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Generalised k-Steiner Tree Problems in Normed

Planes

Marcus N. Brazil, Charl J. Ras, Konrad J. Swanepoel, Doreen A. Thomas

Abstract

The 1-Steiner tree problem, the problem of constructing a Steiner minimum tree
containing at most one Steiner point, has been solved in the Euclidean plane by Geor-
gakopoulos and Papadimitriou using plane subdivisions called oriented Dirichlet cell
partitions. Their algorithm produces an optimal solution within O(n2) time. In this
paper we generalise their approach in order to solve the k-Steiner tree problem, in which
the Steiner minimum tree may contain up to k Steiner points for a given constant k.
We also extend their approach further to encompass other normed planes, and to solve
a much wider class of problems, including the k-bottleneck Steiner tree problem and
other generalised k-Steiner tree problems. We show that, for any fixed k, such problems
can be solved in O(n2k) time.

Keywords: k-Steiner tree; bottleneck Steiner problem; network optimisation; polyno-
mial time algorithm

1 Introduction

The geometric Steiner tree problem, which asks for a network with minimum total edge
length interconnecting a given set of points (called terminals), is a well known variant of
the spanning tree problem. The Steiner tree problem can be viewed as belonging to a family
of problems where the aim is to construct a network T interconnecting a given set of n
terminals, with the following properties:

1. T may contain nodes (Steiner points) other than the given terminals;

2. T minimises a given cost function;

3. the given cost function guarantees that T can be assumed to be a minimum spanning
tree on its nodes (for a given metric).

In addition to the Steiner tree problem under various metrics, this family also includes the
power-p Steiner tree problem, where the cost of each edge of the network is the p-th power
of its length, and the bottleneck Steiner tree problem, where the cost of the network is the
length of its longest edge and there is a bound on the number of extra nodes in the network.
Both of these variants on the Steiner tree problem have numerous applications, particularly
in the design of wireless communication networks such as sensor networks.
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In contrast to the graph Steiner problem, in the geometric versions of the problem the
Steiner points may potentially be located at any of an infinite number of points in a given
space. This makes the geometric Steiner tree problems, and the methods of finding optimal
solutions, fundamentally different from their purely combinatorial analogues. In many
versions of the geometric problem it is not even immediately clear how an optimal solution
can be calculated.

Although the spanning tree problem is polynomially solvable, being solvable in O(n2) time
in a general metric and in O(n log n) time in the Euclidean plane, see [22], the problems in
this more general family are mostly NP -hard, even in the plane. This essentially stems from
the fact that as the number of extra nodes that can be added to the network increases there
is an exponential explosion in the number of different topologies that need to be considered.
A natural way of controlling this increase in complexity is to bound the number of extra
nodes, in other words, replace Property 1 above by the following:

1a. T may contain up to k nodes other than the given terminals, where k is a constant
positive integer.

We refer to problems in this modified class as generalised k-Steiner tree problems. One of the
seminal papers on this topic, for the 1-Steiner tree problem in the Euclidean plane, is a paper
by Georgakopoulos and Papadimitriou [8], where an O(n2)-time solution is given. They
conclude their paper with a tantalising comment relating to their unsuccessful attempts at
generalising their methodology to the k-Steiner tree problem, even for k = 2. This comment
has been a motivating factor for the current paper. Also, in their paper the proofs of some
of the primary results and sufficient details are omitted; another aim of this paper is to add
some rigour to the more fundamental of these results.

It should be noted that solutions to k-Steiner problems are fundamentally different to the
analogous classical Steiner problems where the number of Steiner points is not bounded.
A case in point is the package of exact algorithms called GeoSteiner of Warme, Winter,
Zachariasen (see [23] for one of the companion papers) for constructing optimal Euclidean
and rectilinear Steiner trees. For a variety of reasons these algorithms cannot simply be
adapted to solve the respective k-Steiner problems, whilst maintaining efficiency. A funda-
mental obstacle in the Euclidean plane is the fact that the degrees of Steiner points can be
4 when k is bounded, so many of the nice geometric properties utilised in GeoSteiner are
lost.

We may restate the goal of the Georgakopoulos and Papadimitriou paper as follows: find
the point in the Euclidean plane which, if added to a given set of points, will result in the
shortest possible spanning tree. The authors observed that one can significantly reduce the
time complexity of an algorithmic solution to the problem by first constructing a special
partition. Given a set X of n terminals in the Euclidean plane, it is possible to partition the
plane into O(n2) regions such that if any new point s is embedded in the plane within one of
these regions, say R, then any minimum spanning tree T on X ∪{s} will have the following
property: the neighbours of s in T will belong to some subset of a set CX(R) containing at
most six points from X, where CX(R) is fixed for the given region R. This useful partition
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is referred to as the overlayed oriented Dirichlet cell partition, or OODC partition. Their
algorithm takes as input the set X of terminals and then starts by calculating the OODC
partition, the set CX(R) for every R, and a minimum spanning tree T ′ on X. All this, as
well as a preprocessing step on T ′, is done within a time of O(n2). For each region R, the
algorithm then iterates through all subsets S0 of CX(R) and calculates s, the Steiner point
of the nodes in S0 (this takes constant time for each S0). The algorithm then updates T ′

(which can also be done in constant time because of the preprocessing step) to include s.
The cheapest tree is selected at the end as an optimal solution. A naive algorithm for the
1-Steiner tree problem would attain a complexity of O(n6 · n log n) since it would have to
iterate through all subsets of up to six terminals and then calculate the optimal position of
the Steiner point and the corresponding minimum spanning tree for each of these subsets.

The powerful simplifying properties of the OODC would clearly be advantageous in a
generalisation of the algorithm to arbitrary normed planes. However, the construction of
the OODC partition given in [8] is valid for the Euclidean plane only. We will provide
a new method, based on abstract Voronoi diagrams, for constructing the partition for
terminals embedded in an arbitrary normed plane. The construction is based on theoretical
results, but we also define a class of norms for which the algorithm would be practically
implementable. Once the partition has been found, our algorithm calculates the optimal
positions of all k Steiner points simultaneously. Of course, these positions will depend not
only on the neighbours of the Steiner points, but also on the cost function of the given
generalised Steiner tree problem. Since, at the start of this step, the neighbours of the
Steiner points are fixed but the Steiner points are free, this subproblem is a generalised
version of the well-known fixed topology Steiner tree problem (discussed in Section 4). Since
k is constant we assume that this step can be done in constant time. A novel method for
updating a minimum spanning tree is then utilised to calculate a potential solution for every
choice of coordinates of the Steiner points. Once again, a cheapest tree is selected as the
optimal solution. The total time complexity turns out to be O(n2k) when constant factors
are excluded.

