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Abstract

Epidemics are often modelled using state-space models based on
dynamical systems, observed through partial and noisy data. In this
paper we develop stochastic extensions to the popular SEIR model with
parameters evolving in time, in order to capture unknown influences
of changing behaviors, public interventions, seasonal effects etc. Our
models assign diffusion processes for the time-varying parameters, and
our inferential procedure is based on the particle MCMC algorithm,
suitably adjusted to accommodate the features of this challenging non-
linear stochastic model. The performance of the proposed computa-
tional methods is validated on simulated data and the adopted model
is applied to the 2009 A/H1N1 pandemic in England. In addition to
estimating the trajectories of the effective contact rate, the methodol-
ogy is applied in real time to provide evidence in related public health
decisions.

Keywords: Infectious disease modelling; Non-parametric meth-
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1 Introduction

Epidemic models are often used to simulate disease transmission dynamics,
detect emerging outbreaks (Unkel and others, 2010), and sometimes also
to aid in designing and monitoring public interventions (Boily and others,
2007). Naturally, in order to capture the dynamics of epidemics, the main
focus is generally made on their intrinsically dynamic elements such as the
depletion of susceptibles as a disease spreads or the loss of immunity of the
population as a virus evolves. Nevertheless, there are time-varying extrin-
sic factors that also play a key role on the evolution of epidemics, mainly
through the effective contact rate, the number of contacts individuals make
that could lead to an infection. Indeed, this quantity partly determines the
mean number of individuals infected by a person carrying the disease, i.e.
the reproduction rate Rt, and can foster or stop an epidemic by bringing Rt
over or below 1. Consequently, the majority of public interventions, meant
to prevent or mitigate epidemics aim at lowering the effective contact rate,
either by protecting the contacts specifically made with infected individu-
als, or by promoting prevention measures. Examples of the latter can span
from washing hands to wearing condoms or sleeping under treated bed-nets.
The overall efficiency of a policy will depend on the efficiency of the pre-
vention measures, but also on the exposition (proportion of the population
reached by the campaign) and adherence (proportion that effectively change
their habits) of the population to the sensibilisation campaign. Timely and
accurate estimates of these elements are crucial in order to monitor the
efficiency of an intervention and the potential need to intensify it. Never-
theless, the time-varying nature of epidemics poses a challenging statistical
problem highlighting the need for suitable computational tools (Ferguson,
2007). In addition to awareness fluctuations, climatic variations also drive
the epidemic dynamics through the effective contact rate. This has been
clearly illustrated for diseases as cholera, malaria (Cazelles and others, 2005;
Ionides and others, 2006) or influenza (Shaman and Kohn, 2009) for exam-
ple. These studies were conducted either by relating climatic and incidence
time-series (Cazelles and others, 2005), or by experimentally assessing the
resistance of viruses in different climatic conditions (Shaman and Kohn,
2009). However, approaches of the first type do not disentangle the effect of
time varying effective contact rates from the evolving population immunity,
thus affecting generalisability to different immunological contexts. Further-
more, experimental results cannot be easily extended to a population level
as sociological and behavioral patterns can play a role.

This paper considers a flexible modelling framework that encompasses
time-varying aspects of the epidemic via stochastic differential equations and
in particular hypoelliptic diffusions. We aim at providing robust inferential
procedures, from observations on prevalence or incidence data, incorporat-
ing the uncertainty associated with key parameters and accounting for data
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and model limitations. In order to provide an accurate and feasible compu-
tational toolbox, we provide suitably tailored Markov Chain Monte Carlo
(MCMC) algorithms to the diffusion pathspace. The existing MCMC tool-
box for parameters inference on epidemic models is expanded, utilising re-
cent developments such as particle MCMC (PMCMC) algorithms (Andrieu
and others, 2010). Our proposed methodology is contrasted with existing al-
ternatives as the family of Kalman filters based on classic Gaussian approx-
imations and Taylor expansions (specifically the extended Kalman Filter,
EKF, used in Cazelles and Chau (1997)), the Maximum likelihood via It-
erated Filtering algorithm (MIF, introduced in Ionides and others (2006)),
or strong modelling assumptions as crude time discretisations or absence
of measurement error (Cori and others, 2009). Modelling aspects are pre-
sented in Section 2, while the computational framework, and in particular
PMCMC methodology, is presented in Section 3. Section 4 contains simu-
lation experiments to illustrate and assess the performance of the proposed
algorithms, including comparisons with alternative methods as the EKF.
Simulation experiments on more features of PMCMC are presented in the
appendices A and B of the Supplementary Materials. In Section 5 we ap-
ply our methodology to data from the 2009 H1N1 pandemic provided by
the Health Protection Agency. In addition to illustrating the PMCMC al-
gorithm on real data, we discuss how the effective contact rate could have
been monitored in real time and whether a second wave after the summer
holidays was the most likely scenario. Finally, Section 6 concludes with some
relevant discussion.

2 Epidemic models with time-varying coefficients

2.1 Common grounds of epidemic models: key notions and
data

Epidemic models are based on the distinction between infected and suscep-
tible individuals, i.e. individuals that could potentially get infected. De-
pending on the disease and the scope of the study, further details become of
interest. For instance, not all infected individuals have to be infective as it
can take some time for the infected individual before shedding viruses and
becoming infectious; this time interval, referred to as latent period, could
be non-negligible in many cases such as influenza. Furthermore, some indi-
viduals may be neither infected nor susceptible, e.g. again for influenza a
period of immunity is observed after an individual has stopped being ill and
infectious. People in this situation are referred to as resistant or removed.
Hence, a frequently used model is the “SEIR” accounting for susceptible (S),
infected but not infective yet (E), infective (I), and removed (R) individuals.
The model is set in 1; new infections occur at a rate βSt

It
N , implying that

the susceptible individuals make effective contacts at rate β (the effective
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contact rate), and only a fraction It
N of these contacts are made with infec-

tive individuals. Moreover, individuals stay in compartments E and I for
an average period of k−1 and γ−1 respectively.

dSt
dt

= −βtSt
It
N
,

dEt
dt

= βtSt
It
N
− kEt,

dIt
dt

= kEt − γIt,
dRt
dt

= γIt

(1)
A key quantity here is the basic reproduction number, representing a the-
oretical quantity measuring the number of secondary infections that would
follow the introduction of a primary infected individual in a fully susceptible
population. This quantity, denoted with R0, is often taken as a measure of
the intrinsic infectiousness of a virus. A related and somewhat more prac-
tical quantity is the effective reproduction number, denoted with Rt, that
refers to the number of secondary cases caused by an infected individual at
a time t of an epidemic. Rt is a context-dependent quantity of high interest
to policy designers as its position relative to 1 indicates the possibility for
the epidemic to grow (Rt > 1) or to decrease in size (Rt < 1).

