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1. INTRODUCTION 

The last two decades have seen economists become increasingly interested in geographical issues (Martin, 

1999, Behrens and Robert-Nicoud, 2009). This has been variously attributed to theoretical developments, a 

growing interest in cities or simply the greater availability of geo-referenced data. The result has been greater 

interaction between economic geographers, regional scientists and economists interested in spatial aspects of 

the economy. More recently, a similar process has seen mainstream econometric theorists becoming 

increasingly interested in spatial processes, traditionally the preserve of a group of spatial econometricians.1 

One might think that the next step would be convergence between the tools developed by spatial 

econometricians and the methods used by applied economists to assess the empirical validity of models of 

spatial economics. We argue that this is unlikely because, while there may have been convergence between 

mainstream and spatial econometric theory, most applied economic research is taking a different path. 

In many (micro) economic fields – particularly development, education, environment, labor, health, and 

public finance – empirical work is increasingly concerned with questions about causality (Angrist & Pischke, 

2010). If we increase an individual’s years of education, what happens to their wages? If we decrease class 

sizes, what happens to student grades? These questions are fundamentally of the type “if we change x, what 

do we expect to happen to y”. Just as with economics more generally, such questions are fundamental to our 

understanding of spatial economics. When more skilled people live in an area, what happens to individual 

wages? If a jurisdiction increases taxes, what happens to taxes in neighboring jurisdictions? 

In an experimental setting, agents (individuals, firms, governments) would be randomly assigned different x 

and the outcomes y observed. Measuring whether different x are associated with different outcomes would 

then give the causal effect of x on y. The fundamental challenge to answering these questions for (most) 

economic data is that x is not randomly assigned. Instead, we jointly observe x and y so we lack the 

counterfactual, that is, what would have happened if x had not been changed. Fortunately, applied economics 

 
1 See Anselin (2010). Many of the specialised econometricians who developed the field are recognised by Fellowship of 

the Spatial Econometric Association. See http://spatialeconometr.altervista.org/ 
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has come a long way in its efforts to find credible and creative ways to answer such questions by 

constructing counterfactuals from observational data.  

A good starting point for thinking about whether a question about causality can be answered and how to 

answer it, is to consider an ideal experiment. The experiment may not be feasible, but with the design in 

mind it is easier to think of ways to find sources of variation in the data that mimic or approximate the ideal 

experiment. The ‘experimentalist paradigm’ (Angrist and Krueger 1999, Angrist and Pischke, 2009, 2010) 

does this by using simple linear estimation methods, taking care to pinpoint and isolate sources of variation 

in x that can plausibly be considered exogenous. The aim of these methods is to mimic, as far as possible, the 

conditions of an experiment in which agents are randomly assigned different x and outcomes y observed. 

The central idea is to find otherwise comparable agents (e.g. twins, siblings, neighbors, regions) who for 

some reason have been exposed to different x. This approach is still 'econometric' – it draws on theory to 

guide the questions asked and thinking about the causal processes at work. However, the fundamental 

attraction is that the assumptions required for identification of causal effects are usually clearly specified and 

understandable without reference to specific (and untested) economic theories. Put another way, the aim is to 

obtain plausible estimates of causal effects without relying on ad-hoc functional forms and exclusion 

restrictions imposed arbitrarily, or derived from untested theories about which there is no consensus.2  This 

approach is particularly attractive in areas, like much of spatial economics, where available structural models 

do not closely capture the complexities of the processes for which we have data.3 Unfortunately, although 

 
2 The reliance on simple linear methods may seem a strong functional form assumption. However, the assumption of a 

linear structural relationship - the Conditional Expectation Function (CEF) - is “not really necessary for a causal 

interpretation of regression” Angrist and Pischke 2009 (p.69). If the CEF is causal then,  linear regression is informative 

about causality because it provides the best linear approximation to the CEF. 

3 Sutton (2002) makes a similar argument about structural modelling when models are ‘far from reality’. This is not to 

say that theoretical structure has no place in empirical spatial economics. Particularly when general equilibrium 

considerations are important, there may be a greater role for theory (preferably based on micro-economic behavioural 

foundations). See Combes, Duranton and Gobillon (2011) for discussion. Later in the paper we briefly discuss the use 

of spatial econometrics in the estimation of structural econometric models.  
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these issues may be well understood by more experienced practitioners, they are not widely discussed in 

many of the ‘standard’ spatial econometrics references (including, for example, Arbia 2006 and LeSage and 

Pace 2009). For this reason there is a danger that people entering the world of applied economic research 

using spatial econometrics will ignore these insights into framing questions and achieving credible research 

designs.   

Why is it the case that the spatial econometrics literature often ignores these issues? We suspect this is partly 

because the underlying theory developed from time-series foundations, so that questions about causality have 

not been centre stage. The standard approach to spatial econometrics has been to write down a spatial model 

(e.g. the spatial autoregressive model), to assume it accurately describes the data generating processes and 

then to estimate the parameters by non-linear methods such as (quasi) maximum likelihood (ML). Because 

estimation is not always simple, much effort has gone in to developing techniques that allow estimation of a 

range of models for large data sets. Questions of identification (i.e. does an estimated correlation imply that x 

causes y?) have been addressed by asking which spatial processes best fit the data. While this sounds 

straightforward, in practice, as we discuss below, it is hard to distinguish between alternative specifications 

that have very different implications for which causal relationships are at work. 

In this article we explain why the standard spatial econometric toolbox is unlikely to offer a solution to the 

problem of the identification of causal effects in many spatial economic settings. Of course, much standard 

(i.e. non-spatial) empirical economic analysis falls someway short of the lofty ideals of identifying causal 

effects from random variation in the variable of interest (x). Finding sources of truly exogenous or random 

variation in x is difficult, but good applied work aimed at causal analysis must surely make some credible 

attempt to do so. This is not to say that non-causal associations are never without merit, because description 

and correlation can provide essential insights. However, identification of causal effects remains the gold 

standard to which many economists claim to aspire. We will argue that this should also be the case in applied 

spatial economic research. 

The rest of this paper is structured as follows. Section 2 provides a basic overview of standard spatial 

econometric models, while section 3 discusses problems of identification. Section 4 returns to the 

relationship between the spatial econometrics and the experimentalist paradigm. Section 5 concludes. 
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2. SPATIAL ECONOMETRIC MODELS AND THEIR MOTIVATION 

This section provides an introduction to spatial econometric models, of the type popularized by Anselin 

(1988). It is not comprehensive but provides enough background so that someone unfamiliar with spatial 

econometrics should be able to follow the arguments made later. We generally use the model terminology of 

LeSage and Pace (2009) and refer the reader there for details. 

