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A Trend Analysis of Normalized
| nsured Damage from Natural Disasters

Abstract

As the world becomes wealthier over time, inflatemjusted insured damages from
natural disasters go up as well. This article azegywhether there is still a significant
upward trend once insured natural disaster lossbbeaa normalized. By scaling up
loss from past disasters, normalization adjustshferfact that a hazard event of equal
strength will typically cause more damage nowadhgs in past years because of
wealth accumulation over time. A trend analysisiofmalized insured damage from
natural disasters is not only of interest to theumance industry, but can potentially be
useful for attempts at detecting whether therelde®n an increase in the frequency
and/or intensity of natural hazards, whether causedatural climate variability or
anthropogenic climate change. We analyze trendseaglobal level over the period
1990 to 2008, over the period 1980 to 2008 for Waxstmany and 1973 to 2008 for
the United States. We find no significant trendshet global level, but we detect
statistically significant upward trends in normatiz insured losses from all non-
geophysical disasters as well as from certain Spedisaster types in the United

States and West Germany.
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1. Introduction

Analyzing trends in natural disaster loss represantimportant tool for attempts at
detecting whether climate change has already dtadehave an effect on the
frequency and/or intensity of natural hazards. Midsxisting studies have looked at
total economic loss (Pielke and Landsea 1998; Pietkal. 1999, 2003, 2008; Brooks
and Doswell 2001; Raghavan and Rajseh 2003; VrandsPielke 2009; Schmidt,
Kemfert and Hoppe 2009; Barredo 2009; Nordhaus ROE@wer studies have
analysed insured losses and all of them are cahfine specific hazard type in one
country (Changnon and Changnon 1992; Changnon 2Zi9a, 2009b; Crompton
and McAeneney 2008)Yet, analyzing trends in insured losses is impurfar two
reasons. First, insurance companies naturally woiwgt about insured losses and are
interested in any trends in these losses quitepigragently of whether they are caused
by natural climate variability or anthropogenic gmbouse gas emissions or other
drivers (Bouwer 2011). Second, insured losses stienated with greater precision
than total economic losses, estimates of whichofien simply taken as multiples of
insured loss. All other things equal, the greatecision should be beneficial since
measurement error hampers statistical analysidharsdrenders detecting statistically
significant trends more difficult.

Existing studies of total economic and insured lbase typically found no
increasing trend over time after loss has beenestdy to what is known as
“normalization”. Normalization adjusts for the fattat a disaster of equal strength
will typically cause more damage in the currentiguéthan in the past because there

is typically a greater value of assets at risk he present compared to the past.

Hazards are events triggered by natural forcheyWill turn into natural disasters if people
are exposed to the hazard and are not resiligotlyoabsorbing the impact without damage to

life or property (Schwab, Eschelbach and Brower7200



Normalization thus adjusts nominal economic loganfrpast disasters upwards by
multiplying past damage with a factor for inflatjofor population growth and for
growth in wealth per capita, thus in effect estimgpthe damage a past hazard event
would have caused had it hit the same, but nowadagdthier, area today. Without
normalization, disaster loss is likely to trend @p#ls over time, not because hazards
have necessarily become more frequent and/or mteadive, but simply because the
value of assets at risk has increased over timen&onalizaton of insured disaster
losses, one additionally needs to adjust for chamgesurance penetration over time,
i.e. the value of insurance premia generated aseraeptage of GDP which
approximates the share of wealth covered by ingerarhhe question, to be studied in
this article, is therefore whether the results xibtng studies which have analyzed
trends in normalizediotal economic loss carry over to trend analysis in radized
insuredlosses.

To our knowledge, this is the first article systégaly analyzing trends in
insured natural disaster loss for more than onardaiype and for a larger country
sample. We do so at the global level, for developaahtries, for specific types of
disasters as well as, in more detail, for West Geyrand the US. Section 2 explains
the methodology of normalizing natural disastersloSection 3 describes our

empirical research design and reports results fl@ranalysis. Section 4 concludes.

