
 

 

Hongbiao Zhao 
Portfolio credit risk of default and spread 
widening 
 
Research paper 
 
 
 
 
Original citation: 
Zhao, Hongbiao (2011) Portfolio credit risk of default and spread widening. The Author. 
(Unpublished)  
 
This version available at: http://eprints.lse.ac.uk/43451/ 
 
Available in LSE Research Online: October 2012 
 
© 2011 The Author 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
 
 

http://eprints.lse.ac.uk/43451/


Portfolio Credit Risk of Default and Spread Widening

Hongbiao Zhao ∗

London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom

Abstract

This paper introduces a new model for portfolio credit risk incorporating default and spread
widening in a simple and consistent framework. Credit spreads are modelled by geometric Brow-
nian motions with a dependence structure powered by a t−copula. Their joint evolution drives
the spreads widening and triggers defaults, and then the loss can be calculated accordingly. It is
a heterogeneous model that takes account of different credit ratings and term structures for each
underlying spread. This model is applicable to portfolio credit risk management, stress test, or
to fit into regulatory capital requirements. The procedures of parameter calibration and scenario
simulation are provided. A detailed example is also given to see how this proposed model can be
implemented in practice.

Keywords: Portfolio credit risk, Stress test, Economic capital, Default risk, Spread widening
risk, Copula, Basel III
JEL: Primary: G32; Secondary: G18; C30; C51
2010 MSC: 91G40

1. Introduction

Credit risk and market are intrinsically related to each other and, more importantly, they are
not separable (Jarrow and Turnbull 2000). During the recent financial crisis, especially after
the collapse of Lehman Brothers in September 2008, the interaction of credit risk and market
becomes more evident. It has exposed some severe problems in the original systems of risk as-
sessment, management and supervision, due to inadequate recognition of this interaction. This is
also one of the main issues that have pushed G20 to propose a major agreement of the Basel III
for a global banking reform. It is a new global regulatory standard on bank capital adequacy and
liquidity, and will impose new capital requirements on the world’s banking system, in an effort
to strengthen the ability of absorbing shocks from economic stress and to avoid future financial
meltdowns.

Modelling the credit risk itself has already been a challenge, as more credit products are
more frequently bought and sold, instead of being held to maturity. Nowadays, researchers,
practitioners and regulators start to explore the complexity of the interactive behavior of credit
risk and market, and attempt to develop more sophisticated models to capture the credit risk and
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other forms of risk in a consistent methodological framework. Simply calculating the market
risk and credit risk separately and then summing them up could either underestimate or overesti-
mate the overall risk involved (BCBS, 2009). The evidences were provided by Breuer, Jandačka,
Rheinberger and Summer (2010), and Alessandri and Drehmann (2010). Gupton, Finger and
Bhatia (1997) developed a mark-to-market credit migration model, CreditMetrics, widely used
in practice for portfolio credit risk management and economic capital calculation. Kupiec (2007)
extended the CreditMetrics model to additionally incorporate the valuation effects of market
risk on non-default credits. Altman, Brady, Resti and Sironi (2005) and Bruche and González-
Aguado (2010) investigated the negatively correlated interaction between default and recovery
rate. Alessandri and Drehmann (2010) implemented the stress test by integrating the default
and interest rate risk. Tang and Yan (2010) analysed the impact of the interaction between mar-
ket and default on corporate credit spreads based on macroeconomic factors, such as the GDP
growth rate and its volatility, and consumer confidence. In particular, inspiring discussion and
comprehensive summary on this issue can also be found from the conference on “Interaction
of Market and Credit Risk” (IMCR), held by Deutsche Bundesbank and the working group of
Research Task Force established by Basel Committee on Banking Supervision (BCBS) in Berlin
in 2007 (Hartmann, 2010; BCBS, 2008).

In this paper, we attempt to model the interaction of default risk and spread widening risk,
which has been often neglected before the recent financial crisis. Credit spread risk as defined
by BCBS (2008) is the risk of potential loss due to a change in an instrument’s credit spread (de-
fined as the instrument’s yield relative to that of a comparable-duration default-free instrument)
that is not attributable to defaults or credit migrations (e.g. a change in liquidity premia). Dur-
ing the recent credit market turmoil, banks were hit hard by these structured credit instruments
they held in their trading books, with significant losses coming from spread widening (Madigan
2010). Calculating this risk has been required by new financial capital regulation, in particular,
the incremental risk charge (IRC). The IRC expands the scope of the capital charge to capture
not only price changes due to defaults but also other sources of price risk, such as significant
moves of credit spreads (BCBS, 2008). Banks must conduct stress tests that include widening
credit spreads in recessionary scenarios, as also proposed by Basel III.

This paper introduces a new portfolio credit risk model incorporating default and spread
widening in one consistent framework over a single horizon. It is applicable to credit risk man-
agement, stress test, or to fit into the new regulatory requirements being raised from the recent
financial crisis, in particular, the IRC. This model is similar to the seminal Merton (1974)’s
model, a structural model based on an unobservable underlying firm’s value. The main differ-
ence is that we assume the underlying processes are the firms’ credit spreads rather than the
firms’ values, and they have a dependence structure powered by a copula. Their joint evolution
drives the spreads widening and triggers defaults simultaneously, and then the loss can be cal-
culated accordingly. The credit spreads are observable from credit market and can be calibrated
from historical data. They are also closely linked to the underlying default risk by implying the
default probability under risk-neutral measure (Hull, Predescu and White, 2005). This is a simple
heterogeneous model that can take account of different credit ratings and term structures for each
underlying spread, and also can integrate different marginal distributions for credit spreads with
a flexible dependence structure via a copula function. The setting of heterogeneity is similar to
the CreditMetrics model by Gupton, Finger and Bhatia (1997). The parameters can be calibrated
from the historical daily time series of corporate bond spreads, and our model then can be imple-
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mented by Monte Carlo simulation for a bond portfolio in practice.