There are a number of authors who have looked at adapting the solution to the 1-Steiner
tree problem in [8] to other `p norms. Kahng and Robins in [14] do this for the rectilinear
plane, however, their paper only uses the solution as a step in a heuristic algorithm for
the rectilinear Steiner tree problem, and not much attention is devoted to the solution of
the 1-Steiner tree problem itself. Griffith et al. [10] expand on this heuristic idea in the
rectilinear plane. They provide a simple procedure (though without proof) for updating
a minimum spanning tree when a new node is introduced. Lin et al. [17] in turn adapt
the approach presented by Kahn and Robins to the norm induced by a regular hexagon.
Recent papers [1, 2] by Bae et al. provide the first exact algorithms for solving the bottleneck
k-Steiner tree problem in the `p planes. The complexity of their algorithms are O(n log2 n)
when p = 1 and O(nk + n log n) for all other finite p. However, the methods they use are
based on farthest colour Voronoi diagrams and therefore cannot be utilised for any other cost
functions. Besides these authors we are not aware of any significant study into the properties
and construction of optimal geometric k-Steiner trees. Although the classical Steiner tree
problem (where the number of Steiner points is not bounded) has been considered in a
multitude of norms and under many cost functions, these results are mostly irrelevant to
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the k-Steiner problem.

Section 2 provides some preliminary definitions. Our algorithm for solving the generalised
k-Steiner tree problem in normed planes has three primary phases. The first phase con-
structs a set of feasible internal topologies. Each feasible internal topology is a forest with
leaves only from the set X of terminals, and interior nodes only from the set S of Steiner
points. At this stage the nodes of S are not yet located in the plane. By utilising OODC
partitions, as discussed in Section 3, we are able to significantly reduce the total number
of feasible internal topologies. In Section 3 we also present three restrictions on the given
normed plane that allows the construction of the OODC partition to be implemented in
practice. The next phase of our algorithm consists of finding the optimal locations in the
plane of the nodes of S for each feasible internal topology. This is known in the literature
as the fixed topology Steiner tree problem, and its solution depends crucially on the cost
function α and on the given normed plane. We briefly discuss this phase of the algorithm
again in Section 4. The final phase is to add each feasible internal topology (with Steiner
points optimally located) to a minimum spanning tree on X. The union of these two graphs
produces cycles and thus a method is needed for deleting the appropriate edges from the
union until an optimal final tree is attained. This so called minimum spanning tree update
method is the topic of Section 5. In Section 6 we present our main algorithm and then
prove its correctness and verify its time complexity.

2 Preliminaries

We begin by formalising the definition of a generalised k-Steiner tree problem, sketched in
the introduction. Throughout this paper we use the symbols E(G) and V (G) for the edge-
set and node-set respectively of a graph G. We also use the notation G = 〈V (G), E(G)〉.
Let k′ > 0 be given. Let ‖ · ‖ be a given norm on R2, that is, a function ‖ · ‖ : R2 → R that
satisfies ‖x‖ ≥ 0 for all x ∈ R2, ‖x‖ = 0 if and only if x = 0, ‖λx‖ = |λ‖|x‖ for λ ∈ R,
and ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ R2. The unit ball B = {x : ‖x‖ ≤ 1} is a centrally
symmetric convex set.

Given a set P = {p1, . . . , pn+k′}, let {T } represent the set of all spanning trees for the
elements of P . For each T there is a corresponding set of edges E(T ) = {e1, . . . , en+k′−1}
(with every ei ∈ P × P ). Let X = {x1, . . . ,xn}, with xi ∈ R2, represent an embedding
of the set {p1, . . . , pn} in R2 (where xi is an embedding of the corresponding pi). We can
think of T as representing the topology of a tree network interconnecting X and using k′

extra nodes, and we can equate the edges E(T ) with the arcs of such a network. For a fixed
embedding of this network we let S = {xn+1, . . . ,xn+k′}, with xi ∈ R2, be the locations of
the extra nodes corresponding to {pn+1, . . . , pn+k′}. We refer to X as the set of terminals
and S as the set of Steiner points of the network. Now let eT ,X,S = (‖e1‖, . . . , ‖en+k′−1‖);
i.e., the components of eT ,X,S are the edge lengths of such a network, for a given tree
topology and a given set of embedded nodes. Such a vector is well defined up to the order
of its components.

Let α : Rn+k
′−1

+ → R be a symmetric function (i.e., independent of the order of the

4



components of the vector on which it acts). We think of α as a cost function on a tree
network. In other words, α(eT ,X,S) is the cost of the network with topology T and nodes X
and S, and min

T ,S
α(eT ,X,S) is the minimum cost (with respect to α) of any tree interconnecting

the nodes X and k′ other points. Hence, for the power-p Steiner tree problem we define

α(eT ,X,S) = αp(eT ,X,S) :=
n+k′−1∑
i=1

‖ei‖p;

whereas, for the bottleneck problem (where the cost of the network is the cost of the longest
edge) we have

α(eT ,X,S) = α∞(eT ,X,S) := max
i=1,...,n+k′−1

‖ei‖.

We say that such a symmetric function α is `1-optimisable if and only if there exist T ∗ and
S∗ such that α(eT ∗,X,S∗) = min

T ,S
α(eT ,X,S) and α1(eT ∗,X,S∗) = min

T
α1(eT ,X,S∗). In other

words, α is `1-optimisable if for any given X there exists a tree T interconnecting X, with
minimum cost with respect to α, that is a minimum spanning tree on its complete set of
nodes. We denote the cost of such a tree by ‖T‖α. It is easy to show that αp, for p > 0,
and α∞ are `1-optimisable.

Definition. For any constant positive integer k, a generalised k-Steiner tree problem is
defined to be any problem of the following form:

Given A set X of n points in R2, a norm ‖ · ‖, and a symmetric `1-optimisable
function α.

