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A Trend Analysis of Normalized 
Insured Damage from Natural Disasters 
 

 
Abstract 

As the world becomes wealthier over time, inflation-adjusted insured damages from 

natural disasters go up as well. This article analyzes whether there is still a significant 

upward trend once insured natural disaster loss has been normalized. By scaling up 

loss from past disasters, normalization adjusts for the fact that a hazard event of equal 

strength will typically cause more damage nowadays than in past years because of 

wealth accumulation over time. A trend analysis of normalized insured damage from 

natural disasters is not only of interest to the insurance industry, but can potentially be 

useful for attempts at detecting whether there has been an increase in the frequency 

and/or intensity of natural hazards, whether caused by natural climate variability or 

anthropogenic climate change. We analyze trends at the global level over the period 

1990 to 2008, over the period 1980 to 2008 for West Germany and 1973 to 2008 for 

the United States. We find no significant trends at the global level, but we detect 

statistically significant upward trends in normalized insured losses from all non-

geophysical disasters as well as from certain specific disaster types in the United 

States and West Germany. 
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1. Introduction 

Analyzing trends in natural disaster loss represents an important tool for attempts at 

detecting whether climate change has already started to have an effect on the 

frequency and/or intensity of natural hazards. Most of existing studies have looked at 

total economic loss (Pielke and Landsea 1998; Pielke et al. 1999, 2003, 2008; Brooks 

and Doswell 2001; Raghavan and Rajseh 2003; Vranes and Pielke 2009; Schmidt, 

Kemfert and Höppe 2009; Barredo 2009; Nordhaus 2010). Fewer studies have 

analysed insured losses and all of them are confined to a specific hazard type in one 

country (Changnon and Changnon 1992; Changnon 2001, 2009a, 2009b; Crompton 

and McAeneney 2008).1 Yet, analyzing trends in insured losses is important for two 

reasons. First, insurance companies naturally worry most about insured losses and are 

interested in any trends in these losses quite independently of whether they are caused 

by natural climate variability or anthropogenic greenhouse gas emissions or other 

drivers (Bouwer 2011). Second, insured losses are estimated with greater precision 

than total economic losses, estimates of which are often simply taken as multiples of 

insured loss. All other things equal, the greater precision should be beneficial since 

measurement error hampers statistical analysis and thus renders detecting statistically 

significant trends more difficult. 

Existing studies of total economic and insured loss have typically found no 

increasing trend over time after loss has been subjected to what is known as 

“normalization”. Normalization adjusts for the fact that a disaster of equal strength 

will typically cause more damage in the current period than in the past because there 

is typically a greater value of assets at risk in the present compared to the past. 

                                                 
1  Hazards are events triggered by natural forces. They will turn into natural disasters if people 

are exposed to the hazard and are not resilient to fully absorbing the impact without damage to 

life or property (Schwab, Eschelbach and Brower 2007). 
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Normalization thus adjusts nominal economic loss from past disasters upwards by 

multiplying past damage with a factor for inflation, for population growth and for 

growth in wealth per capita, thus in effect estimating the damage a past hazard event 

would have caused had it hit the same, but nowadays wealthier, area today. Without 

normalization, disaster loss is likely to trend upwards over time, not because hazards 

have necessarily become more frequent and/or more intensive, but simply because the 

value of assets at risk has increased over time. For normalizaton of insured disaster 

losses, one additionally needs to adjust for changes in insurance penetration over time, 

i.e. the value of insurance premia generated as a percentage of GDP which 

approximates the share of wealth covered by insurance. The question, to be studied in 

this article, is therefore whether the results of existing studies which have analyzed 

trends in normalized total economic loss carry over to trend analysis in normalized 

insured losses. 

To our knowledge, this is the first article systematically analyzing trends in 

insured natural disaster loss for more than one hazard type and for a larger country 

sample. We do so at the global level, for developed countries, for specific types of 

disasters as well as, in more detail, for West Germany and the US. Section 2 explains 

the methodology of normalizing natural disaster loss. Section 3 describes our 

empirical research design and reports results from the analysis. Section 4 concludes. 

 

2. Normalizing natural disaster loss 

The conventional approach to normalizing natural disaster loss was developed by 

Roger Pielke Jr. and co-authors (see Pielke and Landsea 1998, Pielke et al. 1999, 

2003, 2008; Vraines and Pielke 2009). Following their approach, normalized disaster 

damage can be calculated  as follows: 
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s s s s
t t

t t t

GDPdeflator Population Wealth per capita
Normalized Damage Damage

GDPdeflator Population Wealth per capita
= ⋅ ⋅ ⋅ (1) 

 

where s is the (chosen) year to which one wishes to normalize and t is the disaster 

year. Inflation (i.e. the change in producer prices) is accounted for by using the Gross 

Domestic Product (GDP) deflator, while the remaining two correction factors adjust 

for changes in population and wealth per capita. Ideally, the population and wealth 

changes should reflect changes in the exact areas affected by the natural disaster in 

question. Yet, in practice it is often impossible to determine the exact affected areas 

and time series information on GDP and population in these areas is not available, so 

scholars typically resort to using data from the country or, if they can, from sub-

country administrative units known to be affected (e.g., counties or states). Existing 

work differs with respect to how wealth per capita is measured: while some use data 

on the value of capital stocks (e.g., Pielke and Landsea 1998; Brooks and Doswell 

2001; Vranes and Pielke 2009; Schmidt, Kemfert and Höppe 2009) or the value of 

dwellings (Crompton and McAneney 2008), others, often due to the lack of data, 

simply use GDP per capita (e.g., Raghavan and Rajseh 2003; Pielke et al. 2003; 

Miller et al. 2008; Barredo 2009; Nordhaus 2010). If there is more than one disaster in 

a given country per year, the measure of disaster loss is the annual sum of normalized 

damages from each disaster as per equation (1). 