The paper is organised as follows. Section 2 gives a mathematical description of our frame-
work, including the marginal distribution for each credit spread in Section 2.1, and a dependence
structure for all spreads in a bond portfolio in Section 2.2. Based on this common framework,
the credit risk of spread widening and default can be modelled respectively in Section 3.1 and
Section 3.2, and an integrated model of overall credit risk is given in Section 3.3. We use the
database of historical corporate bond spreads as given in Section 4 and calibrate parameters in
Section 5. In Section 6 we provide a detailed example to demonstrate how this proposed model
can be implemented in industrial practice. Section 7 concludes this paper and gives some sug-
gestions for future research.

2. Model Framework

The whole framework for modelling the joint evolution of credit spreads consists of two
parts:

1. a marginal distribution for the spread evolution of each bond in the portfolio (in Section
2.1);

2. a copula function for the dependence structure of these spreads (in Section 2.2).

We have investigated this framework by using different types of marginal distributions and
copulas. To illustrate the modelling idea, in this paper, we only use log-normal marginal distri-
butions with a t−copula dependency as an example.

2.1. Marginal Distribution for the Individual Spread
There are N bonds in the portfolio, and we assume

{
S < j>

t

}
t≥0

, the spread of bond j ∈ {1, 2, ...,N},
follows a geometric Brownian motion,

dS < j>
t

S < j>
t

= µ jdt + σ jdW< j>
t

where the drift µ j, volatility σ j are positive constants, and W< j>
t is a Brownian motion. It is well

known that the analytic solution is given by

S < j>
t = S < j>

0 exp
[(
µ j − 1

2
σ2

j

)
t + σ jdW< j>

t

]

and S < j>
t follows the log-normal distribution,

ln S < j>
t ∼ N

(
ln S < j>

0 +

(
µ j − 1

2
σ2

j

)
t, σ2

j t
)
.

Since µ j − 1
2σ

2
j is very small1, we simply assume µ j − 1

2σ
2
j ≈ 0, then,

ln S < j>
t ∼ N

(
ln S < j>

0 , σ2
j t
)
,

1This can be verified by the observation from the spread database in Section 4.
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namely,
S < j>

t = S < j>
0 eσ j

√
tZ j (1)

where Z j ∼ N(0, 1).

To build a heterogeneous model that can take account of different credit ratings and term
structures for each bond in the portfolio, we assume the parameter volatility is a function of
credit rating R and maturity bucket T , i.e.

σ j = σ(R,T )

where R ∈ {AAA, AA, A, BBB}2, and T ∈ {00Y − 05Y, 05Y − 10Y, 10Y − 15Y, 15Y − 20Y, 20Y+}
grouped according to the bond’s time to maturity.

2.2. Dependence Structure for All Spreads

We adopt the copula approach for modelling the dependence structure because of its flexibil-
ity of incorporating different marginal distributions and the ease of simulation (Li, 2000; Nelsen,
2006; Kole, Koedijk and Verbeek, 2007). There are a variety of other techniques for dependency
modelling in the literature, such as the methodology of credit contagion introduced by Jarrow and
Yu (2001), Errais, Giesecke and Goldberg (2009), and more recently Dassios and Zhao (2011).

The dependence structure of all spreads ~S t =:
(
S <1>

t , ..., S <N>
t

)′
given by (1) is built via

a vector of dependent standard normal distributed random variables ~Z =: (Z1, ..., ZN)′, with a
dependence structure following a t−copula parameterised by a N × N correlation matrix

Σ =:



1 ρ1,2 ... ρ1,N
ρ2,1 1 ... ρ2,N
...

. . .
...

ρN−1,1 ρN−1,2 ... ρN−1,N
ρN,1 ρN,2 ... 1


(2)

and degree of freedom ν. ρi, j is the correlation coefficient for bond i and j (i , j) in the portfolio.

We adopt the procedure by Romano (2002) to construct the vector ~Z as follows:

1. generate a vector of independent random variables ~X =: (X1, ..., XN)′ where X j ∼ N(0, 1);
2. obtain a vector of dependent random variables ~Y =: (Y1, ..., YN)′ with a joint distribution

ΦΣ(~Y) where
~Y = A~X,

and matrix A is the Cholesky decomposition of Σ, i.e.

Σ = AAT;

2We assume each bond is in the investment grade.
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Figure 1: The Historical Time Series of Benchmark Spreads of iBoxx Index 01/03/2006-27/06/2008

3. obtain a vector of dependent random variables ~t =: (t1, ..., tN)′ by

~t =
~Y√

c
ν

where c is a random variable following a chi-squared distribution χ2
ν , and independent of

~X;
4. transform vector ~t to a unit space [0, 1]N by

(U1, ...,UN) =

(
tν(t1), ..., tν(tN)

)
, (3)

and then vector ~U =: (U1, ...,UN)′ has a t−copula dependence structure;
5. ~Z is constructed via

(Z1, ..., ZN) =

(
Φ−1(U1), ...,Φ−1(UN)

)
(4)

where Φ−1(·) is the inverse function of the accumulative standard normal distribution.

