
 
 

ISSN 0956-8549-665 
 
 

Balance Sheet Capacity  
and Endogenous Risk* 

 
by 

Jon Danielsson  
Hyun Song Shin  

Jean–Pierre Zigrand 
 
 

THE PAUL WOOLLEY CENTRE  
WORKING PAPER SERIES NO 16 

DISCUSSION PAPER NO 665 
 
 
 
 
 

DISCUSSION PAPER SERIES 
 
 

January 2011 
 
 
 
 
 

Jon Danielsson is a Reader in Finance at the London School of Economics. His research 
interests include financial risk modelling, regulation of financial markets, models of 
extreme market movements, market liquidity, and financial crisis. He has a PhD in the 
economics of financial markets from Duke University, has published extensively in both 
academic and practitioner journals, and has presented his work in a number of 
universities, public institutions, and private firms. Hyun Song Shin is the Hughes-
Rogers Professor of Economics at Princeton University.  Before coming to Princeton in 
2006, he was Professor of Finance at the London School of Economics.  His current 
research interests are in financial economics with particular reference to financial 
institutions, disclosures, risk and financial stability issues, topics on which he has 
published widely both in academic and practitioner outlets.  He has served as editor or 
editorial board member of several scholarly journals, and has served in an advisory 
capacity to central banks and policy organizations on financial stability issues. He is a 
fellow of the Econometric Society and of the British Academy. Jean-Pierre Zigrand is a 
Reader in Finance at the London School of Economics. His research interests include 
asset pricing, financial intermediation theory and general equilibrium theory. Any 
opinions expressed here are those of the author and not necessarily those of the FMG. 
The research findings reported in this paper are the result of the independent research 
of the author and do not necessarily reflect the views of the LSE. 



Balance Sheet Capacity
and Endogenous Risk∗

Jon Danielsson
London School of Economics

Hyun Song Shin
Princeton University

Jean–Pierre Zigrand

London School of Economics

This version:
January 2011

Abstract

Banks operating under Value-at-Risk constraints give rise to a well-
defined aggregate balance sheet capacity for the banking sector as
a whole that depends on total bank capital. Equilibrium risk and
market risk premiums can be solved in closed form as functions of
aggregate bank capital. We explore the empirical properties of the
model in light of recent experience in the financial crisis and highlight
the importance of balance sheet capacity as the driver of the financial
cycle and market risk premiums.
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1 Introduction

The recent financial crisis has served as a reminder of the important role
played by banks and other financial intermediaries in driving the financial
cycle. The depletion of bank capital and subsequent deleveraging by banks
has been a central theme in the discussion of the credit crunch and its impact
on the real economy. In this paper, we explore the idea that the banking
sector has a well-defined “balance sheet capacity” that encapsulates its ability
to take on risky exposures, and that the fluctuations in this capacity is the
engine that drives the financial cycle.

The notion of “balance sheet capacity” sits uncomfortably with textbook
discussions of how corporate balance sheets are determined. In a world
where the Modigliani and Miller (MM) theorems hold, we can separate the
decision on the size of the balance sheet (selection of the projects to take
on) from the financing of the projects (composition of liabilities in terms of
debt and equity). The size of the balance sheet is determined by the set
of positive net present value (NPV) projects, which is normally treated as
being exogenous. The focus is on the liabilities side of the balance sheet,
in determining the relative mix of equity and debt in financing the assets.
Even when the conditions for the MM theorems do not hold, the textbook
discussion starts with the assets of the firm as given, in order to focus on the
financing decision alone.

However, the distinguishing feature of banking sector balance sheets is
that they fluctuate widely over the financial cycle. Credit increases rapidly
during the boom but increases less rapidly (or even decreases) during the
downturn, driven partly by shifts in the banks’ willingness to take on risky
positions over the cycle. The evidence that banks’ willingness to take on
risky exposures fluctuates over the cycle is especially clear for financial inter-
mediaries that operate in the capital market. Figure 1, taken from Adrian
and Shin (2010), shows the scatter chart of the quarterly change in assets
against the quarterly change in leverage of the (then) five stand-alone US
investment banks.1 Leverage is the ratio of total assets to equity.

The first feature to note is that leverage is procyclical in the sense that
leverage is high when balance sheets are large, while leverage is low when
balance sheets are small. This is the opposite relationship to that for house-
holds, whose leverage is high when balance sheets are small. For instance, if
a household owns a house that is financed by a mortgage, leverage falls when
the house price increases, since the equity of the household is increasing at a
much faster rate than assets.

1Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch and Morgan Stanley
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Figure 1: Leverage Growth and Total Asset Growth (Source: Adrian and
Shin (2010))

The vertical axis in Figure 1 measures quarterly asset growth given by
the change in log assets. The horizontal axis gives the change in leverage,
as measured by the change in log assets minus the change in log equity.
Formally, we have:

Asset growth = logD (t+ 1)− logD (t)

Leverage Growth = logD (t+ 1)− logD (t)

− (log V (t+ 1)− log V (t))

where D denotes total assets and V denotes equity. The 45-degree line
therefore represents the set of points where

log V (t+ 1)− log V (t) = 0

and so represents the constant equity line. Any straight line with slope 1 in
Figure 1 represents the set of points where equity is growing at a constant
rate, where the growth rate is given by the intercept. In Figure 1, we see that
the slope of the scatter chart is close to 1, suggesting that equity is increasing
at a constant rate on average. Thus, unlike the textbook discussion of the
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Modigliani-Miller theorem, it is equity that seems to play the role of the
exogenous variable and total assets (the size of the balance sheet) is the
endogenous variable that is determined by the willingness of banks to take
on risky exposure.

Adrian and Shin (2010) pointed to the risk management policies of fi-
nancial intermediaries as a possible explanation of the fluctuations in assets
while equity is the forcing variable. Suppose that banks aim to keep enough
equity capital to meet its overall Value-at-Risk (VaR). If we denote by VaR
the value at risk per dollar of assets, then equity capital V must satisfy

V = VaR×D

implying that leverage L satisfies

L = D/V = 1/VaR

If Value-at-Risk is low in expansions and high in contractions, leverage is high
in expansions and low in contractions – that is, leverage is procyclical. This
suggests that there is a notion of balance sheet capacity for the banking sector
that depends on first, the size of its capital base (its equity) and second, the
amount of lending that can be supported by each unit of capital. Total assets
are then determined by the multiplication of the two.

However, realized risks should itself be endogenous, and depend on the
ability of banks to take on risky exposures. When the banking sector suffers
depletion of capital due to losses on its assets, its capacity to take on risky ex-
posures diminishes as the Value-at-Risk constraint tightens. In other words,
balance sheet capacity, Value-at-Risk and market risk premiums should all
be determined simultaneously in equilibrium.

In what follows, we solve for the equilibrium in closed form in a dynamic
banking model and examine how balance sheet capacity, volatility and risk
premiums are jointly determined.