As epidemics are generally only partially observed, most of the available
epidemiological data are sparse. For exceptional diseases as SARS, with low
prevalence and strong severity and transmissibility, almost all cases can be
considered to be carefully monitored. However, for the majority of diseases,
monitoring of cases is done through health care attendance which often in-
cludes patients consulting for a variety of pathogens while presenting similar
symptoms, or alternative syndromic data as telephone or Internet helplines,
pharmacy sales, etc (Unkel and others, 2010). In the case of influenza, for
example, influenza-like-illness cases are reported based on the observation
of symptoms such as fever and some additional respiratory symptoms com-
mon to several pathogens (influenza A, influenza B, RSV, parainfluenza,
adenovirus, rhinovirus, Streptococcus pneumoniae, etc). Additionally, for
the most common pathogens, a large part of the infections can lead to no
or mild symptoms for which infected people do not consult. Studies have
shown that infections by influenza viruses are asymptomatic in a third of
the cases and that only around 40% of the infected cases present fevers
(Carrat and others, 2008). To be able to use the data generated by health
care attendance for inference purposes, one has thus first to correct the data
for positivity (to assess how many of people presenting the symptoms are
actually consulting for a particular pathogen), and then estimate the ratio
of people consulting for that pathogen over infections. This would ideally be
estimated using serology data (Miller and others, 2010), but it is a difficult
exercise which can result in inaccurate estimates of the number of cases in
population (especially if done in real-time). For example, during the recent
A/H1N1(2009) pandemic in the United Kingdom, the estimates of clinical
cases were underestimated by a factor 3 (as the ratio of infections over es-
timated ILI was around 10) making it difficult to infer the likelihood of a
second wave with the reopening of school in September ’09 (Baguelin and
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others, 2010). As demonstrated in Section 5, one of the potential practical
benefits of the methodology developed in this paper is to provide relevant
information on real time decision regarding the epidemic.

2.2 Time varying effective contact rate

Probability models provide a simplified representation of the real world, with
different levels of sophistication. Regarding epidemics the most-detailed
models account for individual characteristics, geographic distribution of in-
dividuals, situation-dependent disease transmission probabilities etc. On
the other end of the scale there are models, such as the previously intro-
duced SEIR model, that geographically aggregate the cases and consider
that transmission processes are deterministic, occurring at a given frequency
each time an infected and a susceptible meet. The level of complexity is of-
ten chosen on the basis of the available data. For example, in the case of
noisy observations on weekly aggregated cases, SEIR-type models are often
adopted. Apart from the argument of limited information in the data at
hand, these models are also appealing for being easy to interpret. Neverthe-
less, there is a number of features of the epidemic that are being overlooked
and assumptions that are unlikely to hold, that could potentially lead to
poor inference.

In this paper we adopt stochastic extensions of the deterministic SEIR
type models. Rather than ignoring deviations from reality, the aim is to in-
troduce them in the model as dynamic system error and adjusting for their
effect. This error can then be explored and potentially even re-modelled
at an aggregate population level. We focus on large-scale epidemics, for
which random effects in transmission processes can be considered to be well-
approximated deterministically (Kurtz, 1981). We work under the paradigm
stating that the limitations of the classically-used models do not arise from
the variability of individual characteristics or the randomness in the trans-
mission process, but mainly from the fact that the effective contact rate (βt)
evolves in time.

An early approach to estimate the time-varying reproduction potential
of a disease can be found in P.E.M. Fine and Clarkson (1982). This method
provides an estimate of the effective reproduction rate Rt, rather than the
effective contact rate βt, thus mixing the influence of the contact rate and of
the population immunity to evaluate the explosive potential of the epidemic.
It can be simply estimated by computing the average number of infections
caused by each infected individual over a given period of time, which is ob-
tained either through discrete generation models, or by reconstructing the
chain of transmission (Cauchemez and others, 2006; Griffin and others, 2011;
Wallinga and Teunis, 2004). However, as Rt estimates contain both the ef-
fects of evolving transmissibility and immunity, quantitative conclusions can
hardly be generalised to situations where the immunological situation is dif-
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ferent. Not only does the latter limit the use of results on the drivers of Rt
in different geographical contexts, but also in the very same region as pop-
ulation immunity can strongly change from one year to another as a mixed
result of past epidemics and virus evolution. This is why we concentrate on
estimating the trends of βt rather than Rt.

In a number of existing approaches, the trajectory of βt has classically
been restricted to a finite-dimension function space, comprised of a finite
set of parameters estimated from the data. There have been a variety of
studies, based on different function spaces: a low-dimensional examples can
be found in Cauchemez and others (2008), in which βt is modeled as a piece-
wise linear functions. In some higher-complexity models, as in Cauchemez
and Ferguson (2008) and Ionides and others (2006), βt is estimated freely
with a few-weeks resolutions. Both of these studies inferred richer and more
interesting patterns, while posing computational problems to which instruc-
tive solutions were brought and will be discussed further. An additional
amount of flexibility has been incorporated in Pollicott and others (2009),
where βt can literally be any smooth function of time. Generally speak-
ing, as the number of parameters required to estimate the trajectory of
βt increases, model-induced biases fade out at the expense of an increased
variance. A compromise is required in order to improve robustness and is
typically controlled through a context-specific regularizing parameter. For
example, in He and others (2011), βt is estimated using exponentiated cubic
splines, the number of which is calibrated based on AIC.

2.3 Diffusion driven epidemic models

We consider models where diffusion processes are used to capture the time
varying nature of the coefficients in (1). For reasons discussed in Section 2.2
we focus on the effective contact rate βt, although alternative formulations
are possible. The assigned diffusion is expected to capture time-varying
features such as changes in the behaviour, preventive measures, seasonal
effects, holidays etc. The model of (1) therefore becomes{

dSt
dt = −βtSt ItN ,

dEt
dt = βtSt

It
N − kEt,

dIt
dt = kEt − γIt, dRt

dt = γIt,

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt, xt = h(βt),

(2)
where µx(.) and σx(.) refer to the drift and volatility of the diffusion process
governing βt, and h(.) is a positive-valued function to exclude negative con-
tact rates. When prior knowledge on the evolution of βt is available, it can
be reflected in the drift and the volatility function. For example if the con-
tact rate is expected to move towards some kind of equilibrium, an Ornstein
Uhlenbeck process can be chosen. Other options may include a sigmoid or a
sinusoidal form; see for example (Rasmussen and others, 2011). In absence
of such prior information or in cases where the researcher is interested in
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exploring the data without imposing restrictions, a Brownian motion can
be used setting µx(.) ≡ 0 and σx(.) ≡ σ in the model of (2). The obtained
output from this model can then be either reported as it is or used as an
exploratory tool to formulate a specific drift function, thus leading to a more
informative yet less flexible model. We focus on this model, henceforth de-
noted by BM, with the log function for h(.). Note that this choice for βt
implies a ‘rough’ path satisfying the Markov and being continuous, yet non-
differentiable. In cases where βt is believed to evolve as a smooth function
in time, higher order Brownian motions could be used instead. Loosely
speaking, such choices may be regarded as equivalent to non-parametric ap-
proaches and in particular cubic splines estimation, as suggested in Wahba
(1990), with the model in (2) imposing a prior on βt and σ playing the role
of a regularising factor.