We assume the correlation coefficient for bond i and j (i , j) is a function of their credit
ratings, i.e.

ρi, j = ρ(R1,R2) (i , j)

where R1,R2 ∈ {AAA, AA, A, BBB}, and ρi, j = 100% for i = j. This assumption is based on
the observation of the joint evolution of spreads from, for instance, the historical time series of
benchmark spreads of iBoxx Index 01/03/2006–27/06/2008 for rating-maturity buckets as given
by Figure 1. Their dependence pattern of joint movement is particularly evident during the period
of credit crunch.

Remark 2.1. We use a t−copula rather than Gaussian copula, since the dependence structure
in a t−copula is controlled by not only a N × N correlation matrix Σ given by (2) (which is the
same as Gaussian copula) but also an extra parameter – degree of freedom ν. It provides higher
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flexibility to capture joint extreme events, which are the center concern of the risk management
(Embrechts, McNeil and Straumann, 1999). Also, the Gaussian copula can also be recovered by
setting ν to infinity.

In this paper, we initially assume degree of freedom ν = 3 for a t−copula for instance,
then compare the results by choosing different ν. Based on the assumptions given above, the
parameters in our model needed to be calibrated are volatility σ j = σ(R,T ) for each bond and
correlation ρi, j = ρ(R1,R2) (i , j) for each pair of bonds. The detail for this calibration is
provided in Section 5.

3. Portfolio Credit Risk of Spread Widening and Default

Based on the framework for the joint evolution of credit spreads given by Section 2, now we
can model the portfolio credit risk of spread widening and default consistently. In particular, we
provide two types of models:

1. stand-alone models for the spread widening risk (in Section 3.1) and the default risk (in
Section 3.2);

2. an integrated model for overall risk of spread widening and default (in Section 3.3).

We assume there is no default (loss) in the stand-alone model for spread widening risk, and there
is no spread widening loss for a bond given default in the integrated model.

3.1. Credit Risk of Spread Widening
In the short term, the major contribution of credit risk for a portfolio is from the spread

widening, rather than default. The credit spread widens, the value of the bond decreases, by
mark-to-market valuation. This risk is usually measured daily, monthly, or yearly for risk man-
agement.

An approximate formula for calculating the value loss for any bond j due to spread widening
is given by

LW
j = PV j(1 + ∆ j)−D j − PV j (5)

where PV j is the present value, ∆ j is the change of spread, S < j>
t − S < j>

0 , and D j is the duration.
By (1), the changes of spreads can be expressed as ~∆ =: (∆1, ...,∆N)′ where

∆ j = S < j>
0

(
eσ j
√

tZ j − 1
)
. (6)

Therefore, based on the assumption of no default (loss) in this stand-alone model, the portfolio
loss LW due to spread widening is given by

LW =

N∑

j=1

LW
j , (7)

or, the portfolio loss in percentage

LW% =

∑N
j=1 LW

j∑N
j=1 PV j

. (8)
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3.2. Credit Risk of Default
In the long term, the main portfolio credit risk is from default. Default model can be consis-

tently incorporated into the spread widening model above. The approach used here is similar to
the credit barrier models, developed by Iscoe, Kreinin and Rosen (1999), Hull and White (2001),
and later extended by Albanese and Chen (2006).

We assume the default probabilities ~p =: (p1, ..., pN)′ are given, for instance, by Moodys
(2009), and depend on the credit rating and time to maturity, i.e.

p j = p(R,T )

where R ∈ {AAA, AA, A, BBB} and T is time to maturity.

Based on the inverse transform sampling method from probability theory, there are three
types of equivalent boundaries for triggering the default of bond j in the portfolio:

1. if the uniform distributed random variable U j overshoots the boundary 1 − p j (i.e. the
survival probability) ;

2. if the standard normal distributed random variable Z j overshoots the boundary b j where

b j =: Φ−1(1 − p j
)
;

3. if the change of spread ∆ j excesses the boundary c j where

c j =: S < j>
0

(
eσ j
√

tb j − 1
)
.

U j, Z j and ∆ j are all latent random variables with a common dependence structure powered the
t−copula constructed in Section 2.2. 1−p j, b j and c j are called the corresponding implied default
boundaries.

Then, the default probability for bond j is equivalently given by

p j = P{U j > 1 − p j} = P{Z j > b j} = P{∆ j > c j} (9)

and the default indicator for bond j is given by

I j = I{U j > 1 − p j} = I{Z j > b j} = I{∆ j > c j}
where I is an indicator function. Hence, we have the portfolio default scenario ~I =: (I1, ..., IN)′,
and the loss due to default for bond j can be calculated by

LD
j = −I jPV j(1 − δ j)

where δ j is the recovery rate from the present value of bond j. The whole portfolio loss due to
default is given by

LD =

N∑

j=1

LD
j ,

or, the portfolio loss in percentage

LD% =

∑N
j=1 LD

j∑N
j=1 PV j

. (10)
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3.3. Overall Credit Risk

The stand-alone credit risk assessment for spread widening and default risk separately are
given above in Section 3.1 and Section 3.2. Now we consider the integrated model for overall
credit risk involved.