One key feature of the equilibrium is that risk premiums are high when
banking sector capital is depleted, implying that projects that previously
received funding from the banking sector no longer do so with depleted cap-
ital. This is a result that is reminiscent of a “credit crunch” due to banking
sector losses, and follows from the following confluence of forces. Banks are
risk neutral but their capacity to take on risky exposures is limited by their
capital cushion. As their capital is depleted, their Value-at-Risk constraints
bind harder, and their behavior resembles that of risk-averse investors. In-
deed, the Lagrange multiplier associated with the capital constraint enters
into the banks’ lending decisions just like a risk aversion parameter. As
banks suffer erosion of their capital, equilibrium volatility increases at the
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same time as their “as if” risk aversion also increases. This combination of
increasing risk and increased risk aversion leads to a rise in the risk premium
in the economy. The expected returns to risky assets increase, and projects
that previously received funding from the banking sector no longer receives
funding.

As well as capturing the features of a credit crunch, the predictions from
our model are also consistent with accmulating empirical evidence that the
balance sheet capacity of banks and other financial intermediaries predict re-
turns on various risky assets (we discuss the literature shortly). Faster asset
growth today is associated with lower future risky asset returns, consistent
with lower risk premiums. The common thread is the fact that intermediary
balance sheet capacity holds useful information on risk premiums, and hence
on the future expected returns on risky assets.

The closed-form solution offered in this paper offers a number of useful
insights. For the case with a single risky asset, the closed-form solution for
the equilibrium can be written in terms of the relative size of the banking
sector in the financial system as a whole. Conveniently, our model also has
the feature that the distribution of bank capital does not matter, and only
the aggregate banking sector capital matters in equilibrium. Thus, there is
a well-defined notion of an economy-wide banking sector lending capacity.

The fact that risk premiums are determined by aggregate banking sector
capital is very much in line with recent “macroprudential” thinking among
policy makers whose aim is to ensure that banking sector stress tests are in
place to ensure that the banking sector has sufficient capacity to perform its
economic role of channeling funding from savers to borrowers. This is in con-
trast to the previously “microprudential” concern with ensuring that banks
have sufficient capital to serve as a buffer against loss that protects depositors
(and hence the deposit insurance agency) from losses. Whereas micropru-
dential concerns have to do with avoiding fiscal costs (due to bank recapi-
talization), macroprudential concerns have to do with maintaining banking
sector lending capacity.

For the case of many risky assets, we show that correlations in returns
emerge endogenously even though the fundamentals driving the asset returns
are independent, and that the correlation can be characterized quite cleanly
in terms of the fundamentals. Indeed, the closed form solution is sufficiently
compact that we can address more technical issues such as the volatility of
volatility as well as topics in derivatives pricing, such as the shape of the
volatility curve.

The outline of the paper is as follows. We begin with a review of the
related literature, and then move to the general statement of the problem.
We characterize the closed-form solution of our model for the single risky
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asset case first. We derive an ordinary differential equation that character-
izes the market dynamics in this case, and examine the solution. We then
extend the analysis to the general multi-asset case where co-movements can
be explicitly studied. We begin with a brief review of the literature in order
to place our paper in context.

1.1 Related Literature

Our paper lies at the confluence of two strands in the literature. One strand
is the literature on crisis dynamics in competitive equilibrium, such as Gen-
notte and Leland (1990), Geanakoplos (1997, 2009) and Geanakoplos and
Zame (2003). The second strand is the corporate finance literature that
draws insights on balance sheet constraints, such as Shleifer and Vishny’s
(1997) observation that margin constraints limit the ability of arbitrageurs
to exploit price differences, as well as Holmström and Tirole’s (1998) work on
debt capacities. Our paper draws on both these strands by borrowing tools
from corporate finance into the study of asset pricing and financial market
fluctuations.

Our paper belongs in the category of recent work where balance sheet
constraints enter as a channel of contagion. Examples include Kiyotaki
and Moore (1997), Aiyagari and Gertler (1999), Basak and Croitoru (2000),
Gromb and Vayanos (2002), Brunnermeier (2008) and Brunnermeier and
Pedersen (2009), Garleanu and Pedersen (2009), Chabakauri (2008) and
Rytchkov (2008). Brunnermeier and Pedersen (2009) emphasize the “mar-
gin spirals” that result where capital constraints set off amplified feedback
effects. Garleanu and Pedersen (2009) extend the CAPM by incorporat-
ing a capital constraint to show how assets with the same fundamental risk
may trade at different prices. He and Krishnamurthy (2007) have studied a
dynamic asset pricing model with intermediaries, where the intermediaries’
capital constraints enter into the asset pricing problem as a determinant of
portfolio capacity. Brunnermeier and Sannikov (2009) shares with our paper
the focus on financial intermediation although their focus is on examining the
effect on the real economy through real investment decisions.

Amplification through wealth effects was studied by Xiong (2001), Kyle
and Xiong (2001) who show that shocks to arbitrageur wealth can amplify
volatility when the arbitrageurs react to price changes by rebalancing their
portfolios. In a multi-asset and multi-country centre-periphery extension,
Pavlova et al (2008) find that wealth effects across countries are strengthened
further if the center economy faces portfolio constraints. In these papers,
margin constraints are time-varying and can serve to amplify market fluctu-
ations through reduced risk-bearing capacity, and therefore behave more like
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the risk-sensitive constraints we study below. Incorporating balance sheet
constraints on asset pricing problems have been examined by Adrian, Etula
and Shin (2009) for the foreign exchange market, Etula (2009) for the com-
modities market and by Adrian, Moench and Shin (2009) for the interaction
between macro and balance sheet variables.

Most directly, this paper builds on the work on Lagrange multiplier as-
sociated with Value-at-risk constraints. Our earlier paper (Danielsson, Shin
and Zigrand (2004)) had backward-looking learning rather than solving for
equilibrium in a rational expectations model. Brunnermeier and Pedersen
(2009), Oehmke (2008) and Garleanu and Pedersen (2009) have explored
the consequences of fluctuating Lagrange multipliers associated with balance
sheet constraints. There is a small but growing empirical literature on risk
appetite. Surveys can be found in Deutsche Bundesbank (2005) and in BIS
(2005, p. 108). See also Coudert et al. (2008) who argue that risk toler-
ance indices (such as the Global Risk Aversion Index (GRAI), the synthetic
indicator LCVI constructed by J.P. Morgan, PCA etc) tend to predict stock
market crises. Gai and Vause (2005) provide an empirical method that can
help distinguish risk appetite from the related notions of risk aversion and
the risk premium.

Relative to the earlier papers, our incremental contribution is to solve
for the equilibrium returns, volatility and correlations in closed form as a
fixed point of the equilibrium mapping. To our knowledge, our paper is
the first to solve the fixed point problem in closed form, yielding tractable
expressions for equilibrium returns, volatility and correlations. Moreover,
the closed-form solution takes a particularly simple form, depending on the
size of the banking sector relative to the financial system as a whole. The
tractability afforded by our closed-form solution is instrumental in deriving
several of the insights in our paper, and opens up a number of useful avenues
to link the banking literature with insights from asset pricing.

2 The Model

Our model describes the interactions between two groups of investors - pas-
sive investors and active investors. The passive investors can be thought of
as value investors such as households, pension funds and mutual funds, while
the active investors can be interpreted as banks and other intermediaries.