Similar approaches using time-varying parameters include Cazelles and
Chau (1997) and Cori and others (2009). In the former, an Extended
Kalman Filter was used, accounting for both process and observation noise.
The latter approach adopts a second-order Brownian motion (integrated
Brownian motion) and circumvents the EKF-induced approximations using
MCMC on a one-week time-step discretisation of the model. We expand on
this approach and develop a general MCMC framework in the next section
for constructing accurate and efficient MCMC schemes taking advantage of
the specific structure of the previously mentioned models.

3 Bayesian inference via MCMC for diffusion driven
epidemic models

This section presents a general inferential framework for diffusion-driven epi-
demic models. We adopt the Bayesian paradigm, incorporating parameter
uncertainty and prior information in the estimates of βt trajectories. The
problem can also be cast as estimating partially observed hypoelliptic dif-
fusions, and therefore presents various difficulties; see for example Pokern
and others (2009). We begin by setting the model and demonstrating the
need for MCMC. Existing MCMC algorithms from other applications are
considered but, as we justify and demonstrate, they can lead to extremely
inefficient MCMC chains. We address the issue by utilising the recently de-
veloped PMCMC methodology, and taking advantage of the specific model
structure.

3.1 Model setup

For ease of exposition we focus on the family of models satisfying (2), al-
though the developed methodology may cover different and more general
models; e.g with different dynamical systems or more time-varying coeffi-
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cients. Since these are continuous-time models, t can take any real value be-
tween t0 and tn. The trajectory of the ODE states vector Vt = {St, Et, It, Rt}
between instants ti and tj is denoted by Vi:j . The data, denoted by y1:n =
{yt1 , .., ytn}, usually provide information for values of It at specific times
(prevalence data) or for integrals of Vt (incidence data). In either case, we
assume that the measurements on It or the integrals of Vt are obtained with
error for the reasons mentioned in Section 2.1. The noise distribution is
denoted with Py with density f(y1:n|V0:n, θy). The structure of the model
in (2) allows to write Vt as a deterministic function of xt and the parameter
vector θv, which in this cases consists of k, γ and the initial states V0 and
x0. This function is the solution of the ODE and in most cases will not be
available in closed form, but can rather be expressed as a time integral of
xt. Hence, the model becomes{

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt

y1:n|V0:n, θy ∼ Py(y1:n|V0:n, θy), V0:n = g(x0:n, θv)
(3)

Denote with Px the distribution of the diffusion xt defined from the SDE
above. We require the existence of a unique weak solution which translates
into some mild assumptions on µx(.) and σx(.); e.g. locally Lipschitz with a
linear growth bound, see for example Øksendal (2003). The distribution of
Px may also be viewed as a prior on xt, or else βt. The model can now be
defined from Py, Px, and the assigned priors on θ = {θy, θv, θx}, denoted by
π(θ)

π(x0:n, θ|y1:n) ∝ f(y1:n|V0:n, θy)× dPx × π(θ) (4)

As already noted, an exact solution of the ODE will generally not be
available in closed form, nor will be the density of Px. In order to evaluate
(4), we apply a time discretisation on the trajectories of xt and therefore
βt and Vt. More specifically, we introduce m points between each pair of
successive observation times ti and ti+1 (i = 0, 1, . . . , n − 1). Regarding
notation, when referring to the discretised representation of a trajectory, the
superscript dis will be used; for example for a step δ the discrete skeleton
of xt will be denoted with xdis0:n = {x0, xδ, x2δ, . . . , xtn}. The time discretised
path xdis0:n allows for approximate evaluations of (4). The Euler-Maruyama
scheme can then be applied, so that dPx is approximated by{

p(xdisδ:n|x0, θx) =
∏
i: t0<iδ≤tn p(xiδ|x(i−1)δ, θx),

xiδ|x(i−1)δ ∼ N
{
x(i−1)δ + δµx(x(i−1)δ, θx), δσx(x(i−1)δ, θx)2

}
.

(5)

Moreover, given xdis0:n,the ODE can be solved numerically to obtain V dis
0:n and

evaluate f(.). The approximation error can be made arbitrarily small by
the user-specified parameter m.
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3.2 Partial or approximate solutions

Before getting to the details of the MCMC algorithms, we mention two
alternative existing approaches. The first one uses the Extended Kalman
Filter, based on normal approximations of the observation process and the
conditional densities p(xi|θ, y1:i). Given the normality assumption, all the
quantities of interest are tractable or can be approximated using Taylor ex-
pansions. This results in a substantial reduction of computational cost, but
the performance depends on the error induced by the Taylor and normal ap-
proximations. As demonstrated in Section 4 this error can be non-negligible.
Nevertheless, the EKF can still be used as a tool to locate good initial values
and construct efficient proposal distributions for MCMC algorithms. It is
also used to optimize the propagation of particles in SMC algorithms, but
either implying a strong computational cost (Särkkä and Sottinen, 2008) or
crude time discretisations (Dukic and others, 2009).

The second approach is the MIF framework of Ionides and others (2006)
that, in our context, can be used to maximise p(y1:n|θ). The optimisa-
tion algorithm relies on estimates of ∇θp(y1:n|θ) obtained by particle filters
(presented in Section 3.4) run in an augmented state space model. Our ex-
perience suggests that this method can efficiently obtain the posterior mode
of θ in our setting. Nevertheless, our primary aim is to draw inference on βt
while incorporating the uncertainty over the constant parameters θ, rather
than fixing them to an estimated value.

3.3 Data augmentation via Gibbs schemes

The model, as defined in (7) can be put in the stochastic volatility models
framework of Chib and others (2006), Golightly and Wilkinson (2008) or
Kalogeropoulos (2007). In these approaches a Gibbs scheme is enforced to
sample from the joint posterior of xdis0:n and θ in (4). The data augmentation
algorithm alternates between drawing xdis0:n conditional on the current value
of θ, and then updating θ from its full conditional posterior as obtained from
the augmented likelihood. The MCMC protocol ensures that the chain will
provide samples from the marginal posteriors of xdis0:n and θ. While this is
in principle the case, the performance the MCMC algorithm may become
unacceptably poor or even degenerate. There are two essential issues associ-
ated with such schemes. The first concerns the non-trivial step of sampling
from the full conditional posterior defined on the diffusion pathspace of xt.
The second problem is caused by the high posterior correlations xdis0:n and θ
leading to reducible chains as m increases (Roberts and Stramer, 2001).

The majority of the existing literature on data augmentation algorithms
for diffusions handles the conditional updates of xdis0:n with an independence
sampler. However, it is difficult to find proposal distributions for the entire
xdis0:n to ensure reasonable acceptance rate. A common approach for dealing
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with this issue is to split the process into blocks. In order to be consistent
with the continuity of the path and ensure that all points are updated, an
overlapping blocks scheme is usually adopted. An alternative way to update
xdis0:n is to use the particle filter, which in this context would result in the
Particle Gibbs algorithm of Doucet and Johansen (2009). Another option is
to use the Hamiltonian Monte Carlo algorithms of Beskos and others (2012).