To avoid double-counting two types of risk, in the integrated model, we assume there will
be no any further loss of spread widening for a bond given default. This is the major difference
between the stand-alone models and the integrated risk model. Hence, the aggregate portfolio
loss of default and spread widening is given by

L =

N∑

j=1

L j

where
L j = (1 − I j)LW

j + I jLD
j , (11)

or, the portfolio loss in percentage

L% =

∑N
j=1 L j

∑N
j=1 PV j

. (12)

Remark 3.1. The loss of spread widening in this integrated model is capped by the loss due to
default. The worst scenario, or the maximum total loss in percentage, is given by

lim
~S t→∞

L% = 1 − δ̄ (13)

where δ̄ =

∑N
j=1 δ j

N is the average recovery rate and ~S t → ∞ means all spreads in the portfolio
simultaneously widen to infinity, i.e. S < j>

t → ∞ for all j, and trigger joint default of all bonds.

The stand-alone default loss LD% in Section 3.2 is actually the loss of default without spread
interaction, and the overall loss L% can be decomposed by

L% = LD% + LI%,

where LI% is the extra loss due to spread interaction, upon the stand-alone default loss LD%.

4. Data Description

We use two types of data:

• Spread Data: the historical daily time series of bond spreads over Gilts in the iBoxx
Sterling Universe 01/01/1999–13/05/2008 (including a period of credit crunch), provided
by Deutsche Bank.

• Default Data (Table 1): the 2008’s annual issuer-weighted corporate default rates p(R,T =

1year) from Moodys (2009).
8



Table 1: The 2008’s Annual Issuer-weighted Corporate Default Rates p(R,T = 1year)

Rating AAA AA A BBB BB B CCC
Year 2008 0.000% 0.515% 0.333% 0.454% 1.058% 1.985% 14.532%

Table 2: A Sample from Description.csv

ISIN Maturity Date Maturity Bucket Type Sector Rating Issuer

BE0118988667/IDX 24/04/2018 05Y-10Y Corp Industrial AA SNCVP

In particular, the spread data includes two separate csv-files:

• SpreadData.csv: a (2443 dates × 1159 issuers) matrix of the daily spreads (in basis
point) over Gilts for all GBP iBoxx bonds from 01/01/1999 to 13/05/2008 including all
business days.

• Description.csv: a (1159 issuers × 7 descriptions) matrix provides information of
ISIN, Maturity Date, Maturity Bucket, Type, Sector, Rating and Issuer.

A specified sample of time series of spreads in SpreadData.csv and the associated information
in Description.csv is given by Figure 2 and Table 2, respectively. Note that, there is no data
at the beginning of the plot in Figure 2, as this bond had not yet been issued.

Remark 4.1. We assume the two rating systems by Moody’s and Standard & Poor’s have the
equivalence: Aaa ≡ AAA, Aa ≡ AA, A ≡ A, Baa ≡ BBB.

Remark 4.2. There are two types of bonds in the database: Corp and Govt, here we only select
Corp-type bonds for calibration, as we assume there is no credit risk for the bonds issued by
governments.

5. Parameter Calibration

We calibrate the parameters (by programming in R) from the spread database by using a pro-
cedure similar to Blamont, Hauviller and Prieul (2007). The calibration is based on the daily
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time series of credit spreads excluding the dates before the bond offering.

To be consistent with our bucketing assumption given in Section 2, we group the bonds in
the database by ( 4 ratings × 5 maturity buckets) 20 rating-maturity buckets. The mean of the
spreads is calculated based on the actual spreads3. The volatility and correlation are calibrated
on the daily changes of log-spreads (or continuously compounded rate).

The calibration procedure and the corresponding results are given as below:

• Mean Calibration (Table 3):

1. calculate the average of daily spreads for each bond;
2. average by each rating-maturity bucket.

• Volatility Calibration (Table 4):

1. calculate the volatility of daily log-spread changes for each bond;
2. average by each rating-maturity bucket, i.e. σ(R,T ) where R ∈ {AAA, AA, A, BBB}

and T ∈ {00Y − 05Y, 05Y − 10Y, 10Y − 15Y, 15Y − 20Y, 20Y+};
3. convert the daily volatility σ(R,T ) to the yearly volatility σ(R,T ) × √t where time

t = 260 days4.

• Correlation Calibration (Table 5):

1. calculate the correlation for each pair of daily log-spread changes, and obtain a full
(1159 issuers × 1159 issuers) correlation matrix;

2. average this full matrix by each rating-rating bucket, and obtain a concentrated (4
ratings × 4 ratings) correlation matrix ρ(R1,R2) where R1,R2 ∈ {AAA, AA, A, BBB}.

Table 3: The Mean of Spreads (bp) by Rating-maturity Bucket

00Y-05Y 05Y-10Y 10Y-15Y 15Y-20Y 20Y+

AAA 49.36 51.76 67.18 70.46 54.76
AA 92.65 114.84 118.49 109.30 91.67
A 118.13 150.81 139.28 126.76 126.3

BBB 148.32 151.78 170.30 186.83 138.15

6. Model Implementation

In this section, we use a specified example portfolio to demonstrate how this heterogeneous
model can be implemented to capture the portfolio credit risk of default and spread widening
in a single consistent framework, by using the mathematical framework in Section 2, 3 and the
calibrated parameters in Section 5.