To develop ideas, start with a basic linear regression: 

(1)  
'

i i iy u= +x β  

where i indexes units of observation, iy  is the outcome of interest, ix is a vector of explanatory variables 

(including a constant), iu is an error term and β is a vector of parameters. The most basic regression 

specification assumes that outcomes for different units are independent. This is a strong assumption and 

there may be many reasons why outcomes are not independent, particularly when observations are for 

geographically referenced events, agents or places. In a spatial setting, this model is often not very 

interesting. There are many contexts in which estimating and interpreting the parameters that characterize 

this dependence is of academic and policy interest.  

Estimating the complete between-observation variance-covariance structure is infeasible. However, if the 

data are spatial so can be mapped to locations, relative positions (and direction) may restrict the connections 

between observations. For example, outcomes may depend on outcomes in ‘nearby’ locations but not those 

further away. A simple way to capture these restrictions is to define a vector iw where the jth element is 

bigger, the more closely connected j is with i (e.g. 1/ distanceij ). With n observations, multiplying 
'
iw  by 

the nx1 vector of outcomes y gives a value 
'
iw y  that spatial econometricians refer to as a spatial lag. For 

each observation, 
'
iw y  is a linear combination of all jy   with which the ith observation is connected. If, as is 

usually the case, iw is normalized so that the elements sum to 1, then 
'
iw y  is a weighted average of the 

'neighbors’ of i.  
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What now if we want to know whether the outcome iy  is related to outcomes at locations to which i is 

connected? Ord (1975) proposes a simple solution, to assume that the effect of the spatial lag of iy  is linear 

and constant across observations. This gives the spatial autoregressive model (SAR): 

(SAR)  
' '

i i i iy u= + +w y x β . 

LeSage and Pace (2009) suggest a “time dependence motivation” for the SAR model. Assume fixed across 

time exogenous variables ix  determine outcome iy . Now assume that when determining their own outcome, 

agents take in to account both their own characteristics and recent outcomes for other ‘nearby’ agents. We 

might think of iy  as the price of a house, ix  as the fixed characteristics (number of rooms) and assume that 

when agreeing a sale price, people consider both the characteristics of the house and the current selling price 

of nearby houses. In this case β captures the causal effect of house characteristics and ρ represents the causal 

effect of neighboring prices (conditional on observed housing characteristics). 

We could drop the assumption that iy  is affected by the spatial lag of iy  and instead assume that iy  is 

affected by spatial lags of the explanatory variables. If X denotes the matrix of explanatory variables and γ a 

vector of parameters, this gives the spatial (lag of) X model (SLX): 

(SLX)  
' '

i i i iy u= + +x β w Xγ . 

LeSage and Pace (2009) provide an ‘externality motivation’ for this model. Continuing with the housing 

example, this assumes the characteristics of nearby houses, e.g. their size, directly determine prices (rather 

than working through observed sales prices). Of course, an externality motivation could justify the SAR 

model if the externality works through the spatial lag of iy  

Next, drop the assumption that outcomes are affected by spatial lags of the explanatory variables and instead 

assume an SAR-type spatial autocorrelation in the error process. If u denotes the vector of residuals, this 

gives a spatial error model (SE): 

(SE)  
' ';i i i i i iy u u v= + = +x β w u . 
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Alternative SE specifications are available, but this version is sufficient for our purposes. Finally, combining 

the SAR and SLX models gives us the Spatial Durbin Model (SD): 

(SD)  
' ' '

i i i i iy u= + + +w y x β w Xγ  

which assumes dependence between iy  and the spatial lags of both the outcome and explanatory variables, 

but drops the assumption of spatial autocorrelation in the error process. Alternatively, the SD model can be 

motivated by simply re-arranging the SE model in a ‘spatial’ Cochrane-Orcutt transformation: 

(2)  
'

i i iu y= − x β  

(3)  
' ' '

i i i i iy v − = − +x β w y w Xβ  

(4)  
' ' '

i i i i iy v = + − +w y x β w Xβ . 

This idea provides another motivation for including spatial lags, as a ‘solution’ to the omitted variables 

problem. See the appendix for further discussion.  

These five processes are not exhaustive of all possible models, and we consider a particularly important 

generalization further below, but for the moment they are sufficient for our purposes. In the text, we use the 

acronyms (SAR, etc) to refer to the specifications above. 

Estimation using OLS gives inconsistent parameter estimates if the models include a spatial lag of iy  and ρ 

is non-zero (e.g. the SAR and SD models). This inconsistency arises because of a mechanical link between 

iu  and 
'
iw y  for most specifications of iw . Standard errors are also inconsistently estimated for these 

models, as well as for models including a spatial lag in iu  (e.g. the SE model). OLS provides consistent 

parameter estimates if the spatial correlation occurs only through the error term (SE model) or exogenous 

characteristics (SLX model). In both cases standard errors are inconsistent, and OLS estimation of the SE 

model is inefficient. In contrast, Lee (2004) shows that (quasi) ML estimation provides consistent estimators 

for all these models conditional on the assumption that the spatial econometric model estimated is the true 

data generating process. Alongside theoretical developments, advances in computational power and methods 
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have made ML estimation feasible for large datasets.4 As a result, it is preferred in the spatial econometrics 

literature. The SAR and SLX models are nested within the SD model and as shown the SE model can be 

rearranged to give the SD model. The fact that the SD model nests many of the other models provides an 

argument for estimating the SD model and then testing this against the nested models through the use of 

likelihood tests.  Model comparison techniques can be used to compare models based on different weight 

matrices and explanatory variables. This is the approach advocated by LeSage and Pace (2009). 

To begin to understand the problems with this approach it is useful to see how these models are related to 

each other. Consider the reduced form (expressing iy  in terms of exogenous factors) of the SAR model. If 

the model is correct, the only exogenous factors affecting iy  are ix and iu , so the only factors affecting 

'
iw y  are 

'
iw X  and 

'
iw u  . The spatial lag 

'
iw y  also depends on the second order spatial lag of 

'
iw Wy , that 

is, on outcomes for the “neighbors of my neighbors”. By repeated substitution the reduced form is:  

(5)  
' ' 2 ' 3 ' 2 [ ]i i i i i iy v  = + + + + +x β w Xβ w WXβ wW Xβ  

where 
'

i i iv u= +w v , W is the matrix of stacked weight vectors (
'
iw ) and  

2 =W WW .  

Notice that, in the reduced form, the only thing that distinguishes this from the SLX model is the absence of 

terms in 
' 1n n
i −

w W Xγ for n>1. As we explain in the next section, in practice these two models will often be 

hard to tell apart.  