However, unless the issue of high posterior correlation between xdis0:n and θ
is resolved, none of these updating schemes will improve the overall MCMC
performance substantially. The problem is caused by the quadratic variation
process of xt that identifies θx. For σx(xs, θx) ≡ σ we get

lim
δ→0

∑
i: t0<iδ≤tn

(xiδ − x(i−1)δ)2 =

∫ tn

t0

σ2ds = σ2(tn − t0) (6)

The implication of (6) is a point mass conditional posterior for σ as δ → 0.
In practice this translates into an increasingly slow MCMC algorithm as the
number of imputed points m increases, resulting in a convergence rate of
O(m). In some cases, the problem can be tackled with suitable reparameter-
isation. The approach of Roberts and Stramer (2001) involves transforming
to a diffusion ẋt with unit volatility. An alternative reparemetrisation, more
general for multidimensional xt’s, is offered by Chib and others (2006); see
also Golightly and Wilkinson (2008). The key feature of these algorithms is
that the ODE states vector V dis

0:n becomes a function of σ and ẋt. Hence, as
σ is typically updated through a Metropolis step, every proposed value of σ∗

is associated with some proposed values V dis
0:n
∗
. This succeeds into breaking

the perfect dependence between V dis
0:n and σ, even for m → ∞. But in our

case, it also creates another issue. Since components of V dis
0:n (or functionals

thereof) are observed with error, the proposed values V dis
0:n
∗

should be close
to the data for the move to be accepted. Efficient Gibbs schemes can be
developed in some specific settings (Choi and Rempala, 2011), but as the
observation error becomes small and the data increase, this becomes increas-
ingly difficult and leads to very small moves for σ and poor MCMC mixing.
More details and results from simulated data, supporting this argument, are
provided in the in Appendix D of Supplementary Materials.

In the next section, we overcome this issue by updating xdis0:n and θ jointly
using the PMCMC algorithm. The use of PMCMC is essential as it is not
straightforward to construct joint updates with neither of the approaches
mentioned in this section.

3.4 Particle Markov Chain Monte Carlo algorithms

Particle filters, also called Sequential Monte Carlo algorithms, are used to
recursively explore conditional densities in state space models (Doucet and
Johansen, 2009). In our context, they can be used for filtering purposes,
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in other words to provide samples from p(xi|y1:i, θ). For given values of θ,
they sequentially propagate N particles (x̃ji ) from t0 to tn along the model,
selecting at each time-step i the particles (or trajectories) that best fit the
observed data y1:i. Algorithm 1 shows how they can be applied to diffusion
driven epidemic models. Note that the quantity Li+1(θ) provides with an

Algorithm 1 Particle Smoother algorithm

Initialise: Set L0(θ) = 1, W j
0 = 1

N , sample (x̃j0)j=1,...,N from p(x0|θ) and

calculate (Ṽ j
0 )j=1,...,N by solving the ODE (for example with the Euler

scheme)
for i = 0 to n− 1 do

for j = 1 to N do
Sample (x̃ji:i+1) from 5 and calculate (Ṽ j

i:i+1) by solving the ODE

Set αj = f(yi+1|Ṽ j
0:i+1)

end for
Set W j

i+1 = αj∑N
k=1 α

k
, and Li+1(θ) = Li(θ)× 1

N

∑
αj

Resample (Ṽ j
0:i+1, x̃

j
0:i+1)j=1,...,N according to (W j

i+1),
end for

unbiased estimate of the likelihood p(y1:i|θ). The resampling step is essential
to control the variance of that estimate over time. Algorithm 1 also provides
a random sample from the point-wise conditional distribution p(xi|y1:n, θ)
which is also known as smoothing.

Our goal however is to sample from the joint posterior π(x1:n, θ|y1:n).
This can be achieved with the PMCMC algorithm, introduced and estab-
lished theoretically in Andrieu and others (2010), that successfully integrates
the particle filter in the context of an MCMC algorithm. Its generic imple-
mentation is presented in Algorithm 2. Through this process, the issues

Algorithm 2 Particle Monte Carlo Markov Chain algorithm

Initialise: Set current θ value, θ̃, to an initial value. Use Particle
Smoother (PS) according to Algorithm 1 to compute p̂(y1:n|θ̃) = L(θ̃)

and sample x̃θ̃1:n from p(x1:n|y1:n, θ̃)
for It = 1 to NIterations do

Sample θ̃∗ from Q(θ̃, .)

Use PS to compute L(θ̃∗) and sample x̃θ̃
∗

1:n from p̂(x1:n|y1:n, θ̃∗)
Do θ̃ = θ̃∗ (and x̃θ̃1:n = x̃θ̃

∗
1:n) with probability 1 ∧ L(θ̃∗)Q(θ̃∗,θ̃)

L(θ̃)Q(θ̃,θ̃∗)

Record θ̃ and x̃θ1:n
end for

of section 3.3 are addressed as xdis0:n and θ are sampled jointly. In other
words xdis0:n is being numerically integrated out, in the context of Andrieu
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and Roberts (2009), while a sample from its posterior is obtained at each
iteration of the MCMC algorithm.

The PMCMC algorithm is associated with increased computational cost.
At each iteration, N particles are propagated forward to obtain a draw from
p(xdis0:n|y1:n, θ). While in theory the algorithm is valid even for a single par-
ticle, large values of N are usually required to limit the variability in the
estimates of the posterior. This is crucial for controlling the acceptance
rate of the MCMC algorithm and therefore its efficiency; see the Appendix
B of the Supplementary Materials. Despite the increased computational
cost, PMCMC remains feasible in the context of epidemic models. Even
for relatively large datasets, the computing time can be limited to less than
two hours in a standard specification PC. Implementations in real time are
also available to sample from π(x1:i, θ|y1:i) as the i−th observation becomes
available; see Section 5 for an application. In this setting, the SMC2 algo-
rithm of Chopin and others (2011) provides a more efficient way, but the
difference would be minor given the short length of epidemic time series.

4 Simulations

4.1 Assessing the validity of the particle MCMC

In this section we illustrate the algorithm and assess its performance on sim-
ulated data. We focus on the BM model, where log(βt) follows a Brownian
motion with volatility σ, corresponding to a case where no information re-
garding the shape of βt is available. In order to simulate data, we obtain βt
trajectories either from the BM model itself (experiment 1) or from a deter-
ministic sigmoid curve (experiment 2). The data yi, i = 1, . . . , 50 represent
noisy observations of weekly new cases of the epidemic

∫
week i kEtdt. To pre-

serve positivity, we assumed that each log(yi) follows a Normal distribution
with mean log(

∫
week i kEtdt) and variance τ2. In both cases the parameters

were tuned to obtain realistic epidemic incidence curves, and observation
were generated using a 0.1 noise. Fig. 10 shows estimates of the path of the
system provided by the PMCMC algorithm, with associated 95% pointwise
credible intervals, in a setting where no information was available regarding
τ and σ. The posterior output is in good agreement with simulation trajec-
tories, which suggests that the underlying and unobserved trajectory of the
effective contact rate can be accurately estimated in spite of uncertainties
regarding its variability and the observation noise. More details are provided
in the Appendices A and C of the Supplementary Materials.

