Krm an rm� rm ommutation matrix. Theformulas are obtained through repeated appliation of rules of matrix di�erentiation(see e.g., L�utkepohl 1996).
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Psyhometrika Submission February 3, 2012 33In the seond term of (A2), the elements of � log g2i=��02i are � log g2i=��0i= (wi � �i)0��1i and � log g2i=�ve(�i)0 = ve[��1i (wi � �i)(wi � �i)0��1i ���1i ℄0=2.The remaining elements of (A1) and (A2) depend also on the outome model for yi.For the logisti model, whih is predominant in appliations of generalized linear modelswith ovariate measurement error, and whih is also used in our simulations andexample, gyi = �yii (1� �i)1�yi where �i = exp(�i)=[1 + exp(�i)℄ and �i = z0i�z + x0i�x.For this model we employ the well-known losed-form approximationg1i � (��i )yi(1� ��i )1�yi , where ��i = exp(��i )=[1 + exp(��i )℄, ��i = �1i��1=22i ,�1i = z0i�z + �0i�x, �2i = 1 + d�0x
i�x, and d = 1=1:72 (e.g., Liang and Liu, 1991). Forthis approximation,�g1i�#O = (�1)1�yi ��i (1� ��i ) ��1=22i (z0i; ��0i )0 and�g1i��01i = (�1)1�yi ��i (1� ��i ) ��1=22i [�0x; �(d=2)�1i��12i (�0x 
 �0x)℄;where ��i = �i � �1i��12i d
i�x. These formulas omplete expliit expressions for (A1)and (A2).In our data analysis we also apply a similar idea for the onventional regressionalibration estimate of #O, whih uses the �rst-order approximationg1i � (�RCi )yi(1� �RCi )1�yi where �RCi = exp(�1i)=[1 + exp(�1i)℄. We estimate its varianematrix analogously to (17){(18), using in (A1) and (A2) �g1i=�#O = (�g1i=��1i) (z0i; �0)0and �g1i=��01i = (�g1i=��1i) [�0x; 00℄, where �g1i=��1i = (�1)1�yi �RCi (1� �RCi ).For other, less popular models, we must evaluate the integrals involved in
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Psyhometrika Submission February 3, 2012 34(A3){(A5). Note �rst that the partial derivatives �gxi=��01i are given by�gxi��0i = (xi � �i)0
�1i gxi and�gxi�ve(
i)0 = (1=2)ve[
�1i (xi � �i)(xi � �i)0
�1i �
�1i ℄0 gxi:Substituting these into (A5), we see that eah of the integrals there, and also in (A3)and (A4), are of the form R hi(xi)gxi dxi for some funtion hi(xi) of xi, integrated overthe multivariate normal density gxi = g(xijwi; zi;#ME). This suggests that the integralsan be evaluated through Monte Carlo integration, by �rst generating M independentdraws xij; j = 1; : : : ;M; from g(xijwi; zi; b#ME), and then approximating the integrals bythe averages M�1PMj=1 hi(xij) for eah of the hi(�). Only one set of random draws isneeded for all the observations i, if we �rst generate M unorrelated m-vetors uj ofstandard normal random variates and then alulate xij = e�i +Biuj, where b
i = BiB0i.
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Psyhometrika Submission February 3, 2012 42TablesTable 1.Simulation results for maximum likelihood (ML) and improved regression alibration (IRC) estimates ofregression parameter �x, for di�erent measurement reliabilities �, true values of �x, and sample sizes N .In eah ase the true value of the other regression oeÆient �z is 0.5. The results are based on 1000repliations. The table shows the simulation Mean and standard deviation (SD) of the point estimates�̂x, mean of their estimated standard errors (m(SE)) and overage perentage of 95% on�dene intervals(C95). For IRC estimates, also shown are overage of 95% intervals based on a naive estimated standarderror whih ignores the �rst-stage unertainty (C95-2), and the average