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Abstract 
 
 

We investigate the use of subsampling for conducting inference about the 
quadratic variation of a discretely observed diffusion process under an infill 
asymptotic scheme. We show that the usual subsampling method of Politis 
and Romano (1994) is inconsistent when applied to our inference question. 
Recently, a type of subsampling has been used to do an additive bias 
correction to obtain a consistent estimator of the quadratic variation of a 
diffusion process subject to measurement error, Zhang, Mykland, and Ait-
Sahalia (2005). This subsampling scheme is also inconsistent when applied to 
the inference question above. This is due to a high correlation between 
estimators on different subsamples. We discuss an alternative approach that 
does not have this correlation problem; however, it has a vanishing bias only 
under smoothness assumptions on the volatility path. Finally, we propose a 
subsampling scheme that delivers consistent inference without any 
smoothness assumptions on the volatility path. This is a general method and 
can be potentially applied to conduct inference for quadratic variation in the 
presence of jumps and/or microstructure noise by subsampling appropriate 
consistent estimators. 
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1 Introduction

Recently, estimation of integrated volatility of the price process has been a fruitful area of research,

Barndor¤-Nielsen and Shephard (2002). Applications include evaluation of variance forecasting mod-

els, portfolio management, and asset pricing. Di¤erent estimators of integrated volatility have been

proposed depending on the statistical model used. The richer is the model for the price process (e.g.,

with jumps and/or market microstructure noise added to the di¤usion process), the more complicated

estimators have been used. Also, if not the estimator itself, its asymptotic (conditional) variance

and hence inference changes depending on the assumptions on the price process. For example, Aït-

Sahalia, Mykland, and Zhang (2006) and Kalnina and Linton (2006) consider price being a di¤usion

process contaminated by autocorrelated (former) or endogenous (latter) measurement error. The

result is more complicated expressions for the variance of the estimator. These variances cannot be

estimated using the methods that work with i.i.d. errors that are independent of the latent price

measurement error (or any other method known to us).

The aim of this paper is to investigate the potential of subsampling as a robust method for

inference in the pure in�ll asymptotic framework, which could work in the presence of di¤erent as-

sumptions on the observed price process. We choose the relatively simple setup where the underlying

price process follows a di¤usion, as there are no subsampling results for inference in this framework.

Without jumps or measurement error, a consistent estimator for quadratic variation of the price

process is the widely used realised volatility. The question we want to answer is, can subsampling

be used to conduct inference on realised volatility?

The subsampling method of Politis and Romano (1994) has been shown to be useful in many

situations as a way of conducting inference under weak assumptions and without utilizing knowledge

of limiting distributions. The basic intuition it builds on goes as follows. Imagine the standard

setting of discrete time with long-span (also called increasing domain) asymptotics. Take some

general estimator b�n (think of i.i.d. X 0
is, � = E(X); b�n = 1

n

P
Xi;) with

�n(b�n � �) =) N (0; V )

as n ! 1; where =) denotes convergence in distribution. In this paper we will be interested

only in the standard case when �n =
p
n. Now, construct subsamples of m = m(n) consecutive

observations, starting at di¤erent values (whether they are overlapping or not is irrelevant here),

where m = m(n)!1 as n!1 but m=n! 0. Then, the asymptotic distribution of �m(b�n;m;j� �)
1



is the same, i.e.,

�m

�b�n;m;j � �� =) N (0; V ) ; j = 1; : : : ; K (1)

for each subsample. Hence, we can estimate V by the sample variance of �mb�n;m;j (with centering
around b�n, the proxy for the true value �). This yields

bV = m� 1

K

KX
j=1

�b�n;m;j � b�n�2 ; (2)

and we have bV p�! V;

where
p�! denotes convergence in probability.

This is our starting point. We show that in an in�ll sampling scheme a direct application of this

method does not achieve the required consistency. The intuition behind this failure is straightforward.

We do not have a stationary underlying process (in particular, we have a heteroscedasticity that does

not vanish in the limit). Therefore, realised volatility on these subsamples (b�n;m;j) does not converge
to quadratic variation over the full time interval (�). That is, (1) does not hold.

Recently, the word subsampling has been used in connection with the estimation of quadratic

variation of a latent price process subject to market microstructure noise, see Zhang, Mykland, and

Aït-Sahalia (2005) and Barndor¤-Nielsen and Shephard (2007). The subsampling scheme in this

setting is slightly di¤erent from the usual one and is perhaps better called �In�ll Price�subsampling.

Zhang, Mykland, and Aït-Sahalia (2005) use this �In�ll Price�subsampling to de�ne a bias correction

method that achieves consistent estimation. For these type of subsamples, equation (1) holds, so we

explore the possibility of their use for inference. We show that �In�ll Price�subsampling does not

deliver consistent inference for the realised volatility, due to high correlation between subsamples.

We recover consistency by modifying the �In�ll Price�subsampling in �In�ll Returns�subsampling.

However, this method requires restrictive assumptions on the volatility path to achieve consistency.

Finally, we propose �Subset Centered In�ll�subsampling, which does achieve the required consis-

tency without any smoothness assumptions on the volatility path. It builds on the basic principles

of Politis and Romano (1994), but uses a di¤erent centering for each subsample.

The remainder of the paper is organized as follows. Section 2 outlines the model and some basic

facts about realized volatility. We describe the usual subsampling method and show its inconsistency

in section 3. Section 4 introduces �In�ll Price�subsampling and shows it is also inconsistent, albeit
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asymptotically unbiased. Section 5 introduces �In�ll Returns�subsampling and shows its consistency,

under some smoothness assumption on the volatility path. Section 6 introduces the �Subset Centered

In�ll�Subsampling and shows its consistency. Section 7 compares di¤erent methods for inference in

a Monte Carlo simulation study. Section 8 concludes. We follow the notation of Politis, Romano,

and Wolf (1999) for easier comparison with the subsampling literature.

2 The Model and Quantities of Interest

Suppose that we have a scalar Brownian di¤usion process

dXt = �tdt+ �tdWt; (3)

where Wt is standard Brownian motion, while the stochastic process �t is locally bounded and �t is

càdlàg. Suppose that we observe X at times t0; : : : ; tn on the interval [0; T ]; where T is �xed, so that

our asymptotics are in�ll (as n ! 1). Without loss of generality we take the observations equally
spaced and T = 1.

We are primarily interested in the quadratic variation of the process over the observation interval

QVX =

Z 1

0

�2sds;

which is a random variable depending on the realization of the volatility path f�t; t 2 [0; 1]g: The
usual estimator of QVX is the realized volatility

RVn =

nX
i=1

�
Xti �Xti�1

�2
:

This satis�es
p
n (RVn �QVX) =)MN(0; V ) (4)

V = 2IQ = 2

Z T

0

�4sds;

where MN(0; V ) denotes a mixed normal distribution with random conditional variance V inde-

pendent of the underlying normal distribution, that is, the limiting pdf is of the form f(x) =R
�0;v(x)fV (v)dv; where fV denotes the pdf of V and �0;v(x) = exp(�x2=2v2)=

p
2�v: The convergence

(4) follows from Barndor¤-Nielsen and Shephard (2002), and is stable in law, Aldous and Eagleson
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(1978), meaning that the convergence holds jointly with the random variable V . Barndor¤-Nielsen

and Shephard (2002) also show the "feasible" CLT

eV �1=2pn (RVn �QVX) =) N(0; 1); (5)

where eV = 2IQn is a consistent estimator of V = 2IQ in the sense that eV =V p�! 1: Here, IQn is

the realized quarticity,

IQn =
n

3

nX
i=1

�
Xti �Xti�1

�4
;

which successfully mimics the structure of
R T
0
�4sds. The result (5) allows the construction of con-

sistent con�dence intervals for QVX : For example, a two-sided level � interval is given by eC� =
RVn � z�=2eV 1=2=pn; where z� is the � quantile from a standard normal distribution, and this has

the property that Pr[QVX 2 eC�]! 1��: They also propose to construct intervals from the limiting
distribution of lnRVn; which would thereby respect the positivity of QVX by giving an asymmetric

interval. Mykland and Zhang (2006,7) have proposed alternative estimators of V that are more

e¢ cient than eV under the sampling scheme (3) and can also be used to construct intervals based on
the studentized limit theory.