It is also informative to derive the reduced form for the general SD model. Substituting for iy   we get: 

(6) 

' ' '

2 ' ' ' ' '

2 ' ' ' '

' 1 ' ' ' 2 ' 2

( )

( )

[ ]

( ) ( ) ( ) [ ]

i i i i i

i i i i i i

i i i i i

n n
i i i i i i

y u

v

v

v

 

  

  

     −

= + + + + + +

= + + + + +

= + + + + +

=

= + + + + + + + + +

w Wy Xβ WXγ u x β w Xγ

w Wy w Xβ w WXγ x β w Xγ

w Wy x β w X β γ w WXγ

w W y x β w X β γ w WX β γ w W X β γ

 

 
4 “These improvements allow models involving samples containing more than 60,000 US Census tract observations to 

be estimated in only a few seconds on desktop […] computers” LeSage and Pace (2009, p.45) 
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where iv  denotes the spatial lag terms in iu . Under standard regularity conditions on ρ and iw , 

' 1lim 0n n
n i −
→ =w W y so that term can be ignored. In the reduced form, the only thing that distinguishes 

this from the SLX model is the cross coefficient restrictions on the terms in 
' 1n
i

−
w W X for n>1. 

In short, spatial interaction in iy , spatial externalities in ix , or spatially omitted variables lead to different 

spatial econometric specifications. These models have different implications for the economic processes at 

work. However, the reduced form for all these models is: 

(7) 
' ' ' ' 2

1 2 3 [ ]i i i i i iy v= + + + + +x β w Xπ w WXπ w W Xπ  

and the only differences arise from how many spatial lags of ix  are included, constraints on the way the 

underlying parameters determine the composite parameters Π , and whether the error term is spatially 

correlated. Distinguishing which of these models generates the data that the researcher has at hand is going 

to be difficult as the specification of W is often arbitrary, and because the spatial lags of ix are just neighbor 

averages that are almost always very highly mutually correlated. Put another way, these different 

specifications are generally impossible to distinguish without assuming prior knowledge about the true data 

generating process that we often do not possess in practice. In short contrasting motivations lead to models 

that cannot usually be easily distinguished. It would be useful if these problems were more generally 

recognized by all researchers working with spatial data, but we think they generate particular problems for 

the spatial econometrics approach as outlined in this section. We now consider these difficulties in detail. 

3. THE REFLECTION PROBLEM AND CRITIQUE OF SPATIAL ECONOMETRIC 

MODELS 

Readers familiar with the ‘neighborhood effects’ literature, will see immediate parallels between the spatial 

econometrics models (SAR, etc) and ‘linear-in-means’ neighborhood effects models (or ‘peer effects’ 

models). The parallels between these fields have already been highlighted by Lee (2004, 2007) and others. 

The generic neighborhood effects model described by Manski (1993, 2000) and used by countless applied 

economics papers on neighborhood effects, takes the form: 
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(8)  
'

1 [ | ] [ | ]i i i i iy E y a E a v = + + +x β x γ ,   2 [ | ]i i iv E v a u= +  

where iy  is the outcome of interest, ix a vector of exogenous variables, and iu  and iv are error terms 

representing unobservables. Variable a  indexes locations, usually non-overlapping ‘neighborhoods’ in the 

neighborhood effects literature. This specification allows for three sources of neighbor influence. Parameter 

1  captures the ‘endogenous’ effect of neighbors’ expected outcome on own outcomes. Parameter 

γ captures the ‘contextual’ or ‘exogenous’ effect of mean group characteristics on individual outcomes. 

Parameter 2  captures the ‘correlated’ effects of unobserved (at least to the econometrician) mean 

characteristics of agents in location a  or factors affecting agents in location a .  

There are inherent identification problems in estimating (8), even assuming that iv  and ix  are independent. 

Firstly, 1  and 2  cannot be separately identified without data on iv . This is clear if we substitute [ | ]iE v a  

and (using the law of iterated expectations) re-write (8) as:  

(9)  ( ) '
1 2 1 2 2 2[ | ] [ | ]( )i i i i iy E y a E a u     = + − + + − − +x β x γ β γ  

to see that the parameter on [ | ]iE y a  is a composite of the causal 'endogenous' and incidental 'correlated'  

effects. What then can be identified from the observable characteristics? Taking expectations of (8) and 

rearranging gives a reduced form version of (8): 

(10)  
'

1 1 1 1[ | ]( ) / (1 ) / (1 ) [ | ]i i i i iy E a E v a v   = + + − + − +x β x β γ . 

Equation (10) shows that the causal effects of neighborhood mean outcomes ( 1 ) and of neighborhood mean 

characteristics ( γ ), cannot be separately identified from the reduced form parameters, even when there is no 

spatial autocorrelation in the unobservables ( 2 0 = ). Only β  and the composite parameter vector 

1 1( ) / (1 ) + −γ β are identified. This is Manski's 'reflection problem': only the overall effect of neighbors’ 

characteristics is identified, not whether they work through exogenous or endogenous neighborhood effects. 

These issues are intuitive: How can you distinguish between something unobserved and spatially correlated 

driving spatial correlation in y from the situation where y is spatially correlated because of direct interaction 
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between outcomes? Further, how can you tell whether an individual is affected by the behavior of their 

group, or by the characteristics of their group when group behavior depends on the characteristics of the 

group? In many circumstances you cannot, without imposing further restrictions, either assuming away one 

or more of the sources of neighborhood effects, or by imposing non-linear theoretical relationships between 

[ | ]iE y a  and [ | ]iE ax (e.g. as in Brock and Durlauf  2001, when the outcome is discrete, and the researcher 

imposes a logit or probit functional form). In some situations, however, experimental data (of the real or 

natural variety) can remove the need for such arbitrary restrictions. We discuss further and provide some 

concrete examples in section 4. 

In practice, the neighborhood effects literature uses empirical counterparts to (8) and (10): 

(8a)   
' ' '

1i i i i iy v= + + +w y x β w Xγ  

(10a)   
' ' '

1 1 1 1( ) / (1 ) / (1 )i i i i iy v   = + + − + − +x β w X γ β w v  

where iw  is the spatial weight vector that creates 'neighborhood averages' as estimates of [ | ]E a  (as noted 

by Pinkse and Slade (2010) , McMillen (2010b) and others). For neighborhoods, where groups are 

contiguous and non-overlapping, the jth element of iw takes value 1/ an if i and j are in the same 

neighborhood a , of size an .  In these specifications, iu  and i  are potentially spatially autocorrelated error 

terms (when 2 0  ).  Note that (8a) is identical to the SD model and (10a) is an SLX model (with a 

spatially autocorrelated error term).  

Applied economists usually worry a lot about identification issues when they take (8) and (10) to the data 

using specifications like (8a) and (10a). Why then, are these issues considered far less in applications of the 

SAR, SD and SE models? This question has been the subject of surprisingly little discussion (Lee, 2004, 

2007 and Pinkse and Slade, 2010 are notable exceptions). 

One important difference is that, in spatial econometrics, equations like (8a) are treated as the population 

data generating process, rather than an empirical analogue to (8). Parameter 1  is taken to be the effect of the 

observed sample mean neighborhood outcome, rather than the effect of an unobserved population mean 
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estimated from the data. As a consequence, repeated substitution of y in (10a) leads to a reduced form as in 

equation (6): 

(11)  
' ' ' 2 ' 2

1 1 1 1 1( ) ( ) ( ) [ ]i i i i i iy      = + + + + + + + +x β w X β γ w WX β γ w W X β γ . 