perentage that this unertaintyontributes to the full standard errors (%-1).ML IRC�x N Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1� = 0:750.5 200 0.520 0.253 0.248 96.0 0.520 0.253 0.253 96.2 96.0 2.01000 0.507 0.110 0.107 94.9 0.507 0.110 0.107 95.0 94.9 0.55000 0.500 0.047 0.047 95.5 0.500 0.047 0.047 95.6 95.5 0.21.0 200 1.051 0.294 0.284 96.0 1.051 0.294 0.289 96.2 95.9 2.21000 1.018 0.122 0.121 95.3 1.018 0.123 0.121 95.4 95.3 0.85000 1.001 0.053 0.053 94.9 1.001 0.053 0.053 94.8 94.8 0.51.5 200 1.592 0.371 0.353 97.0 1.592 0.371 0.359 97.1 96.8 2.41000 1.519 0.144 0.147 96.5 1.519 0.144 0.148 96.6 96.4 1.35000 1.502 0.064 0.065 94.8 1.502 0.064 0.065 94.7 94.5 1.0� = 0:50.5 200 0.533 0.310 0.296 96.7 0.533 0.310 0.301 97.0 96.2 2.81000 0.509 0.130 0.124 94.0 0.509 0.130 0.124 94.2 93.6 1.35000 0.500 0.054 0.055 95.5 0.500 0.054 0.055 95.5 95.4 1.01.0 200 1.088 0.409 0.368 96.9 1.089 0.411 0.375 96.9 96.6 4.71000 1.006 0.148 0.146 95.9 1.007 0.148 0.147 95.9 95.4 3.35000 1.005 0.065 0.065 95.4 1.005 0.065 0.065 95.5 95.0 3.01.5 200 1.666 0.586 0.519 96.7 1.664 0.584 0.523 96.9 96.5 6.41000 1.527 0.189 0.193 96.4 1.528 0.190 0.194 96.4 95.1 5.45000 1.509 0.083 0.084 95.5 1.510 0.083 0.085 95.5 94.0 5.1
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Table 2.Simulation results for maximum likelihood (ML) and improved regression alibration (IRC) estimatesof regression parameter �z , for di�erent measurement reliabilities �, true values of the other regressionoeÆient �x, and sample sizes N . In eah ase the true value of �z is 0.5. The results are based on1000 repliations. The olumns of the table are the same as in Table 1.ML IRC�x N Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1� = 0:750.5 200 0.508 0.237 0.236 95.8 0.508 0.237 0.239 95.8 95.8 1.21000 0.509 0.105 0.103 94.1 0.509 0.105 0.103 94.1 94.1 0.35000 0.498 0.045 0.045 95.8 0.498 0.045 0.045 95.9 95.8 0.11.0 200 0.514 0.234 0.236 96.2 0.514 0.234 0.239 96.5 96.2 1.41000 0.511 0.104 0.102 94.4 0.511 0.104 0.103 94.6 94.3 0.45000 0.497 0.044 0.045 95.8 0.497 0.044 0.045 95.8 95.8 0.21.5 200 0.513 0.255 0.244 96.1 0.513 0.255 0.247 96.1 95.9 1.51000 0.507 0.109 0.105 94.4 0.507 0.109 0.105 94.7 94.4 0.65000 0.499 0.047 0.047 94.1 0.499 0.047 0.047 94.1 93.9 0.4� = 0:50.5 200 0.507 0.242 0.241 96.1 0.507 0.242 0.244 96.3 95.7 1.61000 0.508 0.107 0.104 93.6 0.508 0.107 0.105 93.6 93.5 0.65000 0.497 0.045 0.046 95.2 0.497 0.045 0.046 95.2 95.2 0.31.0 200 0.514 0.246 0.247 97.0 0.514 0.246 0.250 96.9 96.3 2.41000 0.504 0.108 0.105 93.6 0.504 0.108 0.105 93.6 93.4 1.45000 0.500 0.047 0.047 95.4 0.500 0.047 0.047 95.4 94.9 1.11.5 200 0.514 0.281 0.266 96.4 0.514 0.280 0.269 96.7 96.0 3.51000 0.506 0.114 0.111 94.6 0.506 0.114 0.111 94.9 94.1 2.45000 0.501 0.048 0.049 95.1 0.502 0.048 0.049 95.1 94.5 2.2
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Table 3.Simulation results for improved regression alibration (IRC) and onventional regression alibration(RC) estimates of regression parameter �x, for di�erent measurement reliabilities �, true values of �x,and sample sizes N . In eah ase the true value of the other regression oeÆient �z is 0.5. The resultsare based on 1000 repliations. The table shows the simulation Mean, % bias and root mean squarederror (RMSE) of the point estimates of �x, and overage perentage of 95% on�dene intervals (C95).IRC RC�x N Mean % Bias RMSE C95 Mean % Bias RMSE C95� = 0:750.5 200 