Neumayer and Barthel (2011) have criticized conventional normalization 

methodology on the grounds that it adjusts for differences in wealth over time, but not 

for differences in the level of wealth across space at any point of time. Conventional 

normalization adjusts for the fact that a disaster like, say, the 1926 Great Miami 

hurricane would have caused far more damage if it hit Miami nowadays since the 

value of what can potentially become destroyed has tremendously increased over this 
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time period (Pielke et al. 1999). At the same time, however, a hurricane that hits 

Miami in any year will cause a much larger damage than a hurricane that hits in the 

same year rural parts of Florida with much lower population density and 

concentration of wealth. Conventional normalization accounts for the former effect, 

but not for the latter. It makes Miami in 1926 comparable to Miami in 2010, but fails 

to make Miami in whatever year comparable to rural Florida or other areas affected 

by a particular natural disaster in that same year. Neumayer and Barthel (2011) have 

therefore developed an alternative normalization methodology that additionally 

adjusts for differences in space. However, for this method to be applied in empirical 

analysis, one would need information on the value of insured assets potentially at risk 

in any given area. Since this information is typically not available, we follow the 

conventional normalization methodology in this paper. 

 

3. Research Design 

Contrary to Neumayer and Barthel (2011), in which we could study trends of all 

economic losses over the period 1980 to 2009, poor availability of data during the 

1980s on insurance premia needed for normalization in terms of insurance penetration 

means that our statistical tests are restricted to the period 1990 to 2008 for all analyses 

but those for the United States and West Germany, for which we have data from 1973 

and 1980, respectively, onwards. The disadvantage of being compelled to use a 

relatively short time period is that, ceteris paribus, the shorter the time series of annual 

loss data the less likely any trend will be detected as statistically significant (the 

smaller N, the number of observations, the higher the standard error of the estimate). 

Also, the IPCC (2007a: 942) defines climate in a narrow sense “as the average 

weather, or more rigorously, as the statistical description in terms of the mean and 
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variability of relevant quantities” over a period of 20 to 30 years, so our study period 

of 1973, 1980 or 1990 to 2008 may be too short to identify changes in climate. 

Data on insured loss from natural disasters in nominal USD comes from 

Munich Re’s NatCatSERVICE database. Munich Re also supplied us with data on 

insurance premia in a country. The NatCatSERVICE database provides a very high 

quality source for insured loss data worldwide since the re-insurance company is in a 

privileged position to collect these data, has done so for many years and has invested 

much time, money and effort in the data collection. But it is of course not perfect. For 

example, smaller disasters may be somewhat under-reported in the early periods 

relative to later periods. In order to maintain the database, several members of staff 

browse daily international and regional sources to gather information about natural 

disaster events. Data are collected from a variety of sources such as government 

representatives, relief organisations and research facilities. Information on insured 

losses is based on information of insurance associations and insurance services as well 

as on claims made by Munich Re’s customers, which provide the best approximation 

to the actual damage. Initial reports on insured losses, which are usually available in 

the immediate aftermath of a disaster, are often highly unreliable. Therefore, data in 

the NatCatSERVICE database is updated continuously as more accurate information 

becomes available, which might be even years after the disaster event. Our analysis 

ends in 2008, since these cases are closed to the largest extent (Munich Re, personal 

communication). Table 1 shows the number and average insured losses for the period 

1980 to 2008 for those disasters with a positive recorded insured loss for each disaster 

sub-type and for the global sample as well as for Germany and the US separately. By 

far the most costly hazard sub-type consists of tropical cyclones.2 

                                                 
2  One has to keep in mind that the NatCatSERVICE data base was set up as an insurance 

industry-related loss data base that is organized according to the most significant hazardous 
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Since we study trends in insured rather than total economic losses, we need to 

adjust the conventional normalization methodology represented by equation (1) by 

adding an additional factor to control for changes in the insurance penetration as a 

proxy for the share of wealth covered by insurance policies: 

 

.
. .

.
s s s s s

tt
t t t t

GDPdefl Pop Wealth pc Ins penetration
Norm Ins Loss Loss

GDPdefl Pop Wealth pc Ins penetration
= ⋅ ⋅ ⋅ ⋅  (2) 

 

For our global analysis, we use GDP per capita as a proxy for wealth as there is no 

other measure of wealth available for all countries in the world. This is not 

unproblematic. GDP has the advantage that it captures well potential economic loss 

due to the interruption of economic operations as a result of a natural disaster, but it is 

a relatively poor proxy for the physical wealth stock at risk from destruction by 

                                                                                                                                            
impact involved with a disastrous event. Hence the disaster subtype is nothing else than a 

significant type of hazard that has caused a significant proportion of the loss. But any subtype 

given does not exclude another subtype to be additionally involved while the event occurred. 

For instance, among the convective events associated with a positive loss there have been 185 

events reported where tornados have caused significant insured loss. Definitely, this does not 

exclude tornados occurring also with some of the 213 hailstorm events that have been reported 

to have caused losses from hail. Nor does it exclude tornados occurring with the 765 reported 

tempest storm events. Hence, the subtype tornado does not comprise all the tornado events 

occurred, but those where tornado was the most significant type of hazard produced by the 

thunderstorm cell. In order to include comprehensively all the tornado losses, one would have 

to integrate over all the convective hazards (i.e. flash flood, hailstorm, lightning, tempest 

storm, tornado), but will at the same time integrate all losses from convective events. Another 

example of disaster subtypes that often are linked to each other is the ensemble of drought, 

heat wave and subsidence 
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disasters.3 While GDP is a flow of economic activity, economic wealth is a stock. 

Fortunately, despite GDP consisting in part of intangible components such as services 

with scant correspondence to the value of the physical wealth stock, on the whole 

GDP is highly correlated with it since the physical wealth stock is used to produce 

GDP in conjunction with other forms of capital, such as human and natural capital. 

But GDP can only function as a proxy for wealth and typically understates it. 