2. Normalizing natural disaster loss

The conventional approach to normalizing naturalastier loss was developed by
Roger Pielke Jr. and co-authors (see Pielke andldesn 1998, Pielke et al. 1999,
2003, 2008; Vraines and Pielke 2009). Followingrtapproach, normalized disaster

damage can be calculated as follows:



Normalized Damage= Damag(?EQDPdeflatog DPopuIatl_opD Wealth per capg(l)
GDPdeflator Population Wealth per capit

wheres is the (chosen) year to which one wishes to nammandt is the disaster
year. Inflation (i.e. the change in producer priagesaccounted for by using the Gross
Domestic Product (GDP) deflator, while the remagniwo correction factors adjust
for changes inpopulation and wealth per capita. Ideally, the ytafpon and wealth
changes should reflect changes in the exact aféagteal by the natural disaster in
guestion. Yet, in practice it is often impossikbedetermine the exact affected areas
and time series information on GDP and populatiothese areas is not available, so
scholars typically resort to using data from theirdoy or, if they can, from sub-
country administrative units known to be affectedy(, counties or states). Existing
work differs with respect to how wealth per capganeasured: while some use data
on the value of capital stocks (e.g., Pielke anddsaa 1998; Brooks and Doswell
2001; Vranes and Pielke 2009; Schmidt, Kemfert Hidggpe 2009) or the value of
dwellings (Crompton and McAneney 2008), othersemftlue to the lack of data,
simply use GDP per capita (e.g., Raghavan and R&663; Pielke et al. 2003;
Miller et al. 2008; Barredo 2009; Nordhaus 2010)hére is more than one disaster in
a given country per year, the measure of disasgarik the annual sum of normalized
damages from each disaster as per equation (1).

Neumayer and Barthel (2011) have criticized conweeaal normalization
methodology on the grounds that it adjusts foreddhces in wealth over time, but not
for differences in the level of wealth across spaicany point of time. Conventional
normalization adjusts for the fact that a disaditex, say, the 1926 Great Miami
hurricane would have caused far more damage iit iMimmi nowadays since the

value of what can potentially become destroyedtteamendously increased over this



time period (Pielke et al. 1999). At the same tirhewever, a hurricane that hits
Miami in any year will cause a much larger damdgmnta hurricane that hits in the
same year rural parts of Florida with much Ilowerpydation density and
concentration of wealth. Conventional normalizatamtounts for the former effect,
but not for the latter. It makes Miami in 1926 camble to Miami in 2010, but fails
to make Miami in whatever year comparable to réilarida or other areas affected
by a particular natural disaster in that same ydaumayer and Barthel (2011) have
therefore developed an alternative normalizationthowology that additionally
adjusts for differences in space. However, for thiethod to be applied in empirical
analysis, one would need information on the valumsuredassets potentially at risk
in any given area. Since this information is typicaot available, we follow the

conventional normalization methodology in this pape

3. Research Design

Contrary to Neumayer and Barthel (2011), in whicé gould study trends of all
economic losses over the period 1980 to 2009, pwailability of data during the
1980s on insurance premia needed for normalizatiderms of insurance penetration
means that our statistical tests are restrictedeqeriod 1990 to 2008 for all analyses
but those for the United States and West Germamyyliich we have data from 1973
and 1980, respectively, onwards. The disadvantdgbemg compelled to use a
relatively short time period is that, ceteris pagpthe shorter the time series of annual
loss data the less likely any trend will be detéctes statistically significant (the
smallerN, the number of observations, the higher the stahedaor of the estimate).
Also, the IPCC (2007a: 942) defines climate in arow& sense “as the average

weather, or more rigorously, as the statisticakcdpson in terms of the mean and



variability of relevant quantities” over a perioti2D to 30 years, so our study period
of 1973, 1980 or 1990 to 2008 may be too shori¢ntify changes in climate.