4.2 Comparison with the EKF

Next, we compare the PMCMC framework with the EKF approach to
assess the gains of avoiding the approximations of the latter. A set of
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100, 7-month long, time-series of weekly influenza cases were drawn from
the BM model of the previous section. In order to ensure realistic epi-
demic datasets, we ‘reverse-engineered’ randomly selected influenza time-
series (yGoog,j1:n )100j=1 from the freely available Google FluTrend data (Gins-
berg and others, 2008). For each of the datasets, we obtained estimates
of (βSim,j0:n )100j=1 and the corresponding parameters (θj)

100
j=1. These quantities

were then used to generate influenza time-series (ySim,j1:n )100j=1. The static
parameters of the model were assumed known, to isolate the problem of
estimating βt from accounting for parameter uncertainty and perform more
relevant comparisons. We compare the following two estimators of βSim,ji :

β̂Filt,ji = Ê(βji |y
j
1:i, θ

∗
j ) obtained from the filtering distribution where Ê(.)

denotes Monte Carlo estimates of the relevant expectations, and the the
EKF estimator β̂EKF,ji = ẼEKF (βji |y

j
1:i, θ

∗
j ) where ẼEKF (.) denotes expec-

tation under EKF. The performance of the estimators is measured through
their bias and Mean Squared Error (MSE). The results indicate a better

performance for β̂Filt,ji . The bias of the estimates provided by the EKF is

0.0285 while use of β̂Filt,ji reduces the bias by about 78% (0.0063). The
corresponding relative reduction in MSE is smaller (10%, 0.0270 to 0.0242),
indicating a bias-variance tradeoff. Use of the smoothing distribution esti-
mator β̂Sm,ji = Ê(βji |y

Sim,j
1:n , θ∗j ) is associated with a further 87% (0.0032)

reduction in the MSE, while keeping the bias at the same low levels. The
estimators β̂Filt,ji and β̂Sm,ji are associated with a tolerable computational
cost of 2 hours on a standard PC.

5 The 2009 A/H1N1 pandemic

5.1 Data, model and priors

The proposed methodology is illustrated on data from the A/H1N1(2009)
pandemic in England between June and December 2009. The data con-
sists of estimates of weekly ILI cases given by the Health Protection Agency
(Baguelin and others, 2010). The estimates were obtained from the recorded
ILI cases among a selected sample of GPs. They accounted for over-reporting
due to similarities in symptoms with other respiratorial diseases, based on
subsequent virological positivity tests. Corrections for asymptomatic infec-
tions and the patients’s the propensity to consult were also made. Overall
the two datasets are different by a coefficient c = 10, which is also supported
by a further serological survey (Miller and others, 2010). In our analysis c is
initially held fixed to 10, but this choice is exploited further in Section 5.3.

Given the value of c, the estimates of weekly number of cases in the pop-
ulation y1:n are still uncertain, which was incorporated in our model through
measurement error. The noise model of Section 4.1 was used, combined to
a BM formulation of Px. We assigned flat truncated normal priors to τ , σ
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and β0, as in Section 4.1. Consistently with Baguelin and others (2010),
the prior constrained the latent period k−1 between 1.55 and 1.63 days, and
the the infectious period γ−1 between 0.93 and 1.23 days. Finally, we put a
Uniform prior from 0 to 1 to the initial proportions in E and I, whereas a
N(0.15, 0.152), truncated at 0 was assigned to the initial proportion in R.

5.2 Parameter estimation

The PMCMC algorithm of section 3.4 was applied to the data and model
of the previous section. Fig. 2 depicts the incidence curve together with
the posterior mean and pointwise 95% credible intervals. Estimates of βt
are also displayed indicating various changes over time. The changes in
βt are consistent with the argument that schools closure for holidays have
been driving the epidemic: different values of the effective contact rate are
observed during school and holidays periods, appearing to be synchronised
with schools opening and closing. Posterior and prior densities for the static
parameters are shown in Fig. 3. Regarding k, γ and R(0), there is not much
information in the data as the posterior densities are very close with their
prior counterparts. However, there is information on the remaining param-
eters, that is summarised by their posterior. A higher degree of information
could be obtained from additional sources of data such as genealogies, that
can be integrated in the PMCMC framework (Rasmussen and others, 2011).

5.3 Application in real time. Was the first wave waning due
to depletion of susceptibles?

In this section the methodology of the paper is applied in real time con-
sidering partial datasets from June 2009 up to the 20th of July, the 7th of
September and the 26th of October. Each time the algorithm is run from
scratch to provide samples from the joint posterior π(x1:i, θ|y1:i). From a
computational cost point of view this procedure can be improved further
by utilising previous MCMC runs, for example under the SMC2 framework
(Chopin and others, 2011). We did not pursue this direction further, as the
PMCMC algorithm requires less than two hours which would not have been
an issue in an online weekly data setting. In order to reduce uncertainty,
especially at early stages, the value of τ2 was set to 0.1. Although this value
is in line with Fig. 3, it is also a plausible value that could have been selected
in the absence of the previous analysis.

The main results are shown in Fig. 4. In Fig. 5, we repeat the same
analysis under two alternative approaches. First, we consider a model with
an integrated Brownian motion (iBM) on xt, implying smoother βt trajec-
tories as opposed to the non-differentiable paths induced by the Brownian
motion (BM) formulation. The choice between those models is not trivial
and could depend on the context of the epidemic. We decided to adopt the
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model with Brownian motion (BM) on the basis of the Deviance Information
Criterion (DIC) of Spiegelhalter and others (2002); as we can see from Fig.
4 and Fig. 5 the BM model is consistently better in that respect. Second,
we apply the methodology of MIF in the following way. First, estimates θ
were obtained by maximising p(yi:n|θ) subject to some constraints set by the
priors. Second, a particle filter was run with θ fixed to its estimated value.
As expected, given that we are not accounting for parameter uncertainty,
the resulting pointwise 95% credible intervals are narrower; roughly 50% on
the 6-month dataset and even more at early stages with less information on
θ.

In the remainder of this section, we describe how the estimate of the
posterior density π(x1:i, θ|y1:i) could have been used on August 1st. At
that time, the first wave of the epidemic had waned, incidence rates were
decreasing and schools had closed. There were two competing scenarios to
explain the epidemic decline: (i) holidays had caused the waning of the
epidemic by lowering the effective contact rate. Hence, a similar or stronger
wave could occur when schools would reopen in September in colder climatic
conditions. (ii) the epidemic had stopped independently of holidays because
a critical proportion of the population had been infected conferring it a
sufficient level of herd immunity to stop the epidemic. In this case, no second
wave was to be expected in September. Scenario (ii) was backed further with
concerns on whether the correcting multiplicative factor c could have been
higher than 10, given the uncertainty at that time (Baguelin and others,
2010).