Find A set S of k′ ≤ k points in R2, and a spanning tree T on X ∪ S with
topology T such that ‖T‖α = α(eT ,X,S) = min

T ′,S′
α(eT ′,X,S′).

We refer to T as a generalised k-Steiner minimum tree. The next lemma is an extension of
the Swapping Algorithm, found in [16]. It follows from the matroid properties of minimum
spanning trees.

Lemma 1 Let T0 be a minimum spanning tree on the terminal set X, and let T1 be any
spanning tree for X. We can transform T1 to T0 by a series of edge swaps, where each swap
involves replacing an edge ei ∈ E(T1) by ej ∈ E(T0) such that ‖ei‖ ≥ ‖ej‖.

The corollary below shows that T is equivalent in cost to any minimum spanning tree on
X ∪ S.

Corollary 2 Every minimum spanning tree on X ∪ S is a generalised k-Steiner minimum
tree on X.

Proof. By the `1-optimisability of α we may assume that T is a minimum spanning tree on
X ∪S. Let T ′ be any other minimum spanning tree X ∪S. By Lemma 1, we can transform
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T ′ to T by a series of edge swaps, each of which replaces an edge with another of the same
length. By the symmetry of α each such edge swap does not increase ‖T ′‖α.

Throughout this paper we perform various constructions involving the unit ball B for the
given norm ‖ · ‖, for instance calculating the intersections of two unit balls. Our main
interest in this paper is in the computational nature, specifically the time complexity, of a
solution to any instance of the generalised k-Steiner tree problem. In order to find efficient
algorithms, we need to perform these unit ball operations to within any fixed precision in
constant time. We therefore restrict the norm ‖ · ‖ so that its unit ball is always simple
enough to perform these operations. We will provide more detail regarding these restrictions
in the next section. For similar computational reasons we will also be placing a restriction
on α, and this is discussed in Section 4.

3 The Overlayed Oriented Dirichlet Cell Partition

Let a norm ‖ · ‖ on R2 be given with corresponding unit ball B. Our aim in this section
is to describe the construction of the oriented Dirichlet cell (ODC) partition for any set
X of n terminals embedded in this normed plane, and to show that it can be constructed
within a time of O(n log n). We also show that, with a time complexity of O(n2), multiple
ODC partitions can be overlayed. This final partition is the aforementioned overlayed ODC
partition (OODC partition), and is a core component of our algorithm.

Georgakopoulos and Papadimitriou [8] allude to a simple method of constructing an ODC
partition for terminals embedded in the Euclidean plane. Unfortunately this method does
not work for arbitrary normed planes. We circumvent this problem by defining a type of
abstract Voronoi diagram that is equivalent to the ODC partition, and then showing that
this Voronoi diagram can be calculated in the required time.

We now state the first of three restrictions on B. We defer a discussion of these restrictions
(including the description of a class of norms that satisfy all of them) to the end of the
section. Let the boundary of B be denoted by bd(B).

Restriction 1 The intersection points of any two translated copies of bd(B), and the
intersection points of any straight line and bd(B), can be calculated to within any fixed
precision in constant time.

Lemma 3 There exist six points {yi : i = 0, ..., 5} on bd(B) such that for any pair of
rotationally consecutive ones, say yi,yj, we have ‖yi− yj‖ = 1. Moreover, these six points
are constructible.

Proof. The standard ruler and compass construction of the hexagon will produce these
six points, where B plays the role of the circle in the construction. Given any point y5 on
bd(B) construct a translation of bd(B) centered around y5. Let y0 be the first intersection
point of the two boundaries as we traverse the boundary of the original ball anticlockwise
from y5. Let y1 = y0 − y5. Note that this point also lies on bd(B) and that y0y1oy5 is a
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parallelogram. The remaining three points are constructed using the central symmetry of
B. See Figure 1 for an example where B is a tilted ellipse. The distance properties of the
lemma follow easily by construction.

y
0

1
y

2
y

3y

4
y

5
yo

Figure 1: The standard hexagon construction

For any two directions φi and φj in the plane K(y, φi, φj) denotes the cone defined to be
the set consisting of all rays emanating from y in direction φ, for φi ≤ φ ≤ φj . For each yi
from Lemma 3 let θi be the direction of the ray −→oyi, where o is the center of B. We assume
that the {θi} are ordered in an anticlockwise manner, and two consecutive directions will
be denoted by θi and θi+1 (i.e. the mod 6 notation will be omitted). As another example
we show, in Figure 2, the six directions produced when B is the unit ball of the rectilinear
plane.

y
0

1
y

2
y

3y 4
y

5
y

θ1 θ0

2θ

3θ 4θ

5θ
o

Figure 2: The unit ball of the rectilinear plane and corresponding {θi}

Lemma 4 Let x ∈ B, x 6= o and a and b points on the boundary of B such that the
segments ao and bx intersect in a point p. Then ‖a− x‖ ≤ ‖b− x‖.

Proof. Applying the Triangle Inequality to 4pax and 4pbo, we obtain ‖a− x‖+ ‖b‖ ≤
‖b− x‖+ ‖a‖ from which the lemma follows; see Figure 3.
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Figure 3: Illustration of the proof of Lemma 4

Lemma 5 Let y be any point in the plane. Then there exists a minimum spanning tree T
on X ∪ {y} with the following property: for each i = 0, ..., 5 there is at most one point of
X adjacent to y in T and lying within K(y, θi, θi+1), and this point is a closest terminal to
y in the cone.

Proof. Let T ′ be a minimum spanning tree on X ∪ {y}. Let x0 ∈ X be a terminal in
K(y, θi, θi+1) that is closest to y, and suppose that (y,x1) ∈ E(T ′) where x1 ∈ X is any
other terminal in K(y, θi, θi+1). We show that we can replace the edge (y,x1) in T ′ by
either (y,x0) or (x1,x0) so that the resulting tree is still a minimum spanning tree on
X ∪ {y}. From this, the statement of the lemma follows.

Assume first that the path in T ′ connecting y and x0 passes through x1. In this case we
can replace (y,x1) by (y,x0) without losing connectivity or increasing the length of T ′.

Assume, on the other hand, that the path in T ′ connecting y and x0 does not pass through
x1.