Recently, Goncalvez and Meddahi (2005) have proposed a bootstrap algorithm. They use the

i.i.d. bootstrap applied to returns, that is, rti = Xti � Xti�1 are resampled with replacement.

In the no-leverage case, i.e., where the stochastic processes f�t; t 2 [0; 1]g and fWt; t 2 [0; 1]g are
mutually independent (and �t � 0), stock returns are mutually independent, although heterogeneous,
conditional on the volatility path. They have shown that this resampling scheme is consistent in the

no leverage case. They also proposed a modi�cation called the wild bootstrap, Horowitz (2001), that

at least allows for heterogeneity in returns. This method is not only consistent but even achieves

some higher order re�nements in the case of no leverage. In the leverage case where the processes

f�t; t 2 [0; 1]g and fWt; t 2 [0; 1]g are no longer independent, stock returns are dependent over time
both unconditionally and conditionally on the volatility path. In a long span setting, it would

generally be fatal to ignore the dependence structure present in the leverage case in this way.1

Nevertheless, since the distribution theory for integrated volatility is the same under leverage as

under no leverage it may be that the i.i.d. bootstrap is consistent for the studentized statistic as

1As Horowitz (2001) says, "Bootstrap sampling must be carried out in a way that suitably captures the dependence

of the data-generation process".
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their simulations suggest.2

The purpose of this paper is to explore the use of subsampling as a means of conducting inference

without utilizing the knowledge of the asymptotic (conditional) variance of the estimator, that is

we do not work with a studentized statistic, which requires a consistent estimator of the asymptotic

conditional variance. Therefore, it can have the potential to be applied with di¤erent underlying

assumptions, which lead to di¤erent, possibly very complicated, asymptotic (conditional) variances.

For example, when there are jumps in (3), the limiting distribution (4) no longer holds, as the random

conditional variance changes to (10). Unlike the bootstrap method of Goncalvez and Meddahi (2005),

the subsampling method itself does not impose or exploit the conditional independence structure of

the no-leverage case, and in other contexts is known to adapt to whatever dependence structure is

present since the data is used in blocks. It also requires no random number generator and can have

computational advantages. The subsampling method should also be robust to non-equally spaced

data and to heavy tails, Politis and Romano (1994).3

On the other hand, when all the conditions of Barndor¤-Nielsen and Shephard (2002) hold, their

asymptotic studentization or the Goncalvez and Meddahi (2005) bootstrap method are likely to

perform much better, which is not surprising since they make explicit use of that structure, see

Horowitz (2001).

We maintain the assumption of no leverage, i.e., we assume independence of the stochastic

processes f�t; �t; t 2 [0; 1]g and fWt; t 2 [0; 1]g. For the "negative results", Proposition 1 and 2,
this is of course no loss of generality. The implication of this assumption is that one can treat V

as �xed; we therefore just consider estimation of V: We �rst show that several standard approaches

to subsampling do not work under the in�ll asymptotics. We then establish that various modi�-

cations do provide consistent inference. Although we currently use the no leverage assumption for

our proofs, our Monte Carlo simulations indicate that our proposed subsampling method should also

work in the absence of this restriction. In the sequel, we work with the conditional distribution given

f�t; �t; t 2 [0; 1]g: Also, we denote QVX by �:
2This result is not unlike what happens in kernel density estimation for stationary weakly dependent processes,

Horowitz (2001). The limiting distribution of the kernel estimator is as if the data were i.i.d. from a population with

the same marginal distribution. Also, it is known that the i.i.d. bootstrap will also provide consistent inference in this

case.
3This latter issue might be relevant in the context of Fractional Brownian Motion and related heavy tailed processes,

Samorodnitsky and Taqqu (1994).
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3 Regular subsampling

We start our investigation of subsampling for the in�ll asymptotic framework with the well established

method of Politis and Romano (1994), which is developed for the long span asymptotic framework.

In Politis, Romano, and Wolf (1999) there is some discussion about subsampling for continuous

parameter random �elds, which includes continuous time processes as a special case. Unfortunately,

the discussion is suited to the continuous observation and increasing domain case where T ! 1:
Also, they assume strong stationarity, which we do not have.4 They use the following notation, which

we have specialized for the scalar parameter case.5 Let

Ej;m = fti : j � 1 < i � j � 1 +mg

Yj = fX(t) : t 2 Ej;mgb�n;m;j = b�(Yj);
where b�(Yj) is the estimator computed with the data Yj; in particular

b�(Yj) = X
ti2Ej;m

�
Xti �Xti�1

�2
:

We have 0 < j � K; where K is the number of subsamples, K = n � m + 1: See Figure 1 in the
appendix for a graphical illustration of the subsamples. In our case where X is only observed at a

discrete set of points the data Yj consists of a �nite set of points of lower cardinality than n: The

estimator b�n = b�(Y ) = RVn; when Y consists of all data.
Assumption 5.3.1 of Politis, Romano and Wolf (1999) is satis�ed, i.e., the sampling distribution

of �n(b�n � �) converges weakly. Therefore, in the setting of continuous observations and long-span
asymptotics, the intuition laid out in the introduction applies and V should be approximated by (2),

i.e., bVregular = m� 1

K

KX
j=1

�b�n;m;j � b�n�2 :
4Subsampling results have also been developed for heteroscedasticity that vanishes in the limit, i.e., is close to

homoscedasticity. This is an unrealistic setting in in�ll asymptotics.
5We will present the version of regular subsampling that uses overlapping subsamples. All the results hold also

with non-overlapping subsamples. However, for the cases discussed in Politis, Romano, and Wolf (1999), it achieves

higher e¢ ciency.
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However, in our setting, it is easy to see that bV is not a consistent estimator for V . This is due

to b�n;m;j only estimating a part of b�n and the asymptotic distribution of �m(b�n;m;j � �) diverging to
in�nity instead of being the same as that of �n(b�n � �). As a result, we have
Proposition 1. Let m!1 and m=n! 0 as n!1: We have

E
�bVregular� = m�2 + o (m) :

4 In�ll price subsampling

In this and the next section we consider two subsampling schemes that are motivated by the literature

on estimating QV in the presence of measurement error. Both recover the principle that �m(b�n;m;j��)
has the same asymptotic distribution as �n(b�n � �).
First, we explore a subsampling scheme that exactly mirrors the construction of subsamples in

the estimator of QVX of Zhang, Mykland, and Aït-Sahalia (2005). Let the subsamples consist of

data that are K observations apart. In particular, write K � (m + 1) = n and construct the jth

subsample Yj and the estimator of � on this subsample as follows (see Figure 3 in the appendix for

a graphical illustration),

Ej;m = fts : s = j + i(K + 1); i = 1; : : : ;mg ;

Yj = fX(t) : t 2 Ej;mg ;b�n;m;j = b�(Yj):
In each subsample we have m+ 1 (log-)prices and hence m returns. For j = 1; : : : ; K

b�n;m;j = X
t2Ej;m

(Xt �Xt;�)
2 =

mX
i=1

�
Xtj+iK �Xtj+(i�1)K

�2
;

where Xt;� denotes the preceding element to Xt where Xt 2 Ej;m;h.
We can easily see that �m(b�n;m;j��) has the same asymptotic distribution as �n(b�n��). Therefore,

we consider the estimator of V = 2IQ as in (2),

bVIn�ll price = m� 1

K

KX
j=1

�b�n;m;j � b�n�2 :
7



Proposition 2. Let m!1 and m=n! 0 as n!1: We have

E
�bVIn�ll price�! EV; Var

�bVIn�ll price� = O (1) : (6)

This estimator is asymptotically unbiased, but it never converges in probability to the true V .