The PMCMC algorithm, run up to August 1st, provides with samples
from the posterior of the difference in βt between July 13th (before the de-
crease in incidence) and August 1st. The 97.5% point of this posterior is
−0.32, indicating a necessary decrease in βt. The latter supports scenario
(i), as the competing scenario is associated with a zero-decrease in βt. Never-
theless, as this value depends on c, the algorithm was run for different values
of it ranging from 20 to 150. The results appear on Fig. 6. Note that the
97.5% point of interest increases as a function of c and reaches 0 for a cor-
rection factor close to 70. As this is clearly an unrealistic value, we provide
evidence in favour of scenario (i) highlighting the danger of a second wave
in September, that actually occurred. Such evidence can be important for
decision-makers, especially when considering implementations of preventive
measures as vaccines.

6 Discussion

We presented a general modelling framework flexible enough to incorporate
non-linear dynamical systems, time-varying parameters such as the effective
contact rate, stochastic and measurement error, and parameter uncertainty.
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The adopted models were based on standard SEIR-type population level for-
mulations. We used stochastic extensions of these models, focusing on the
effective contact rate to account for changes in individual behaviours, evolu-
tion of the virus, seasonality, schools closure and preventive measures. The
main motivation was to account for these factors while keeping the inter-
pretation of the model simple. Along with the modelling framework we also
presented a computational machinery based on recently developed PMCMC
algorithm developed in Andrieu and others (2010), while comparing with
alternative methodologies. The problem is quite challenging from a compu-
tational point of view, requiring inference for partial and noisily observed
hypoelliptic diffusions. The results of this paper are therefore relevant for
applications of MCMC in related problems from different fields. Apart from
drawing offline inference we illustrated in the 2009 H1N1 pandemic case how
such models can be used in real time.

For illustration purposes we relied on a simple SEIR model and unstruc-
tured data cases, but the same approach could be followed on more complex
models; e.g. accounting for age or risk factors, or decoupling the nature
and the frequency of the contacts between individuals in βt formulations.
We have shown that this methodology can be used as an exploration tool,
which can help in developing richer models and testing alternative scenar-
ios, either for public health interventions or to bring further insights on the
influence of extrinsic factors as climate on the dynamics of epidemics. It
should also be noted that this framework is suited to the incorporation of
multiple sources of data, of potentially different nature: Rasmussen and oth-
ers (2011) has shown how time series and genealogies can be combined in
a PMCMC inference framework for more informative estimates. While we
worked mainly with long influenza time series, the developed methodology
can be applied to other cases. Current work includes it application as part
of the CHARME project (Boily and others, 2007) to assess the impact of the
large-scale Avahan intervention against HIV in India. Extensions to models
with additional dynamic error components, e.g. in the compartments, are
also possible. The presented approach may be thought as an alternative to
the white noise modeling of environmental stochasticity introduced in Bretó
and others (2009), as it offers to the possibility to capture the dynamics
of environmental drivers. A potential next step will be to combine envi-
ronmental with demographic stochasticity, modelling infections as Poisson
processes which rates depend on a time-varying effective contact rate.

The inferential framework presented in this article shares the ”plug and
play” feature of the Iterated Filtering methodology. While extra care and
further study is required for specific models or dataset, its algorithmic as-
pects can be decoupled from the modeling aspects. This provides the pos-
sibility to develop generic inference packages: we are currently working to-
wards integrating it to the R package POMP and in associated future web-
based versions.
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7 Supplementary Materials

Supplementary materials contain implementation details for the PMCMC
algorithm (Appendix A), details on the MIF approach (Appendix B) and
additional information on Sections 4 and 5 (Appendix C). Finally, in Ap-
pendix D we present the MCMC algorithms and the issues discussed in
Section 3.3.

Appendix A: details of the PMCMC implementa-
tion

In this Appendix, we provide more details for the practical implementation
of the PMCMC algorithm presented in this article. We specify how to
determine key parameters of the algorithm, i.e. the Euler discretisation
time-step δ, the number of particles Nparts used in the Particle Smoother
(PS), and how to set the Metropolis updates of theparameter vector θ.

Determining the Euler discretization time-step

In general, solutions of the nonlinear ODEs encountered in epidemic mod-
els are not available in closed form. In order to evaluate π(x0:n, θ|y1:n),
the trajectory of the system needs to be discretised according to a given
time-step δ to provide an approximate solution. The Euler approximation
ensures that as δ tends to 0, π̂δ(x0:n, θ|y1:n) converges to π(x0:n, θ|y1:n). In
practice a sequence of decreasing δ values is chosen and quantities such as
E[p̂δ(σ|y1:n)] or E[p̂δ(τ |y1:n)], are monitored. For sufficiently small values of
δ , a convergence is generally observed, as shown in Fig. 7 for two different
datasets of weekly influenza data. In such a case, δ = 0.1 day would be a
reasonable choice. We note at this point that the computational cost is of
O(δ−1)

Determining an optimal number of particles

The PMCMC algorithm is theoretically valid regardless of the number of
particles Nparts used in the particle smoother, as shown in Andrieu and
others (2010). Nevertheless, the smaller the number of particles used in
the particle smoother, the noisiest the estimate p̂(y1:n|θ) of the likelihood
becomes. This noise has a negative impact on the acceptance rate of the
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MCMC algorithm run in the θ space. Consequently, Nparts has to be big
enough so that it won’t affect the acceptance rate, keeping in mind that the
cost is of O(Nparts); a compromise needs to be achieved. Fig. 8 shows how
the acceptance rate increases as the number of particles gets higher. Note
that the acceptance rate has a plateau form, indicating that it is perhaps
not worthwhile to increase Nparts beyond some point. We repeat the ex-
periment for two different values of the measurement error parameter. This
figure shows that when the observational noise decreases, more particles are
needed, which is explained by the fact that the particles need to fit the
observations with more accuracy.

A three-steps adaptive algorithm

The task of updating a component of the parameter vector θ requires to
run a full particle filter and is therefore associated with high computational
cost. The construction of joint updates of θ is therefore essential for an
efficient PMCMC algorithm. The state-of the art MCMC schemes require
derivatives of the posterior π(θ|y1:n) that are not available in closed form.
Hence, we use a Random-Walk Metropolis-Hasting algorithm, for which the
proposal density Q(., θ) is a multivariate normal density centered in θ, with
covariance matrix is ε2Σ. Here, ε is a scale parameter that is easily tuned
to achieve a 23% acceptance rate following ?. The choice of covariance Σ is
crucial in order to construct a sampler that moves efficiently in the θ space.
The aim here is to match the covariance of the unknown posterior density.
We used the following three-steps adaptive algorithm:
step 1: Use an Extended Kalman Filter (EKF) to locate the posterior
mode and compute the observed Fisher Information Matrix of the posterior
density pEKF (θ|y1:n). Set Σ1 to be the inverse of this matrix.
step 2: Run the PMCMC for a certain number of iterations, allow for a
burn in period, and set Σ2 to be the estimated posterior covariance.
step 3: Run the final PMCMC.