Data on insured loss from natural disasters in namUSD comes from
Munich Re’s NatCatSERVICE database. Munich Re algoplied us with data on
insurance premia in a country. The NatCatSERVICtalgkse provides a very high
quality source for insured loss data worldwide sitite re-insurance company is in a
privileged position to collect these data, has deméor many years and has invested
much time, money and effort in the data collectBut it is of course not perfect. For
example, smaller disasters may be somewhat ungertesl in the early periods
relative to later periods. In order to maintain thteabase, several members of staff
browse daily international and regional sourcegdther information about natural
disaster events. Data are collected from a varmétgources such as government
representatives, relief organisations and resetacitities. Information on insured
losses is based on information of insurance assmesaand insurance services as well
as on claims made by Munich Re’s customers, whiokige the best approximation
to the actual damage. Initial reports on insurex$és, which are usually available in
the immediate aftermath of a disaster, are oftghlhiunreliable. Therefore, data in
the NatCatSERVICE database is updated continu@ssiyore accurate information
becomes available, which might be even years #ftedisaster event. Our analysis
ends in 2008, since these cases are closed tartest extent (Munich Re, personal
communication). Table 1 shows the number and aeerasyred losses for the period
1980 to 2008 for those disasters with a positieemed insured loss for each disaster
sub-type and for the global sample as well as 'm@any and the US separately. By

far the most costly hazard sub-type consists gi¢ad cycloneg.

One has to keep in mind that the NatCatSERVICE tese was set up as an insurance

industry-related loss data base that is organipedrding to the most significant hazardous



Since we study trends in insured rather than etahomic losses, we need to
adjust the conventional normalization methodologgresented by equation (1) by
adding an additional factor to control for changeshe insurance penetration as a

proxy for the share of wealth covered by insurgmaecies:

DPdef] DP0|g DWealth RS, Ins penetratig 2)

Norm Ins Loss=
5= Loss GDPdef] Pop Wealthpc Ins penetratjc

For our global analysis, we use GDP per capita psogy for wealth as there is no
other measure of wealth available for all countriasthe world. This is not

unproblematic. GDP has the advantage that it captwell potential economic loss
due to the interruption of economic operations essalt of a natural disaster, but it is

a relatively poor proxy for the physical wealth cdtoat risk from destruction by

impact involved with a disastrous event. Hence disaster subtype is nothing else than a
significant type of hazard that has caused a sagmif proportion of the loss. But any subtype
given does not exclude another subtype to be addily involved while the event occurred.
For instance, among the convective events assdaidth a positive loss there have been 185
events reported where tornados have caused segmifiosured loss. Definitely, this does not
exclude tornados occurring also with some of th& 2dilstorm events that have been reported
to have caused losses from hail. Nor does it exctachados occurring with the 765 reported
tempest storm events. Hence, the subtype tornade dot comprise all the tornado events
occurred, but those where tornado was the mostfisigmt type of hazard produced by the
thunderstorm cell. In order to include compreheglgiall the tornado losses, one would have
to integrate over all the convective hazards fl&sh flood, hailstorm, lightning, tempest
storm, tornado), but will at the same time integrall losses from convective events. Another
example of disaster subtypes that often are lirtkedach other is the ensemble of drought,

heat wave and subsidence



disasters. While GDP is a flow of economic activity, economi@alth is a stock.
Fortunately, despite GDP consisting in part ofmgile components such as services
with scant correspondence to the value of the phisvealth stock, on the whole
GDP is highly correlated with it since the physieadalth stock is used to produce
GDP in conjunction with other forms of capital, Bugs human and natural capital.
But GDP can only function as a proxy for wealth aygically understates it.
Economists estimate the ratio of the value of thyswal man-made or manufactured
capital stock to GDP to lie somewhere in betweeand 4 for a typical macro-
economy (D’Adda and Scorcu 2003). Yet this ratidl wary across countries and,
more importantly, is a national macro-economic ager which can differ more
drastically across sub-country urittét also only captures the value of the physical
capital stock used for the production of consumptioods and services, but not the
value of other wealth held in the form of, for exae) residential property. Moreover,
the increasing share of GDP consisting of intamgitmponents such as services,
which is observed in many, but not all, countrieplies that the growth rate of GDP
possibly over-estimates the growth rate of the iaysvealth stock. This will bias the
results against finding a positive trend since stes& from past periods are scaled up

too strongly as a result of normalization.