Why do we have this problem? Note that any two subsamples fully overlap (in terms of time covered

by variances involved; see Figure 3), apart from end e¤ects. As a result, the asymptotic correlation

between estimators on any two subsamples is one. We have

Cov
�b�2n;m;i;b�2n;m;j� � Var�b�2n;m;i� = O �m�2� ;

and so the failure of consistency follows. We next consider a modi�cation that is motivated by this

problem. In the following section we construct subsamples that do not overlap at all while preserving

the property that �m(b�n;m;j � �) has the same asymptotic (conditional) variance as �n(b�n � �):
5 In�ll Returns Subsampling

To avoid the problem of in�ll price subsampling, consider subsampling one-period returns rti =

Xti �Xti�1 instead of log-prices Xt. See Figure 4 in the appendix for a graphical illustration.

Let the subsamples consist of returns that are K observations apart. In particular, write K �
(m+1) = n and construct the jth subsample Yj and the estimator of � on this subsample as follows,

Ej;m = fts : s = j + i(K + 1); i = 1; : : : ;mg

Yj = fr(t) : t 2 Ej;mg :

In each subsample we have m returns. For j = 1; : : : ; K

b�n;m;j = K X
t2Ej;m

r2t = K

mX
i=1

r2tj+(i�1)K = K
mX
i=1

�
Xtj+(i�1)K �Xtj+(i�1)K�1

�2
:

De�ne b�n as before and
bVIn�ll returns = m� 1

K

KX
j=1

�b�n;m;j � b�n�2 : (7)
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As opposed to the previous formulation, we now have Cov(b�n;m;i;b�n;m;j) = 0 for i 6= j;6 which leads
us to

Proposition 3. Let m ! 1 and m=n ! 0 as n ! 1: Assume that volatility paths are a.s.
Hölder continuous of order larger than 1/2. We have

bVIn�ll returns p�! V: (8)

Without imposing some smoothness on the volatility path bVIn�ll returns is biased due to the large
gaps we have in the subsamples (see Figure 3). For asymptotic unbiasedness of bVIn�ll returns, we need
the expected value of the estimator on each subsample to converge to � su¢ ciently fast. If volatility

path is càdlàg, we have, conditional on f�tg,

Eb�n;m;j = K mX
i=1

Z [j+(i�1)K]=n

[j+(i�1)K�1]=n
�2 (u) du �!

Z 1

0

�2 (u) du = �

due to Riemann integrability of sample paths of f�t; t 2 [0; 1]g. However, what we need for asymptotic
unbiasedness of bVIn�ll returns, is E(b�n;m;j) � � = o(m�1=2). This is because of the scaling factor m in

(7), which appears because we are estimating the asymptotic (conditional) variance.

Finally, we consider constructing an estimator of V that similarly builds on the principle of regular

subsampling, but uses a di¤erent centering.

6 Subset Centered In�ll Subsampling

In regular subsampling, the problem was that we were centering our sample variance at "the wrong

quantity". In the formula for bVregular;
bVregular = m� 1

K

KX
j=1

�b�n;m;j � b�n�2 ;
the quantity b�n plays the role of �, but the problem is that b�n;m;j 9 � and so bVregular explodes. In the
two previous sections we rede�ned b�n;m;j so as to recover the principle b�n;m;j ! � and saw this does

not work very well. Instead, consider centering estimators at �j such that b�n;m;j ! �j and then use

6This covariance is exactly zero if the drift is zero. It is negligible is the drift is non-zero.
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the property of integrated variance that it can be added up over subsamples to recover the integrated

variance over the full sample,
P

j �j = �. Now, �j is not observable and the best proxy for �j we

have is realised volatility over the subsample, b�n;m;j. Therefore, we have to use something else to
play the role of the estimator. So de�ne b�n;m;J;j to be realised volatility calculated using every J th
observation of the jth subsample of length m (J << m), see Figure 2 in the Appendix for a graphical

illustration. Since it has a slower rate of convergence than b�n;m;j, the error of using b�n;m;j instead of
� is negligible. Our estimator of V becomes

bVSC = n2

mKJ

KX
k=1

�b�n;m;J;k � b�n;m;k�2 :
Here, the number of subsamplesK depends on how much di¤erent subsamples overlap. Increasing

the amount of overlap does not change the rate of convergence of bV , but it decreases the asymptotic
(conditional) variance, so maximum overlap estimator is preferred. See the Monte Carlo simulations

(Figure 5e) for an illustration.

Proposition 4. Let m!1, J !1, m=n! 0, and J=m! 0 as n!1: We have

bVSC p�! V: (9)

The estimator is similar in structure to Lahiri, Kaiser, Cressie, and Hsu (1999). They similarly

use two grids for subsampling to predict stochastic cumulative distribution function. However, they

assume that the underlying process is stationary and their asymptotic framework is mixed in�ll and

increasing domain.

7 Numerical Work

In this section we examine the numerical properties of our estimators of V plus several benchmarks.

In our experience the performance of the corresponding con�dence intervals here is closely matched

by the performance of the estimated variance. In Section 7.1 we simulate the Heston (1993) model

with continuous price sample paths. In Section 7.2. we allow price paths to exhibit jumps.
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7.1 Continuous prince paths

We do a simulation comparison of the above subsampling methods, plus realized quarticity. We

simulate the Heston (1993) model:

dXt = (�t � vt=2) dt+ �tdBt
dvt = � (� � vt) dt+ 
v1=2t dWt;

where vt = �2t , and Bt;Wt are independent standard Brownian motions.

We take parameters from Zhang, Mykland, and Aït-Sahalia (2005): � = 0:05; � = 5; � = 0:04;


 = 0:5: We set the length of the sample path to 22500, which is a proxy for 23400 that is the

number of seconds in a business day. We set the time between observations corresponding to one

second when a year is one unit, and the number of replications to be 100,000. For bVregular; bVIn�ll price;bVIn�ll returns; and bVSC ; we use m =
p
n: For bVSC we use J = 15: We hold the volatility sample path

constant across simulations for easier comparison. Appendix contains Figure 5 showing the results.

Table 1. Finite sample distributions of di¤erent methods

Figure 5a The volatility sample path

Figure 5b Kernel density over simulations of bVregular
Figure 5c Kernel density over simulations of bVIn�ll price
Figure 5d Kernel density over simulations of bVIn�ll returns
Figure 5e Kernel density over simulations of bVSC
Figure 5f Kernel densities over simulations of bVIn�ll price; bVIn�ll returns; bVSC ; and 2IQn

From the simulated volatility sample path (Figure 5a) we can approximate the true V ar(RV ) =

V = 2IQ and we get 4:05 � 10�6. Also, this can be approximated by the (scaled) sample variance
of RV over simulations. Here is a brief summary comparing the means of feasible methods with

infeasible benchmarks:

11



Table 2. Finite sample means of di¤erent methods

Theoretical
p
2IQ 0.00201 infeasible

Finite sample
p
Var(RV )=� 0.00202 infeasible

Square root of mean over simulations of bVregular 0.01720 feasible

Square root of mean over simulations of bVIn�ll price 0.00200 feasible

Square root of mean over simulations of bVIn�ll returns 0.00201 feasible

Square root of mean over simulations of bVSC (maximum overlap) 0.00194 feasible

Square root of mean over simulations of 2IQn 0.00201 feasible

We see that bVregular overestimates the true V by a large factor, thus supporting the asymptotic

result. The other feasible methods work well. We can also see that bVIn�ll price is asymptotically
unbiased, whereas from Figure 5c in the appendix we see that its distribution over simulations is

strongly right-skewed. From Figure 5f we can see that 2IQn has the smallest variance, re�ecting the

fact that is has much faster rate of convergence. Our proposed estimator bVSC has some �nite sample
negative bias. One could do a �nite sample correction and use J

J�1
bVSC (recall J = 15, so this factor

is non-negligible), see section A.4.2. for theoretical justi�cation. Adjusted estimator J
J�1
bVSC has a

smaller negative bias in simulations.