Claim: ‖x0 − x1‖ ≤ ‖y − x1‖.
Without loss of generality, we assume that y = o, ‖x1‖ = 1, and K(o, θi, θi+1) intersects
the boundary of the unit ball B in an arc from a to b (with ‖a − b‖ = 1). We can also
assume, without loss of generality, that x1 lies on the same side of the line through ox0

as b. The convexity of B implies that the line segments ox1 and ab intersect, hence by
Lemma 4 we have

‖a− x1‖ ≤ ‖a− b‖ = 1. (1)

We now prove the claim via two cases, illustrated in Figure 4. Firstly, suppose x0 and o
are on the same side of ax1 (including the case where x0 lies on ax1). By Inequality (1) a
lies in the unit ball centered at x1, so, by convexity, x0 also lies in this unit ball. Hence,
‖x0 − x1‖ ≤ 1 as required. For the second case, suppose that x0 and o are on opposite
sides of ax1. Let the ray from x1 passing through x0 intersect B at x′0. Then x′0 and o are
also on opposite sides of ax1, and hence, by Lemma 4, ‖x0 − x1‖ ≤ ‖x′0 − x1‖ ≤ ‖a− x1‖.
Therefore, ‖x0 − x1‖ ≤ 1 by Inequality (1), and the claim is proven.
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Figure 4: The two cases of the Claim in the proof of Lemma 5

By the claim we can now replace the edge (y,x1) by (x1,x0) without losing connectivity
or increasing the length of T ′.

For each i = 0, ..., 5, the i-th oriented Dirichlet cell (ODC) of w ∈ X is the set:

{y ∈ R2 : ‖w − y‖ = min{‖x− y‖ : x ∈ X ∩K(y, θi, θi+1)}}

In other words, this is the set of all points {y} whose closest terminal in the coneK(y, θi, θi+1)
is w. We will show that the set of i-th ODCs, called the i-th ODC partition of X is a type
of Voronoi diagram.

In [4] Chew and Drysdale present an “expanding waves” view of Voronoi diagrams. If n
pebbles are dropped simultaneously into a pond, the places where wave fronts meet define
the Voronoi diagram on the n points of impact. In the Euclidean case the wavefronts are
circular, but in theory any closed convex curve C containing the origin can qualify as a
wavefront and thereby define an abstract Voronoi diagram. For any such C and set of
terminals X we say that the resulting diagram is the Voronoi diagram of X based on C.
The bisector based on C for any two points x,y is defined as the intersection Vx ∩Vy where
{Vx, Vy} is the Voronoi diagram of {x,y} based on C.

We may define this Voronoi diagram more formally as follows. Let δC : R2 → R be the
distance function based on C; in other words, for any points x0,x1 ∈ R2 we let δC(x0,x1) =
inf{λ−1 : λ(x1−x0) ∈ C}. We then define a region Vx = {y ∈ R : δC(x,y) = min{δC(x′,y) :
x′ ∈ X}} for each x ∈ X. The set {Vx} is the required Voronoi diagram based on C. In
Figure 5 we give an example of what the boundary of wavefronts look like when C is a
regular hexagon.

Proposition 6 For any i = 0, .., 5 the i-th ODC partition of X is equal to the Voronoi
diagram of X based on the sector B ∩K(o, 180◦ + θi, 180◦ + θi+1).

Proof. This follows immediately from the central symmetry of B.
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Figure 5: Regular hexagon based Voronoi diagram for two points

Figure 6 illustrates an ODC partition when the original unit ball is a circle (i.e. the
Euclidean case) and therefore C is a circular sector.

o

K(o, )θ θ+60,

B

θ iθ +60 i

Figure 6: An ODC partition of a three-terminal example

The next theorem now gives us the required time complexity for calculating the i-th ODC
partition under certain conditions.

Theorem 7 [4] The Voronoi diagram of n points based on a closed convex shape C can be
constructed in O(n log n) time and O(n) space as long as the following operations can be
performed in constant time:

1. Given two points, find the boundary where the two wavefronts meet.

2. Given two such boundaries, compute their intersection(s).

We therefore also impose the following restriction on B.

Restriction 2 Let C ′ be any sector of B. Then, given any two points, we can find the
boundary where the two wavefronts based on C ′ meet, and, given two such boundaries, we
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can compute their intersection. Moreover, these operations can be performed to within any
fixed precision in constant time.

The next step is to overlay the six i-th ODC partitions. The theorem we use, which is
a result from [8], assumes that the regions in each partition have boundaries consisting of
straight line segments. We therefore state our third restriction on B.

Restriction 3 The shape of B implies that the i-th ODC partition of any set of points is
piecewise linear (i.e. the boundary of any ODC consists of straight line segments).

Theorem 8 [8]Let q be any positive integer. Then q linear plane partitions can be overlayed
in O(q2n2) time, where n is the total number of regions in each partition.

As a consequence of the previous results, within O(n log n) total time we can calculate the
i-th ODC partition of the plane for each i, and then, in a time of O(n2), overlay these six
partitions resulting in the OODC partition. It is easily observed that the OODC partition
has O(n2) regions.

Let R be a region of the OODC partition and let {Dj : j ∈ I} (where I is an index-set)
be the set of ODCs such that R =

⋂
{Dj : j ∈ I}. Note then that |I| ≤ 6. For each j ∈ I

suppose that pj is the terminal associated with Dj ; in other words, Dj is the ODC of pj .
Finally let CX(R) = {pj}. The power of the OODC partition lies in the next theorem,
which now follows from Lemma 5.

Theorem 9 Let s be any point in R. Then there exists a minimum spanning tree T on
X ∪ {s} such that the set of neighbours of s in T is a subset of CX(R).

The question arises as to which norms exist with unit balls satisfying all three restrictions.
Let V be the class of norms defined by the condition that each norm’s unit ball is either
a polygon or an ellipse. Suppose that ‖ · ‖ ∈ V and that the corresponding unit ball is B.
Clearly Restriction 1 is true for B. Given any two points, their bisector (based on a sector
of B) will be a polygonal line that can be computed with some simple vector operations (see
[4]; for elliptic unit balls this follows since ellipses are linear transformations of a circle).
The same holds true for intersecting two boundaries, and therefore Restriction 2 is satisfied.
Since any i-th ODC partition consists of segments of bisectors and segments of the limiting
rays of K(y, θi, θi+1) for some y, Restriction 3 follows immediately. This class of norms
includes (amongst others) the well-known Euclidean, rectilinear, `∞, and fixed-orientation
planes. In this paper we do not undertake a deeper investigation into the question of
whether Theorem 8 can be generalised to include norms whose unit ball is neither linear
nor elliptical, but leave it as an open question.