3The mean calibration is only used to investigate the average level of spreads for each bucket and provide a board
picture of the database used for calibration, but it will not be implemented in our model.

4We assume there are 260 business days in one year.
10



Table 4: The Yearly Volatility
√

260σ(R,T ) of Log-spread Changes by Rating-maturity Bucket

00Y-05Y 05Y-10Y 10Y-15Y 15Y-20Y 20Y+

AAA 85.81% 59.69% 71.86% 50.50% 68.42%
AA 42.98% 34.94% 31.48% 39.01% 56.30%
A 45.35% 34.33% 27.99% 33.13% 32.80%

BBB 42.48% 30.11% 38.57% 33.24% 50.40%

Table 5: The Correlation Matrix ρ(R1,R2) of Log-spread Changes by Rating Bucket

AAA AA A BBB
AAA 18.26% 15.84% 8.50% 13.47%
AA 15.84% 14.92% 9.10% 11.48%
A 8.50% 9.10% 10.43% 7.15%

BBB 13.47% 11.48% 7.15% 10.93%

One year’s period of time well combines the short and long term perspectives, and it is also
a convention for risk management and regulatory requirements. Hence, we assess the credit risk
over one-year capital horizon for an example portfolio composed of 20 corporate bonds with the
detail specified by Figure 3.

We model the volatility and correlation for each bond in the example portfolio by matching its
rating and maturity to the corresponding bucket of calibrated volatility and correlation provided
by Table 3 and Table 4, respectively. Hence, the results of yearly volatilities

{√
260σ j

}
j=1,2,...,20

and the 20 × 20 correlation matrix Σ for this example portfolio are specified by Figure 4.

6.1. Credit Risk of Spread Widening

According to Section 3.1, now we have all information needed for calculating the portfolio
percentage loss LW% due to one year’s spread widening:

• the calibrated parameters for spreads: the yearly volatility
√

260σ j as given by the first
column of the table in Figure 4;

• the calibrated parameters for tν=3−copula: the 20 × 20 full correlation matrix Σ for the
whole portfolio as given by Figure 4;

• the information for each bond in the portfolio: present value PV j, duration D j, and current
spread S < j>

0 as given by Figure 3.

Due to the heterogeneity of this model, there is no analytic solution for the whole loss of the
portfolio, hence we implement Monte Carlo simulation for ~Z with 500, 000 sample paths. The
percentiles of loss percentage LW% are given by Table 6.

To investigate the underlying scenarios, for each percentile of LW% in Table 6, we present a
sample of realised underlying spread changes in Figure 5 from the simulation. Take the percentile
100th% for instance, we can observe from the last row of Figure 5 that, it is mainly the significant
spread increase of these specific bonds in the portfolio that contributes to a total loss of 39.15%.

11



Index Rating PV Duration Maturity  Bucket Current Spread Nominal Term

1 AA 953,557 5.96 05Y-10Y 258.39 1,069,375 7.13       

2 A 279,189 6.49 05Y-10Y 427.07 331,875              8.34       

3 BBB 606,531 3.81 00Y-05Y 84.34 590,000              4.25       

4 AA 310,798 5.67 05Y-10Y 9.67 295,000              6.58       

5 A 1,954,039 7.20 05Y-10Y 209.93 1,750,000 9.81       

6 A 1,619,433 7.80 10Y-15Y 113.46 1,585,625 10.25     

7 A 2,149,645 8.66 10Y-15Y 210.25 2,000,000 12.71     

8 AAA 3,449,815 12.35 15Y-20Y 54.93 3,262,000 18.92     

9 A 83,994             6.62 05Y-10Y 351.17 100,000              7.99       

10 A 2,070,471 2.78 00Y-05Y 285.22 2,101,875 3.04       

11 AA 1,987,433 2.88 00Y-05Y 152.42 2,000,000 3.12       

12 AA 872,450 6.45 05Y-10Y 354.08 950,000              8.38       

13 BBB 1,676,105 4.97 05Y-10Y 133.28 1,733,125 5.60       

14 AA 1,920,598 0.80 00Y-05Y 113.68 1,900,000 1.01       

15 BBB 668,915 9.79 10Y-15Y 138.46 663,750              14.35     

16 AA 9,321,789 6.90 05Y-10Y 446.81 10,000,000 9.65       

17 A 8,086,788 13.93 20Y+ 190.26 8,100,000 29.68     

18 A 4,889,691 8.15 10Y-15Y 346.26 5,000,000 11.93     

19 AA 349,339 10.94 20Y+ 146.81 290,000              29.77     

20 BBB 7,357,536 10.79 10Y-15Y 154.80 3,000,000 13.42     

         Table of Sample Portfolio Detail on 13/05/2008

Figure 3: The Detail of the Example Portfolio

Full Correlation Matrix 

Volatility Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

34.94% 1 100% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 14.92% 11.48% 14.92% 11.48% 14.92% 15.84% 15.84% 14.92% 11.48%

34.33% 2 15.84% 100% 13.47% 15.84% 18.26% 18.26% 18.26% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

42.48% 3 11.48% 13.47% 100% 11.48% 13.47% 13.47% 13.47% 7.15% 13.47% 13.47% 11.48% 11.48% 10.93% 11.48% 10.93% 11.48% 13.47% 13.47% 11.48% 10.93%