Now all the structural, causal parameters 1 , β  and γ  are, in theory identified, because there are only three 

parameters, but an infinitely large number of spatial lags of ix  . The parameters can, in principle be 

estimated by non-linear methods (including maximum likelihood), or by linear instrumental variables (IV, or 

2SLS) estimation of (8a), using the linear first stage predictions from  

(12)  
^

' ' ' 2 ' 3
1 2 3

ˆ ˆ ˆ ˆ [ ]i i i i i iy = + + + +w w Wβ w WXπ w W Xπ w W Xπ   

where the econometrician can choose an arbitrary number of spatial lags of ix as instruments. 5 

So why do spatial econometricians argue that (8a) is identified, by virtue of (11), when other economists 

would argue that (8a) isn't identified, by virtue of (10a)? The crucial difference is that spatial econometrics 

assumes that W is known and represents real-world linkages. Neighborhood effects researchers argue that 

the true W is almost never known, and is, at best, a means of estimating [ | ]E a . In other words, the 

assumption of knowledge about W is critical. 6   

If W takes the typical block-diagonal structure used in neighborhood effects studies (or W is otherwise 

idempotent) then (11) collapses to (10a) and the parameters are no longer separately identified. But even if 

W  is not idempotent, there are serious problems in relying on (11) and (12) for identification of the 

 
5 In principle, when β  and γ  are zero, the parameter can also be identified from the error structure 

' 2 ' 3 ' 2
1 1 1 [ ]i i i i iv   = + + + +w v w Wv w W v  using maximum likelihood, although this identification is clearly 

purely parametric in the sense that it relies on  the empirical model being an exact representation of the data generating 

process. 

6 Interestingly, the idea of putting more structure on neighbourhood effects (e.g. by assuming a hierarchical network) 

has recently been suggested as a way of solving the identification problem. See Lee at al (2010). 
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parameters in (8a). Firstly if the exact structure of W  is not known then identification breaks down because 

'
iw W , 

' 2
iw W etc. may  better capture the connections between observation i and its neighbors than does iw  

(e.g. ix  has an effect up to 5km, but iw  incorrectly restricts effects to within 2km) . If the higher order lags 

'
iw WX , 

' 2
iw W X  affect y directly, they cannot provide additional information to identify 1 . It is easiest to 

think about this in the context of the linear (2SLS) IV estimator implicit in (11) and (12) ( e.g. Kelejian and 

Prucha 1998): If the exclusion restrictions on 
'
iw WX , 

' 2
iw W X  etc. in (8a) are invalid, then these spatial 

lags are not suitable as instruments, nor as sources of identification more generally. 

Secondly, even if W is assumed known (and is not idempotent) there are serious estimation problems 

because the spatial lags 
'
iw X  

'
iw WX ,

' 2
iw W X etc. are likely to be highly correlated.  In the IV context, 

there is a ‘weak instruments / identification’ problem, because there is little independent variation (and hence 

little additional information) in the higher order spatial lags of ix , conditional on 
'
iw X . Since Bound, 

Jaeger and Baker (1995) and Staiger and Stock (1997), applied researchers worry about the strength of the 

instruments in IV regressions, because weak instruments can lead second stage coefficient estimates to be 

severely biased and imprecisely estimated.  This issue has certainly been recognized in the spatial 

econometrics literature but the profound consequences do not appear to have had much influence on applied 

research.  

In theory, the degree of collinearity between spatial lags depends on sample size, sampling frame and how W 

changes as observations are added.7 In practice, in large samples (and using standard  iw ), 
'
iw X ,

'
iw WX , 

etc are likely to be highly correlated for the simple reason that they are a weighted average (and consistent 

estimates of the mean)  of ix  in some neighborhood of i. As a result in many applications the parameters 

 
7 In theoretical analysis it is usual to distinguish between increasing domain asymptotics (adding observations expands 

the space over which we estimate) and infill asymptotics (increasing sample size means sampling more observations in 

a given area). The latter makes more sense in many micro-econometric settings, which is problematic because, general 

results are not available for MLE under infill asymptotics (see Lee (2004)). Our intuition is that consistency under infill 

asymptotics will be difficult to derive precisely because, for many common W matrices, infill asymptotics increases the 

correlation between x and its spatial lags. 
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on
'
iw X , 

'
iw WX , etc are likely to be imprecisely measured and/or severely biased. Earlier versions of this 

paper provide an example which demonstrates these problems are important in practice (Gibbons and 

Overman 2010). 

To summaries, in theory if W  is not idempotent, identification is possible, but the parameters in the SD 

model are likely only weakly identified in practice. Even this weak identification depends on the strong 

assumption that W  is correctly specified so that higher order spatial lags of ix  provide additional 

information (e.g. satisfy the exclusion restrictions required to make them valid instruments). It is not clear 

how this assumption could ever be evaluated.8 

It should be clear therefore, that there are fundamental problems in using assumptions on the spatial structure 

to generate instruments. The problems are even more profound if we allow for spatial autocorrelation in the 

error terms, and drop the assumption of the exogeneity of ix  to give a more general spatial model: 

(13)   
' ' '

i i i i iy u= + + +w y x β w Xγ  

(14)   
'

i i iu v= +w u  

(15)   
'

1 2ik i i ikx u e= + +z δ  

where ikx is an element of ix  and iz   is a vector of factors determining ikx , which may include elements of 

ix . This general spatial model presents all the challenges described above, plus the additional problem of 

one (or more) explicitly endogenous explanatory variables. Typical spatial ML methods simply assume away 

 
8 Statistical tests for overidentifying restrictions (e.g. Sargan and Hansen tests, see Angrist and Pischke (2009) p.143-

146) are not very robust evidence for the validity of instruments, unless simply as auxiliary support for a convincing 

case of their theoretical validity. These statistics, in effect, provide tests for equality of the IV estimates from each 

potential instrument, but will be prone to Type II errors (failing to reject the null of the validity of the over- identifying 

restrictions) in situations, like the one faced here, where instruments are either weak (because IV coefficients for each 

instrument are then imprecisely estimated) or endogenous for similar reasons (because IV coefficients for each 

instrument will be similarly inconsistent).  
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(15) and treat ix  as exogenous. True, the parameters of this model could all, in principle, be estimated by 

ML or spatial IV, imposing all the restrictions implied by the specification of W  and the way the model is 

written down. Fingleton and Gallo (2010) discuss various approaches along these lines. Nevertheless, this 

mechanical approach to estimation will not appeal to applied economics researchers who view minimal 

assumptions on functional forms and explicit sources of exogenous variation as necessary conditions to infer 

causality. 