One of the parameters to choose in our proposed estimator bVSC is the amount of overlap between
di¤erent subsamples, which a¤ects the total number of subsamples K:We do a simulation exercise to

see how exactly it a¤ects the �nite sample properties. Figure 5e shows the �nite sample distribution

for three di¤erent scenarios, no overlap, maximum overlap and an intermediate case. We know from

theory that the amount of overlap does not a¤ect the convergence rate. The simulations, however,

indicate that it decreases the asymptotic conditional variance, i.e., bVSC with the maximum amount

of overlap (with K = n�m+1) gives the lowest variance. This phenomenon is also observed in the
long span asymptotic framework.

7.2 Jumps

Now we consider the case of possibly discontinuous sample paths. In this case, the realised volatility

again converges to the quadratic variation. However, quadratic variation does not coincide with

integrated volatility, but instead, it is equal to integrated volatility plus the sum of squared jumps,

QV = IV +
X

(Xt �Xt�)
2 ;
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where Xt� is the left limit of Xt,

Xt� = lim
s"t
Xs:

We have that Xt� = Xt if there are no jumps at time t. The asymptotic distribution of RV is mixed

normal with asymptotic (conditional) variance

V = 2IQ+ 4
X

(Xt �Xt�)
2 �2t . (10)

It is well known that realised quarticity is inconsistent for V; Barndor¤-Nielsen and Shephard (2006).

There are two available consistent estimators of V under the scenario of jumps. One is Aït-Sahalia

and Jacod (2005), which uses truncated power variations. The second is that of Veraart (2007) who

obtains an estimator for V as a linear combination of known estimators of IQ and generalized bipower

variation. This estimator entails estimation of �2t for each t in [0,1] using a histogram approach. In

this section we will consider all estimators of section 7.1 plus Veraart�s estimator.

The continuous part of the price paths are simulated as in Heston (1993), where every simulation

has its own volatility path. We then add jumps as follows. We consider nine scenarios with none,

one, or two jumps per day, with jump times that are uniformly distributed over the day with di¤erent

jump size distributions (as in, for example, Barndor¤-Nielsen and Shephard (2006)). We consider

four di¤erent sizes of the jumps, governed by a parameter p. In particular, we draw the the size of

the jump from a normal p.d.f. with variance p times the integrated volatility, N (0; pIV ). This is

the setup for jumps considered by Huang and Tauchen (2005) and Veraart (2007).

Table 3. Jump parameterization

scenario 1 2 3 4 5 6 7 8 9

number of jumps per day 0 1 2

p 0 0.1 0.2 0.5 0.7 0.1 0.2 0.5 0.7

We report the results by graphing the kernel densities of the studentised RV by the infeasible

QV and respective estimator of V , as follows

t =
p
n

 
RV �QVpbV

!
:

Ideally, these kernel densities should coincide with the p.d.f of a standard normal distribution, which

we superimpose on the estimated density of t. Figures (6) to (11) contain the results. Nine sub-plots

13



in each graph represent 9 scenarios as in Table 3. Note that scenario 1 is very similar to the setup

of section 7.1, but now we use a di¤erent way of representing results (because there is no one true

V anymore, it changes across simulations).

After inspecting Figures (6) to (11) we can make several observations. First, from Figures 6 and

10, bVSC and bVVeraart seem to be good estimators of V in all scenarios. Most probably, this indicates

that bV SC preserves consistency even in this richer context. This seems reasonable, because b�n;m;J;k
and b�n;m;k both converge to the same quantity, i.e., quadratic variation over the (little) time interval
they cover.

Second, from Figure 7, we see that bVin�ll returns estimator, which was consistent for the variance of
RV in the case of no jumps, is not consistent anymore. The intuition for this failure is straightforward.

Although b�n converges to quadratic variation, its subsampled version b�n;m;j does not, hence the
estimator bVin�ll returns overestimates V by a large factor (hence the peaks at zero of estimated density
of tIn�ll returns). This intuition is the same as for the failure of consistency of bVregular in the case of no
jumps (see Section 3).

Third, from Figure 8 we see that the performance of bVin�ll price is not worsened by adding jumps.
The intuition is that bVin�ll price does not su¤er from the problem of bVin�ll returns. In bVin�ll price, both b�n
and b�n;m;j pick up the same jumps and converge to the same quantity. Therefore, the estimator most
probably remains asymptotically unbiased, though retains the problem of high correlation between

subsamples and hence is inconsistent. Although a direct comparison between Figures (5c) and (8)

should be avoided since the latter does not hold volatility path constant across simulations, we can

see that the large mass below the true quantity V in Figure (5c) is re�ected in heavy tails of kernel

density in all nine scenarios of (8).

Fourth, from Figure 9, we see that 2IQn estimates V well when there are no jumps, but is clearly

not consistent for V when jumps are present.

8 Conclusions and Extensions

In this paper we have investigated the use of subsampling for conducting inference about quadratic

variation. We have established two negative results. First, the usual subsampling method as in Poli-

tis, Romano, and Wolf (1994) is inconsistent. Second, the subsampling method of Zhang, Mykland,

and Aït-Sahalia (2005) is also inconsistent. We have also proposed two alternative subsampling meth-
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ods and established their consistency under weak assumptions (given the basic framework we have

adopted). The simulation experiments con�rm that our methods can be consistent in the presence

of leverage and in the presence of jumps.

There is much further work that can be done. Our method can also be applied to other estimators

like bipower variation, Barndor¤-Nielsen and Shephard (2006) and the leverage estimator of Mykland

and Zhang (2007). It is important to generalize the process that X can follow. For example, one

could allow for leverage and jumps. Our simulations show that this can be done to conduct consistent

inference for quadratic variation. Inference for integrated volatility would involve subsampling of

tripower quarticity or other consistent estimators of integrated volatility. Also, one could allow for

measurement error that contaminates X, in which case one has to consider subsampling TSRV or

realized kernels instead of RV as estimators for QVX . Examples of cases where only the asymptotic

theory has been developed, but not the tools for inference, include estimation of quadratic variation

with autocorrelated measurement error (Aït-Sahalia, Mykland, and Zhang 2006a) or with endogenous

measurement error (Kalnina and Linton 2006).

A Appendix

Recall that we are assuming no leverage, so that we can condition on the volatility path. Also, all

arguments are done for a zero drift. Extension to nonzero drift is straightforward (given that we

assume a locally bounded drift, and hence bounded drift w.l.o.g. for the purposes of consistency).

In the proofs of proposition 3 and 4 we use the following result, which is a modi�cation of Linton

(2000, Lemma 1).