The risky securities can be interpreted as loans granted to ultimate bor-
rowers, but where there is a risk that the borrowers do not fully repay the
loan. Figure 2 depicts the relationships. Under this interpretation, the mar-
ket value of the risky securities can be thought of as the marked-to-market
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Figure 2: Intermediated and Directly Granted Credit

value of loans granted to the ultimate borrowers. The value investors’ hold-
ing of the risky security can be interpreted as the credit that is granted
directly by the household sector (through the holding of corporate bonds,
for example), while the holding of the risky securities by the active investors
can be given the interpretation of intermediated credit through the banking
sector.

Let time be indexed by t ∈ [0,∞). There are N > 0 non-dividend paying
risky assets as well as a risk-free bond We will focus later on the case where
N = 1, but we state the problem for the general N asset case. The price of
the ith risky asset at date t is denoted P i

t . We will look for an equilibrium
in which the price processes for the risky assets follow:

dP i
t

P i
t

= µi
tdt+ σi

tdWt ; i = 1, . . . , N (1)

where Wt is an N × 1 vector of independent Brownian motions, and where
the scalar µi

t and the 1×N vector σi
t are as yet undetermined processes that

will be solved in equilibrium. The risk-free bond has price Bt at date t, which
is given by B0 = 1 and dBt = rBtdt, where r is constant.

2.1 Portfolio Choice of Banks

The banks (the financial intermediaries, or “FIs”) have short horizons who
maximize the instantaneous expected returns on their loan portfolio. But
each bank is subject to a risk constraint where its capital V is sufficiently
large to cover its Value-at-Risk (VaR). We use “capital” and “equity” inter-
changeably in what follows.
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We do not provide further microfoundations for the VaR rule here,2 but
it capital budgeting practices based on measured risks (such as VaR) are
well-established among banks, and we adopt it here as a key feature of our
model. The short-horizon nature of our model is admittedly stark, but can
be seen as reflecting the same types of frictions that give rise to the use of
constraints such as VaR, and other commonly observed institutional features
among banks and other large financial institutions. Finally, note that we
have denoted the bank’s capital as V without a subscript for the bank, as it
will turn out that there is a natural aggregate result where only the aggregate
banking sector capital matters for equilibrium, rather than the distribution
of bank capital.

Let θit be the number of units of the ith risky asset held at date t, and
denote the dollar amount invested in risky security i by

Di
t := θitP

i
t (2)

The budget constraint of the trader is

btBt = Vt − θ⊤t Pt = Vt −
N∑

i=1

Di
t (3)

where Vt is the trader’s capital and where x⊤ is the transpose of x. The
dynamic budget constraint governs the evolution of capital in the usual way:

dVt = θ⊤t dPt + btdBt

=
[
rVt +D⊤

t (µt − r)
]
dt+D⊤

t σtdWt (4)

where D⊤ denotes the transpose of D, and where σt is the N × N diffusion
matrix, row i of which is σi

t. In (4), we have abused notation slightly by
writing r = (r, . . . , r) in order to reduce notational clutter. The context
should make it clear where r is the scalar or the vector.

From (4), the expected capital gain is

Et[dVt] = [rVt +D⊤
t (µt − r)]dt (5)

and the variance of the trader’s equity is

Vart(dVt) = D⊤
t σtσ

⊤
t Dtdt (6)

2See Adrian and Shin (2008) for one possible microfoundation in a contracting model
with moral hazard, and Danielsson and Zigrand (2008) for a forward looking general
equilibrium model with production where a VaR constraint reduces the probability of a
systemic event caused by a free-riding externality during the refinancing stage.
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We assume (and later verify in equilibrium) that the variance-covariance
matrix of instantaneous returns is of full rank and denote it by

Σt := σtσ
⊤
t (7)

The bank is risk-neutral, and maximizes return (5) subject to its VaR
constraint, where VaR is some constant α times the forward-looking standard
deviation of returns on equity. It is without loss of generality to define Value-
at-Risk in this way due to the Gaussian nature of the Brownian shocks. The
number α is just a normalizing constant, and does not enter materially into
the analysis.

Motivated by the evidence from the scatter chart of asset growth and
leverage growth of the Wall Street investment banks, we take the bank’s
capital Vt as the state variable. Assuming that the bank is solvent (i.e.
Vt > 0), the maximization problem can be written as:

max
Dt

rVt +D⊤
t (µt − r) subject to α

√

D⊤
t σtσ

⊤
t Dt ≤ Vt (8)

Once the dollar values {Di
t}Ni=1 of the risky assets are determined, the bank’s

residual bond holding is determined by the balance sheet identity:

btBt = Vt −
∑

i
Di

t (9)

The first-order condition for the optimal D is

µt − r = α(D⊤
t ΣtDt)

−1/2γtΣtDt (10)

where γt is the Lagrange multiplier associated with the VaR constraint.

Hence,

Dt =
1

α(D⊤
t ΣtDt)−1/2γt

Σ−1
t (µt − r) (11)

When µt 6= r, as will occur in equilibrium, the objective function is
monotonic in Dt by risk-neutrality, and the constraint must bind. Hence,

Vt = α
√

D⊤
t ΣtDt (12)

and therefore

Dt =
Vt

α2γt
Σ−1

t (µt − r) (13)

Notice that the optimal portfolio is similar to the mean-variance optimal
portfolio allocation, where the Lagrange multiplier γt appears in the denom-
inator, just like a risk-aversion coefficient. We thus have a foretaste of the
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main theme of the paper - namely, that the banks in our model are risk-
neutral, but they will behave like risk averse investors whose risk aversion
appears to shift in line with the Lagrange multiplier γ. Substituting into
(12) and rearranging we have

γt =

√
ξt
α

(14)

where
ξt := (µt − r)⊤Σ−1

t (µt − r) ≥ 0 (15)

The Lagrange multiplier γt for the VaR constraint is thus proportional
to the generalized Sharpe ratio

√
ξ for the risky assets in the economy. Al-

though traders are risk-neutral, the VaR constraint makes them act as if they
were risk-averse with a coefficient of relative risk-aversion of α2γt = α

√
ξt.

As α becomes small, the VaR constraint binds less and banks’ willingness to
take on risk increases.

Notice that the Lagrange multiplier γt does not depend directly on equity
Vt. Intuitively, an additional unit of capital relaxes the VaR constraint by
a multiple α of standard deviation, leading to an increase in the expected
return equal to a multiple α of the generalized Sharpe ratio, i.e. the risk-
premium on the portfolio per unit of standard deviation. This should not
depend on Vt directly, and indeed we can verify this fact from (15).

Finally, we can solve for the risky asset holdings as

Dt =
Vt

α
√
ξt
Σ−1

t (µt − r) (16)

The optimal holding of risky assets is homogeneous of degree one in equity Vt.
This simplifies our analysis greatly, and allows us to solve for a closed form
solution for the equilibrium. Also, the fact that the Lagrange multiplier
depends only on market-wide features and not on individual capital levels
simplifies our task of aggregation across traders and allows us to view demand
(16) without loss of generality as the aggregate demand by the FI sector with
aggregate capital of Vt.