4 Generalised Steiner Tree Problems for a Fixed Topology

By using the results of the previous section, specifically Theorem 9, each main iteration of
our algorithm produces a feasible internal topology which, recall, is a forest F spanning
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the set of all Steiner points such that F ’s internal nodes are Steiner points and its leaves
are terminals. Finding the optimal coordinates of the Steiner points for the topology is a
problem known in the literature as the fixed topology Steiner tree problem. We state the
problem more formally as follows: given a set A of c ≤ 6k′ embedded terminals, a set S of
k′ free (i.e. non-embedded) Steiner points, and a tree topology T spanning all these nodes,
we wish to find the coordinates of the Steiner points (i.e. find the set S) such that α(eT ,A,S)
is minimised, where eT ,A,S = (‖e1‖, ..., ‖ec+k′−1‖). Observe that we may assume T is a tree
topology since each component of F may be solved separately.

The fixed topology problem is interesting in its own right, but is also a key step of our
main algorithm. Since k (and therefore c) is constant we are not particularly interested in
the time complexity of this step. We therefore introduce one more restriction:

Restriction 4 α and B are such that a solution to the fixed topology Steiner tree problem
is computable to within any fixed precision in finite time.

As far as we know there are no instances of α and B for which it has been demonstrated
that the fixed topology problem is impossible to solve. Since we do not place restrictions on
the methods or time-complexity of potential solutions to this problem (besides finiteness),
we cannot fully characterise the class of cost-functions and norms that satisfy Restriction
4. Note also that for many cost-functions and norms there may exist numerical methods
(for instance gradient descent) that solve the fixed topology problem to any finite degree of
accuracy. We now briefly discuss a few functions and norms that satisfy Restriction 4.

(1) α(eT ,A,S) =
∑
‖ei‖. In this case we are dealing with the well-known Steiner tree

problem for a fixed topology. In the Euclidean plane the problem has an O(c2)-time
solution provided that no point has degree larger than 3, see [12]. Unfortunately, for
the k-Steiner tree problem degree 4 points do exist (but degree 5 do not; see [20]). A
similar result holds for the rectilinear and other fixed orientation planes [3].

(2) α(eT ,A,S) =
∑
‖ei‖p, p > 0. This is referred to as the power-p Steiner tree problem

for a fixed topology. In the Euclidean plane with p = 2, Ganley [6] shows that the
problem can be solved within time O(c).

(3) α(eT ,A,S) = lim
p→∞

(∑
‖ei‖p

)1/p
, i.e. the bottleneck Steiner problem for a fixed topol-

ogy. This problem has an O(c2) solution in the rectilinear plane, see [7]. In the
Euclidean and general `p planes there exists various numerical algorithms that can
calculate a solution to any desired precision, see for instance [5], [18]. A fully poly-
nomial time approximation scheme (FPTAS) exists for the problem in the Euclidean
plane (see [6]). Recently Bae et al. [1, 2] produced the first exact algorithm for solving
this problem.
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5 Updating a Minimum Spanning Tree

This section deals with the final phase of our algorithm. At this stage the algorithm must
select an appropriate set of cycle-edges to delete after forming the union of a minimum
spanning tree on X and a forest F , where F has a given feasible internal topology and
optimally located Steiner points for that topology. As in [8] for the case k = 1, the fact
that one can update (in constant time) a minimum spanning tree on X to include the
Steiner points ultimately reduces time complexity: without an update method a minimum
spanning tree would have to be constructed for every choice of feasible internal topology.
By Corollary 2 in Section 2 we know that as long as the locations of the Steiner points
are optimal then any minimum spanning tree on X ∪ S will also be an optimal generalised
k-Steiner tree.

Many papers exist in the literature that deal with the time complexity of updating a
minimum spanning tree when a single new node is introduced; see for instance [13] where
the authors show that a tree on n nodes can be updated with a new node in O(log n) parallel
time using n/ log n exclusive read, exclusive write, parallel random access machines (EREW
PRAMs). Georgakopoulos and Papadimitriou utilise a preprocessing step in [8] so that a
minimum spanning tree can be updated in constant time with a single new point.

Let F be a solution to the fixed topology Steiner problem for some choice of feasible internal
topology F . As will become clear in Section 6 the requirement that the updated tree, say
TF , is a minimum spanning tree on its nodes can be slightly relaxed in our algorithm.
It is only required that TF be a shortest total length tree spanning X ∪ S such that the
neighbour-set of each Steiner point in F is the same as in TF . We therefore require that
only edges not belonging to F are deleted during the update process. The intuitive reason
for modifying the update process in this way is to deal with cases when some component
of F is not a minimum spanning tree on its nodes (this can occur, for instance, in solutions
to the bottleneck Steiner tree problem).

In the remainder of this section we introduce a few preliminary results, formalise the details
of the update process, and prove in Theorems 11 and 15 that, given a preprocessing stage,
updating only requires constant time.

Let N(T, s) denote the set of neighbours of a node s in a graph T . A forest F with
node-set A ∪ S, where A ⊆ X and S ⊆ R2 with |S| ≤ k, is called viable if and only if
{x ∈ V (F ) : x is a leaf of F} = A and |N(F, s)| ≤ 6 for every s ∈ S. A shortest total
length tree TF , such that V (TF ) = X ∪ S and N(TF , s) = N(F, s) for every s ∈ S, is
referred to as a minimum F -fixed spanning tree. We use the symbol PT (x,y) to represent
a path through T with endpoints x and y, and we use `T (x,y) to denote the longest edge
on PT (x,y). We will make use of the following theorem.

Theorem 10 [15] A tree T is a minimum spanning tree on X if and only if for every
x,y ∈ X, ‖e‖ ≤ ‖x− y‖ for every e ∈ E(PT (x,y)).