Lemma 0. Let (�n; �) be a sequence of random variables with �n scalar and � = f�t; t 2 [0; 1]g:
Suppose that E(�nj�) = mn(�) and Var(�nj�) = vn(�) almost surely, where mn(�); vn(�)

p�! 0:

Then, �n
p�! 0:

A.1 Proof of Proposition 1

The jth subsample contains observations fXj�1; Xj; : : : ; Xm+j�1g. Then

b�(Yj) = mX
i=1

(Xj+i�1 �Xj+i�2)
2 :
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In this case, the number of subsamples is K = n � m + 1: Let zj;i =
R ((j+i�1)=n
(j+i�2)=n �udWu and yj;i =

(
R ((j+i�1)=n
(j+i�2)=n �udWu)

2 � �2j;i; which are independent (across i for given j) and mean zero random
variables conditional on the process �2u; where

�2j;i = E[(

Z ((j+i�1)=n

(j+i�2)=n
�udWu)

2] =

Z ((j+i�1)=n

(j+i�2)=n
�2udu = O(1=n):

In above we use use local boundedness of �2u (which follows from the assumption that paths of � are

càdlàg) to conclude orders of magnitude, i.e.,Z ((j+i�1)=n

(j+i�2)=n
�2udu �

1

n
sup
u
�2u = O(1=n):

We use this argument of boundedness to conclude stochastic orders of magnitude throughout the

appendix.

We have

var (zj;i) = E

24 Z ((j+i�1)=n

(j+i�2)=n
�udWu

!235 = �2j;i

var (yj;i) = E

24 Z ((j+i�1)=n

(j+i�2)=n
�udWu

!435� E2
24 Z ((j+i�1)=n

(j+i�2)=n
�udWu

!235
= 3

 Z ((j+i�1)=n

(j+i�2)=n
�2udu

!2
�
 Z ((j+i�1)=n

(j+i�2)=n
�2udu

!2
= O(1=n2):

We show the following lemmas.

Lemma 1.1. As n!1

E

"
KX
j=1

b�n;m;j# = m Z 1

0

�2udu+O

�
m2

n

�
:

Lemma 1.2. As n!1
KX
j=1

E
�b�2n;m;j� = O�m2

n

�
:
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Then,

bV = m� 1

K

KX
j=1

�b�n;m;j � b�n�2
=

m

K

KX
j=1

��b�n;m;j � ��2 + �� � b�n�2 + 2�b�n;m;j � ���� � b�n��

=
m

K

KX
j=1

�b�n;m;j � ��2 +Op �m1=2n�1=2
�

=
m

K

KX
j=1

b�2n;m;j +m�2 � 2m� 1K
KX
j=1

b�n;m;j + op(1)
and

E(bV ) =
m

K

KX
j=1

E(b�2n;m;j) +m�2 � 2m� 1K
KX
j=1

E(b�n;m;j) + o(1)
=

m

K
O

�
m2

n

�
+m�2 � 2m� 1

K

�
m

Z 1

0

�2udu+O

�
m2

n

��
+ o(1)

= m�2 + o(m)!1;

using K = n�m+ 1 and m2=n = o (1) :

Proof of Lemma 1.1. We have

E

"
KX
j=1

b�n;m;j# =
KX
j=1

mX
i=1

E
�
z2j;i
�

=

KX
j=1

mX
i=1

Z ((j+i�1)=n

(j+i�2)=n
�2udu

=

KX
j=1

Z (m+j�1)=n

(j�1)=n
�2udu

= m

Z 1

0

�2udu+O

�
m2

n

�
:
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Proof of Lemma 1.2. We have

KX
j=1

E
�b�2n;m;j� =

KX
j=1

E

24 mX
i=1

z2j;i

!235
=

KX
j=1

E

24 mX
i=1

(�2j;i + yj;i)

!235
=

KX
j=1

mX
i=1

Ey2j;i +

KX
j=1

mX
i=1

mX
i0=1

�2j;i�
2
j;i

= 2

KX
j=1

mX
i=1

 Z ((j+i�1)=n

(j+i�2)=n
�2udu

!2
+

KX
j=1

mX
i=1

mX
i0=1

�2j;i�
2
j;i

= O

�
m2

n

�
:

A.2 Proof of Proposition 2

A.2.1 Notation and preliminary calculations

Let

zj;i =

Z (j+iK)=n

(j+(i�1)K)=n
�udWu;

and so b�n;K;j = mX
i=1

z2j;i;

where: z2j;i = �
2
j;i + yj;i; �

2
j;i = E[(

R (j+iK)=n
(j+(i�1)K)=n �udWu)

2] =
R (j+iK)=n
(j+(i�1)K)=n �

2
udu; and

yj;i = (
R (j+iK)=n
(j+(i�1)K)=n �udWu)

2 � �2j;i; which are independent (across i for given j) and mean zero
random variables conditional on the process �2u: That is, E[zj;izj;i0 ] = E[yj;iyj;i0 ] = 0 whenever i 6= i0:
Furthermore, zj;i is conditionally normal and so satis�es E[z4j;i] = 3E

2[z2j;i]: Note that, for j < j
0,

E [zj;izj0;i0 ] =

8>><>>:
R (minfj;j0g+iK)=n
(maxfj;j0g+(i�1)K)=n �

2
udu 6= 0 i = i0R (j0+i0K)=n

(j+i0K)=n �
2
udu 6= 0 i = i0 + 1

0 ji� i0j > 1; i = i0 � 1:
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Furthermore, E[yj;izj;i] = 0; and

var (zj;i) = E

24 Z (j+iK)=n

(j+(i�1)K)=n
�udWu

!235 = �2j;i = Z (j+iK)=n

(j+(i�1)K)=n
�2udu = Op(K=n)

var (yj;i) = E

24 Z (j+iK)=n

(j+(i�1)K)=n
�udWu

!435� E2
24 Z (j+iK)=n

(j+(i�1)K)=n
�udWu

!235
= 2

 Z (j+iK)=n

(j+(i�1)K)=n
�2udu

!2

=
2K

n

Z (j+iK)=n

(j+(i�1)K)=n
�4udu+ op

�
K2=n2

�
= Op(K

2=n2);

since  Z (j+iK)=n

(j+(i�1)K)=n
�2udu

!2
=
K

n

Z (j+iK)=n

(j+(i�1)K)=n
�4udu+ o(K

2=n2): (11)

We prove this result below.

By adding these results over all subsamples, we get that for each j and each j0,

Cov(b�n;m;j;b�n;m;j0) = O �m�1� : (12)

Proof of (11).This is established as follows. Suppose that f is a bounded positive continuous

function on [0; 1]; say. Then for � > 0; g(�) =
R �
0
f(x)dx is of order � as �! 0; becauseZ �

0

f(x)dx � �� sup
x2[0;�]

f(x):

Furthermore, g is di¤erentiable in � with g0(�) = f(�): Therefore, by the mean value theorem g(�) =

g(0) + �g0(�) = �f(�) for some � � �: Therefore,�Z �

0

f(x)dx

�2
= �2f 2(�):

Furthermore, f 2 is also a bounded continuous function on [0; 1] and satis�esZ �

0

f 2(x)dx � �� sup
x2[0;�]

f 2(x)
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Z �

0

f 2(x)dx = �f 2(��)

for some �� � �: By continuity of f 2 at 0;

lim
�#0

f 2(�)

f 2(��)
= 1;

and it follows that �Z �

0

f(x)dx

�2
= �

Z �

0

f 2(x)dx+ o(�2):

A.2.2 Main proof

Write

bV =
m

K

KX
j=1

b�2n;m;j +mb�2n � 2mb�n 1K
KX
j=1

b�n;m;j
=

m

K

KX
j=1

b�2n;m;j +m�2 � 2m� 1K
KX
j=1

b�n;m;j + op(1);
where the approximation is valid by Barndor¤-Nielsen and Shephard (2002).

We make use of the following lemmas.

Lemma 2.1.