2.2 Closing the Model with Value Investors

We close the model by introducing value investors who supply downward-
sloping demand curves for the risky assets. The slope of the value investors’
demand curves will determine the size of the price feedback effect. Sup-
pose that the value investors in aggregate have the following vector-valued
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exogenous demand schedule for the risky assets, yt = (y1t , . . . , y
N
t ) where

yt = Σ−1
t






δ1 (z1t − lnP 1
t )

...
δN

(
zNt − lnPN

t

)




 (17)

where P i
t is the market price for risky asset i and where dzit is a (favorable)

Itô demand shock to the demand of asset i (or a unfavorable supply shock to
security i) to be specified further. Each demand curve can be viewed as a
downward sloping demand hit by demand shocks, with δi being a scaling pa-
rameter that determines the slope of the demand curve. The particular form
adopted for these exogenous demands is to aid tractability of the equilibrium
pricing function, as we will see shortly. We can interpret these demands as
coming from value investors who wish to hold a portfolio of the risky securi-
ties where their holding depends on the expected upside return, ln(P ∗i

t /P i
t ),

relative to benchmark prices P ∗i
t which are given by ez

i
t . The coefficients δ

play the role of risk tolerance parameters.
Bringing together the demands of the banks and the value investors, the

market-clearing condition Dt + yt = 0 can be written as

Vt

α
√
ξt
(µt − r) +






δ1 (z1t − lnP 1
t )

...
δN

(
zNt − lnPN

t

)




 = 0 (18)

Equilibrium prices are therefore

P i
t = exp

(
Vt

αδi
√
ξt
(µi

t − r) + zit

)

; i = 1, . . . , N (19)

In solving for the rational expectations equilibrium (REE) of our model,
our strategy is to begin with some exogenous stochastic process that drives
the passive traders’ demands for the risky assets (the fundamental “seeds”
of the model, so to speak), and then solve for the endogenously generated
stochastic process that governs the prices of the risky assets.

In particular, we will look for an equilibrium in which the price processes
for the risky assets are of the form:

dP i
t

P i
t

= µi
tdt+ σi

tdWt ; i = 1, . . . , N (20)

where Wt is an N × 1 vector of independent Brownian motions, and where
the scalar µi

t and 1 × N vector σi
t are as yet undetermined coefficients that
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will be solved in equilibrium. The “seeds” of uncertainty in the equilibrium
model are given by the demand shocks of the value investors:

dzit = r∗dt+ ησi
zdWt (21)

where σi
z is a 1×N vector that governs which Brownian shocks will get im-

pounded into the demand shocks and therefore govern the correlation struc-
ture of the demand shocks. We assume that the stacked N ×N matrix σz is
of full rank and that r∗ > r, so that demand shocks reflect risk aversion of
the value investors.

Our focus is on the way that the (endogenous) diffusion terms {σi
t} of the

return process depends on the (exogenous) shock terms {σi
z}, and how the ex-

ogenous noise terms may be amplified in equilibrium via the risk constraints
of the active traders. Indeed, we will see that the relationship between the
two sets of diffusions generate a rich set of empirical predictions.

3 Equilibrium with Single Risky Asset

Before examining the general problem with N risky assets, we first solve the
case of with single risky asset. We will look for an equilibrium where the
price of the risky asset follows the process:

dPt

Pt
= µtdt+ σtdWt (22)

where µt and σt are, as yet, undetermined coefficients to be solved in equi-
librium, and Wt is a standard scalar Brownian motion. The “seeds” of
uncertainty in the model are given by the exogenous demand shocks to the
value investors’ demands:

dzt = r∗dt+ ησzdWt (23)

where σz > 0 and η > 0 are known constants. For the single risky asset
case, note that

ξt =
(µt − r)2

σ2
t

(24)

Substituting into (19), and confining our attention to regions where the
Sharpe ratio µt−r

σt
is strictly positive, we can write the price of the risky

asset as

Pt = exp

(

zt +
σtVt

αδ

)

(25)
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From (22) we have, by hypothesis,

d lnPt =

(

µt −
1

2
σ2
t

)

dt+ σtdWt (26)

Meanwhile, taking the log of (25) and applying Itô’s Lemma gives

d lnPt = d

(

zt +
σtVt

αδ

)

= r∗dt+ ησzdWt +
1

αδ
d(σtVt)

= r∗dt+ ησzdWt +
1

αδ
(σtdVt + Vtdσt + dVtdσt) (27)

Now use Itô’s Lemma on σ(Vt):

dσt =
∂σ

∂Vt

dVt +
1

2

∂2σ

∂(Vt)2
(dVt)

2

=

{

∂σ

∂Vt

[

rVt +
Vt(µt − r)

ασt

]

+
1

2

∂2σ

∂(Vt)2

(
Vt

α

)2
}

dt+
∂σ

∂Vt

Vt

α
dWt (28)

where (28) follows from

dVt = [rVt +Dt(µt − r)]dt+DtσtdWt

=

[

rVt +
Vt(µt − r)

ασt

]

dt+
Vt

α
dWt (29)

and the fact that Dt =
Vt

ασt
due to the binding VaR constraint. Notice that

(dVt)
2 =

(
Vt

α

)2
dt. We thus obtain diffusion equations for Vt and for σt itself.

Substituting back into (27) and regrouping all dt terms into a new drift
term:

d lnPt = (drift term) dt+

[

ησz +
1

αδ

(

σt
Vt

α
+ Vt

∂σt

∂Vt

Vt

α

)]

dWt (30)

We can solve for the equilibrium diffusion σt by comparing coefficients
between (30) and (26). We have an equation for the equilibrium diffusion
given by:

σ(Vt) = ησz +
1

αδ

(

σt
Vt

α
+ Vt

∂σt

∂Vt

Vt

α

)

(31)

which can be written as the ordinary differential equation (ODE):

V 2
t

∂σ

∂Vt
= α2δ(σt − ησz)− Vtσt (32)
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It can be verified by differentiation that the generic solution to this ODE is
given by

σ(Vt) =
1

Vt

e
−α2δ

Vt

[

c− α2δησz

∫ ∞

−α2δ
Vt

e−u

u
du

]

(33)

where c is a constant of integration.
We can set c = 0 through the following natural restriction in our model.

The only randomness in our economy stems from the shocks to the value
investor demands. If we let δ → 0, value investors’ demand goes to zero and
we get the REE σ(Vt) =

c
Vt
. Since the limit economy should be riskless, we

require that returns also are riskless, σ(Vt) = 0, implying that c = 0.
We thus obtain a unique closed form solution to the rational expectations

equilibrium for the single risky asset case. Setting c = 0 and simplifying, we
arrive at the following succinct closed form solution

σ(Vt) = ησz
α2δ

Vt
exp

{

−α2δ

Vt

}

× Ei

(
α2δ

Vt

)

(34)

where Ei (w) is the well-known exponential integral function:

Ei (w) ≡ −
∫ ∞

−w

e−u

u
du (35)

The Ei (w) function is defined provided w 6= 0. The expression α2δ/Vt which
appears prominently in the closed form solution (34) can be interpreted as
the relative scale or size of the value investor sector (parameter δ) compared
to the banking sector (total capital Vt normalized by VaR).

The closed form solution also reveals much about the basic shape of the
volatility function σ (Vt). Consider the limiting case when the banking sec-
tor is very small, that is, Vt → 0. Then α2δ/Vt becomes large, but the
exponential term exp {−α2δ/Vt} dominates, and the product of the two goes
to zero. However, since we have exogenous shocks to the value investor
demands, there should still be non-zero volatility at the limit, given by the
fundamental volatility ησz. As we will illustrate with the numerical exam-
ple to be presented below, the role of the Ei (w) term is to tie down the end
point so that the limiting volatility is given by this fundamental volatility.