34.94% 4 14.92% 15.84% 11.48% 100% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 14.92% 11.48% 14.92% 11.48% 14.92% 15.84% 15.84% 14.92% 11.48%

34.33% 5 15.84% 18.26% 13.47% 15.84% 100% 18.26% 18.26% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

27.99% 6 15.84% 18.26% 13.47% 15.84% 18.26% 100% 18.26% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

27.99% 7 15.84% 18.26% 13.47% 15.84% 18.26% 18.26% 100% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

50.50% 8 9.10% 8.50% 7.15% 9.10% 8.50% 8.50% 8.50% 100% 8.50% 8.50% 9.10% 9.10% 7.15% 9.10% 7.15% 9.10% 8.50% 8.50% 9.10% 7.15%

34.33% 9 15.84% 18.26% 13.47% 15.84% 18.26% 18.26% 18.26% 8.50% 100% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

45.35% 10 15.84% 18.26% 13.47% 15.84% 18.26% 18.26% 18.26% 8.50% 18.26% 100% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 18.26% 15.84% 13.47%

42.98% 11 14.92% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 100% 14.92% 11.48% 14.92% 11.48% 14.92% 15.84% 15.84% 14.92% 11.48%

34.94% 12 14.92% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 100% 11.48% 14.92% 11.48% 14.92% 15.84% 15.84% 14.92% 11.48%

30.11% 13 11.48% 13.47% 10.93% 11.48% 13.47% 13.47% 13.47% 7.15% 13.47% 13.47% 11.48% 11.48% 100% 11.48% 10.93% 11.48% 13.47% 13.47% 11.48% 10.93%

42.98% 14 14.92% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 14.92% 11.48% 100% 11.48% 14.92% 15.84% 15.84% 14.92% 11.48%

38.57% 15 11.48% 13.47% 10.93% 11.48% 13.47% 13.47% 13.47% 7.15% 13.47% 13.47% 11.48% 11.48% 10.93% 11.48% 100% 11.48% 13.47% 13.47% 11.48% 10.93%

34.94% 16 14.92% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 14.92% 11.48% 14.92% 11.48% 100% 15.84% 15.84% 14.92% 11.48%

32.80% 17 15.84% 18.26% 13.47% 15.84% 18.26% 18.26% 18.26% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 100% 18.26% 15.84% 13.47%

27.99% 18 15.84% 18.26% 13.47% 15.84% 18.26% 18.26% 18.26% 8.50% 18.26% 18.26% 15.84% 15.84% 13.47% 15.84% 13.47% 15.84% 18.26% 100% 15.84% 13.47%

56.30% 19 14.92% 15.84% 11.48% 14.92% 15.84% 15.84% 15.84% 9.10% 15.84% 15.84% 14.92% 14.92% 11.48% 14.92% 11.48% 14.92% 15.84% 15.84% 100% 11.48%

38.57% 20 11.48% 13.47% 10.93% 11.48% 13.47% 13.47% 13.47% 7.15% 13.47% 13.47% 11.48% 11.48% 10.93% 11.48% 10.93% 11.48% 13.47% 13.47% 11.48% 100%

20

Figure 4: The Yearly Volatilities { √260σ j} and The Full Correlation Matrix Σ for the Portfolio

Table 6: The Percentiles of Loss Percentage LW % Due to One Year’s Spread Widening

Percentile 50th% 90th% 95th% 97.5th% 99th% 99.5th% 100th%
Loss in Percentage (L%) 0.52% 5.39% 7.27% 9.17% 11.75% 13.77% 39.15%
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Figure 5: Sample: The Simulated One-Year Spread Changes ∆ (bp) for the Corresponding Percentile LW % in Table 6
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Figure 6: The One-Year Default Rates and Equivalent Implied Boundaries for Triggering Defaults for the Portfolio

Remark 6.1. Note that, the underlying scenarios corresponding to each loss percentile are not
necessary unique, particularly for these lower percentiles. We only provide one of the samples
in Figure 5 from the simulation.

6.2. Credit Risk of Default

According to Section 3.2, we can model the default rate p j for each bond, by matching its
rating to one year’s default rate in Table 1, and use latent variables against the implied boundaries
for triggering defaults. For any bond j, by (9), we can provide three types of equivalent implied
boundaries, 1 − p j, b j and c j, under distributions of uniform U j (as given by (3)), normal Z j (as
given by (4)) and change of spread ∆ j (as given by (6)), respectively. The results are given by
Figure 6.

We can simply compare the change of spread ∆ j already simulated in Section 6.1 with the
corresponding implied boundary c j, and determine whether bond j has defaulted or not. By using
the information of the present value for each defaulted bond as given by Figure 3 and recovery
rate δ = 40%, the percentiles of loss percentage LD% due to one year’s bond defaults are given

13



Table 7: The Percentiles of Loss Percentage LD% Due to One-Year Defaults

Percentile 50th% 90th% 95th% 97.5th% 99th% 99.5th% 100th%
Loss in Percentage (LD%) 0.00% 0.00% 0.00% 1.99% 9.59% 13.36% 53.36%
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Figure 7: Sample: The Simulated One-Year Defaults (Indicated by 1) for The Corresponding Percentile LD% in Table 7

by Table7.