Economists estimate the ratio of the value of the physical man-made or manufactured 

capital stock to GDP to lie somewhere in between 2 and 4 for a typical macro-

economy (D’Adda and Scorcu 2003). Yet this ratio will vary across countries and, 

more importantly, is a national macro-economic average, which can differ more 

drastically across sub-country units.4 It also only captures the value of the physical 

capital stock used for the production of consumption goods and services, but not the 

value of other wealth held in the form of, for example, residential property. Moreover, 

the increasing share of GDP consisting of intangible components such as services, 

which is observed in many, but not all, countries implies that the growth rate of GDP 

possibly over-estimates the growth rate of the physical wealth stock. This will bias the 

results against finding a positive trend since disasters from past periods are scaled up 

too strongly as a result of normalization. 

                                                 
3  GDP might also be positively affected by large disasters as repair and reconstruction increase 

GDP. 

4  It has also changed over time (see D’Adda and Scorcu 2003). Nevertheless Krugman (1992: 

54f.) concludes that “there is a remarkable constancy of the capital-output ratio across 

countries; there is also a fairly stable capital-output ratio in advanced nations. These 

constancies have been well known for a long time and were in fact at the heart of the famous 

Solow conclusion that technological change, not capital accumulation, is the source of most 

growth.” 



9 

Keeping in mind that, for our global analysis, we use GDP per capita as a 

proxy for wealth and that the product of population and GDP per capita equals total 

GDP, equation (2) modifies to: 

 

.
. .

.
s s s s

tt
t t t

GDPdefl GDP Ins penetration
Norm Ins Loss Loss

GDPdefl GDP Ins penetration
= ⋅ ⋅ ⋅   (3) 

 

Regrettably, there is no data available on changes in insurance coverage as 

such. As an approximation we use insurance penetration, which is defined as premia 

divided by GDP (UNCTAD 2005: 7). For our global analysis, we use data on property 

and, where available, also engineering insurance premia. For West Germany and the 

US, however, we have data, including data for a longer time-series, on a subset of 

property and engineering premia as well as premia on motor physical damage, which 

relate more directly to insured values that can potentially be destroyed by natural 

disasters and which we therefore take in lieu of all property and engineering insurance 

premia. Only for the normalization of damage from temperature highs and 

temperature lows do we exclude motor physical damage premia since vehicles can not 

normally be damaged by these hazards. A full list of the detailed types of insurances, 

for which premia are included in our analysis is shown in table 2. 

One problem with using insurance premia relative to GDP is that these can change 

even if the share of insured wealth among all wealth remains the same and vice versa. 

Insurance premia can, for example, change in response to changes in insurance pay-

outs resulting from changes in the frequency and/or intensity of insured loss events, 
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constituting the requirement of “risk adequate pricing” in the insurance industry.5 For 

example, premia have increased following the 2004/05 hurricane seasons in parts of 

the US. But on the whole, changes in property and engineering premia relative to 

GDP should in the long run by and large represent an acceptable proxy for changes in 

insurance penetration. For the German insurance market, Munich Re undertook an 

analysis on the relationship between premia and total sum of insured values and found 

the two to be very highly linearly correlated over time (figure 1).6 In general, 

insurance penetration in West Germany and the US exhibit little volatility over time 

(see figure 2).  

Using insurance premia in a given year relative to total GDP in the same year 

as a proxy for insurance penetration in equation (3), total GDP drops out and using 

2008 as our chosen base year for normalization, we can write: 

 

2008 2008 2008. . tt
t t

GDPdefl Insurance premia
Norm Ins Loss Loss

GDPdefl Insurance premia
= ⋅ ⋅   (4) 

 

Normalization equation (4) is the one we use in our global analysis. The loss data in 

the NatCatSERVICE database and the data on insurance premia are in USD. We 

converted them into local currencies applying exchange rate data provided to us by 

Munich Re to ensure we use the same exchange rates Munich Re uses to convert from 

                                                 
5  Furthermore, comparability of insured losses over time and space could be limited by 

differences and changes in insurance conditions which affect the insured risk and the size of 

losses, such as maximum coverage and deductibles (Changnon 2009a, Botzen et al. 2010). 

6  For the US, due to lack of data no similar analysis could be undertaken on a market-wide 

basis. Most likely, if data had been available such an analysis would have shown a lower 

correlation because of market cycles and premia adjustments after large disasters (Munich Re, 

personal communication). 
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local currency values into USD. With all data in local currency, we therefore also use 

the GDP deflator of the country itself for our normalization purposes. Since for an 

aggregate analysis of more than one country one needs to make normalized insured 

loss comparable across countries, in the final step we then re-converted the 

normalized insured losses from local currencies into USD.7 

For West Germany and the US, not only do we have a longer time-series of 

data on insured losses, but also GDP or income data are available for sub-national 

administrative units, i.e. on a more fine-grained spatial resolution. The 

NatCatSERVICE database provides a geo-reference of the disaster center which 

allows us to match each disaster with the sub-national administrative unit in which its 

centre occurred. For Germany, our spatial resolution is on the NUTS3 level (which 

corresponds to ‘Landkreise’ and ‘Kreisfreie Städte’). Total GDP in constant Euros is 

provided by Cambridge Econometrics (2010). We converted insured losses into Euro 

using the exchange rate used by Munich Re. Since the analysis for West Germany is 

thus in local currency units, we also used the GDP deflator for Germany and 

normalized damage is expressed in Euros.8 Since loss data is less reliable for East 

Germany before reunification, we restrict our analysis to West Germany. For this, the 

share of insured loss of each event that occurred in the Western parts of Germany was 

determined by Munich Re and only this loss is included in the analysis. Data on 

insurance premia, however, is not separately available for West Germany. Since there 

                                                 
7  Alternatively, one can keep all values in USD and then apply the US GDP deflator for 

normalization purposes. The two approaches lead to practically identical results. 