The equilibrium risk premium in our model is given by the drift µt (the
expected instantaneous return on the risky asset) which can be solved in
closed form, and is given by

µt = r +
σt

2αησz

{

2α(r∗ − r) + ασ2
t − ησz + (σt − ησz)

[

2α2r +
α2δ

Vt

− 2

]}

(36)
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We can see that µt depends on the diffusion σt, so that when the expression
in the square brackets is positive, µt is increasing in σt. Thus, even though
banks are risk-neutral, they are prevented by their VaR constraint from fully
exploiting all positive expected return opportunities. The larger is σt, the
tighter is the risk constraint, and hence the higher is the expected return µt.
Note that the expression in the square brackets is positive when Vt is small,
which is consistent with the VaR constraint binding more tightly.

Also, notice that as the VaR constraint becomes tighter, limα→∞ σt = ησz

and limα→∞ α(σt − ησz) = 0 so that in the limit we have µt − (ησz)2

2
= r∗,

confirming our interpretation of r∗ as the value investor sector’s benchmark
log-return.

The information contained in the risk premium µt and its relationship
with the diffusion σt can be summarized alternatively in terms of the Sharpe
ratio, which can be written as

µt − r

σt
=

1

2αησz

{

2α(r∗ − r) + ασ2
t − ησz + (σt − ησz)

[

2α2r +
α2δ

Vt
− 2

]}

(37)
The countercyclical shape of the Sharpe Ratio follows directly from the shape
of the diffusion coefficient σt.

3.1 Numerical Example

We illustrate the properties of our closed form solution by means of a nu-
merical example. Figure 3 plots the equilibrium diffusion σt and the drift µt

as a function of the state variable Vt. The parameters chosen for this plot
were r = 0.01, r∗ = 0.047, δ = 6, α = 2.7, σz = 0.3, η = 1.5

As suggested by the closed form solution (34), the plot of σt is non-
monotonic, with a peak when Vt is low. Also, note that when V = 0, we
have σ = 0.45, which is the fundamental volatility given by the product of
σz and η (= 0.3 × 1.5). The basic non-monotonic shape of the volatility
function is quite general, and does not depend on the parameters chosen.
We provide further arguments in the appendix.3

What Figure 3 reveals is that the feedback effect generating endogenous
volatility is strongest for an intermediate value of Vt. This is so, since there
are two countervailing effects. If Vt is very small - close to zero, say - then
there is very little impact of the banks’ portfolio decision on the price of the
security. Therefore, both σt and µt are small. At the opposite extreme, if Vt

3See Mele (2007) for a discussion of the stylized facts, and for a model generating
countercyclical statistics in a more standard framework.
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is very large, then banks begin to act more and more like an unconstrained
trader. Since the trader is risk–neutral, the expected drift µt is pushed down
to the risk–free rate, and the volatility σt declines.

However, at an intermediate level of Vt, the feedback effect is maximized,
where a positive price shock leads to greater purchases, which raises prices
further, which leads to greater purchases, and so on. This feedback effect
increases the equilibrium volatility σt. Due to the risk constraint, the risk-
neutral banks behave “as if” they were risk averse, and the equilibrium drift
µt reflects this feature of the model. The risk premium µt rises with σt, since
both risk and risk aversion increase as bank equity is depleted.

Indeed, as we have commented already, the Lagrange multiplier associated
with the risk constraint is the Sharpe ratio in this simple one asset context.
The Lagrangian is plotted in Figure 4. We see that the Sharpe ratio rises and
falls roughly the same pattern with σt and µt. However, the notable feature
of Figure 4 is that the Lagrange multiplier may actually start increasing again
when V is large. This is because the Lagrange multiplier reflects the bank’s
return on equity (ROE), and ROE is affected by the degree of leverage taken
on by the bank. When V becomes large, the volatility falls so that bank
leverage increases. What Figure 4 shows is that the increased leverage may
start to come into play for large values of V .

Figure 5 gives scatter charts for the relationship between the asset growth
and leverage for four sample realizations of the model. These relationships
are the theoretical counterparts generated in our model to the empirical
relationship depicted in Figure 1 for the Wall Street investment banks. Each
scatter chart for a particular sample path is accompanied by the price series
for that sample path.

The scatter charts reveal the characteristic clustering of dots around the
45-degree line. The notable feature from the scatter charts is how the slope
and degree of clustering depends on the price realizations. When the price
path is low, many of the observations are for the upward-sloping part of the
volatility function σ (V ). Along the upward-sloping part, equity depletion
associated with price declines is accompanied by a decline in Value-at-Risk,
and hence an uptick in leverage. These observations are those below the
45-degree line, but where leverage goes up. However, when the realizations
are mainly those on the downward-sloping part of the volatility curve, the
scatter chart hugs more closely the 45-degree line. The second example in
Figure 5 shows this best.
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4 Equilibrium with Many Risky Assets

4.1 General Specification

We now turn to the case with N > 1 risky assets and look for an equilibrium
in which the prices of risky assets follow:

dP i
t

P i
t

= µi
tdt+ σi

tdWt (38)

where Wt is an N × 1 vector of independent Brownian motions, and where
µi
t and σi

t are terms to be solved in equilibrium. The demand shocks of the
passive traders are given by

dzit = r∗dt+ ησi
zdWt (39)

where σi
z is a 1 × N vector that governs which Brownian shocks affect the

passive traders’ demands.
We denote conjectured quantities with a tilde. For instance, conjectured

drift and diffusion terms are µ̃, σ̃ respectively and the actual drift and dif-
fusions are µ and σ respectively. For notational convenience, we define the
scaled reward-to-risk factor

λt :=
1√
ξt
Σ−1

t (µt − r) (40)

Also, we use the following shorthands:

βi
t :=

1√
ξt
(µi

t − r) (41)

ǫit :=
1

α2δi
βi
t +

Vt

α2δi
∂βi

t

∂Vt
(42)

and where
∂ǫit
∂Vt

=
2

α2δi
∂βi

t

∂Vt
+

Vt

α2δi
∂2βi

t

∂V 2
t

Under some conditions to be verified, we can compute the actual drift and
diffusion terms of dP i

t /P
i
t as a function of the conjectured drift and diffusion

terms. By Itô’s Lemma applied to (19) we have:

σi
t = ǫ̃itVtλ̃

⊤
t σ̃t + ησi

z (43)

We denote the N×1 vector of ones by 1N , and the operator that replaces
the main diagonal of the identity matrix by the vector v by Diag(v). Also,
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for simplicity we write r for r1N . Then we can stack the drifts into the vector
µt, the diffusion coefficients into a matrix σt, etc.