Now let T be a minimum spanning tree on X and let PP1 denote a preprocessing stage to
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calculate `T (x,y) for every pair of nodes x,y ∈ V (T ). PP1 requires O(n2) time and O(n2)
space. We incorporate a consistent tie-breaking procedure for choosing between edges of
exactly the same length during PP1. The tie-breaking procedure places any order on E(T )
and chooses the earlier edge in this ordering whenever a tie occurs. The next theorem
shows that if F is connected (i.e., F is a tree) then updating a minimum spanning tree
takes constant time.

Theorem 11 Let T be a minimum spanning tree on X, and assume that PP1 has been
performed. If F is connected and viable, then a minimum F -fixed spanning tree TF can be
constructed from T in O(k2) time.

Proof. Let G = T ∪ F , let A = V (F ) ∩ X, and note that |A| ≤ 6k. A number of cycles
may occur in G, each one of them containing a path through F with endpoints from A. Let
T ′ be the graph obtained by deleting the set of edges {`T (xi,xj) : xi,xj ∈ A, i 6= j} from
G. We will show that T ′ = TF , which suffices to prove the proposition since T ′ can clearly
be constructed in O(k2) time.

To prove that T ′ = TF we first show that T ′ is acyclic and spans X ∪ S. Every cycle
of G is of the form PF (xi,xj), PT (xj ,xi), and therefore deleting every `T (xi,xj) from G
produces an acyclic graph. We use induction on |A| to prove that T ′ is connected. Let
Ab = {x1, ...,xb} ⊆ A for some b ∈ {2, ..., 6k}, let Fb be the subtree of F induced by S ∪Ab,
and let Gb = T ∪ Fb. Subtracting Lb = {`T (xi,xj) : 1 ≤ i < j ≤ b} from E(Gb) produces
the graph Tb. For the base case we let b = 2. The only cycle of G2 is PF (x1,x2), PT (x2,x1),
and `T (x2,x1) is an edge of this cycle. Therefore deleting `T (x2,x1) does not destroy the
connectivity of T2 on X ∪ S.

Next assume that Tb spans X ∪S for some 2 ≤ b ≤ 6k− 1 and suppose that xb+1 ∈ X\Ab.
Since Tb is connected and acyclic there is exactly one path connecting xb+1 to a node of Ab
not passing through any element of S, i.e. this path is of the form PT (xb+1,xr) for some
unique xr ∈ Ab. Let Ab+1 = Ab ∪ {xb+1} and let s = N(F,xb+1). Then Tb+1 is the graph
with V (Tb+1) = X ∪ S and E(Tb+1) = (E(Tb) ∪ {(s,xb+1)}) \{`T (xb+1,xi) : xi ∈ Ab}.

Claim: For every xi ∈ Ab either `T (xb+1,xi) ∈ Lb or ‖`T (xb+1,xi)‖ = ‖`T (xb+1,xr)‖.
Let xi ∈ Ab\{xr} and consider the following two cases. If xb+1 lies on PT (xi,xr) then
‖`T (xi,xr)‖ = max{‖`T (xi,xb+1)‖, ‖`T (xb+1,xr)‖} = ‖`T (xi,xb+1)‖ since PT (xb+1,xr) is a
path in Tb and therefore does not contain `T (xi,xr). Therefore `T (xb+1,xi) ∈ Lb. For the
second case, if xb+1 does not lie on PT (xi,xr) then let y be the first common point of the
paths PT (xi,xr) and PT (xb+1,xr); see Figure 7. Note that y may be equal to xr. Clearly

‖`T (xi,y)‖ ≥ ‖`T (y,xr)‖ (2)

since PT (y,xr) is also a path in Tb. There are now two possibilities to consider; either
‖`T (xb+1,xi)‖ = ‖`T (xi,y)‖ = ‖`T (xi,xr)‖ ∈ Lb, or ‖`T (xb+1,xi)‖ = ‖`T (xb+1,y)‖ =
‖`T (xb+1,xr)‖, where for each possibility the second equality follows from Inequality (2).
The claim follows.

By the above claim E(Tb+1) = (E(Tb) ∪ {(s,xb+1)}) \{`T (xb+1,xr)} and we deduce that
Tb+1 has been constructed from Tb by adding one edge from F and then deleting an edge of
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Figure 7: The second case of the claim

T on the resultant cycle. This completes the induction argument, and hence T ′ is connected
and spans X ∪ S.

Next we prove that T ′ is a minimum F -fixed spanning tree. Let K be the complete graph
on X. Furthermore, suppose that the edges of K are weighted by the function w, where

w((x,y)) =

{
0 if x ∈ A and y ∈ A,
‖x− y‖ otherwise.

Let TA be any spanning tree on A. Then clearly T ′ is a minimum F -fixed spanning tree
if and only if the graph TK , where V (TK) = X and E(TK) = (E(T ′) ∩ (X ×X)) ∪ TA, is
a minimum spanning tree of K with the above weight function. But this follows from a
simple application of Theorem 10. Hence T ′ = TF , as required.

An immediate consequence of the above proof is the following result.

Corollary 12 |{`T (xi,xj) : xi,xj ∈ A}| = |A| − 1.

Next we extend Theorem 11 to the case where F is not necessarily connected, which
must be considered if k > 1. If k > 1 we perform an additional preprocessing stage,
PP2, to calculate a TRUE/FALSE table H such that He,y,z = TRUE if and only if edge
e ∈ E(PT (y, z)). This requires at most O(n3) time and O(n3) space. For each connected
component F i of F let Ai = V (F i) ∩X. We claim that Algorithm F -MST, given in Table
1, calculates a minimum F -fixed spanning tree for any viable forest F .

To understand Algorithm F -MST observe first that for t = 1 the algorithm is identical to
that of Theorem 11. In other words D1 = L1 = {`T (xi,xj) : xi,xj ∈ A, i 6= j} and this set
is deleted from G1 = T ∪ F to produce TF . The algorithm is inductive in nature, at each
step adding component F i to the current tree T i−1 and then deleting the longest edges on
every cycle to get a tree T i. All cycles that are obtained when adding F i to T i−1 are of
the form PT i−1(x,y) ∪ PF i(x,y) where x,y ∈ Ai. Similarly to the proof of Theorem 11,
the required edge to be deleted at Step i for the pair x,y, namely `i(x,y), is simply the
longest edge on PT i−1(x,y). It is clear that PT i−1(x,y) is either a path of T or consists of
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Algorithm F -MST

Input: A set X of points in the plane, a minimum spanning tree
T on X, and a viable forest F with t connected
components.