We say more about these issues in the next section, where we argue that a better approach to estimating 

parameters that represent spatial interactions (such as the SAR, SD or SLX models) or to deal with omitted 

variables in spatial contexts, is to precisely delineate the research question, and focus on the key parameter of 

interest. The experimentalist paradigm insists that a satisfactory strategy must use theoretical arguments or 

informal reasoning to make a case for a source of exogenous variation that can plausibly be used to identify 

this parameter of interest. In addition, this mode of research would expect rigorous empirical testing to 

demonstrate, as far as possible, the validity of these assumptions. We now consider these issues in more 

detail.  

4. THE EXPERIMENTALIST PARADIGM AND SPATIAL ECONOMETRICS 

The discussion so far has been critical of the spatial econometrics approach, particularly regarding the crucial 

issue of identification of causal parameters. Others have made similar arguments although perhaps not as 

forcefully (see for example McMillen 2010a and 2010b). Of course, any alternative approach also has to 

solve the identification problems that plague spatial economic analysis. Our argument is that these problems 

are so fundamental that they must sit at centre stage of applied work, not be shunted to the sidelines through 

the use of ML that assumes knowledge of the appropriate functional forms and spatial weights. In this 

section we argue that spatial research would be best served by turning away from the application of generic 

spatial models and attempts to distinguish between observationally equivalent models using contestable 

parameter restrictions that only emerge from the assumed model.  Instead, we advocate strategies that are 

carefully designed to answer well-defined research questions using insights from the experimentalist 

paradigm.  
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We start with the situation where we are interested in estimating parameters in a SAR or SD specification to 

test for direct spatial interactions between outcomes iy . It is hard to imagine situations in which this is the 

true data generating process because simultaneous decisions based on iy  must rely on expectations (as in the 

neighborhoods effect literature), but let us suppose that estimation of  is the goal. As argued above, there is 

a central conceptual problem about identification of the linear dependence iy  on 
'
iw y  in an SAR-style 

specification, which follows from the 'reflection' problem. Specifically, if the model properly specifies how y 

is determined, how can we induce exogenous change in 
'
iw y  that is not caused by changes in elements of 

either 
'
iw X  or 

'
iw u ? Maximum Likelihood solutions seem unconvincing for reasons discussed extensively 

above. In some settings, the spatial econometrics literature offers interesting insights in to the potential for 

using specific restrictions on iw  to achieve identification, where these restrictions arise from the institutional 

context, for example from the directed structure of friendship networks, or the spatial scope of area targeted 

policies (e.g. see Calvo´-Armengol, Patacchini and Zenou 2009). For most applied problems, however, 

uncertainty about functional forms and lack of information on the true spatial weights mean alternative 

strategies are more appropriate. 

An alternative strategy is to use panel data and to difference the data over time to provide fixed effects or 

'difference-in-difference' estimates. Differencing removes unobservables that are fixed over time, and that 

the researcher considers to be potential sources of endogeneity. While this is a very useful strategy in many 

contexts (some of which are mentioned below), it does not, on its own, offer a way to identify the causal 

effects of 
'
iw y  on iy  in SAR/SD type models because the 'reflection' issues simply transfer to the 

differenced specification. The question now becomes how to distinguish changes in 
'
iw y  (i.e. in 

'
iw y ) that 

are not caused by elements of 
'
iw X  and/or 

'
iw u . For similar reasons, even randomization offers limited 

scope for distinguishing group effects arising from the spatial  interaction in outcomes 
'
iw y  from  those 

arising from group characteristics 
'
iw X because if a group has randomly higher 

'
iw y , it will have randomly 

higher 
'
iw X  too. 
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Given these limitations, is there any hope for the SAR specification, and estimation of 'endogenous' 

neighborhood effects? Some settings do appear to offer explicit sources of randomization in 
'
iw y  due to 

institutional rules and processes. Sacerdote (2001) for example, uses the random allocation of college dorm-

mates to dorms to break the correlation between individual student unobservables and dorm-mates' group 

characteristics, to get estimates of peer-group effects on students' college achievement. De Giorgio et al 

(2010) use a similar strategy in the context of random class assignments. Although both papers make claims 

that are probably too strong in terms of their ability to solve the reflection problem (because randomization 

also changes 
'
iw X  and 

'
iw u as discussed above), randomization does at least reduce the problems induced 

by self-selection into groups and consequent correlation between individual and group characteristics. Field 

experiments designed for purpose are also clearly very useful. However, big ones like the Moving to 

Opportunity Program (Kling, Ludwig and Katz 2005, Kling, Liebman and Katz 2007) are rare, costly and 

often suffer from unavoidable design flaws, and small ones suffer from concerns about external validity. It 

would also be very difficult to design experiments to answer many spatial questions and we do not see this as 

a way forward for many problems of interest.  

One alternative is to re-consider instrumental variables (IV/2SLS) estimation, either in cross-sectional or 

time differenced specifications. As shown above, if the SAR model is correctly specified then 
'
iw X  provides 

instruments for
'
iw y  and this forms the basis for the traditional 'spatial IV' method. Most applied micro-

econometric researchers would expect very careful arguments to justify the exclusion of 
'
iw X  from the 

estimating equation.9 In practice, many papers that use spatial econometrics do not do this. To take just one 

example, in the tax competition literature characteristics of neighboring areas 
'
iw X  are often used to 

instrument for neighbors’ tax rates 
'
iw y in a regression of own tax rate iy  on neighbors tax rates. A run 

through some of the references in a recent review (Revelli, 2005) suggest that these exclusion restrictions 

receive little, if any consideration. Besley and Case (1995) appear to be one of the first to adopt this strategy 

 
9 Of course, if 

'
iw X  can be excluded then this solves the identification problem for ML as well. Even in this case, we 

still think that the case for switching to ML is weak because it relies on precise knowledge of iw .  
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by using demographics of neighbors to instrument for neighbors’ tax rate. They do provide a brief discussion 

of whether this restriction is valid, but mostly rely on overidentification restrictions imposed by their 

theoretical model to justify this assumption. Brett and Pinske (2000) use a similar approach and justify their 

exclusions by noting: “While there could be reasons why municipal business tax rates depend on wealth 

directly, such reasons are less obvious than dependence through their effect on capital base.” (Brett and 

Pinske, 2000, p.701). Buettner (2001) claims to pay careful attention to whether the instruments are 

endogenous (by examining spatial autocorrelation in the residuals) but has no discussion of how this relates 

to the validity of the exclusion restrictions. Hayashi and Boadway (2001) do not instrument at all, instead 

using restrictions from a theoretical model to achieve identification. Turning to more recent papers, we find 

little evidence that much has changed. Leprince, Madies and Paty (2007) has no discussion of the exclusion 

restrictions. Charlot and Paty (2007) use ML. Edmark and Agren (2008) do discuss the strength of their 

instruments, but not the exclusion restrictions. Feld and Reulier (2009) use IV but do not discuss either 

problem. None of these papers discuss the problem specific to the spatial setting, that spatially lagged 

exogenous variables may better capture the connections between observation i and its neighbors than the 

incorrectly specified first order spatial lag of iy . This list of papers is not exhaustive and inclusion in it is not 

intended as a specific criticism of the particular paper (after all, these papers have all been published in 

respectable journals after peer review).10 But we do think that the list serves to illustrate the problems that 

arise when the spatial IV/2SLS approach, of Anselin (1988), Kelejian and Prucha (1998) and others, is used 

in practice. The same issues arise with spatial GMM, which are simply efficient versions of IV estimators. 