We can solve the fixed point problem by specifying a beliefs updating
process (µ̃, σ̃) that when entered into the right hand side of the equation,
generates the true return dynamics. In other words, we solve the fixed point
problem by solving for self-fulfilling beliefs (µ̃t, σ̃t) in the equation:

[
µ̃t

σ̃t

]

=

[
µt(µ̃t, σ̃t)
σt(µ̃t, σ̃t)

]

. (44)

By stacking into a diffusion matrix, at a REE the diffusion matrix satisfies

σt = Vtǫtλ
⊤
t σt + ησz (45)

Using the fact that λ⊤
t σtσ

⊤
t = β⊤

t , σt satisfies the following matrix quadratic
equation σtσ

⊤
t = ησzσ

⊤
t + Vtǫtβ

⊤
t so that

(σt − ησz)σ
⊤
t = Vtǫtβ

⊤
t (46)

The return diffusion in equilibrium is equal to the fundamental diffusion
ησz – the one occurring with no active FIs in the market – perturbed by an
additional low-rank term that incorporates the rational equilibrium effects of
the FIs on prices. Therefore, we have a decomposition of the diffusion matrix
into that part which is due to the fundamentals of the economy, and the part
which is due to the endogenous amplification that results from the actions of
the active traders. The decomposition stems from relation (43) (keeping in
mind that Vt

α
λtσt equals the diffusion term of equity)

σi
t =

(
1

αδi
βi
t

)

︸ ︷︷ ︸

feedback effect on vol

from VaR

(vol of capital) +

(
V

αδi
∂βi

t

∂Vt

)

︸ ︷︷ ︸

feedback effect on vol

from changing expectations

(vol of capital) + ησi
z

We now solve for a representation of σt. Solutions to quadratic matrix
equations can rarely be guaranteed to exist, much less being guaranteed to
be computable in closed form. We provide a representation of the solution,
should a solution exist. This solution diffusion matrix can be shown to be
nonsingular, guaranteeing endogenously complete markets by the second fun-
damental theorem of asset pricing.

Denote the scalar
et := 1− Vtλ

⊤
t ǫt
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It follows from the Sherman-Morrison theorem (Sherman and Morrison (1949))
that et = Det

[
I − Vtǫλ

⊤
t

]
and that if (and only if) et 6= 0 (to be verified in

equilibrium) we can represent the diffusion matrix:

σt = η

[
Vt

1− Vtλ⊤
t ǫt

ǫtλ
⊤
t + I

]

σz (47)

We then have the following result.

Proposition 1 The REE diffusion matrix σt and the variance-covariance
matrix Σt are non-singular, and

σ−1
t =

1

η
σ−1
z

[
I − Vtǫtλ

⊤
t

]
(48)

Proof. By the maintained assumption that σz is invertible, the lemma fol-

lows directly if we were able to show that
[
Vt

et
ǫtλ

⊤
t + I

]

is invertible. From

the Sherman-Morrison theorem, this is true if 1+ Vt

et
λ⊤
t ǫt 6= 0, which simplifies

to 1 6= 0. The expression for the inverse is the Sherman-Morrison formula.

4.2 Closed Form Solution

To make further progress in the many asset case, we examine a special case
that allows us to solve for the equilibrium in closed form. The special case
allows us to reduce the dimensionality of the problem and utilize the ODE
solution from the single risky asset case. Our focus here is on the correlation
structure of the endogenous returns on the risky assets.
Assumption (Symmetry, S) The diffusion matrix for z is ησ̃zIN where
σ̃z > 0 is a scalar and where IN is the N × N identity matrix. Also, δi = δ
for all i.

The symmetry assumption enables us to solve the model in closed form
and examine the changes in correlation. Together with the i.i.d. feature of
the demand shocks we conjecture an REE where µi

t = µ1
t , β

i
t = β1

t , λ
i
t = λ1

t ,
ǫit = ǫ1t , σ

ii
t = σ11

t and σij
t = σ12

t , i 6= j. First, notice that ǫtλ
⊤
t = ǫ1tλ

1
t11

⊤,
and that ǫ⊤t λt = Nǫ1tλ

1
t , where 1 is a N × 1 vector of ones (so that 11⊤ is

the N ×N matrix with the number 1 everywhere).
From (47) we see that the diffusion matrix is given by

ησz

(
Vtλ

1
t ǫ

1
t

1−NVtλ
1
t ǫ

1
t

11⊤ + I

)

(49)
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From here the benefit of symmetry becomes clear. At an REE we only
need to solve for one diffusion variable, σii

t = σ11
t , since for i 6= j the cross

effects σij
t = σ12

t = σ11
t − ησ̃z are then determined as well. Recall that σij

t

is the measure of the effect of a change in the demand shock of the jth
security on the price of the ith security, and not the covariance. In other
words, it governs the comovements between securities that would otherwise
be independent. Define by xt ≡ x(Vt) the solution to the ODE (32) with η
replaced by η

N
, i.e. xt is equal to the right-hand-side of (33) with η replaced

by η
N
. The proof of the following proposition is in the appendix.

Proposition 2 Assume (S). The following is an REE.
The REE diffusion coefficients are σii

t = xt+
N−1
N

ησ̃z, and for i 6= j, σij
t =

xt− 1
N
ησ̃z. Also, Σ

ii
t = Vart(return on security i) = η2σ̃2

z +
1
N
(N2x2

t − η2σ̃2
z),

and for i 6= j, Σij
t = Covt(return on security i, return on security j) =

1
N
(N2x2

t − η2σ̃2
z) and Corrt(return on security i, return on security j) =

Nx2
t− 1

N
η2σ̃2

z

Nx2
t+

N−1
N

η2σ̃2
z
.

Risky holdings are Di
t =

Vt

αN3/2xt
.

The risk-reward relationship is given by

µi
t − r

xt

=
1

2α η
N
σ̃z

{

2α(r∗ − r) + α

(

Nx2
t + η2σ̃2

z

N − 1

N

)

− η√
N
σ̃z+

√
N

(

xt −
η

N
σ̃z

)[

2α2r +
α2δ

Vt

− 2

]}

(50)

The intuition and form of the drift term is very similar to the N = 1 case
and reduces to it if N is set equal to 1.

With multiple securities and with active banks, each idiosyncratic shock
is transmitted through the system through the banks’ portfolio decisions.
On the one hand this means that less than the full impact of the shock
on security i will be transmitted into the asset return i, potentially leading
to a less volatile return. The reason is that a smaller fraction of the asset
portfolio is invested in asset i, reducing the extent of the feedback effect. On
the other hand, the demand shocks to assets other than i will be impounded
into return i, potentially leading to a more volatile return, depending on the
extent of mutual cancellations due to the diversification effect on the FIs’
equity. In a world with multiple risky securities satisfying the assumptions
in the proposition, the extent of contagion across securities is given by σij

t =
xt − 1

N
ησ̃z, for i 6= j. In the absence of FIs, xt = x(0) = 1

N
ησ̃z, so any

given security return is unaffected by the idiosyncratic shocks hitting other
securities.
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Figure 6: Cross Contagion across Risky Assets

For comparison purposes, denote the scalar diffusion coefficient from the
N = 1 case, as given by (33), by σN=1

t . The first direct effect can be char-
acterized as follows: σ11

t < σN=1
t iff ησ̃z < σN=1

t . In words, each security
return is affected less by its own noise term than in a setting with only
this one security, for small levels of capital. The reason for this latter effect
lies in the fact that any given amount of FI capital needs to be allocated
across multiple securities now. For capital levels larger than the critical level
V ∗ : σN=1

t (V ∗) = ησ̃z, the direct effect is larger than in the N = 1 economy4

because the (now less constrained) risk-neutral FIs tend to absorb aggregate
return risk as opposed to idiosyncratic return risk. Whereas all uncertainty
vanishes in the N = 1 case since FIs insure the residual demand when cap-
ital becomes plentiful (limV→∞ σN=1

t = 0), with N > 1 on the other hand
individual volatility remains (limV→∞Σ11

t = N−1
N

η2σ̃2
z > 0) but the fact that

correlations tend to −1 means that limV→∞Var(return on the equilibrium
portfolio)= 0. So again as FI capital increases, aggregate equilibrium return
uncertainty is washed out, even though returns continue to have idiosyncratic
noise.