Appendix B: details on Maximum likelihood via It-
erated Filtering

This algorithm was applied in our article on the ”real-time” example. It is
a popular tool for inference on epidemic models. More specifically, it is used
to estimate θ by maximising the likelihood p(y|θ). Particle filters are are
utilised to bypass the generally intractable likelihood by producing unbiased
Monte Carlo estimates of it. Local derivatives of the likelihood can signifi-
cantly improve the maximisation procedure: the iterated filtering approach
provides with estimates of such derivatives while offering an efficient way
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to find the maximum. The main idea is to replace the epidemic model M
with a related modelM′ where the static parameters are allowed to vary in
time following simple random walks. The variability of these random walks
is progressively brought to zero in order to approach M. For more details,
see Ionides and others (2006).

Once the MIF has been applied and the parameter θ∗ that maximizes
p(y|θ) has been estimated, a particle smoother can be applied to obtain
an estimate of the conditional posterior density p(β1:n|θ∗, y), which is then
compared to the marginal posterior p(β1:n|y) provided by the PMCMC. For
a fair comparison, we introduce previous information available regarding k, γ
and R(0) for which informative priors are used in the PMCMC. This is done
by constraining each of these parameters in a segment [a; b] corresponding
to 95% intervals of the corresponding prior densities (i.e. the MIF is run
on logit transformations of these variables). Results of the comparison are
detailed in the main text.

Appendix C: details on the simulations and results
of sections 4 and 5

Assessing the validity of the particle MCMC

This section deals with a series of experiments aimed at assessing the va-
lidity of the particle MCMC, and to illustrate on different examples how
the trajectory β1:n could be captured from noisy weekly cases observations.
Experiment 1 is based on a trajectory of β1:n simulated from a random
walk model with volatility σ2 = 0.072. Two different corresponding epi-
demic datasets have been generated, for given and equal initial conditions
and biological parameters, respectively with observational noise τ = 0.1
(experiment 1.a) and τ = 0.05 (experiment 1.b). Similarly, two epidemic
datasets resulting from an effective contact rate following a significantly de-
creasing sigmoid were generated with respectively τ = 0.1 (experiment 2.a)
and τ = 0.05 (experiment 2.b).

For each of these datasets, our proposed methodology was run to esti-
mate σ, τ and β1:n. The data fits and estimates of β1:n for the experiments
with τ = 0.1 (Exps 1.a and 2.a) are shown in Fig. 1 of the main text. Corre-
sponding figures for Exps 1.b and 2.b are shown in Fig. 10 of the SM. Table
1 presents the mean, median and 95% credible intervals for the estimates
of σ and τ in each of the experiments. In experiment 2 the estimates seem
to be in good agreement with the true values, as the latter are contained in
the 95% credible intervals. The aim was to assess the robustness of the pro-
posed methodology to model mis-specification fitting Brownian motion to
smooth sigmoid curve. The algorithm performs reasonably well, succeeding
in capturing the trajectories of βt and all the parameters except for τ which
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is slightly underestimated. A potential explanation for this is that part of
the variability is absorbed from the volatility parameter of the Brownian
motion.

Comparison with the EKF

Here we give some details regarding the results of the comparison between
the particle and the extended Kalman filter. In order to generate diverse but
realistic epidemic datasets from known trajectories of the efficient contact
rate, 100 time-series were ”reverse-engineered” from randomly selected ILI
time series freely available from the Google Flu Trend website (Ginsberg
and others, 2008). These 7-month long time series provide with estimates
of the weekly number of ILI cases in different regions or countries, that have
been validated against data from national surveillance companies. For each
of such time series yGoog1:n , the following process was followed:

For each j in 1,..,100

1. Apply our methodology to estimate p(β1:n, θ|yGoog,j1:n ), with unknown
initial conditions and static parameters, with priors set as in Baguelin
and others (2010) and the other experiments of this paper.

2. Generate a sample {βSim,j1:n , θj} from this posterior distribution.

3. Generate a dataset ySim,j1:n corresponding to {βSim,j1:n , θj}, with observa-
tion errors (of amplitude τ = 0.1)

4. Apply different algorithms (EKF, particle filter, particle smoother) to

obtain estimates βalg,j1:n of βj1:n (alg ∈ {EKF,F ilt, Sm}) with all initial
conditions and static parameters being known

5. Compute the bias and MSE between E[βalg,j1:n ] and βSim,j1:n

The results are presented in Table 2. This tables shows the bias and MSE
obtained with each of the three methods. Two comparisons are of interest:
EKF versus particle filter, and particle filter versus particle smoother. In the
first comparison we evaluate the impact of the Taylor approximations of the
EKF as all the other elements, including the observation process and amount
of data used (y1:i when estimating βi), are common to both approaches. The
second comparison illustrates the impact of using the smoothing distribution
instead of the filtering distribution (using y1:n instead of y1:i when estimating
βi). What this table shows, as mentioned in the text, is a strong reduction in
bias when using the EKF instead of the particle filter. However, the reduc-
tion in MSE is not as strong as it is compensated by an increase in variance.
On the other hand, approximating the exact smoothing distribution brings
significant improvement with regards to the filtering one, as the MSE and
the bias are reduced by respectively 87 and 64%.
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A/H1N1 pandemic

We provide here with the corresponding trace plots (Fig. 9 ) for the param-
eter estimates of Section 5.2. The trace plots indicate good mixing of the
PMCMC algorithm for every parameter. This was achieved by following the
procedure presented in Appendix A.

Appendix D: details of the Gibbs scheme

In this section we provide more details on the Gibbs schemes discussed in
section 3.3 of the main text. Stochastic epidemic models presented in this
paper can be written as{

dxt = µx(xt, θx)dt+ σx(xt, θx)dBt

y1:n|V0:n, θy ∼ Py(y1:n|V0:n, θy), V0:n = g(x0:n, θv)
(7)

where Vt represents the ODE states vector observed trough partial and noisy
data y1:n. The rest of the model is defined in section 3.1. Since it contains
intractable densities we work with the time discretised versions xdis0:n and V dis

0:n

and proceed using the Euler approximating scheme. A Gibbs algorithm al-
ternates between updating the trajectories of xdis0:n, and consequently V dis

0:n ,
given θ and vice versa. Nevertheless, as the Euler time step δ goes to 0,
the quadratic variation process of xt uniquely determines the value of θx in
σx(.) and the algorithm degenerates (Roberts and Stramer, 2001). In prac-
tice this translates into a mixing time of O(m). In order to overcome this
problem, suitable reparametrisation can be applied such as the one in Chib
and others (2006) or Kalogeropoulos (2007). The latter uses the Lamperti
transform, i.e. xt → H(xt, θx) = η(xt, θx)− η(x0, θx) =: ut where η(·; θx) is
an antiderivative of σ−1x (·; θx). Assuming that σx(·; θx) is continuously differ-
entiable, an application of Ito’s lemma provides the SDE of the transformed
diffusion ut as:

dut = ν(ut; θx)dt+ dBt , u0 = 0 , (8)

where

ν(ut; θx) =
µx
(
H−1(ut, θx), θx

)
σx
(
H−1(ut, θx), θx

) − 1
2σ
′
x

(
H−1(ut, θx), θx

)
.