8  Since we use GDP at different levels of spatial resolution for calculating insurance penetration 

on the one hand and for wealth adjustment on the other for West Germany and the US, GDP 

does not drop out of equation (3). As a consequence, equations (2) and (3) rather than equation 

(4) are used for normalizing insured losses in Germany and the US. 
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was no private insurance market in the former German Democratic Republic, before 

1990 only Western premia (and Western GDP) are used. Since 1990, both the GDP as 

well as the insurance premia relate to the whole of the re-unified Germany.9 

For the US, we have access to two alternative measures of wealth. Our first 

measure is personal per capita income data taken from BEA (2010), at the county 

level.10 Our second measure is a combination of information on the number and value 

of housing units, with data at the state level. Data on housing units up to year 2000 are 

taken from the National Historical Geographical Information System (NHGIS 2010), 

estimates for later years are obtained from the US Census Bureau (2010a). Median 

home value data is available until 2000 and taken from the US Census Bureau 

(2010b). Both data on housing units and median house values are available on a 

decadal basis for earlier years. Linear interpolation was used to fill the gaps. Values 

on median home values for years after 2000 are obtained by linear extrapolation of all 

previous values. To adjust losses both to the changes in the number and the median 

value of housing units, the following equation is used: 

 

                                                 
9  This will inevitably create some (small) bias of unknown direction. To test the robustness of 

our results, we assumed as a shortcut that the share of Western premia was equal to the share 

of total disaster damage in the entire post-1990 period. Thus estimating, admittedly rather 

crudely, Western premia and employing these in the normalization leads to qualitatively 

similar results. In fact, the marginally insignificant upward trend in normalized damage from 

all storms becomes significant at the 5 per cent level with this alternative premia measure. 

10  Personal income is defined as the income received by all persons from all sources before the 

deduction of personal taxes (BEA 2010) and reported in current USD and converted into 

constant values with the US GDP deflator. Results are almost identical if we use GDP data at 

the state level from the same source instead 



13 

.
. .

.
s s s s s

tt
t t t t

GDPdefl Units MedVal Ins penetration
Norm Ins Loss Loss

GDPdefl Units MedVal Ins penetration
= ⋅ ⋅ ⋅ ⋅  (5) 

 

In line with existing normalization studies, to test for the existence of a trend, 

the annual sum of normalized disaster losses from each year is regressed on a linear 

year variable and an intercept: 

 

2008
tNormalized Insured Loss  = α0 + β1yeart  + tε     (6) 

 

A trend is statistically significant if the null hypothesis that β1 is equal to zero can be 

rejected at the ten percent level or lower. Robust standard errors are employed in all 

estimations. 

 

4. Results from an Analysis of Trends in Normalized Insured Losses 

In this section, we present the results from our analysis of trends in normalized 

insured losses. We start with our global analysis, before analyzing in more detail 

insured losses in the US and West Germany. Figure 3 displays the non-normalized, 

i.e. merely deflated annual insured losses caused by all types of natural disasters from 

1980 to 2008. The analysis covers 19,367 disasters, of which 2,553 resulted in a 

known insured loss. Over the whole period, there is a positive and statistically 

significant trend. The coefficient indicates an average annual increase of 1.4bn USD. 

However, while the size of the coefficient is hardly affected if the sample is restricted 

to start from 1990, the trend loses its significance. As mentioned already, shorter 

time-series make the detection of a statistically significant trend less likely. 

There is no statistically significant trend if we adjust insured losses for the 

changes in the value of insured assets at risk, i.e. if we normalize insured disaster loss 
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(Figure 4). Losses before 1990 are not shown since we have data on insurance premia 

only for few countries before 1990. The analysis still covers 13,055 disasters, with 

1,785 of them resulting in a known damage claim to insurance companies.11  

Some natural hazards will be practically unaffected by climate change and are 

therefore irrelevant if one wants to detect whether climate change already has 

potentially lead to increased insured damages. In Figure 5, we therefore excluded 

geophysical disasters (earthquakes, rock falls, subsidence, volcanic eruptions, and 

tsunamis) and only include the following disaster sub-types: landslides, blizzards, hail 

storms, lightning, local windstorms, sandstorms, tropical cyclones, severe storms, 

tornados, winter storms, avalanches, flash floods, general floods, storm surges, cold 

and heat waves, droughts, winter damages, and wildfires.12 As before, no significant 

trend is discernible. Similarly, we do not find a significant trend if we constrain our 

analysis to non-geophysical disasters in developed countries, which cover 

                                                 
11  To cover as many country-years as possible, we extrapolated data on insurance penetration for 

some missing years such that the analysis is based on a balanced panel of countries. The 

results are, however, fully robust if only countries with full time series in the original 

insurance penetration data are included. 

12  While landslides are generally geo-physical events, they are regularly triggered by sustained 

wet conditions in a mountainous region. We dropped the landslides, which were classified as a 

geo-physical event in the database, but kept those that were recorded as hydrological events. 

However, none of the former and only five events of the latter resulted in a known insured 

loss. Similarly, a subsidence might be driven by droughts as a consequence of which moist 

and welled clay soils lose water and compact. The inclusion of 19 subsidence events with a 

positive known insured loss in our global sample does not alter the results. For the US and 

Germany, there are no such events with a positive insured loss.   
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Organisation of Economic Co-operation and Development (OECD) and other high-

income countries, according to World Bank classification (Figure 6).13 

Convective events, i.e. flash floods, hail storms, tempest storms, tornados, and 

lightning, deserve closer attention since these are likely to be particularly affected by 

future global warming (Trapp et al. 2007, 2009; Botzen et al. 2009) and there is some 

evidence that past climatic changes already affected severe thunderstorm activity in 

some regions (Dessens 1995; Kunz et al. 2009). Figure 7a shows that there is no 

significant trend in global insured losses for these peril types. Similarly, there is no 

significant trend in insured losses for storm events (Figure 7b), tropical cyclones 

(Figure 7c) or precipitation-related events (Figure 7d).14 

As mentioned already, a statistically significant trend is harder to establish for 

a shorter time-series. Hence, we separately analyzed in some detail natural disasters 

occurring in the two countries for which data on insured losses and insurance premia 

are available for the longest time period, namely the United States and Germany, 

which are also major insurance markets of course. Figure 8a illustrates normalized 

insured losses from non-geophysical disasters that occurred in the United Stated over 

the period 1973 to 2008. Losses normalized using changes in personal income as a 

proxy for changes in wealth are shown in the upper panel, while we used the 

alternative proxy of changes in the number and value of housing units to adjust losses 

in the lower panel. The results for both approaches are virtually identical. Moreover, 

in non-reported analysis we found that results are very similar if we use GDP changes 

at the country rather than at the state level. We take this as evidence for the robustness 

of the results in our global analysis for which we had to resort to changes in GDP at 
                                                 
13  We show no graphs for developing countries separately as insurance penetration is very low 

and insurance coverage is typically restricted to major cities in middle- and upper middle-

income developing countries. 