GDP might also be positively affected by largeadiers as repair and reconstruction increase
GDP.

4 It has also changed over time (see D’Adda andcsc®003). Nevertheless Krugman (1992:
54f) concludes that “there is a remarkable comstaof the capital-output ratio across
countries; there is also a fairly stable capitapoti ratio in advanced nations. These
constancies have been well known for a long tingk\aare in fact at the heart of the famous
Solow conclusion that technological change, noftahpccumulation, is the source of most

growth.”



Keeping in mind that, for our global analysis, wee UGDP per capita as a
proxy for wealth and that the product of populataord GDP per capita equals total

GDP, equation (2) modifies to:

DPdef] DGDFS)D Ins penetratiay
GDPdef] GDP Ins penetratior

Norm Ins Los3= Loss

®3)

Regrettably, there is no data available on chamgessurance coverage as
such. As an approximation we use insurance per@travhich is defined as premia
divided by GDP (UNCTAD 2005: 7). For our global &sss, we use data on property
and, where available, also engineering insuranemia. For West Germany and the
US, however, we have data, including data for ayéortime-series, on a subset of
property and engineering premia as well as premianotor physical damage, which
relate more directly to insured values that carempimlly be destroyed by natural
disasters and which we therefore take in lieu lop@perty and engineering insurance
premia. Only for the normalization of damage frommperature highs and
temperature lows do we exclude motor physical danpeigmia since vehicles can not
normally be damaged by these hazards. A full lighe detailed types of insurances,
for which premia are included in our analysis iswh in table 2.

One problem with using insurance premia relativ&BP is that these can change
even if the share of insured wealth among all vileadtnains the same and vice versa.
Insurance premia can, for example, change in resptm changes in insurance pay-

outs resulting from changes in the frequency anoh@nsity of insured loss events,



constituting the requirement of “risk adequate ipgt in the insurance industryFor
example, premia have increased following the 2®4@rricane seasons in parts of
the US. But on the whole, changes in property amgineering premia relative to
GDP should in the long run by and large represerdceptable proxy for changes in
insurance penetration. For the German insuranc&eatavlunich Re undertook an
analysis on the relationship between premia arad $oim of insured values and found
the two to be very highly linearly correlated ovéme (figure 1)° In general,
insurance penetration in West Germany and the Ufiedittle volatility over time
(see figure 2).

Using insurance premia in a given year relativeotal GDP in the same year
as a proxy for insurance penetration in equatign t@@al GDP drops out and using

2008 as our chosen base year for normalizatiorcamenrite:

DPdefl, DInsurance premigy,

Norm Ins Los&% =
77 Loss GDPdef] Insurance premja

(4)

Normalization equation (4) is the one we use inglabal analysis. The loss data in
the NatCatSERVICE database and the data on insurpreamia are in USD. We
converted them into local currencies applying ergearate data provided to us by

Munich Re to ensure we use the same exchangeMat@ish Re uses to convert from

° Furthermore, comparability of insured losses otiere and space could be limited by

differences and changes in insurance conditionghwaffect the insured risk and the size of
losses, such as maximum coverage and deductibles){fbon 2009a, Botzen et al. 2010).

For the US, due to lack of data no similar arialg®uld be undertaken on a market-wide
basis. Most likely, if data had been available sachanalysis would have shown a lower
correlation because of market cycles and premiaséments after large disasters (Munich Re,

personal communication).
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local currency values into USD. With all data icdbcurrency, we therefore also use
the GDP deflator of the country itself for our n@lmation purposes. Since for an
aggregate analysis of more than one country ondsneemake normalized insured
loss comparable across countries, in the final step then re-converted the
normalized insured losses from local currencies WSD!