0.520 4.0 0.254 96.2 0.515 3.0 0.247 96.21000 0.507 1.4 0.111 95.0 0.504 0.8 0.109 94.95000 0.500 0.0 0.047 95.6 0.497 -0.5 0.046 95.61.0 200 1.051 5.1 0.299 96.2 1.020 2.0 0.268 95.31000 1.018 1.8 0.124 95.4 0.993 -0.7 0.114 94.25000 1.001 0.1 0.053 94.8 0.978 -2.2 0.054 92.41.5 200 1.592 6.2 0.382 97.1 1.492 -0.6 0.301 95.31000 1.519 1.3 0.145 96.6 1.439 -4.1 0.137 91.95000 1.502 0.1 0.064 94.7 1.426 -4.9 0.092 72.5� = 0:50.5 200 0.533 6.6 0.312 97.0 0.518 3.7 0.288 95.91000 0.509 1.9 0.131 94.2 0.502 0.4 0.125 93.85000 0.500 0.1 0.054 95.5 0.494 -1.1 0.053 95.51.0 200 1.089 8.9 0.421 96.9 1.005 0.5 0.308 94.91000 1.007 0.7 0.148 95.9 0.954 -4.6 0.135 92.45000 1.005 0.5 0.065 95.5 0.954 -4.6 0.072 85.31.5 200 1.664 11.0 0.607 96.9 1.415 -5.7 0.341 92.41000 1.528 1.9 0.192 96.4 1.354 -9.7 0.198 79.05000 1.510 0.7 0.084 95.5 1.345 -10.3 0.166 26.8
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Table 4.Simulation results for improved regression alibration (IRC) and onventional regression alibration (RC)estimates of regression parameter �z, for di�erent measurement reliabilities �, true values of the otherregression oeÆient �x, and sample sizes N . In eah ase the true value of �z is 0.5. The results arebased on 1000 repliations. The olumns of the table are the same as in Table 3.IRC RC�x N Mean % Bias RMSE C95 Mean % Bias RMSE C95� = 0:750.5 200 0.508 1.5 0.237 95.8 0.505 0.9 0.236 95.91000 0.509 1.8 0.105 94.1 0.506 1.2 0.105 94.15000 0.498 -0.5 0.045 95.9 0.495 -1.0 0.045 95.71.0 200 0.514 2.9 0.234 96.5 0.502 0.3 0.228 96.41000 0.511 2.2 0.104 94.6 0.499 -0.2 0.102 94.15000 0.497 -0.5 0.044 95.8 0.486 -2.7 0.045 94.51.5 200 0.513 2.7 0.256 96.1 0.485 -3.1 0.241 95.61000 0.507 1.4 0.109 94.7 0.481 -3.8 0.105 94.25000 0.499 -0.3 0.047 94.1 0.473 -5.3 0.052 90.3� = 0:50.5 200 0.507 1.4 0.242 96.3 0.500 -0.1 0.240 95.91000 0.508 1.7 0.107 93.6 0.502 0.4 0.106 93.85000 0.497 -0.5 0.045 95.2 0.492 -1.7 0.046 95.01.0 200 0.514 2.9 0.247 96.9 0.485 -3.1 0.232 96.11000 0.504 0.8 0.108 93.6 0.479 -4.3 0.106 93.35000 0.500 -0.0 0.047 95.4 0.475 -5.0 0.051 91.21.5 200 0.514 2.8 0.281 96.7 0.451 -9.9 0.248 95.11000 0.506 1.3 0.115 94.9 0.450 -9.9 0.114 90.55000 0.502 0.3 0.048 95.1 0.447 -10.6 0.068 78.8
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Table 5.Ability and high earnings: Estimates for logisti regression with ovariate measurement error based onmaximum likelihood (ML), improved regression alibration (IRC) and onventional regression alibration(RC). For IRC, SE are estimated standard errors based on asymptoti ovariane matrix derived in thisartile and SE-2 are naive estimated standard errors ignoring unertainty in Stage-1 estimates.ML IRC RCParameter Covariate Est (SE) Est (SE) (SE-2) Est (SE)Outome model:�z0 -3.68 (0.57) -3.68 (0.56) (0.55) -3.29 (0.45)�z1 [Exper℄ 0.02 (0.03) 0.02 (0.03) (0.03) 0.02 (0.03)�z2 [Urban℄ 0.50 (0.34) 0.50 (0.33) (0.33) 0.45 (0.31)�z3 [Blak℄ 0.52 (0.76) 0.52 (0.74) (0.73) 0.48 (0.68)�x [Ability℄ 2.49 (0.50) 2.50 (0.51) (0.47) 2.35 (0.42)Exposure model:0 0.20 (0.08) 0.20 (0.08) (0.08) 0.20 (0.08)1 [Exper℄ -0.02 (0.01) -0.02 (0.01) (0.01) -0.02 (0.01)2 [Urban℄ 0.20 (0.06) 0.20 (0.06) (0.06) 0.20 (0.06)3 [Blak℄ -1.00 (0.07) -1.00 (0.07) (0.07) -1.00 (0.07) 0.29 (0.03) 0.29 (0.03) (0.03) 0.29 (0.03)Measurement model:� 0.58 (0.03) 0.59 (0.03) (0.03) 0.59 (0.03)Log-likelihood `=-2738.38 `=-2738.41
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