Output: A minimum F -fixed spanning tree TF on X ∪ S.

Step Description

Let D0 = ∅ and let T 0 = T .

1 For i = 1 to t Do
Begin

1a For every distinct pair x,y ∈ Ai Do
Begin

1a(i) Let J be the graph with

V (J ) =

{
{{x}, {y}} if i = 1,
{{x}, {y}, A1, ..., Ai−1} if i > 1.

and
E(J ) = {(U,U ′) : ∃w ∈ U ∧ ∃w′ ∈ U ′ such that

He′,w,w′ = FALSE ∀e′ ∈ Di−1}.

1a(ii) For every e = (U,U ′) ∈ E(J) let σJ1 (e) = w and let
σJ2 (e) = w′ (where w,w′ are from the previous step).

1a(iii) Perform a search through J to find the path
P i = PJ({x}, {y}).
Let ` i(x,y) be the edge from

{
`T (σJ1 (e), σJ2 (e)) : e ∈ E(P i)

}
of maximum length.

End

Let Li = {` i(x,y) : x,y ∈ Ai},
Di = Di−1 ∪ Li,
Gi = T i−1 ∪ F i,
T i = 〈V (Gi), E(Gi)\Di〉.

End
Let TF = T t.

Table 1: Algorithm F -MST
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alternating subpaths of T and F j for various j < i. Since k is constant it is possible to find,
also in constant time, the subpaths of PT i−1(x,y) that lie in T . By taking the maximum of
the longest edges of all these paths in T we get `i(x,y).

The purpose of J , as defined in the algorithm, is to have a graph of constant structural
complexity that contains a representative edge for every path of T i−1 that lies wholly in T .
By specifying the nodes and edges of J in the manner of Algorithm F -MST we are assured
that PT i−1(x,y) corresponds to a path in J connecting {x} and {y}. Observe that any
path Pab in T i−1 connecting nodes xa ∈ Aa and xb ∈ Ab lies entirely in T if and only if
He′,xa,xb

= FALSE for all e′ ∈ Di−1, where Di−1 is the set of edges that have been deleted
from T up to and including Step i−1. Given an edge e of J we need to know the endpoints
of the path in T represented by e. For this we introduce the functions σJj (e), j = 1, 2 in
Algorithm F -MST.

A
b

A
a

{x}

xa

xb

Pab

abe

{y}

A
i

Figure 8: An example of graph J at Step i

Before formally proving the correctness of Algorithm F -MST we illustrate a few of the
above concepts in Figure 8. The solid-boundary ellipses and the sets {x}, {y} are nodes of
J , the dashed lines are edges of J , and the solid lines and circles are edges and nodes of T .
For Pab we have σJ1 (eab) = xa and σJ2 (eab) = xb. Notice that J is not necessarily a tree, and
therefore it is not immediately clear that there will be a unique path in J connecting {x}
and {y}. The next lemma settles this question. We assume by the inductive hypothesis
that T i−1 is a tree; the base case i = 1 holds from Theorem 11. Observe that for every path
P of J connecting some Ar and Ad there exists a unique path W (P ) in T i−1 connecting
some pair of nodes xr ∈ Ar and xd ∈ Ad.

Lemma 13 J contains at most one path connecting {x} and {y}.

Proof. To get a contradiction let P ′ and P ′′ be two distinct paths of J connecting {x} and
{y}. Let Aj1 and Aj2 be distinct nodes of P ′ such that the subpath P ′′0 of P ′′ connecting
Aj1 and Aj2 shares no internal nodes with P ′; see Figure 9. The pair Aj1 and Aj2 must
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Figure 9: Proof of Lemma 13

exist since P ′′ is a proper path (i.e., no nodes are repeated in the {x} − {y} walk through
P ′′). Let P ′0 be the subpath of P ′ connecting Aj1 and Aj2 . For c = 1, 2 let Qc be the
unique path through F jc connecting the distinct endpoints of W (P ′0) and W (P ′′0 ) in Ajc ; if
W (P ′0) and W (P ′′0 ) share the same endpoint in Ajc then Qc is the empty set. Clearly then
Q1∪W (P ′′0 )∪Q2∪W (P ′0) is a cycle of T i−1, which contradicts the inductive hypothesis.

Corollary 14 Let x,y ∈ Ai. Then ` i(x,y), as defined in Algorithm F -MST, is the longest
edge of PT i−1(x,y), excluding any edges of F .

Proof. By the previous lemma there is a unique path P i = PJ({x}, {y}) for Algorithm
F -MST to find. The required longest edge on this path is the maximum of the longest edges
for each subpath of W (P i) containing edges of T only. The result follows.

We now prove the main result of this section. The theorem implies that even in the case
when F is disconnected, our update method, as described in Algorithm F -MST, produces
an optimal F -fixed spanning tree in constant time.

Theorem 15 Let T be a minimum spanning tree on X, and assume that preprocessing
steps PP1 and PP2 have been performed. If F is a viable forest then Algorithm F -MST
correctly produces a minimum F -fixed spanning tree TF in at most O(k2k+3k!) time.

Proof. The proposition is verified by using induction on t (the number of connected
components of F ). Theorem 11 proves the base case: T 1 is connected, acyclic, and a
minimum F 1-fixed spanning tree. Similar reasoning is used to prove that each subsequent
T i is connected and acyclic. At each inductive step, Corollary 14 assures us that Algorithm
F -MST correctly deletes the longest edge (excluding edges of F ) of any new cycle formed.

Let Fi =
⋃
j≤i

F j . To prove minimality of T i we once again construct (analogously to Theorem

11) a weighted complete graph K on X and a tree TK , such that T i is a minimum Fi-fixed
spanning tree on X ∪ S if and only if TK is a minimum spanning tree of K. Theorem 10
then completes the minimality proof.
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To verify the time complexity first note that t ≤ k and |Ai| ≤ 6k. Line 1a of the algorithm
requires O(k2) time, Line 1a(i) requires at most O(k2kk!) time and Line 1a(iii) requires
O(k) time.