For West Germany and the US, not only do we halanger time-series of
data on insured losses, but also GDP or income a@&tavailable for sub-national
administrative units, i.e. on a more fine-graineghatal resolution. The
NatCatSERVICE database provides a geo-referenctheofdisaster center which
allows us to match each disaster with the sub-natiadministrative unit in which its
centre occurred. For Germany, our spatial resaiuisoon the NUTS3 level (which
corresponds to ‘Landkreise’ and ‘Kreisfreie Stadt&otal GDP in constant Euros is
provided by Cambridge Econometrics (2010). We cdedeinsured losses into Euro
using the exchange rate used by Munich Re. Sireaiialysis for West Germany is
thus in local currency units, we also used the Gddfator for Germany and
normalized damage is expressed in Efr&nce loss data is less reliable for East
Germany before reunification, we restrict our asalyo West Germany. For this, the
share of insured loss of each event that occurrélde Western parts of Germany was
determined by Munich Re and only this loss is ideld in the analysis. Data on

insurance premia, however, is not separately avaifmr West Germany. Since there

Alternatively, one can keep all values in USD ahdn apply the US GDP deflator for
normalization purposes. The two approaches legdactically identical results.

Since we use GDP at different levels of spagabtution for calculating insurance penetration
on the one hand and for wealth adjustment on therdor West Germany and the US, GDP
does not drop out of equation (3). As a consequeatpgations (2) and (3) rather than equation

(4) are used for normalizing insured losses in Geyrand the US.
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was no private insurance market in the former Garibamocratic Republic, before
1990 only Western premia (and Western GDP) are. &ade 1990, both the GDP as
well as the insurance premia relate to the whokefe-unified Germany.

For the US, we have access to two alternative measaf wealth. Our first
measure is personal per capita income data taken BEA (2010), at the county
level 1° Our second measure is a combination of informatiothe number and value
of housing units, with data at the state level.aDat housing units up to year 2000 are
taken from the National Historical Geographicaloimhation System (NHGIS 2010),
estimates for later years are obtained from theGg8sus Bureau (2010a). Median
home value data is available until 2000 and takemfthe US Census Bureau
(2010b). Both data on housing units and median dnaxzdues are available on a
decadal basis for earlier years. Linear interpofatvas used to fill the gaps. Values
on median home values for years after 2000 arardutdy linear extrapolation of all
previous values. To adjust losses both to the adwngthe number and the median

value of housing units, the following equation $&d:

This will inevitably create some (small) biaswfknown direction. To test the robustness of
our results, we assumed as a shortcut that the siidestern premia was equal to the share
of total disaster damage in the entire post-199@oge Thus estimating, admittedly rather
crudely, Western premia and employing these in nthemalization leads to qualitatively
similar results. In fact, the marginally insignditt upward trend in normalized damage from
all storms becomes significant at the 5 per cedl leith this alternative premia measure.

10 Personal income is defined as the income recdiyeall persons from all sources before the
deduction of personal taxes (BEA 2010) and repoitedurrent USD and converted into

constant values with the US GDP deflator. Resukisadgmost identical if we use GDP data at

the state level from the same source instead
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DPdef] DUnit§ DMedVaSID Ins penetratiQ

Norm Ins Loss=
5= Loss GDPdef| Units MedVal Ins penetratip

In line with existing normalization studies, tottésr the existence of a trend,
the annual sum of normalized disaster losses frach gear is regressed on a linear

year variable and an intercept:

Normalized Insured Log%® = op + pryear, + &, (6)

A trend is statistically significant if the null pgthesis thap, is equal to zero can be
rejected at the ten percent level or lower. Rolstestdard errors are employed in all

estimations.