So what ways forward are there for IV strategies? Potentially, institutional arrangements can provide 

exogenous variation in one (or more) elements of 
'
iw X  that has no direct influence on iy .11 For instance, a 

 
10 Indeed, one of the authors has at least one older paper that similarly adopted the Kelejian and Prucha (1998) IV 

approach.  

11 In other words, in components of 
'
iw X where the corresponding element of  0=γ . An alternative formulation 

would use Z to denote these observable characteristics that have no direct effect on y other than through their effect on 

X. 
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researcher might argue that there are no direct impacts on outcomes in a district from a policy intervention in 

neighboring districts (an element of 
'
iw X ), but the policy does have effects via its influence on neighboring 

outcomes. As just discussed, this is the strategy adopted by some papers in the tax competition literature (e.g. 

Besley and Case 1995 and Brett and Pinske, 2000), although whether a researcher can convince others that 

there are no direct effects from neighbors’ policies depends on the policy in question (and whether they make 

any attempt to justify the exclusion restrictions!). Sometimes, however, changing institutional arrangements 

can offer more convincing ‘natural experiments’. A particularly nice example is provided by Lyytikäinen 

(2011) who argues that changes in the statutory lower limit to property tax rates induces exogenous variation 

in tax rates, which can be used to study tax competition among local governments in Finland. Specifically, 

policy changes to minimum tax thresholds interacted with previous tax rates, can be used to instrument for 

the changes in tax rates in neighboring districts. In this case, the exclusion restrictions are more plausible: a 

district tax authority is not likely to care how changes in tax threshold policy affected neighbors, except in so 

far as it changed these neighbors’ tax rates. Particularly interesting, for our purposes, is that Lyytikäinen 

compares his estimates to those based on spatial lags and traditional spatial IV applied to the same data  

(using lags of all the determinants of tax rates, not just the policy-induced changes). While he finds no 

evidence of interdependence in property tax rates from his policy-based IV research design (which 

contradicts much of the literature), his spatial IV estimates are large and significant. He concludes, with a 

degree of understatement,  ‘that the standard spatial econometrics methods […] overestimate the degree of 

interdependence in tax rates’.   

Another interesting possibility for SAR-type models emerges when 
'
iw y  represents expectations about  iy  

in some spatial group, since the expectation could be changed by additional information about 
'
iw y , without 

changing iy  itself.  For example, suppose the registry of house prices becomes publically available, 

providing individuals with new information that allows them to react to the sale prices of nearby houses. Or 

police forces introduce crime mapping, which allows closer monitoring of the activities of criminals. 

Sometimes, however, it may still be difficult to justify that other neighborhood characteristics captured 

in
'
iw X do not simultaneously become observable (e.g. the characteristics of local houses are recorded in the 

local registry) and drive any observed changes in y. 
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Unfortunately, examples such as these where there are plausible instruments for 
'
iw y  in SAR-type models 

are still rare, and looking for ways to estimate the causal effect of 
'
iw y  on iy  appears to leave a fairly 

limited range of questions that can be successfully answered. We remain more hopeful for the role of 

differencing, IV and ‘natural experiments’ in isolating exogenous variation in one or more of the observable 

factors that drives the outcome of interest, i.e. elements of 
'
iw X – whether directly, or indirectly via 

'
iw y . 

But, given the difficulty in justifying the exclusion restrictions on
'
iw X , coupled with the conceptual 

problems in terms of what the SAR model implies about underlying causal relationships, we argue that many 

situations may call for abandoning the SAR model altogether. In these situations, we advocate the path taken 

by most recent neighborhood effects research and argue for estimation of reduced form SLX models in ix  

and spatial lags of ix , rather than direct estimation of the SAR or SD model. Given the identification 

problems in the alternative specifications, we believe that in many situations this 'reduced form' approach is 

simply more credible. The composite reduced form parameter that describes the influence of neighbors 

characteristics or outcomes is itself a useful and policy-relevant parameter. With this in hand judgments can 

be made based on theory and institutional context about the likely channels through which the effects 

operate. The key estimation challenge that remains is the one discussed above. That is, the fact that ix  and 

'
iw X  are unlikely to be exogenous, and will be correlated with the unobserved determinants of iy  via causal 

linkages or because of the sorting of agents across geographical space. Estimation of the reduced form SLX 

models, sets aside the challenge of estimating ρ directly leaving the researcher free to focus on the remaining 

threats to consistent estimation of the composite parameters in the reduced form, which are still formidable.  

How then should researchers working on spatial empirical analysis proceed? One possibility is to use 'natural 

experiments' which offer channels for identification of interesting spatial parameters, even when estimation 

of SAR-type spatial dependence is infeasible.  For example, changes over time in the connections between 

places or agents may allow identification of causal spatial interactions. A good example is provided by 

Redding and Sturm (2009), who use the reunification of East and West Germany to study the impact of 

market access on outcomes. The idea here is that before re-unifications, the East and West German border 

prevented market interactions and restricted the economic connections between places, but re-unification 



    20 

opened up new possibilities. Re-unification thus created a change in the iw  matrix that can be used to 

explore the role of spatial interactions. Similar ideas have been used in the literature on schools and house 

prices, using school attendance zone boundary changes (Bogart and Cromwell 2001, Salvanes and Machin 

2010). Changes to the  iw   matrix caused by exogenous changes in transport networks have also been used 

to investigate the effects of employment or population accessibility on firms or households (e.g. Holl 2004, 

Gibbons et al 2010, Ahlfeldt 2011). 

A second possibility is to use the standard toolkit of IV and differencing based strategies employed by 

researchers in many other fields of applied economics. This tool kit can be used effectively, if applied 

carefully with attention to the identification of specific causal parameters rather than an arbitrarily specified 

system of equations.  For an IV strategy to give consistent estimates of the parameters of interest in these 

reduced form SLX models, instruments must satisfy the usual relevance and exclusion restrictions. We have 

said enough already about exclusion restrictions and weak instrument problems for it to be clear that we do 

not think that IV strategies based on using higher order spatial lags of ix  as instruments are a very good 

idea.12 For these reasons, we believe that standard IV strategies which pay careful attention to the omitted 

variables and clearly justify the validity of instruments represent a more appropriate way to address the 

problem of spatially correlated omitted variables.13 Many effective IV strategies of this type make use of 

policy designs, institutional rules and natural environmental features (or even better, changes in these 

factors). 