Combining direct and indirect effects, return variance is lower in the multi
security case if V is small: Σ11

t < (σN=1
t )2 iff η2σ̃2

z/N
2 < x2

t . Still, as in the
N = 1 case securities returns are more volatile with active banks (Vt > 0),
provided capital is not too large.

Diversification across the N i.i.d. demand shocks lessens the feedback
effect on prices to some extent. Since the VaR constraints bind hard for
small levels of capital, the fact that idiosyncratic shocks are mixed and affect

4For instance, as V → ∞, we have limV→∞ σ11

t
= N−1

N
ησ̃z > 0 = limV→∞ σN=1

t
.
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Figure 7: Return Correlations across Risky Assets

all securities implies that asset returns become more correlated for small
capital levels. FIs tend to raise covariances by allowing the i.i.d. shocks that
affect security i to be also affecting security j 6= i through their portfolio
choices. This effect has some similarities to the wealth effect on portfolio
choice described by Kyle and Xiong (2001). The intuition is as follows.
Without FIs, returns on all securities are independent. With a binding VaR
constraint, in the face of losses, FIs’ risk appetite decreases and they are
forced to scale down the risk they have on their books. This leads to joint
downward pressure on all risky securities.

This effect is indeed confirmed in an REE, leading to positively correlated
returns. This effect is consistent with anecdotal evidence on the loss of
diversification benefits suffered by hedge funds and other traders who rely on
correlation patterns, when traders are hit by market shocks. The argument
also works in reverse: as FIs start from a tiny capital basis that does not
allow them to be much of a player and accumulate more capital, they are
eager to purchase high Sharpe ratio securities. This joint buying tends to
raise prices in tandem.

Figure 7 shows the correlation as a function of V . As can be seen on
Figure 7, variances move together, and so do variances with correlations.
This echoes the findings in Andersen et al (2001) who show that

“there is a systematic tendency for the variances to move to-
gether, and for the correlations among the different stocks to
be high/low when the variances for the underlying stocks are
high/low, and when the correlations among the other stocks are
also high/low.”
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They conjecture that these co-movements occur in a manner broadly con-
sistent with a latent factor structure (the x process in our model).

5 Further Results

The logic of the feedback effects that underlies the shapes of the volatility,
risk premia and Sharpe Ratio graphs naturally has a number of powerful
corollaries that tie in with empirical regularities in the financial markets.

5.1 Leverage Effect

The “leverage effect” refers to the empirical regularity noted by Black (1976)
and Schwert (1989) that declining asset prices lead to increased future volatil-
ity. Recent work by Kim and Kon (1994), Tauchen, Zhang and Liu (1996)
and Anderson, Bollerslev, Diebold and Ebens (2001) find that the leverage
effect is stronger for indices than for individual securities. This has been
considered as a puzzle for a literal interpretation of the leverage effect, and
we are not aware of theoretical explanations for this asymmetry. Our model
also finds that the overall market volatility reacts more to falls than individ-
ual securities, and our story provides a natural intuition for the effect. As
equity V is reduced, prices fall and volatilities increase. Since correlations
also increase as equity falls, the volatility of the market portfolio increases
more than the volatility of the individual securities underlying the market
portfolio. Define Ṽ so that ∂xt

∂Vt
(Ṽ ) = 0, meaning that the region where eq-

uity satisfies V > Ṽ corresponds to the usual region right of the hump where
capital losses lead to more volatile returns.

Proposition 3 Assume N > 1. A decrease in V raises the volatility of the
market more than it raises the volatility of an individual constituent security
iff Vt > Ṽ .

Proof. In our model it can easily be verified that the variance of the market
portfolio is equal to Σm

t := Nx2
t , and that Σii

t = Nx2
t +

N−1
N

η2σ̃2
z . A few

manipulations verify

∂
√
Σm

t

∂V
− ∂

√

Σii
t

∂V
= Nxt

∂xt

∂V

[

1√
Σm

t

− 1
√

Σii
t

]

< 0

iff Vt > Ṽ , since Σm
t < Σii

t if N > 1.
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Figure 8: Skewed Density over Outcomes

5.2 Derivatives Pricing Implications

It is well known that the Black-Scholes-Merton implied volatilities exhibit a
negative skew in moneyness K/S that is fading with longer time to maturity
(see for instance Äıt-Sahalia and Lo (1998) for a formal econometric analysis).
The usual intuition for the relative over-pricing of out-of-the-money (OTM)
puts compared to OTM calls within the Black-Scholes-Merton model relies
on the fact that OTM puts offer valuable protection against downside “pain
points,” and that such a downside either is expected to occur more frequently
than similar upside movements or at least occurs in more volatile environ-
ments than would a similar upside movement, or that investors are willing to
pay more to protect the downside compared to Black-Scholes. These effects
imply a fatter left tail of the risk-neutral returns distribution compared to
the Gaussian Black-Scholes model, as can be verified on Figure 8.

Our model provides a simple micro-founded alternative channel through
which the observed volatility skew is generated. In our framework the REE
volatility function |σt| largely depends negatively on bank capital Vt (except
for very small values of Vt). Capital being random, volatility is stochastic.
Since the value of the underlying risky asset (viewed as the overall market
index) depends positively on bank capital over a large range of capital levels,
but its volatility depends mostly negatively on bank capital, one can expect
that the option generated implied volatility skew appears in equilibrium.

If one focuses on the at-the-money (ATM, moneyness of one) across var-
ious capital levels, one sees that the ATM implied vols (which would in this
model be equivalent to the VIX index or similar) are counter-cyclical. An
economy with higher capital levels has a lower VIX, and worsening economic

27



5

10

15
20

0.35

0.45

0.40

0.50

0.55

0.5

1.0

1.5

2.0

olatilit

Moneyness Matu
rit
y

Im
p
li
ed

vo
la
ti
li
ty

Figure 9: Implied Volatility Surface

circumstances lead to a higher VIX. This is a well-established empirical fact,
so much so that the VIX is also referred to as the “investor fear gauge.”

Figure 9 gives the implied volatility surface arising from our model in
(K/S, maturity) space. We see the skew for each maturity, as well as a
flattening over longer maturities. The flattening is due to the fact that over
a longer horizon bank equity will more likely than not have drifted upwards
and further out of the danger zone.

6 Concluding Remarks

We have examined a dynamic rational expectations asset pricing model with
a banking sector. Our model has stochastic volatility and with “as if”
preferences with the feature that banks act as if their preferences are changing
in response to market outcomes. The channel through which risk premiums,
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volatility and risk capacity are connected are the risk constraints that banks
operate under. As risk constraints bind harder, effective risk aversion of the
banks also increases. We have argued that this simple story of risk aversion
feedbacks captures important features of the cyclical nature of banking and
its impact on economy-wide risk premiums.