4. Resultsfrom an Analysisof Trendsin Normalized Insured L osses
In this section, we present the results from oualymis of trends in normalized
insured losses. We start with our global analysefore analyzing in more detail
insured losses in the US and West Germany. Figuts@ays the non-normalized,
i.e. merely deflated annual insured losses caugedl bypes of natural disasters from
1980 to 2008. The analysis covers 19,367 disastérgyhich 2,553 resulted in a
known insured loss. Over the whole period, thereaipositive and statistically
significant trend. The coefficient indicates anrage annual increase of 1.4bn USD.
However, while the size of the coefficient is hgrdffected if the sample is restricted
to start from 1990, the trend loses its signifi@nds mentioned already, shorter
time-series make the detection of a statisticafjpificant trend less likely.

There is no statistically significant trend if wejast insured losses for the

changes in the value of insured assets at riskif wee normalize insured disaster loss

13



(Figure 4). Losses before 1990 are not shown siechave data on insurance premia
only for few countries before 1990. The analysi sbvers 13,055 disasters, with
1,785 of them resulting in a known damage clairmsarance companiés.

Some natural hazards will be practically unaffedigctlimate change and are
therefore irrelevant if one wants to detect whetbkmate change already has
potentially lead to increased insured damages.igmré 5, we therefore excluded
geophysical disasters (earthquakes, rock fallssidehce, volcanic eruptions, and
tsunamis) and only include the following disastg-sypes: landslides, blizzards, halil
storms, lightning, local windstorms, sandstormspital cyclones, severe storms,
tornados, winter storms, avalanches, flash flogéseral floods, storm surges, cold
and heat waves, droughts, winter damages, andireidf As before, no significant
trend is discernible. Similarly, we do not find igrsficant trend if we constrain our

analysis to non-geophysical disasters in develomedintries, which cover

1 To cover as many country-years as possible, wamolated data on insurance penetration for

some missing years such that the analysis is based balanced panel of countries. The

results are, however, fully robust if only coungrigvith full time series in the original

insurance penetration data are included.
12 While landslides are generally geo-physical esetitey are regularly triggered by sustained
wet conditions in a mountainous region. We droptpedandslides, which were classified as a
geo-physical event in the database, but kept ttiwasewere recorded as hydrological events.
However, none of the former and only five eventdhaf latter resulted in a known insured
loss. Similarly, a subsidence might be driven bgudhts as a consequence of which moist
and welled clay soils lose water and compact. Hotusion of 19 subsidence events with a

positive known insured loss in our global sampleslaot alter the results. For the US and

Germany, there are no such events with a positisered loss.

14



Organisation of Economic Co-operation and Develagn{®ECD) and other high-
income countries, according to World Bank clasatfin (Figure 6}

Convective events, i.e. flash floods, hail stortesjpest storms, tornados, and
lightning, deserve closer attention since thesdikeéy to be particularly affected by
future global warming (Trapp et al. 2007, 2009; &0t et al. 2009) and there is some
evidence that past climatic changes already affleséxere thunderstorm activity in
some regions (Dessens 1995; Kunz et al. 2009).r&iga shows that there is no
significant trend in global insured losses for theeril types. Similarly, there is no
significant trend in insured losses for storm esefiigure 7b), tropical cyclones
(Figure 7c) or precipitation-related events (Figuidd*

As mentioned already, a statistically significaneind is harder to establish for
a shorter time-series. Hence, we separately arthliygsome detail natural disasters
occurring in the two countries for which data osured losses and insurance premia
are available for the longest time period, namélky United States and Germany,
which are also major insurance markets of courggur€ 8a illustrates normalized
insured losses from non-geophysical disastersat@irred in the United Stated over
the period 1973 to 2008. Losses normalized usiramgés in personal income as a
proxy for changes in wealth are shown in the uppanel, while we used the
alternative proxy of changes in the number andevaluhousing units to adjust losses
in the lower panel. The results for both approadresvirtually identical. Moreover,
in non-reported analysis we found that resultsvarg similar if we use GDP changes
at the country rather than at the state level. &e this as evidence for the robustness

of the results in our global analysis for which ad to resort to changes in GDP at

13 We show no graphs for developing countries seplgras insurance penetration is very low

and insurance coverage is typically restricted #jomcities in middle- and upper middle-
income developing countries.

Precipitation-related events encompass both fi@d wet mass movements.