There are many examples of these kinds of well-thought-through instrumenting strategies applied to spatial 

problems, by researchers working outside the traditional spatial econometric mould. For example, Michaels 

 
12 Note, however, that while the spatial structure of the data doesn’t help, neither does it especially hinder the search for 

a suitable instrument. If we have an instrument that is independent of iu , then it is also independent of 
'
iw u , (unless 

the weights are endogenous) so the fact that ix  and iu  are both spatially correlated is irrelevant (aside from the 

implications for standard errors). 

13 Control function approaches may also be equally valid, but require instruments too, and generally require more 

assumptions than IV. 
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(2008) notes that the US highway system was planned on a regular East-West, North-South grid connecting 

major cities, implying that towns located due East, West, North or South of a major city incidentally 

experienced large changes in transport accessibility by virtue of their position relative to major cities. 

Luechinger (2009) uses the sites of installation of SO2 scrubbers and prevailing wind directions to predict 

pollution levels, in order to estimate the effects of pollution on individual wellbeing. The idea here is that 

people living downwind of emissions sources experience big improvements in pollution levels relative to 

those living upwind, when emissions reduction technologies are installed, but that these directions are 

otherwise unrelated to wellbeing. Gibbons, Machin and Silva (2008) use distances to school admissions 

district boundaries to predict levels of choice and competition in school markets, on the basis that students do 

not attend schools on the opposite side of district boundaries, so the number of schools from which students 

can choose (within a given distance) is truncated. Earlier examples of the creative use of IV in spatial 

analysis are found in Cutler and Glaeser (1997) and Hoxby (2000), who use the number of rivers cutting 

across cities as instruments. In both cases, rivers are assumed to bisect communities leading to greater racial 

segregation within cities (Cutler and Glaeser 1997) or more school districts and more choice and competition 

in school markets (Hoxby 2000).  

Another alternative to IV is spatial differencing to remove relevant omitted variables, e.g through difference-

in-difference, fixed effects or regression discontinuity designs. In this case, the fact that the unobserved 

component is spatially correlated helps because spatial differencing (of observations with their “neighbors”) 

is likely to be effective. Holmes (1998) provides an early example. Gibbons, Machin and Silva (2009) 

provide more recent discussion. Other differencing strategies drawing on a “case-control” framework may 

also be appropriate, for example the 'million dollar plant' analysis of Greenstone et al (2008) which compares 

the effect of large plant relocations on destination counties, using their second ranked preferences – revealed 

in a real estate journal feature – as a counterfactual. Both Busso, Gregory and Kline (2010) and Kolko and 

Neumark (2010) evaluate the effects of spatial policies by comparing policy-treated areas with control areas 

that were treated in later periods, as a means to generating plausible counterfactuals. Spatial differencing can 

also be combined with instrumenting as discussed in, for example, Duranton, Gobillon and Overman (2011) 

and Gibbons, McNally and Viarengo (2011). Lee and Lemiuex (2010) provide further examples of 

regression discontinuity designs, many of them relevant to spatial research. 
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The ‘experimentalist’ strategies set out above may not be without their problems (see for example Kean 

2010), but at least provide some hope of uncovering causal relationships in the spatial context, which off-the-

shelf spatial econometrics techniques do not. One common criticism of the experimentalist style of research, 

as represented by these examples, concerns the generalizability of the estimates. These designs seek out 

sources of exogenous, pseudo-random variation in the variables of interest, and inevitably end up estimating 

causal effects for some sub-group of the population, exposed to, and responding to a specific intervention or 

difference in environment. If responses are heterogeneous, there is therefore no guarantee that the estimated 

response is representative of a more general population. This issue is well known in the context of IV, giving 

rise to Local Average Treatment Effects (Imbens and Angrist 1994). Even so, we would argue that it is better 

to have plausibly causal estimates for a specific group in the population, than to have non-causal parameter 

estimates of unknown meaning, estimated by other methods. Our remarks about the validity of exclusion 

restrictions in spatial IV above also apply to experimentalist designs, because we still have to be sure that 

whatever causes random variation in ix , affects iy  only through ix  and not through other channels. To deal 

with these threats, spatial research designs in the experimentalist mode must think through the specific 

institutional details very carefully, and provide clear statements and tests of the identifying assumptions, and 

be cautious in generalizing results too widely. 

To summarize, different economic motivations lead to spatial econometric specifications that will be very 

hard to distinguish in practice. Add to the mix the fact that in (nearly) all applications we face uncertainty 

about the endogeneity of ix , the appropriate functional form and spatial weights and it becomes clear why 

many applied researchers find ML or IV estimation of some assumed spatial econometric specification 

uninformative. Instead, we support a focus on attempting to solve identification problems using empirical 

strategies that have been carefully designed for the specific application. Further, if empirical strategies 

cannot be devised that satisfactorily identify the causal impact of the spatial lag in the endogenous variable 

(i.e. many applied situations) then we advocate a reduced form approach paying particular attention to the 

problems raised by endogeneity of the ix . 

Opponents of our advocacy of experimentalist approaches to spatial questions might argue that places are 

unique because of their unique spatial position, and so not amenable to these kinds of research designs. They 
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may argue that it is infeasible to find a comparator location for any location, given differences in spatial 

location. This position is surely too pessimistic, since it rules out any form of causal empirical analysis on 

spatial data, given that no counterfactual can ever be constructed. On the contrary, in all these examples 

discussed above, the purpose in thinking through experimental settings to find 'comparator' or control groups 

is not necessarily to find control places that are identical in every way to the 'treatment' places. Nor is the aim 

necessarily to find sources of variation that are completely random (i.e. instruments that are uncorrelated 

with every other characteristic), although this might be the ideal. Instead, the goal is more modest – to find 

'control' and 'treatment' places that are comparable along the dimensions that influence the outcome being 

studied. Similarly, instruments should be uncorrelated with the unobserved factors that influence the 

outcome. In short, even when we are concerned that there are unobserved aspects of spatial location that do 

influence outcomes and make places unique, there are still potentially causally informative comparisons that 

can be made between neighboring places, which, whilst not identical are potentially very similar along 

salient dimensions.   

So far we have said little about the role of theory. Many spatial econometricians are defensive about the role 

theory plays in the construction of their empirical models and see comments about the lack of theory as a 

misguided criticism of their work (e.g. see Corrado and Fingleton in this journal volume). But the role played 

by theory is not our main criticism, rather it is the failure to adopt a careful research design that solves the 

problems specific to the research question being addressed, and the lack of attention to finding credible 

sources of random or exogenous variation in the explanatory variables of interest. This is not to say we do 

not think that theory is very important, or that empirical work that has proper behavioral structural 

foundations is uninformative (see Holmes 2010 for examples in regional economics). Theorizing, of a 

formalistic or more heuristic type, is of course essential in organizing thoughts about how to design a 

research strategy and theory and assumptions at some level are necessary for any empirics. Theory is also 

useful once you have these causal parameter estimates to hand, when it comes to making predictions about 

general equilibrium effects, as long as it is made clear that these predictions are valid only for that theoretical 

view of the world.  
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Consistent with our overall approach, we argue that testing theories means correctly estimating the 

coefficients on specific causal variables (as suggested by the theory). This provides another point of contrast 

to most applied spatial econometrics where the role of theory is to derive a generic functional form with ML 

applied to give the parameters that ensure the best “fit” to readily available data.  For example, to test the 

predictions of NEG models, our approach insists on a research strategy to identify whether market potential 

has a causal impact on wages while recognizing that no model is going to completely explain the spatial 

distribution of wages. This contrasts strongly with the applied spatial econometrics approach which uses the 

extent to which different spatial econometric models ‘fit’ the data as a way to test competing theories. This 

has the unfortunate side effect of encouraging the inclusion of endogenous variables in empirical 

specifications as, for obvious reasons, these tend to increase the fit of the spatial model with the data.  