For each percentile in Table 7, we provide one sample of the underlying scenarios ~I in Figure
7. In each scenario, the default is indicated by 1 and the no default by 0. Each 1 or 0 is determined
by comparing the underlying realised spread change ∆ j with the corresponding implied boundary
c j given by Figure 6. If ∆ j overshoots c j, then it generates a number of 1; otherwise, it gives
0. Take the worst scenario 100th% for instance, we can identify that it is the default of these
specific bonds indicated by 1 in the last row of Figure 7 that contributes to the total loss as much
as 53.36%.

6.3. Overall Credit Risk
According to Section 3.3, now we assess the overall portfolio credit risk of spread widening

and default. The distribution and percentiles 5 of integrated portfolio loss L% are given by Figure
8 and Table 8, respectively.

For each percentile of L% in Table 8, we provide one sample of the underlying scenarios of
spreads widening and defaults in Figure 9, with their corresponding loss contributions given by
Figure 106.

In Figure 9, similarly, if the spread increment ∆ j has exceeded the corresponding implied
boundary c j (given by Figure 6), then the bond is assumed to have defaulted. Each defaulted

5We provide the result of 99.5th% instead of the regulatory 99.9th% standard, because for such a small portfolio of
only 20 names, the scenario 99.9th% is almost the same severe as 100th% where most of the bonds have defaulted. Hence,
we suggest calculate 99.9th% when implementing this model to a real portfolio of larger scale.

6Figure 10 provides 14 percentile cases, more than the number given in Table 8 and Figure 9.

Table 8: The Percentiles of Integrated Loss Percentage L%

Percentile 50th% 90th% 95th% 97.5th% 99th% 99.5th% 100th%
Loss in Percentage (L%) 0.54% 5.51% 7.57% 9.88% 14.03% 18.36% 54.12%
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Integrated Loss Distribution of the Whole Portfolio
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Figure 8: The Distribution of Integrated Loss L% of the Whole Portfolio
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Figure 9: Sample: The Simulated One Year’s Spread Changes ∆ (bp) and Defaults for Corresponding Percentile of L%
in Table 8
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Figure 10: Sample: The Loss Decomposition for the Percentiles of the Integrated Loss L% (Table 8)
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Figure 11: The Percentiles of the Loss of Spread Widening, Default and Overall in the Integrated Model

bond is indicated by a grey grid, and its loss of spread widening should not be accounted.

In Figure 10, the decomposition of the underlying spread widening loss and default loss from
the integrated loss L% is not stable and not necessarily unique. This is because one single value
of integrated loss L% could be decomposed into two types of loss with various possible combi-
nations.

The difficulty of risk decomposition raised here in Figure 10 is in line with the a conclusion
from the IMCR conference summarised by Hartmann (2010): Credit risk and other types of risk
could be defined distinctly, but their differences should not be overstated. Drawing a clear dis-
tinction between them in practical risk measurement and management is very difficult, and we
need to account for their joint influence. Hence, for calculating the economic capital, we suggest
use the results of integrated loss as given Table 8.

Alternatively, we can investigate the underlying risk contributions of spread widening and
default by calculating their loss percentiles separately in this integrated model and the results are
given by Figure 11. We can observe that the relative contribution of default increases more sig-
nificantly than the one from spread widening when approaching towards the (negative) left-tail
of the loss distribution.

In Figure 11, the spread widening loss from the integrated model is less than the spread
widening loss LW% (in Table 6) from the stand-alone model (in Section 6.1), because for some
scenarios in the integrated model, the spread widening loss could be capped by default, under
the additional assumption of no spread widening loss for a bond given default (formally as given
by (11)).

Note that, calculating the percentile of the integrated loss by just simply summing up the
spread widening loss and default loss for the corresponding percentile in Figure 11 is not appro-
priate, as this summation involves double-counting of two types of risk and does not agree with

16



Table 9: Risk Contribution of Spread Interaction

Percentile 97.5th% 99th% 99.5th% 100th%
Integrated Loss L% 9.88% 14.03% 18.36% 54.12%

Loss of Default without Spread Interaction LD% 1.99% 9.59% 13.36% 53.36%
Extra Loss due to Spread InteractionLI% 7.89% 4.45% 5.00% 0.76%
Spread-Interaction Multiplier LI%

/
LD% 3.97 0.46 0.37 0.01

the corresponding percentile of overall loss for the integrated model. This would overestimate
the whole credit risk for higher percentiles, and this is similar to the finding by Alessandri and
Drehmann (2010).

To see the risk contribution from spread interaction, we decompose the integrated credit risk
by

L% = LD% + LI%

where the percentiles of L% and LD% are already given by Table 8 and Table 7 (see also Figure
11), respectively, and the higher percentiles of LI% is provided in Table 9. In this table, the
spread-interaction multiplier LI%

/
LD%, is a simple measure for the relative risk contribution

from spread interaction upon the original default risk, which is often neglected in credit risk
management, particularly before the 2007-2008’s credit crunch. We observe that the value of the
multiplier decreases when the percentile increases. This output is consistent with the reality: in a
short period of one year, for a relatively normal economic condition, the major risk comes from
spread widening whereas for a more severe environment the main risk originates from default.