15



the country level as a proxy for changes in wealtte find a positive trend in
normalized insured losses from non-geophysical stesa in the US, which is
statistically significant at the 5 percent levehig remains true if the large outlier due
to hurricane Katrina in 2005 is excluded.

In the remaining analysis of insured losses in W8 we examine specific
subsets of the non-geophysical disasters. Figurest8iws that there is also a
statistically significant upward trend if the argilyis restricted to convective events,
i.e. flash floods, hail storms, tempest stormspddos, and lightning. There is also a
positive trend in insured damage from US floodingregs, which includes both flash
floods and general floods (Figure 8c). The samdrug for events caused by
temperature highs (Figure 8d). There is however,sgmificant trend for events
caused by temperature lows (Figure 8e). If we labkvinter storms (Figure 8f),
which also include snow storms and blizzards, we & significant upward trend. The
same is true for the category all storms excepi¢ed cyclones, which besides winter
storms include convective storms (hail storm, teshgéorms, tornado, and lightning),
sand storms and storm surges (figure 8g). Focusingurricanes, an upward trend in
insured losses is found, which is statisticallyngigant at the 10 percent level (Figure
8h).

Turning to West Germany, the trend in insured Ifvesn non-geophysical
disasters is marginally significant at the 10 petcievel (figure 9a), despite the
volatility introduced by the four strong loss skiea 1984 (predominantly caused by
Munich hail storm), 1990 (predominantly winter stoseries), 2002 (predominantly
river flooding along the Elbe, Danube and contribytrivers and a winter storm in
late October, even though the flood disaster maaffigcted East Germany) and 2007
(predominantly winter storm Kyrill). If these everdre excluded, the trend becomes

significant at the five percent level. For conveetevents (figure 9b), however, no

16



such significant trend can be established unlesdaityge outlier from 1984 (Munich
hail storm) is dropped from the analysis. Figure ®bich shows normalized loss
from flooding similarly demonstrates by just how chusingle outliers, like the
massive damage caused by the floods in 2002, camndte the entire picture.
However, with or without this outlier, there is sgnificant trend. Contrarily, there is
a trend, which is significant at the 10 percenelein normalized insured loss from
winter storms (figure 9d). The upward trend for tda¢egory of all storms (figure 9e)
only marginally fails to reach conventional sigo#ince thresholds. Note that for
Germany hurricanes are irrelevant and there arey yew events related to
temperature highs and temperature lows. These teisagpes are therefore not
included in our analysis for Germany.

Table 3 compares and contrasts our findings witsehof previous studies.
For most of our analyses, however, there is ny tamparable previous work, either
because no previous study exists or because axistudies analyze different time
periods as well as, for the most part, economicerathan insured loss. With these
caveats in mind our finding of a positive trend famm-geophysical disasters is not in
line with Changnon et al. (2000). However, the gtpdriods of these two analyses
differ considerably (1949 to 1996 as opposed to31&®/2008). On the one hand,
longer study periods are in principle preferablat, fby missing out more recent data,
this older study may fail to capture the very pério which increases in trends could
be most likely. While our results for storms in tbeited States corroborate earlier
findings by Changnon (2001, 2009a), contrary tor@nman (2007) we do not detect a
positive trend for winter storms in the US. While ¥ind a positive trend for floods in
the United States, no such trend has been fou@blaynton et al (2005) in their study
covering a much longer time period (1926 to 200he same is true for our

hurricanes results in the US, where our positieadrsince 1973 does not match the
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findings by Pielke and Landsea (1998) and Pielkal §2008) in their study from
1925 and 1900, respectively, onwards. Our resuéisf@wever, in line with studies
by Schmidt et al. (2009) who find a positive trénd a similar study period as ours.
Where this paper’s analysis of insured loss overlajph our previous study of total
economic loss (Neumayer and Barthel 2011), tharfgglare largely consistent.