E

"
1

K

KX
j=1

b�n;m;j# = 1

K

KX
j=1

Z 1�K=n+j=n

j=n

�2udu:

Lemma 2.2.

E

"
1

K

KX
j=1

b�2n;m;j
#
=
2

n

KX
j=1

Z 1�j=n

j=n

�4udu+
1

K

KX
j=1

 Z 1�K=n+j=n

j=n

�2udu

!2
+ o

�
1

m

�
:

Lemma 2.3.

Var

 
m

K

KX
j=1

b�2n;m;j � 2m� 1K
KX
j=1

b�n;m;j! = O(1):
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These lemmas imply that

EbV =
m

K

KX
j=1

E[b�2n;m;j] +m�2 � 2m� 1K
KX
j=1

E[b�n;m;j] + o(1)
=

2m

n

KX
j=1

Z 1�K=n+j=n

j=n

�4udu+
m

K

KX
j=1

 Z 1�K=n+j=n

j=n

�2udu

!2
+m

�Z 1

0

�2udu

�2

�2m
�Z 1

0

�2udu

�
1

K

KX
j=1

Z 1�K=n+j=n

j=n

�2udu+ o(1):

We have to show that

R =

�Z 1

0

�2udu

�2
+
1

K

KX
j=1

8<:
 Z 1�K=n+j=n

j=n

�2udu

!2
� 2

Z 1

0

�2udu

Z 1�K=n+j=n

j=n

�2udu

9=; = o(K=n):

(13)

This is true because, write I =
R 1
0
�2udu; Ij=n =

R j=n
0

�2udu; and I
1�K=n+j=n =

R 1
1�K=n+j=n �

2
udu:

Then

R = I2 +
1

K

KX
j=1

�
I2 � 2I(Ij=n + I1�K=n+j=n) + (Ij=n + I1�K=n+j=n)2 � 2I(I � (Ij=n + I1�K=n+j=n))

	
=

1

K

KX
j=1

(Ij=n + I
1�K=n+j=n)2 = O(K2=n2):

Therefore,

EbV =
2m

n

KX
j=1

Z 1�K=n+j=n

j=n

�4udu+ o(1)

=
2m

n

KX
j=1

Z 1

0

�4udu+ o(1)

= 2

Z 1

0

�4udu+ o(1);

and the �rst part of (6) follows. The second part follows from Lemma 2.3.
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Proof of Lemma 2.1. We have

E

"
1

K

KX
j=1

b�n;m;j# =
1

K

KX
j=1

mX
i=1

E
�
z2j;i
�

=
1

K

KX
j=1

mX
i=1

Z (j+iK)=n

(j+(i�1)K)=n
�2udu

=
1

K

KX
j=1

Z 1�K=n+j=n

j=n

�2udu:

Proof of Lemma 2.2. We have

1

K

KX
j=1

E
�b�2n;m;j� =

1

K

KX
j=1

E

24 mX
i=1

z2j;i

!235
=

1

K

KX
j=1

E

24 mX
i=1

(�2j;i + yj;i)

!235
=

1

K

KX
j=1

mX
i=1

Ey2j;i +
1

K

KX
j=1

mX
i=1

mX
i0=1

�2j;i�
2
j;i0

=
2

n

KX
j=1

mX
i=1

 Z (j+iK)=n

(j+(i�1)K)=n
�2udu

!2
+
1

K

KX
j=1

 Z 1�j=n

j=n

�2udu

!2

=
2

n

KX
j=1

Z 1�K=n+j=n

j=n

�4udu+
1

K

KX
j=1

 Z 1�K=n+j=n

j=n

�2udu

!2
+ o

�
1

m

�
:

by (11).

Proof of Lemma 2.3. This can be seen from the covariance between b�n;K;j and b�n;K;i:

A.3 Proof of Proposition 3

We �rst derive the mean and variance of b�n;m;j. We have
22



Eb�n;m;j = KE
mX
i=1

�
Xj+(i�1)K �Xj+(i�1)K�1

�2
= K

mX
i=1

Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�2udu

=

Z 1

0

�2udu+ o (1)

by Riemann integrability of �2u: Furthermore,

Varb�n;m;j = K2Var

mX
i=1

�
Xj+(i�1)K �Xj+(i�1)K�1

�2
= K2

mX
i=1

Var
�
Xj+(i�1)K �Xj+(i�1)K�1

�2
= 2K2

mX
i=1

 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�2udu

!2
=

2

m

Z 1

0

�4udu+ o

�
1

m

�
:

Now we calculate the expected value of the estimator.

EbVIn�ll returns = Em� 1

K

KX
j=1

�b�n;m;j � b�n�2
=

m

K

KX
j=1

E
�b�n;m;j � Eb�n;m;j�2 +R

= 2

Z 1

0

�4udu+ o (1) +R;

where

R =
m

K

KX
j=1

E
n�b�n;m;j � Eb�n;m;j��Eb�n;m;j � b�n�o+ m

K

KX
j=1

E

��
Eb�n;m;j � b�n�2�

=
m

K

KX
j=1

E
n
Op
�
m�1=2� �Eb�n;m;j � b�n�o+ m

K

KX
j=1

E

��
Eb�n;m;j � b�n�2� :
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We know that b�n � � = O
�
n�1=2

�
: Therefore, have R = o (1) if Eb�n;m;j � � = op

�
m�1=2� : For

this, Riemann integrability is not enough, which is why we have assumed Hölder continuity of order

larger than 1=2.

Now we calculate the variance of bVIn�ll returns. To facilitate calculations, introduce the usual

notation:

zj;i =

Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

b�n;m;j = K mX
i=1

z2j;i

z2j;i = �
2
j;i + yj;i

�2j;i = E[(

Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu)

2] =

Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�2udu

yj;i = (

Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu)

2 � �2j;i:

We �rst do some preliminary calculations.

Eyj;i = 0; so that Var (yj;i) = Ey2j;i

Ey2j;i = E

8<:
 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!2
� �2j;i

9=;
2

= E

8<:
 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!4
+
�
�2j;i
�2 � 2 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!2
�2j;i

9=;
= 3

�
�2j;i
�2
+
�
�2j;i
�2 � 2 ��2j;i�2 = 2 ��2j;i�2
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Ey4j;i = E

8<:
 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!2
� �2j;i

9=;
4

= E

8<:
 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!8
+
�
�2j;i
�4 � 4 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!2 �
�2j;i
�3

�4
 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!6 �
�2j;i
�
+ 6

 Z (j+(i�1)K)=n

(j+(i�1)K�1)=n
�udWu

!4 �
�2j;i
�29=;

= 105
�
�2j;i
�4
+
�
�2j;i
�4 � 4 ��2j;i� ��2j;i�3 � 4� 15 ��2j;i�3 ��2j;i�+ 6� 3 ��2j;i�2 ��2j;i�2

=
�
�2j;i
�4 f105 + 1� 4� 60 + 18g = 60 ��2j;i�4 :

Using the same approximation of bVIn�ll returns as in Proposition 1, the variance of bVIn�ll returns
becomes

VarbVIn�ll returns = Var

"
m

K

KX
j=1

�b�n;m;j � ��2 + op (1)#

=
m2

K2

KX
j=1

Var
�b�n;m;j � ��2 + o (1) :