6 The Main Algorithm

Algorithm k-GSMT

Input: A set X of n points in the plane, a unit ball B, a positive integer k,
and a symmetric `1-optimisable function α.

Output: A set S of at most k Steiner points, and a tree T ∗ interconnecting
X ∪ S, such that ‖T ∗‖α = min

T ,S′
α(eT ,X,S′).

Step Description Time

1 Construct the OODC partition of X. O(n log n)
2 Construct a minimum spanning tree T on X. O(n log n)
3 Perform preprocessing steps PP1 and PP2 on T . O(n3)

4 For every k′ ≤ k and each choice (with repetition) O(n2k)
of k′ regions, R1, ..., Rk′ , of the OODC partition Do
Begin

4a(i) Associate the free Steiner point si with region Ri.
4a(ii) Let G be the graph consisting of the vertices⋃

CX(Ri) ∪ {s1, ..., sk′}, all edges (si, sj), i 6= j, and
all edges (si,x) for every x ∈ CX(Ri).

4a(iii) Let G∗ be the set of all viable subforests of G.

4b For each F ∈ G∗ Do O(f1(k))
Begin

4b(i) Solve the fixed topology generalised Steiner O(f2(k))
tree problem for F to get the forest F .

4b(ii) Run Algorithm F -MST with input T and F , O(k2k+3k!)
and let TF be its output.

End
End

5 Select a smallest total cost TF produced and let T ∗ = TF .
Let S be the set of Steiner points of T ∗.

Table 2: Algorithm k-GSMT

We present Algorithm k-GSMT, in Table 2. As stated in Section 1, the algorithm contains
three main phases for a given iteration. Lines 4a(i)-4a(iii) represent the first phase, namely
the construction of a feasible internal topology. The set G∗ contains all feasible internal
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topologies as specified by a given choice of regions of the OODC partition. Line 4b(i)
performs the second phase by solving the fixed topology problem for the current feasible
internal topology. Line 4b(ii) executes the minimum spanning tree update process, which
is the final phase for the given iteration. To prove correctness of Algorithm k-GSMT we
first need some definitions and two observations.

Let Topt be a generalised k-Steiner minimum tree on X. Let S be the set of Steiner
points in Topt and let Fopt be the subforest of Topt induced by the edges of Topt incident
with elements of S. Let F iopt be a connected component of Fopt with ki Steiner points and
terminal set Ai ⊆ X. Note that, like Topt, Fopt may not be unique for a given set X.

Observation 16 F iopt is a generalised ki-Steiner minimum tree on Ai.

Observation 17 Let Y i be any generalised ki-Steiner minimum tree on Ai. Suppose we
transform Topt to T ′ by replacing the subtree F iopt on T by Y i. Then T ′ is also a generalised
k-Steiner minimum tree on X.

We can now prove correctness.

Proposition 18 If B and α satisfy Restrictions 1–4 then Algorithm k-GSMT constructs,
in a time of O(n2k), a tree T ∗ that is a generalised k-Steiner minimum tree on the terminal
set X.

Proof. By the properties of the OODC partition, during the course of the algorithm a forest
F induced by edges incident with Steiner points is constructed with connected components
F i such that each F i has the same terminal set (i.e. Ai) and the same topology as F iopt,
and therefore

‖F i‖α = ‖F iopt‖α, (3)

where, recall, for any T the symbol ‖T‖α denotes the cost of T with respect to α. We now
consider two cases.

Suppose, for the first case, that Fopt = F . Step 4b(ii) of the algorithm constructs a
minimum F -fixed spanning tree TF on X ∪ S. Since Topt is a minimum spanning tree on
X ∪S and contains F as a subforest, it follows that TF is also a minimum spanning tree on
X∪S. By Corollary 2, T ∗ = TF is a generalised k-Steiner minimum tree on X, as required.

If, on the other hand, Fopt 6= F , then there is a tree TF constructed in Step 4b(ii) of the
algorithm that is the same as in the previous paragraph, except each F i is replaced by F iopt.
By Equation (3) and Observation 17 it again follows that T ∗ = TF is a generalised k-Steiner
minimum tree on X.

By using Cayley’s formula and the observation that each spanning forest is a subgraph of
a spanning tree which has k−1 edges, we get an upper bound for f1(k) of 126k. kk−2 in Step
4b of the algorithm. The function f2 in Step 4b(i) will depend on the relevant generalised
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k-Steiner tree problem and will be a function of k only. Since k is constant the overall time
complexity of Algorithm k-GSMT is O(n2k). Note that if k = 1 or if the there is only one
component, then the algorithm takes O(n2) time since we do not run PP2.

Theorem 19 For any planar norm and symmetric `1-optimisable cost function satisfying
Restrictions 1-4 there exists a polynomial time algorithm with complexity O(n2k) that solves
the generalised k-Steiner tree problem for constant k.

7 Conclusion

The outcome of this paper is a generalisation, on multiple fronts, of Georgakopoulos and
Papadimitriou’s O(n2) solution to the 1-Steiner tree problem. By utilising abstract Voronoi
diagrams, we build on their complexity-reducing concept of oriented Dirichlet cell partitions.
The result is a broadening of the scope of these partitions to include terminal sets in a larger
class of normed planes. A bigger challenge in our research was to construct a generalisation
to k Steiner points. We achieve this by producing a novel method of updating a minimum
spanning tree to include a fixed subtree. A two-part preprocessing stage allows this to
be done in constant time with respect to the total number of terminals. One of the key
observations of our research was that the main algorithm from [8] basically pertains to any
“Steiner-like” problem with cost function α, as long as it is guaranteed that a solution exists
which is optimal with respect to α and is also a minimum spanning tree on its complete set of
nodes. This fact allows us to accommodate the class of generalised k-Steiner tree problems
with symmetric `1-optimisable cost functions. The result is an O(n2k)-time solution to this
class of problems.

It may be possible to generalise our algorithm to higher dimensional spaces, at least in the
Euclidean case. A natural starting point could be Monma and Suri’s paper [19], where a
partition of d-dimensional Euclidean space is constructed that has similar topology-limiting
properties as the oriented Dirichlet cell partition.
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