14  Precipitation-related events encompass both floods and wet mass movements. 
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the country level as a proxy for changes in wealth. We find a positive trend in 

normalized insured losses from non-geophysical disasters in the US, which is 

statistically significant at the 5 percent level. This remains true if the large outlier due 

to hurricane Katrina in 2005 is excluded.  

In the remaining analysis of insured losses in the US, we examine specific 

subsets of the non-geophysical disasters. Figure 8b shows that there is also a 

statistically significant upward trend if the analysis is restricted to convective events, 

i.e. flash floods, hail storms, tempest storms, tornados, and lightning. There is also a 

positive trend in insured damage from US flooding events, which includes both flash 

floods and general floods (Figure 8c). The same is true for events caused by 

temperature highs (Figure 8d). There is however, no significant trend for events 

caused by temperature lows (Figure 8e). If we look at winter storms (Figure 8f), 

which also include snow storms and blizzards, we find a significant upward trend. The 

same is true for the category all storms except tropical cyclones, which besides winter 

storms include convective storms (hail storm, tempest storms, tornado, and lightning), 

sand storms and storm surges (figure 8g). Focusing on hurricanes, an upward trend in 

insured losses is found, which is statistically significant at the 10 percent level (Figure 

8h).  

Turning to West Germany, the trend in insured loss from non-geophysical 

disasters is marginally significant at the 10 percent level (figure 9a), despite the 

volatility introduced by the four strong loss spikes in 1984 (predominantly caused by 

Munich hail storm), 1990 (predominantly winter storm series), 2002 (predominantly 

river flooding along the Elbe, Danube and contributory rivers and a winter storm in 

late October, even though the flood disaster mainly affected East Germany) and 2007 

(predominantly winter storm Kyrill). If these events are excluded, the trend becomes 

significant at the five percent level. For convective events (figure 9b), however, no 



17 

such significant trend can be established unless the large outlier from 1984 (Munich 

hail storm) is dropped from the analysis. Figure 9c, which shows normalized loss 

from flooding similarly demonstrates by just how much single outliers, like the 

massive damage caused by the floods in 2002, can dominate the entire picture. 

However, with or without this outlier, there is no significant trend. Contrarily, there is 

a trend, which is significant at the 10 percent level, in normalized insured loss from 

winter storms (figure 9d). The upward trend for the category of all storms (figure 9e) 

only marginally fails to reach conventional significance thresholds. Note that for 

Germany hurricanes are irrelevant and there are very few events related to 

temperature highs and temperature lows. These disaster types are therefore not 

included in our analysis for Germany. 

Table 3 compares and contrasts our findings with those of previous studies. 

For most of our analyses, however, there is no truly comparable previous work, either 

because no previous study exists or because existing studies analyze different time 

periods as well as, for the most part, economic rather than insured loss. With these 

caveats in mind our finding of a positive trend for non-geophysical disasters is not in 

line with Changnon et al. (2000). However, the study periods of these two analyses 

differ considerably (1949 to 1996 as opposed to 1973 to 2008). On the one hand, 

longer study periods are in principle preferable, but by missing out more recent data, 

this older study may fail to capture the very period in which increases in trends could 

be most likely. While our results for storms in the United States corroborate earlier 

findings by Changnon (2001, 2009a), contrary to Changnon (2007) we do not detect a 

positive trend for winter storms in the US. While we find a positive trend for floods in 

the United States, no such trend has been found by Downton et al (2005) in their study 

covering a much longer time period (1926 to 2000). The same is true for our 

hurricanes results in the US, where our positive trend since 1973 does not match the 
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findings by Pielke and Landsea (1998) and Pielke et al (2008) in their study from 

1925 and 1900, respectively, onwards. Our results are, however, in line with studies 

by Schmidt et al. (2009) who find a positive trend for a similar study period as ours. 

Where this paper’s analysis of insured loss overlaps with our previous study of total 

economic loss (Neumayer and Barthel 2011), the findings are largely consistent. 

How do our findings of positive trends in non-geophysical disasters and 

specific sub-types in the US and Germany compare to the evidence on trends in 

extreme weather events? There are many difficulties, which hamper such a 

comparison. To start with, our study periods of 1973-2008 and 1980-2008 do not 

necessarily overlap with the periods analyzed in the studies examining trends in 

extreme weather events. Second, such studies often are not undertaken at the country 

level or, if they are, not necessarily for Germany and the US. Third, lack of data and 

particularly of reliable time-series often prevent scientists from analyzing trends in 

extreme weather events. For example, the IPCC (2007: 308) concludes that 

‘observational evidence for changes in small-scale severe weather phenomena (such 

as tornadoes, hail and thunderstorms) is mostly local and too scattered to draw general 

conclusions’.15 With these caveats in mind, there is evidence for increases in heavy 

and very heavy precipitation events (IPCC 2007: 315; Peterson et al. 2008) and in 

tropical storm and hurricane intensities and durations (IPCC 2007: 315; Elsner, 

Kossin and Jagger 2008) as well as, possibly, in hurricane frequency (US Climate 

                                                 
15  See, however, Schiesser (2003) who reports evidence on increased frequency of strong 

hailstorm events in Switzerland after 1980 and, similarly, Kunz, Sander and Kottmeier (2009) 

for the South-West of Germany. Also, Botzen, Bouwer and van den Bergh (2010) find a 

strong correlation between minimum temperatures (see, similarly, Dessens 1995) as well as 

precipitation and total agricultural hailstorm damage in the Netherlands. Since there has been 

higher precipitation and higher minimum temperatures in Northern latitudes, an increase in the 

frequency and/or intensity of extreme hailstorm events is likely. 
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Change Science Program 2008: 35) in North America, consistent with our finding of 

positive trends in normalized flooding and hurricane losses in the US. 