To show VarbVIn�ll returns = o(1); we show that Var
�b�n;m;j � ��2 = Var

�b�2n;m;j � 2b�n;m;j�� =

o (Km�2). In order to do that, we proceed in three steps. That is to say, to calculate Var(x),

we �rst �rst calculate E(x), then y = x� E(x), and �nally E(y2):
Step 1. We have

E
�b�2n;m;j � 2b�n;m;j��

= E

24(K mX
i=1

�
�2j;i + yj;i

�)2
� 2�K

mX
i=1

�
�2j;i + yj;i

�35
= E

8<:K2

 
mX
i=1

�2j;i

!2
+K2

 
mX
i=1

yj;i

!2
+ 2K2

mX
i=1

�2j;i

mX
i=1

yj;i

9=;� 2�K
mX
i=1

�2j;i
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= K2

 
mX
i=1

�2j;i

!2
+K2

mX
i=1

Ey2j;i � 2�K
mX
i=1

�2j;i

= K2

 
mX
i=1

�2j;i

!2
+ 2K2

mX
i=1

�
�2j;i
�2 � 2�K mX

i=1

�2j;i:

Step 2. We have

b�2n;m;j � 2b�n;m;j� � E�b�2n;m;j � 2b�n;m;j��
=

(
K2

mX
i=1

�
�2j;i + yj;i

�)2
� 2�K

mX
i=1

�
�2j;i + yj;i

�
� E

�b�2n;m;j � 2b�n;m;j��

= K2

 
mX
i=1

�2j;i

!2
+K2

 
mX
i=1

yj;i

!2
+ 2K2

mX
i=1

�2j;i

mX
i=1

yj;i

�2�K
mX
i=1

�2j;i � 2�K
mX
i=1

yj;i

�K2

 
mX
i=1

�2j;i

!2
� 2K2

mX
i=1

�
�2j;i
�2
+ 2�K

mX
i=1

�2j;i

= K2

 
mX
i=1

yj;i

!2
+ 2K2

mX
i=1

�2j;i

mX
i=1

yj;i � 2�K
mX
i=1

yj;i � 2K2

mX
i=1

�
�2j;i
�2

= K2

 
mX
i=1

yj;i

!2
� 2K2

mX
i=1

�
�2j;i
�2
+ 2K

mX
i=1

yj;i

 
K

mX
i=1

�2j;i � �
!

= K2

 
mX
i=1

yj;i

!2
� 2K2

mX
i=1

�
�2j;i
�2
+ op

�
n�1
�
;

because even without any smoothness assumptions on � we have K
Pm

i=1 �
2
j;i � � = o (1) and

K
Pm

i=1 yj;i = O (Kmn
�2) = O (n�1) :

Step 3. The only term in the variance, whose negligibility needs to be shown (because
p
Km�2 >
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n�1), is

E

24K2

 
mX
i=1

yj;i

!2
� 2K2

mX
i=1

�
�2j;i
�2352

= K4

24E mX
i=1

yj;i

!4
+ 4E

 
mX
i=1

�
�2j;i
�2!2 � 4 mX

i=1

�
�2j;i
�2
E

 
mX
i=1

yj;i

!235
= K4

24E mX
i=1

yj;i

!4
+ 4

 
mX
i=1

�
�2j;i
�2!2 � 8 mX

i=1

�
�2j;i
�2!235

= K4

24E mX
i=1

yj;i

!4
� 4

 
mX
i=1

�
�2j;i
�2!235

= K4

24 mX
i=1

Ey4j;i + 3
mX

i0=1;i0 6=i

mX
i=1

Ey2j;iEy
2
j;i � 4

 
mX
i=1

�
�2j;i
�2!235

= K4

2460 mX
i=1

�
�2j;i
�4
+ 12

mX
i0=1;i0 6=i

mX
i=1

�
�2j;i
�2 �
�2j;i0
�2 � 4 mX

i=1

�
�2j;i
�2!235

= K4

"
56

mX
i=1

�
�2j;i
�4
+ 8

mX
i0=1;i0 6=i

mX
i=1

�
�2j;i
�2 �
�2j;i0
�2#

= O
�
K4mn�4

�
+O

�
K4m2n�4

�
= O

�
m�2� = o(Km�2):

This implies VarbV ! 0 and so we have mean square convergence and so (8) follows by Chebyshev�s

inequality.

A.4 Proof of Proposition 4

In the �rst subsection of this proof we explain the notation, in the second we show that the bias ofbVSC is negligible, i.e., E(bVSC)�V = o(1), and in the third subsection we show that Var(bVSC) = o(1),
so that Proposition 4 follows by Chebyshev�s inequality.
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A.4.1 Notation for bVSC
Much of the notation is the same as for the other estimators. K is the number of subsamples. m

is the number of high frequency returns in of each subsample. J is the number of high frequency

returns that ��t into�one low frequency return (see Figure 2 for a graphical illustration), 1 < J < m.

There are m=J number of low frequency in each subsample. Take m
... J (i.e., m divisible by J).

The proof is for a general amount of overlap between subsamples, so introduce a variable s, for

�shift�. If subsamples are constructed as observations in a window, we move the window by s=n

to get every next subsample. For example, s = m corresponds to no overlap between subsamples

and s = 1 corresponds to maximum possible overlap. Assume m
... s. As we show below, we have

K = n=s�m=s+ 1.
The �subsample copies�of the RV estimator (b�n;m;j in (2)) will be

b�n;m;J;1 = m=JP
i=1

�
XJi �XJ(i�1)

�2
; b�n;m;J;2 = m=JP

i=1

�
XJi+s �XJ(i�1)+s

�2
; etc:;

so that the copy corresponding to the kth subsample is

b�n;m;J;k = m=JP
i=1

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2
:

The number of subsamples is the k such that

J
m

J
+ s (kmax � 1) = n) kmax � K = n=s�m=s+ 1:

We have

Eb�n;m;J;k = m=JP
i=1

Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2udu =

Z [m+s(k�1)]=n

s(k�1)=n
�2udu:

The �subsample copies�of the true parameter QV (� in (2), except that we have a di¤erent �copy�

for each subsample for our centering) will be

b�n;m;1 =
mP
i=1

(Xi �Xi�1)
2 ; b�n;m;2 = mP

i=1

(Xi+s �Xi�1+s)
2 ; etc:

b�n;m;k =
mP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2
:

We have

Eb�n;m;k = mP
i=1

Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2udu =

Z [m+s(k�1)]=n

s(k�1)=n
�2udu:
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Recall that the estimator of V is

bVSC = n2

mKJ

KX
k=1

�b�n;m;J;k � b�n;m;k�2 :
A.4.2 Derivation of E(bVSC)
Introduce the following notation,

E
�b�n;m;J;k � b�n;m;k�2 = Eb�2n;m;J;k + Eb�2n;m;k � 2Eb�n;m;J;kb�n;m;k

= Ak +Bk � 2Ck;

so that we have EbVSC = n2

mKJ

PK
k=1 (Ak +Bk � 2Ck) : Then,

Ak = Eb�2n;m;J;k = E
"
m=JP
i=1

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2#2

=
m=JP
i=1

E
�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�4
+2
P
i0>i

m=JP
i=1

E
�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2
E
�
XJi0+s(k�1) �XJ(i0�1)+s(k�1)

�2
= 2

m=JP
i=1

 Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2u

!2
+

 Z [m+s(k�1)]=n

s(k�1)=n
�2udu

!2
:

Similarly,

Bk = Eb�2n;m;k = E � mP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2�
= 2

mP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!2
+

 Z [m+s(k�1)]=n

s(k�1)=n
�2udu

!2
:

In the third term, we have covariances between realised volatilities on the two grids, which we
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denote as corresponding summation over low frequency returns
m=JP
i=1

Ck;i as follows,

Ck = Eb�n;m;J;kb�n;m;k
= Cov

�b�n;m;J;k;b�n;m;k�+ Eb�n;m;J;kEb�n;m;k
= Cov

 
m=JP
i=1

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2
;
mP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2!
+ Eb�n;m;J;kEb�n;m;k

=
m=JP
i=1

Ck;i + Eb�n;m;J;kEb�n;m;k:
We then notice that Ck;1 is the variance of the realised volatility over the 1st low frequency return,

and

Ck;1 = Cov

��
XJ+s(k�1) �Xs(k�1)