6.4. Overall Credit Risk by Alternative Dependence Structures
The issue of dependence structure is of central importance in all portfolio credit risk mod-

elling methodologies (Jarrow and Turnbull 2000), especially that concerns the high-percentile
loss in the tail. We provide some alternative settings for the dependency in our model for assess-
ing the overall credit risk.

6.4.1. Degree of Freedom ν

The results above are all based on a t−copula with degree of freedom ν = 3. In Figure 12, we
calculate the overall loss L% by choosing different ν for a comparison. We can observe from this
sensitivity study that, when the dependency becomes weaker (ν larger), the loss L% increases
for lower percentiles but decreases for higher percentiles. The critical point for loss L% as an
increasing or decreasing function of ν is approximately 95th%. By probability theory, when ν
goes to infinity, it will eventually converge to a Gaussian copula model which is widely used in
practice.

6.4.2. Correlation Σ

Calibrating the correlation remains a challenge for researchers and practitioners. In our model
we calibrate correlation parameters for driving spreads widening and defaults based on the spread
database, because credit spread provides us an instantaneous market view of the risk premium
for the underlying credit, with the majority 7 implying the level of default risk (Hull, Predescu

7There are other types of risk implied from credit spreads, such as liquidity.
17



����� ����� ����� ����� ����� ����� ����� ����� 	���� 	���� 	�
���� 		��� 		
���� ������

�� �
��� �
�	� �
��� �
��� �
		� �
��� �
��� �
��� �
��� �
��� ��
��� ��
��� ��
��� ��
���

�� �
��� �
�	� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� 	
	�� ��
��� �	
��� ��
���

�� �
��� �
	�� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� 	
��� ��
��� ��
��� ��
���

�� �
��� �
��� �
��� �
	�� �
��� �
��� �
��� �
��� �
��� �
��� 	
��� ��
��� ��
��� ��
���

��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� 	
��� ��
	�� ��
��� �	
���

��� �
��� �
��� �
��� �
��� �
��� �
��� �
��� �
�	� �
��� �
��� 	
��� ��
��� ��
		� ��
���

��� �
��� �
��� �
��� �
��� �
��� �
��� �
	�� �
��� �
��� �
��� 	
��� ��
��� ��
�	� ��
���

���� �
��� �
�	� �
��� �
��� �
��� �
��� �
	�� �
��� �
��� �
��� 	
��� ��
��� ��
��� ��
���

���� �
��� �
��� �
��� �
�	� �
��� �
��� �
	�� �
��� �
�	� �
��� 	
��� ��
��� ��
��� ��
���

���� �
��� �
��� �
��� �
��� �
��� �
��� �
	�� �
��� �
��� �
��� 	
��� ��
��� ��
��� ��
���

��

���

���

���

���

���

���

��
��
�
��

���	
���	�����������������������������	�	����	
�		������		��

Figure 12: The Integrated Loss L% by t−Copula with Different Degree of Freedom ν

and White, 2005; Longstaff, Mithal and Neis, 2005).

There are other approaches for correlation calibration. Düllmann, Küll and Kunisch (2010)
calibrated the correlations from the time series of the underlying equity prices and default rates,
and also had a comparison between them. The Internal Ratings-Based (IRB) approach for Basel
II by BCBS (2001) assumed a (homogeneous) average around 20% for correlations (comparing
with an average of 18.45% in our model given by Figure 4).

To be more convenient to compare our model with these models based on different calibration
methods for correlation, we provide a reasonable approximation by setting one homogeneous
correlation ρ̄ to all pairs of bonds in Σ in our model,

{
ρi j

}
i, j ≡ ρ̄

to replace the calibrated heterogeneous correlations in Table 5. All other parameters remain the
same. We can see how these percentiles of the loss L% migrate accordingly when increasing ρ̄
from 0% to almost 100% as given by Figure 13.

Remark 6.2. As we assume the recovery rate δ = 40% for all bonds, by (13) it implies that
the upper limit of total portfolio loss percentage is 60%. It is approximately the worst scenario
(59.58%) simulated by setting the homogeneous correlation ρ = 99.99% for percentile 100th%
as given by Figure 13.
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Figure 13: The Integrated Loss L% by t−Copula with Different Homogeneous Correlation ρ̄

7. Conclusions

The model developed in this paper provides a simple and fast way to assess the credit risk of
a portfolio on spread widening and default under a heterogeneous and consistent framework. It is
also able to capture the behavior of each underlying bond by distinguishing its credit rating and
maturity. The procedure of calibration and implementation are simple and easy to be extended.
Alternative marginal distributions and copula functions can be easily replaced under different
assumptions tailored to meet different purposes for portfolio risk management.

For future research, instead of using a simple log-normal process to model the evolution of
credit spread, we could use other non-negative processes, such as the mean-reverting process.
For the dependency modelling, we could consider other copula functions, such as Gaussian and
family of Archimedean copulas. For more general portfolio risk management, this framework
powered by a copula could possibly be generalised to consistently integrate other types of risk,
such as liquidity risk, or to incorporate the negatively related behavior between default and re-
covery rate. Moreover, rather than fixing a one-year horizon, we could set different time horizons
in this model, and then would be able to see the evolution of the portfolio credit risk of default
and spread widening over short, median and long terms. We could also extend our approach for
pricing credit derivatives under an appropriate probability measure, or a dynamic model to cap-
ture the credit risk by calibrating the parameters from instantaneously daily updating database.
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