Another question is to what extent it is likely that anthropogenic emissions 

have contributed to this observed increase in some extreme weather events. Using an 

‘optimal fingerprinting technique’ and comparing observed to multi-model simulated 

changes in extreme precipitation over the second half of the 20th century, Min et al. 

(2011: 378) come to the conclusion ‘that human-induced increases in greenhouse 

gases have contributed to the observed intensification of heavy precipitation events 

found over approximately two-thirds of data-covered parts of Northern Hemisphere 

land areas.’ Based on a ‘probabilistic event attribution’ framework, Pall et al. (2011) 

conclude ‘that it is very likely that global anthropogenic greenhouse gas emissions 

substantially increased the risk of flood occurrence in England and Wales in autumn 

2000’. For tropical storms and hurricanes, however, there is considerable natural 

variability, which may well explain the increase in normalized hurricane damage 

since 1973. After acknowledging the many problems posed by ‘substantial limitations 

in the availability and quality of global historical records of tropical cyclones’ for 

attributing any trends to anthropogenic greenhouse gas emissions, Knutson et al. 

(2010: 157) come to the conclusion that ‘it remains uncertain whether past changes in 

any tropical cyclone activity (frequency, intensity, rainfall, and so on) exceed the 

variability expected through natural causes, after accounting for changes over time in 

observing capabilities’. 

 

5. Conclusion 

Climate change neither is nor should be the main concern for the insurance industry. 

The accumulation of wealth in disaster-prone areas is and will always remain by far 

the most important driver of future economic disaster damage. Nevertheless, 
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insurance companies are concerned about climate change as the predicted increase in 

the frequency and/or intensity of natural hazards is likely to lead to higher economic 

and, ceteris paribus, higher insured damage in the future, unless defensive mitigating 

measures make exposed wealth less vulnerable to the impact of hazards. 

In this article, we have analyzed whether one can detect a trend in data on 

insured damage from natural disasters. Whilst we have not found any evidence that 

normalized insured damage has trended upward at the global level, for developed 

countries and independently of the type of disaster looked at, our detection of an 

upward trend in insured losses from non-geophysical disasters and certain specific 

disaster sub-types in the US, the biggest insurance market in the world, and in West 

Germany represents a finding to be taken seriously in the risk analysis undertaken by 

insurance and re-insurance companies. 

As in the interpretation of trends in all economic losses (Neumayer and 

Barthel 2011), much caution is required in correctly interpreting our findings. In 

particular, we cannot normalize for changes in mitigating measures, which, if 

increasingly undertaken over time, would reduce countries’ vulnerability to the impact 

of natural disasters and thus bias the analysis against finding significant upward 

trends. What the results tell us is that, based on the very limited time-series data we 

have for most countries, there is no evidence so far for a statistically significant 

upward trend in normalized insured loss from extreme events outside the US and 

West Germany. There could have been more frequent and/or more intensive weather-

related natural disasters even in these other places, but our study could have simply 

been incapable of detecting them. In addition to our inability to take into account 

defensive mitigating measures undertaken by rational individuals and governments, 

which could translate into lower insured damage compared to the damage in the 

absence of defensive mitigation, the time period 1990 to 2008 may simply be too 
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short to find significant trends in our global analysis. It is noteworthy that for the US 

and West Germany, for which we can analyze normalized loss from, respectively, 

1973 and 1980 onwards, we do find a significant increase in normalized insured 

losses for all non-geophysical disasters and some disaster sub-types over time. 

By the same token, we warn against taking the findings for the US and 

Germany as conclusive evidence that climate change has already caused more 

frequent and/or more intensive natural disasters affecting this country. To start with, 

one needs to be careful in attributing such a trend to anthropogenic climate change, 

i.e. climate change caused by man-made greenhouse gas emissions. Our findings 

reported in this article could be down to natural climate variability that has nothing to 

do with anthropogenic climate change. Such natural climate variability may well 

explain our finding of a significant upward trend in insured loss from hurricanes in the 

US, for example. 

Alternatively, our findings of upward trends could be driven by insurance 

penetration representing a poor proxy for the share of insured assets at risk. As 

another potential contributing factor, there are some drivers of change on the 

insurance side that might have contributed to more expensive disasters and are hard to 

quantify. For instance, insured losses can also be influenced by changes in insurance 

coverage and claims handling procedures and the costs of these. Such changes could 

have had an effect on insured losses over the past decades, but are very difficult to 

quantify. Claiming on insurance policies for damage caused by weather-related 

disasters could have gone up over time. There is also the moral hazard problem. It is 

well known that with the knowledge of being insured, individuals take less care to 

avoid and mitigate damage than in the absence of insurance. If such moral hazard 

problems became more prevalent over time (for which we have no evidence, but 
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cannot exclude as a possibility either), then this would lead to an increasing trend in 

normalized insured damages over time, all other things equal. 

Lastly, our findings could be driven by reporting bias if insured loss from 

early periods is systematically under-reported and thus under-represented in our 

analysis. However, for the US and West Germany a significant reporting bias 

regarding the more substantial losses is much less likely than for other countries, 

given these are two of the biggest insurance markets in the world. In sum, therefore, 

before any firm conclusions can be drawn from our results, more research is needed to 

analyze which of these potential explanatory factors, of which anthropogenic climate 

change is but one possibility, or which combination of factors drive the observed 

upward trends in normalized insured disaster damage in the US and West Germany. 
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Table 1: Average insured losses and disaster counts per sub-type. 