Our discussion has focused mainly on the positive questions, rather than
normative, welfare questions on the appropriate role of financial regulation
and other institutional features. We recognize that such normative questions
will be even more important going forward, especially in the light of the
experiences gained in the financial crisis of 2007-9.
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Appendix

Lemma (Properties of the Diffusion Term)

[S1] limVt→0 σ(Vt) = ησz

[S2] limVt→∞ σ(Vt) = 0 and limVt→∞ Vtσ(Vt) = ∞
[S3] limVt→0

∂σ
∂Vt

= ησz

α2δ
and limVt→0

∂2σ
∂V 2

t
= 4ησz

(α2δ)2
. [Call f(V ) := σt−ησz

Vt

and notice that limV→0 f(V ) = limV→0
∂σ
∂V

. Since we know the expression
for ∂σ

∂V
by (32), we see that the problem can be transformed into lim f =

lim 1
Vt
[α2δf(V )− σ]. In turn, we can replace σt

Vt
definitionally by f + ησz

V
to

get to lim f = lim f(V )[α2δ−V ]−ησz

V
. If lim f is not equal to the constant given

here, then the RHS diverges. Since the denominator of the RHS converges
to zero, so must the numerator. Thus the constant is the one shown here.
The proof of the second limit is similar.]
[S4] {V ∗ ∈ R : σ(V ∗) = 0} is a singleton. At V ∗, σ is strictly decreasing.
[The second observation comes from (32) while the first one comes from the
fact that the mapping V 7→

∫∞
−α2δ

V

e−u

u
du is a bijection between R+ and R, so

for each chosen c, there is a unique V (c) setting
[

c− α2δησz

∫∞
− α2δ

V (c)

e−u

u
du

]

=

0.]
[S5] σ(V ) has exactly one minimum and one maximum. The minimum is at
V ′ s.t. σ(V ′) < 0. The maximum is at V ′′ s.t. σ(V ′′) > 0.

Proof of Proposition 2 First, we can read off (49) the variables of interest

as σii
t = ησ̃z

(
Vtǫtλt

1−NVtǫtλt
+ 1

)

and σij
t = σ12

t = ησ̃z
Vtǫtλt

1−NVtǫtλt
= σ11

t − ησ̃z.

Next, we compute the variance-covariance matrix, the square of the dif-
fusion matrix (49):

Σt = σtσt = η2σ̃2
z [IN +mt11

⊤] = η2σ̃2
zIN + gt11

⊤

where

mt := N

(
Vtǫ

1
tλ

1
t

1−NVtǫ1tλ
1
t

)2

+ 2
Vtǫ

1
tλ

1
t

1−NVtǫ1tλ
2
t

=
1

η2σ̃2
z

(σ11
t − ησ̃z)

[
2ησ̃z +N(σ11

t − ησ̃z)
]

gt : = mtη
2σ̃2

z

where we used the fact that ησ̃z
Vtǫ1tλ

1
t

1−NVtǫ1tλ
1
t
= σ11

t −ησ̃z . Then insert Σt into the

reward-to-risk equation Σtλ
1
t1 =

µ1
t−r√
ξ
1 to get

√
ξtλ

1
t [ησ̃z +N(σ11

t − ησ̃z)]
2
=

µ1
t − r.
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Next compute ξt. By definition, ξt := (µ1
t − r)21⊤Σ−1

t 1. Since 1 +
gt(ησ̃z)

−2N 6= 0, by the Sherman-Morrison theorem we see that

Σ−1
t = (ησ̃z)

−2I − gt
(ησ̃z)4 +N(ησ̃z)2gt

11⊤

and therefore that

ξt = (µ1
t − r)2N(ησ̃z)

−2

[

1− Ngt
(ησ̃z)2 +Ngt

]

Inserting the expression for ξt into the expression for λ1
t we get, using the

fact that [ησ̃z +N(σ11
t − ησ̃z)]

2 = Ngt + (ησ̃z)
2,

λ1
t =

ιAιB√
N [ησ̃z +N(σ11

t − ησ̃z)]

where ι is the sign function, A := µ1
t − r and B := Nσ11

t − (N −1)ησ̃z. Using
again the fact that [ησ̃z +N(σ11

t − ησ̃z)]
2 = Ngt + (ησ̃z)

2, we see that

β1
t = ιAιB

1√
N

[
ησ̃z +N(σ11

t − ησ̃z)
]

By definition of ǫ1t :

ǫ1t =
1

α2δ
ιAιB

[
1√
N
[ησ̃z +N(σ11

t − ησ̃z)] + Vt

√
N
∂σ11

t

∂Vt

]

(51)

Inserting all these expressions into the equation for σ11
t , σ11

t = ησ̃z
1−(N−1)Vtλ1

t ǫ
1
t

1−NVtλ1
t ǫ

1
t

and defining xt :=
1
N
ησ̃z + (σ11

t − ησ̃z), the resulting equation is the ODE
(32) with η replaced by η/N and where σ(V ) is replaced by x(V ).

As to risky holdings, we know that Dt = Vt

α
λt. Noticing that ησ̃z +

N(σii
t − ησ̃z) = Nxt, we find that λ1

t =
1

N3/2xt
from which the expression for

Dt follows.
Finally we compute the risk premia. Using Itô’s Lemma on (19) we get

µi
t −

1

2
Σ11

t = αǫ1t (drift of Vt) + r∗dt+
1

2
α
∂ǫ1t
∂Vt

(diffusion of Vt)
2

Now the drift of capital can be seen to be equal to

drift of Vt = rVt +D⊤
t (µt − r) = rVt + (µ1

t − r)
Vt

α
√
Nxt
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and using σt =
(
xt − 1

N
ησ̃z

)
11⊤ + ησ̃zI the squared diffusion term can be

verified to be equal to
V 2
t

α2 . The drift equation becomes

(µ1
t − r)

[

1− ǫ1t
Vt√
Nxt

]

=
1

2
(σ11

t )2 + α2ǫ1t rVt +
1

2

V 2
t

α

∂ǫ1t
∂Vt

We can rewrite (51) by inserting the ODE for xt to get rid of the partial
derivative term:

ǫ1t = ιAιB

√
N

Vt

(

xt −
η

N
σ̃z

)

Performing the differentiation of ǫ1t and inserting into the drift equation com-
pletes the proof.

32



References

Adrian, Tobias, Erkko Etula and Hyun Song Shin (2009) “Risk Appetite and
Exchange Rates” FRB New York Staff Report 361

Adrian, Tobias, Emanuel Moench and Hyun Song Shin (2009) “Financial
Intermediation, Asset Prices and Macroeconomic Dynamics” FRB New York
Staff Report 422

Adrian, Tobias and Hyun Song Shin (2008) “Financial Intermediary Leverage
and Value at Risk,” working paper, Federal Reserve Bank of New York and
Princeton University. Federal Reserve Bank of New York Staff Reports, 338.

Adrian, Tobias and Hyun Song Shin (2010) “Liquidity and Leverage,” Jour-
nal of Financial Intermediation 19 (3), 418-437
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