Alternatively the reparametrisation in Chib and others (2006) uses the
transformation below

wt =
xt −

(
xt−δ − δµx(xt, θx)

)
σx(xt−δ, θx)

, ∀t. (9)

In either case the state vector is now written as

V dis
0:n = hu(u0:n, x0, θx, θv) or V dis

0:n = hw(w0:n, x0, θx, θv), (10)
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and the model is then defined by (8) or (9), (10) and 7. Although non trivial,
the problem of updating udis0:n or wdis0:n, and consequently V dis

0:n , given θ can be
carried out. This can be done either by the overlapping block strategies in
Chib and others (2006) and Kalogeropoulos (2007) or with a particle filter in
the context of a particle Gibbs algorithm. Nevertheless, the step of updating
θx given udis0:n or wdis0:n leads to quite poor performance in this setting. Such a
step is usually implemented through a random walk Metropolis algorithm:

• Let θcx and V disc
0:n be the current values of θx and V dis

0:n respectively.
Propose θ∗x from q(θ∗x|θcx).

• Compute V dis∗
0:n = hu(u0:n, x0, θ

∗
x, θv)

• Accept with probability

1 ∧ π(θ∗x, V
dis∗
0:n |y1:n, ud0:nisθv, θy)q(θcx|θ∗x)

π(θcx, V
disc
0:n |y1:n, ud0:nisθv, θy)q(θ∗x|θcx)

The problem with the above algorithm is that for every proposed value
of θx corresponds to trajectory of the ODE states vector Vt. As parts or
functionals of this trajectory are observed with error, the proposed value
of θx will not be accepted unless its associated Vt trajectory is close to
these observations. Hence only small steps can be made on the θx space
and the algorithm mixes very slowly. The problem intensifies as the noise
variance becomes smaller and the time horizon of the epidemic increases.
The performance of this algorithm in the simulated and real data of this
paper was unacceptably poor.
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Figure 1: Illustration of how the underlying dynamic of the effective contact
rate can be estimated from weekly recorded cases
a. Experiment 1: weekly number of cases observed with noise (top left)
b. Experiment 2: weekly number of cases observed with noise (top right)
c. Experiment 1: simulated and estimated trajectory of the effective contact
rate (bottom left)
d. Experiment 2: simulated and estimated trajectory of the effective contact
rate (bottom right)
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Figure 2: Offline estimates of the effective contact rate during the 2009
A/H1N1 pandemic
a. HPA estimates of the weekly total number of influenza cases in London
(per 100 000 inhabs.) (top)
b. offline estimates of the effective contact rate. Dark and light blue show
credible intervals, respectively at 95% and 50% levels. The mean estimate is
plotted in black, and holidays are indicated by a light grey area. (bottom)

Exp 1.a Exp 1.b Exp 1.b Exp 2.b

τ Simulation value 0.1 0.05 0.1 0.05

Posterior mean 0.103 0.083 0.078 0.050

Posterior median 0.103 0.084 0.077 0.050

Posterior 95% c.i. [0.051; 0.152] [0.027; 0.137] [0.063; 0.96] [0.042; 0.060]

σ Simulation value 0.07 0.07 n.d. n.d.

Posterior mean 0.066 0.083 0.016 0.014

Posterior median 0.064 0.084 0.015 0.014

Posterior 95% c.i. [0.048; 0.090] [0.046; 0.089] [0.010; 0.027] [0.001; 0.021]

Table 1: Mean, median and 95% confidence intervals for τ and σ estimates
in four experiments
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Figure 3: Posterior distribution of the constant parameters obtained from
the 2009 H1N1 incidence data
Informative priors are used for k−1, γ−1 and R(0), for which the poste-
rior shows no additional information. Informative posterior densities are
obtained for the other quantities.

MSE Bias

EKF 0.0269 0.0285

Particle filter 0.0242 0.0064

Improvement with regards to EKF -10% -77%

Particle smoother 0.0032 0.0027

Improvement with regards to P. filter -87% -64%

Table 2: Mean Squarred Error and Bias of βt estimates provided by the
EKF, particle filter and particle smoother

28



Total Influenza Indicence

20 Jul 14 Sep 9 Nov
0

1000

2000

BM "real−time" estimates
DIC = 37.9

20 Jul 14 Sep 9 Nov
0

1

2

3

20 Jul 14 Sep 9 Nov
0

1000

2000

DIC = 159

20 Jul 14 Sep 9 Nov
0

1

2

3

20 Jul 14 Sep 9 Nov
0

1000

2000

DIC = 249

20 Jul 14 Sep 9 Nov
0

1

2

3

 

 

20 Jul 14 Sep 9 Nov
0

1000

2000

95% c.i.

50% c.i.

Post. mean

HPA data

Holidays

DIC = 342

20 Jul 14 Sep 9 Nov
0

1

2

3
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a. HPA estimates of the weekly total number of influenza cases in London
(per 100 000 inhabs.) (left)
b. “real-time” estimates of the effective contact rate. Dark and light blue
show credible intervals, respectively at 95% and 50% levels. The mean
estimate is plotted in black, and holidays are indicated by a light grey area.
(right)
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Figure 5: Modeling choices and implications, aiming for robustness
a. Estimates from an alternative modeling approach: exploring the full pos-
terior density of an IBM diffusion model (left)
b. Estimates from an alternative methodological approach: exploring the
posterior density of a BM diffusion model conditionned on a likelihood max-
imizing parameter θ∗ provided by the MIF algorithm (right)
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Figure 6: The implication of different scenarios for the real value of un-
derreporting on the decrease in condom use between July 13th and August
1st
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Figure 7: Convergence of the posterior density as the Euler discretization
time-step δ decreases (x-axis in the log-scale)
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Figure 8: Acceptance rate as a function of Nparts, in two situations where
the noise amplitude is respectively 10% (full line) and 5% (dotted line).
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Figure 9: MCMC traceplots for each component of θ
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Figure 10: Illustration of how the underlying dynamic of the effective con-
tact rate can be estimated from weekly recorded cases (τ = 0.05)
a. Experiment 1.b: weekly number of cases observed with noise
b. Experiment 2.b: weekly number of cases observed with noise
c. Experiment 1.b: simulated and estimated trajectory of the effective con-
tact rate
d. Experiment 2.b: simulated and estimated trajectory of the effective con-
tact rate
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