Average positive loss per event 
Disaster subtype Global Germany United States 
All disasters 245.5 103.7 385.2 
  2,553 274 1,047 

Avalanches 250.1 - - 
  1    

Blizzard/ snow storm 245.3 195.6 315.6 
  32 1 18 

Cold wave 242.9 210.6 - 
  10 3   

Drought 299.4 - 409.9 
  14  9 

Flash flood 64.3 20.7 61.5 
  63 4 9 

General flood 176.7 166.5 194.2 
  268 18 46 

Earthquake 344.5 8.9 1537.5 
  107 1 15 

Hailstorm 92.4 116.5 143.4 
  213 25 67 

Heat wave 16.2 11.5 - 
  3 1   

Lightning - - - 
       

Landslide 60.9 - - 
  5    

Local windstorm 21.1 67.4 33.6 
  76 12 6 

Rock fall - - - 
       

Sandstorm 16.3 - - 
  1    

Storm surge 2.1 2.1 - 
  1 1   

Subsidence 591.6 - - 
  23    

Tropical cyclone 921.8 - 2,855.0 
  292  74 

Tempest storm 112.5 48.6 155.0 
  765 100 479 

Tornado 145.6 6.9 185.2 
  185 17 139 

Tsunami 8.3 - - 
  2    
Volcanic eruption 86.5 - 61.2 
  9  1 

Winter damage 271.7 100.5 279.2 
  55 5 31 

Wildfire 165.5 - 211.1 
  79  54 

Winter storm 222.3 177.7 204.3 
  349 86 99 

Note: All values in non-normalized million USD of 2008; Number of events in italics. 
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Table 2: List of insurance types for which premia are included. 

Insurance class Insurances included Disaster subtypes affected 
Global sample     
Property insurance e.g. residential - buildings, residential - 

contents, commercial - buildings, 
commercial - contents, commercial - 
business interruption, industrial - 
buildings, industrial - contents, industrial - 
business interruption 

Engineering insurance  e.g. machinery breakdown, machinery - 
business interruption, boiler, erection all 
risk, construction all risk, electronic 
equipment insurance 

all disaster subtypes  

United States   
Property insurance Householders/Homeowners: Homeowners 

Multiple Peril 

 Agriculture: Farmowners multiple peril, 
crop (multiple peril) 

 Industrial/ Commercial: Non-liability 
multiple peril, commercial multiple peril, 
other 

all disaster subtypes 

 Allied lines 
 

 Earthquake  
 Flood from National Flood Insurance 

Program NFIP  

 Other flood 
 

Engineering insurance Machinery breakdown 
 Boiler and machinery 
 Inland marine (Construction all risk, 

Cargo) 
 Ocean Marine (Offshore Energy, among 

others) 
Other Aircraft 

all disaster subtypes 

Motor physical damage Motor hull (no third party liability) all disasters subtypes, excl. 
temperature highs and lows 

West Germany   
Property insurance Glass (Private Sachversicherung: 

Glasversicherung) 
 Residential - contents (Private 

Sachversicherung: Verbundene 
Hausratversicherung) 

 Residential - buildings (Private 
Sachversicherung: Verbundene 
Wohngebäudeversicherung) 

 Commercial - fire (partially windstorm 
included) (Feuerversicherung: 
Gewerbe/Sonstige (enthielt 
Sturmdeckungen in früheren Jahren) 

 Extended coverage to industrial fire 
(Industrieversicherung: Extended 
Coverage) 

 Industrial all risk (Industrieversicherung: 
Alle Risiken) 

 Commercial - windstorm (Gewerbliche 
Sachversicherung: Sturmversicherung) 

all disaster subtypes 
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 Agriculture - animal (Landwirtschaftliche 
Sachversicherung: Tier) 

 Agriculture - hail (Landwirtschaftliche 
Sachversicherung: Hagel) 

Engineering insurance Machinery breakdown (Technische 
Versicherung: Maschinenversicherung) 

 Errection/construction (Technische 
Versicherung: Montageversicherung) 

 Electronics/electric devices (Technische 
Versicherung: Elektronik/Schwachstrom) 

 Construction work (Technische 
Versicherung: Bauleistung) 

 Machinery - business interruption 
(Technische Versicherung: Maschinen-
Betriebsunterbrechungsversicherung) 

all disaster subtypes 

Motor physical damage Motor hull (no third party liability) 
(Kraftfahrzeugkaskoversicherung) 

all disasters subtypes, excl. 
temperature highs and lows 

Notes: For the global sample, only examples given as insurance markets differ and not all products are 

available on all insurance markets; Engineering insurance data not available for all countries; for those, 

only property insurance premia used. 
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Table 3: Comparison of our results with previous studies 

This paper’s analysis Comparable analyses 

Disaster type Region 
Study 
period Results Study 

Study 
period Results Remarks 

All disasters Global 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 
Non-geophysical Global 1990-2008 no trend Miller et al. 2008 

 
Neumayer and Barthel 2011 

1950-2005 
 
1980-2009 

no trend since 1950/ 
positive trend since 1970 
no trend 

economic loss 
 
economic loss 

Non-geophysical Developed countries 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 
Convective events Global 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 
Storm events (excl. 
tropical cylcones) 

Global 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 

Tropical cyclones Global 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 
Precipitation-related 
events 

Global 1990-2008 no trend Neumayer and Barthel 2011 1980-2009 no trend economic loss 

Non-geophysical United States 1973-2008 positive trend Changnon et al. 2000 1950-1996 no trend  
Convective events United States 1973-2008 positive trend Neumayer and Barthel 2011 1970-2009 positive trend economic loss 
Flooding United States 1973-2008 positive trend Downton et al. 2005 1926-2000 no trend economic loss 
Temperature highs United States 1973-2008 no trend no previous study    
Temperature lows United States 1973-2008 no trend no previous study    
Winter storms United States 1973-2008 no trend Changnon 2007 1949-2003 positive trend  
All storms United States 1973-2008 positive trend Changnon 2001 