In many spatial economic problems, theory may thus play an important role in identifying variables for 

which we would like to know the causal effects. But empirical implementation requires careful research 

design if the results are to have any general scientific credibility or to be considered trustworthy for policy 

making. It is surely wrong to use specialized theory alone to impose specific restriction on the research 

design (e.g. by assuming away potentially confounding sources of variation) unless you have reasonable 

confidence that the theory is correct and that it is demonstrably so to a general audience. Unfortunately, this 

is the role played by theory in much applied spatial econometric research. Theory is used to justify the 

inclusion of a spatial lag, assumptions are made about the form of the spatial weight matrix (possibly derived 

from theory), ML is used to achieve ‘identification’ and then model ‘fit’ is used as a basis for testing theory 

which justified the inclusion of the spatial lag. It should be clear by now that, for most spatial problems, we 

simply do not find this a convincing approach. Without wishing to weigh further into the vigorous debate on 

structural versus experimental approaches to empirical work (e.g. Journal of Economic Perspectives, Vol. 24 

(2) 2010) we simply make the point that whatever method is adopted (structural, experimental, qualitative or 

any other) any empirical research that aims to find out if x causes y needs to find a source of exogenous 

variation in x! 



    25 

5. CONCLUSIONS 

We have argued that identification problems bedevil most applied spatial econometric research. Many spatial 

econometricians are surely aware of these problems but the literature (inadvertently) downplays their 

importance because of the focus on deriving estimators assuming that functional forms are known and by 

using model comparison techniques to choose between competing specifications. While this raises 

interesting theoretical and computation issues that have been the subject of a growing and thoughtful formal 

econometric literature, it does not provide a toolbox that gives satisfactory solutions to these problems for 

applied researchers interested in causality and the economic processes at work. It is in this sense that we call 

into question the approach of the burgeoning body of applied economic research that proceeds with 

mechanical application of spatial econometric techniques to causal questions of ‘spillovers’ and other forms 

of spatial interaction, or that estimates spatial lag models as a quick fix for endogeneity issues, or that blindly 

applies spatial econometric models by default without serious consideration of whether this is necessary 

given the research question in hand. While the question we pose in the title to our paper is deliberately 

provocative and tongue-in-cheek, we maintain that this mode of spatial econometric work, whilst maybe not 

‘pointless’,  is of limited value when it comes to providing credible estimates of causal processes that can 

guide understanding of our world, and guide policy makers on how to change it. We urge those considering 

embarking down this route to think again. 

Paradoxically, we think that using the standard spatial econometric specifications (adapted, as we have done 

throughout the text, to reinforce the focus on the causal factors that drive outcome iy ) helps clarify 

identification problems for those researchers who are interested in causality. In particular, we think that 

closer attention to model specification will be helpful in understanding the exclusion and relevance 

assumptions that underlie IV approaches. Spatial econometrics also provides important insights on the 

correct interpretation of model parameters that may be identified from some suitable estimation strategy. In 

short, there are lessons to be learnt from the spatial econometrics literature but for most applied economic 

researchers the appropriate strategy should be based on the experimentalist paradigm which puts issues of 

identification and causality at centre stage. 
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6. APPENDIX: SPATIAL ECONOMETRICS AS A ‘SOLUTION’ TO THE OMITTED 

VARIABLES PROBLEM 

Assume iy  depends on exogenous ix  and unobservable iz . That is: 

(A1)  i i iy x z= + . 

Further, assume that the unobservable iz  is both spatially correlated and partly determined by ix : 

(A2)  
'

i i i iz w x v = + +z  . 

Substituting i i iz y x = − into (6) and rearranging gives 

(A3)  
' '( )i i i i iy x v   = + + − +w y w xβ .  

From (4) and (A3) note that the presence of a spatially correlated error term, whether correlated with ix  or 

not, leads to the SD model involving a spatial lag in y and X. It is important to emphasize, however, that in 

this motivation for the SD model the spatial lags of y and X are simply being used to control for spatial 

correlation in the error term, so ρ reveals nothing about the causal effect of the spatial lags on outcomes. This 

hints at the problems of identification in spatial models discussed at length in the text. 

If there are standard omitted variables problems (an unobserved variable correlated with one or more the 

explanatory variables) then we know estimates of β are biased. Spatial autocorrelation in the explanatory and 

omitted variables is likely to exacerbate this bias. Increasingly, the presence of spatially correlated omitted 

variables is used in spatial econometrics to justify estimation of the SD model to ‘solve’ these kinds of 

omitted variable problem (LeSage and Pace, 2009). The reasoning follows the derivation in equations (A1)-

(A3).  However, there are surely some doubts about this method as a solution to omitted variables problems. 

If it was a general solution, it would also work for non-spatial panel data. For example, the equivalent of 

equations (A1)-(A3) with panel data is: 

(A4)  it it ity x z= +  
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(A5)  1it it it itz z x v −= + +  

(A6)  
'

1 1 ( )it it it it ity y x x v   − −= − + + + . 

This equation can be estimated consistently by ML or non-linear least squares, or estimates of the various 

parameters retrieved from the OLS coefficients. Although endogeneity problems of this type might be 

mitigated by this strategy, it is certainly not a complete fix. To see this, modify the set up in equations (A1)-

(A3) slightly to cope with more general endogeneity in that ix  is partly determined by the omitted variable 

( if ). In this case we have: 

(A7)  i i iy x z= +  

'
i i i iz f v = + +w z  

i i ix f u= +  

' '( ) ( )i i i i i iy w x w v u    = + + − + −y x . 

The error term now has a component iu  that is negatively correlated with ix , so the coefficients cannot be 

estimated consistently by OLS, NLS or ML. In this more general setting, the SD model does not provide a 

solution that gives consistent estimates for the parameter of interest (β). See, for example, Todd and Wolpin 

(2003) for a related discussion in the context of ‘value-added’ models in the educational literature. In short, 

the SD model should not be seen as a general solution to the omitted variable problem in spatial research, 

and it is inadvisable to proceed as if it is one.  A better solution is to treat this as a standard endogeneity 

problem that makes ix  correlated with the error, and to bring to bear tools for dealing with such problems as 

discussed further in the text. 
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