�2
;
mP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2�
= Cov

��
XJ+s(k�1) �Xs(k�1)

�2
;
JP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2�
= Cov

"
JP
j=1

�
Xj+s(k�1) �Xj�1+s(k�1)

�2
+2

P
j0>j

JP
j=1

�
Xj+s(k�1) �Xj�1+s(k�1)

� �
Xj0+s(k�1) �Xj0�1+s(k�1)

�
;

JP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2�
= Var

�
JP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2�
= 2

JP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!2
:

Similarly with other C 0k;is and so we have

Ck = 2
JP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!2
+ Eb�n;m;J;kEb�n;m;k

= 2
JP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!2
+

 Z [m+s(k�1)]=n

s(k�1)=n
�2udu

!2
= Bk:
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Therefore,

EbVSC
=

n2

mKJ

KP
k=1

E
�b�n;m;J;k � b�n;m;k�2 = n2

mKJ

KP
k=1

(Ak �Bk)

=
n2

mKJ

KP
k=1

8<:2m=JPi=1
 Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2u

!2
� 2

JP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!29=;
= 2

n2

mKJ

KX
k=1

m=JP
i=1

 Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2u

!2
� 2 n2

mKJ

KX
k=1

mP
i=1

 Z [i+s(k�1)]=n

[i�1+s(k�1)]=n
�2u

!2
:

We show just below that the �rst term converges to V: Notice that second term is like J�1V , which

means that one could do an easy �nite sample bias correction by estimating V by J
J�1
bVSC instead ofbVSC : Note that in our simulation setup we have J = 15, so the adjustment factor is non-negligible.

We deal with summations in the �rst term by re-grouping the terms so that each group �covers�

the interval [0; 1] apart from end-e¤ects,

KX
k=1

m=JP
i=1

 Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2u

!2

=

m=sX
p=1

(n�m)=JP
i=1

 Z Ji=n+s(p�1)=n

J(i�1)=n+s(p�1)=n
�2u

!2

=

m=sX
p=1

�
J

n

Z 1

0

�2udu+ o

�
J

n

��
=

mJ

sn

Z 1

0

�2udu+ o

�
mJ

sn

�
:

Now we can conclude asymptotic unbiasedness,

EbVSC = 2
n2

mKJ

�
mJ

sn

Z 1

0

�2udu+ o

�
mJ

sn

��
+O

�
J�1
�

= V + o(1)

by using the fact that K = n=s�m=s+ 1 = n=s+ o(n=s):
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A.4.3 Derivation of Var(bVSC)
VarbVSC = Var

"
n2

mKJ

KX
k=1

�b�n;m;J;k � b�n;m;k�2#

=

�
n2

mKJ

�2 KX
k0=1

KX
k=1

Cov

��b�n;m;J;k � b�n;m;k�2 ;�b�n;m;J;k0 � b�n;m;k0�2�

�
�

n2

mKJ

�2 min(K;k+m=s)X
k0=max(1;k�m=s)

KX
k=1

Cov

��b�n;m;J;k � b�n;m;k�2 ;�b�n;m;J;k0 � b�n;m;k0�2�

�
�

n2

mKJ

�2
2
m

s

KX
k=1

Var

��b�n;m;J;k � b�n;m;k�2� ;
where we use the fact that: 1) all these covariances must be nonnegative, 2) for a �xed term k in the

�rst summation, only the terms from k �m=s to k +m=s terms in the summation over k0 give rise
to nonzero covariances.

Now we calculate the magnitude of b�n;m;J;k � b�n;m;k,
Var

hb�n;m;J;k � b�n;m;ki
= Var

"
m=JP
i=1

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2 � mP
i=1

�
Xi+s(k�1) �Xi�1+s(k�1)

�2#

= Var

"
m=JP
i=1

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2 � m=JP
i=1

JP
j=1

�
Xj+J(i�1)+s(k�1) �Xj�1+J(i�1)+s(k�1)

�2#

= Var
m=JP
i=1

"�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2 � JP
j=1

�
Xj+J(i�1)+s(k�1) �Xj�1+J(i�1)+s(k�1)

�2#

=
m=JP
i=1

Var

"�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2 � JP
j=1

�
Xj+J(i�1)+s(k�1) �Xj�1+J(i�1)+s(k�1)

�2#

=
m=JP
i=1

n
Var

�
XJi+s(k�1) �XJ(i�1)+s(k�1)

�2
�

JP
j=1

Var
�
Xj+J(i�1)+s(k�1) �Xj�1+J(i�1)+s(k�1)

�2)
(14)
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=
m=JP
i=1

8<:2
 Z [Ji+s(k�1)]=n

[J(i�1)+s(k�1)]=n
�2udu

!2
� 2

JP
j=1

 Z [j+J(i�1)+s(k�1)]=n

[j�1+J(i�1)+s(k�1)]=n
�2udu

!29=;
= O

 
m

J

�
J

n

�2!
= O

�
mJ

n2

�
;

where (14) follows by noticing that, in the expression of variance, the covariance between the �rst

and second term equals the variance of the second term.

Using this, we can show that Var
�bVSC� is negligible. We have

Var
�bVSC� � � n2

mKJ

�2
m

s
K

�
mJ

n2

�2
=
n4mKm2J2

m2K2J2sn4
=
m

Ks
� m

n
;

and recall we have m=n = o(1):

Notice how the magnitude of Var(bVSC) does not depend on the amount of overlap (i.e., it does
not depend on the parameter s).
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B Figures
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Figure 1. Regular Subsampling
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Figure 2. Subset Centered Subsampling.
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Figure 3. In�ll Price Subsampling
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Figure 4. In�ll Returns Subsampling
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Figure (5) (a) Volatility sample path. From here, the true variance of RV is V = 4.05 * 10-6. 

(b) Kernel density over simulations of Regular Subsampling estimator. This estimator very much overestimates the true quantity.  
 (c) Kernel density over simulations of Infill Price Subsampling estimator. 
 (d) Kernel density over simulations of Infill Returns Subsampling estimator. 
 (e) Kernel densities over simulations of Subset Centered Infill estimator, for three different amounts of overlap between subsamples. 

Amount of overlap does not seem to affect the expected value, but it decreases the variance.  
 (f) Kernel densities over simulations of Infill Price subsampling estimator (dotted), Infill Returns Subsampling estimator (crosses), 

Subset Centered Infill Subsampling estimator (solid) and 2IQn (dashed). 
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Figure 6.  
Solid line: Estimated kernel density of studentised RV, using the Subset Centered Infill Subsampling estimator of V. 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3. 
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Figure 7.  
Solid line: Estimated kernel density of studentised RV, using the Infill Returns Subsampling estimator of V. 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3.
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Figure 8.  
Solid line: Estimated kernel density of studentised RV, using the Infill Price Subsampling estimator of V. 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3. 



-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2
0

0.5

1

1.5

2

2.5

-4 -2 0 2
0

1

2

3

4

-4 -2 0 2
0

2

4

6

8

10

-4 -2 0 2
0

2

4

6

-4 -2 0 2
0

1

2

3

4

-4 -2 0 2
0

2

4

6

8

-4 -2 0 2
0

5

10

15

-4 -2 0 2
0

5

10

15

20

 
Figure 9.  
Solid line: Estimated kernel density of studentised RV, using 2IQn. 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3. 
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Figure 10. 
Solid line: Estimated kernel density of studentised RV, using the estimated V as in Veraart (2007). 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3. 
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Figure 11. 
Solid line: Estimated kernel density of studentised RV, using the true V. 
Dashed line: standard normal density. 
Nine scenarios as described in Table 3. 