Changnon 2003 
Changnon 2009a 

1949-1998 
1950-1997 
1952-2006 

increase since 1974 
no trend 
increase since 1992 

only thunderstorms 
storms and floods 
only windstorms 

Hurricanes United States 1973-2008 positive trend Pielke and Landsea 1998 
Pielke et al. 2008 
Neumayer and Barthel 2011 

1925-1995 
1900-2005 
1970-2009 

no trend 
no trend 
no trend 

economic loss 
economic loss 
economic loss 

    Schmidt et al. 2009 1950-2005 no trend since 1950/ 
positive trend since 1970 

economic loss 

    Nordhaus 2010 1900-2008 positive trend since 1900 economic loss 
Non-geophysical West Germany 1980-2008 positive trend no previous study    
Convective events West Germany 1980-2008 no trend no previous study    
Flooding West Germany 1980-2008 no trend no previous study    
Winter storms West Germany 1980-2008 positive trend no previous study    
All storms West Germany 1980-2008 no trend (marginal) no previous study    
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Figure 1: Correlation of total sum insured and total premia in Germany. 

 

 

Notes: R-squared of regression 0.983. Analysis covers period from 1993 to 2009; Due to data 

availability, only values for insurance types residential – buildings (Verbundene 

Wohngebäudeversicherung), residential – contents (Verbundene Hausratsversicherung), commercial 

wind storm – buildings & contents (Gewerbliche Sturmversicherung), and crop hail insurance 

(Landwirtschaftliche Hagelversicherung) are included. In 2009, premia for these insurance types 

constituted 67 percent of all premia for property and engineering insurance affected by natural 

disasters.  
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Figure 2: Insurance penetration in the United States and West Germany. 
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Figure 3: Global deflated insured losses from natural disasters. 

 

Note: 19,367 disasters, thereof 2,553 with a positive insured loss for whole period, 14,876 (1,855) for 

the period from 1990. 
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Figure 4: Global normalised insured losses from all disasters. 

 

Note: 13,055 disasters, thereof 1,785 with a positive insured loss. 
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Figure 5: Global normalised insured losses from non-geophysical disasters. 

 

Note: 11,423 disasters, thereof 1,678 with a positive insured loss. 
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Figure 6: Normalised insured losses from non-geophysical disasters in developed 

countries. 

 

Note: 6,060 disasters, thereof 1,550 with a positive insured loss; developed countries cover OECD 

countries and other high-income countries according to World Bank classification. 
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Figure 7a: Global normalized insured losses from convective events. 

 

Note: 4,156 disasters, thereof 841 with a positive insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 7b: Global normalized insured losses from all storm events except tropical 

cyclones. 

 

Note: 4,369 disasters, thereof 1,128 with a positive insured loss; Includes damages from winter storms 

(winter storm and blizzard/ snow storm), convective storms (hail storm, tempest storm, tornado, and 

lightning), sand storms, local windstorms, and storm surges. 
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Figure 7c: Global normalized insured losses from tropical cyclones. 

 

Note: 874 disasters, thereof 176 with a positive insured loss. 
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Figure 7d: Global normalized insured losses from precipitation-related events. 

 

Note: 4,374 disasters, thereof 258 with a positive insured loss; Includes damages from flooding (flash 

flood and general flood) and mass movement (rock falls, landslides, and avalanches). 
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Figure 8a: Normalized insured losses of non-geophysical disasters in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom). 

 

Note: 2,674 disasters, thereof 1,277 with a positive insured loss. 
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Figure 8b: Normalized insured losses from convective events in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom). 

 

Note: 1,646 disasters, thereof 916 with a positive insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 8c: Normalized insured losses from flooding in the United States using 

changes in personal income (top) and changes in value of housing units (bottom). 

 

Note: 337 disasters, thereof 63 with a positive insured loss; Includes damages from flash floods and 

general floods. 
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Figure 8d: Normalized insured losses from temperature highs in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom). 

 

Note: 340 disasters, thereof 65 with a positive insured loss; Includes damages from heat waves, 

droughts and wild fires. 
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Figure 8e: Normalized insured losses from temperature lows in the United States 

using changes in personal income (top) and changes in value of housing units 

(bottom). 

 

Note: 60 disasters, thereof 33 with a positive insured loss; Includes damages from winter damages and 

cold waves. 
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Figure 8f: Normalized insured losses from winter storms in the United States using 

changes in personal income (top) and changes in value of housing units (bottom). 

 

Note: 214 disasters, thereof 122 with a positive insured loss; Includes damages from winter storms, 

blizzards and snow storms. 
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Figure 8g: Normalized insured losses from all storms in the United States using 

changes in personal income (top) and changes in value of housing units (bottom). 

 

Note: 1,756 disasters, thereof 1,034 with a positive insured loss; Includes damages from winter storms, 

blizzards, snow storms, hail storms, tempest storms, tornado, lightning, sand storms and storm surges. 
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Figure 8h: Normalized insured losses from hurricanes in the United States using 

changes in personal income (top) and changes in value of housing units (bottom). 

 

Note: 113 disasters, thereof 82 with a positive insured loss. 
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Figure 9a: Normalized insured losses of non-geophysical disasters in West Germany. 

 

Note: 577 disasters, thereof 265 with a positive insured loss. 
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Figure 9b: Normalized insured losses from convective events in West Germany. 

 

Note: 323 disasters, thereof 147 with a positive insured loss; Includes damages from flash floods, hail 

storms, tempest storms, tornados, and lightning. 
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Figure 9c: Normalized insured losses from flooding in West Germany. 

 

Note: 94 disasters, thereof 20 with a positive insured loss; Includes damages from flash floods and 

general floods. 
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Figure 9d: Normalized insured losses from winter storms in West Germany. 

 

Note: 112 disasters, thereof 84 with a positive insured loss; Includes damages from winter storms, 

blizzards and snow storms. 
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Figure 9e: Normalized insured losses from all storms in West Germany. 

 

Note: 416 disasters, thereof 238 with a positive insured loss; Includes damages from winter storms, 

blizzards, snow storms, hail storms, tempest storms, tornado, lightning, sand storms and storm surges. 
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