How do our findings of positive trends in non-geggibal disasters and
specific sub-types in the US and Germany comparth@oevidence on trends in
extreme weather events? There are many difficultibich hamper such a
comparison. To start with, our study periods of 32008 and 1980-2008 do not
necessarily overlap with the periods analyzed i@ $studies examining trends in
extreme weather events. Second, such studies aféenot undertaken at the country
level or, if they are, not necessarily for Germamg the US. Third, lack of data and
particularly of reliable time-series often prevestientists from analyzing trends in
extreme weather events. For example, the IPCC (2@WB) concludes that
‘observational evidence for changes in small-ssalere weather phenomena (such
as tornadoes, hail and thunderstorms) is mostbl laed too scattered to draw general
conclusions™® With these caveats in mind, there is evidenceirforeases in heavy
and very heavy precipitation events (IPCC 2007:; #&terson et al. 2008) and in
tropical storm and hurricane intensities and dareti (IPCC 2007: 315; Elsner,

Kossin and Jagger 2008) as well as, possibly, midane frequency (US Climate

15 See, however, Schiesser (2003) who reports esdem increased frequency of strong

hailstorm events in Switzerland after 1980 andjlany, Kunz, Sander and Kottmeier (2009)
for the South-West of Germany. Also, Botzen, Bouwad van den Bergh (2010) find a
strong correlation between minimum temperatures, (semilarly, Dessens 1995) as well as
precipitation and total agricultural hailstorm dayean the Netherlands. Since there has been
higher precipitation and higher minimum temperatuireNorthern latitudes, an increase in the

frequency and/or intensity of extreme hailstormraseés likely.

18



Change Science Program 2008: 35) in North Amedoasistent with our finding of
positive trends in normalized flooding and hurriedosses in the US.

Another question is to what extent it is likely threnthropogenic emissions
have contributed to this observed increase in sextreme weather events. Using an
‘optimal fingerprinting technique’ and comparingseloved to multi-model simulated
changes in extreme precipitation over the secotfdofighe 20" century, Min et al.
(2011: 378) come to the conclusion ‘that human-gaduincreases in greenhouse
gases have contributed to the observed intensditaif heavy precipitation events
found over approximately two-thirds of data-covepaits of Northern Hemisphere
land areas.” Based on a ‘probabilistic event aitidn’ framework, Pall et al. (2011)
conclude ‘that it is very likely that global antipagenic greenhouse gas emissions
substantially increased the risk of flood occureent England and Wales in autumn
2000'. For tropical storms and hurricanes, howevleere is considerable natural
variability, which may well explain the increase mormalized hurricane damage
since 1973. After acknowledging the many problewsed by ‘substantial limitations
in the availability and quality of global historiceecords of tropical cyclones’ for
attributing any trends to anthropogenic greenhogae emissions, Knutson et al.
(2010: 157) come to the conclusion that ‘it remainsertain whether past changes in
any tropical cyclone activity (frequency, intensitginfall, and so on) exceed the
variability expected through natural causes, at@mounting for changes over time in

observing capabilities’.

5. Conclusion
Climate change neither is nor should be the mantem for the insurance industry.
The accumulation of wealth in disaster-prone arseand will always remain by far

the most important driver of future economic disastiamage. Nevertheless,
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insurance companies are concerned about climategehas the predicted increase in
the frequency and/or intensity of natural hazasdikely to lead to higher economic
and, ceteris paribus, higher insured damage iriutuee, unless defensive mitigating
measures make exposed wealth less vulnerable tmpaet of hazards.

In this article, we have analyzed whether one cated a trend in data on
insureddamage from natural disasters. Whilst we havefowd any evidence that
normalized insured damage has trended upward agltiel level, for developed
countries and independently of the type of disakieked at, our detection of an
upward trend in insured losses from non-geophysictsdsters and certain specific
disaster sub-types in the US, the biggest insuramadet in the world, and in West
Germany represents a finding to be taken seriandlige risk analysis undertaken by
insurance and re-insurance companies.

As in the interpretation of trends in all econonisses (Neumayer and
Barthel 2011), much caution is required in corgectiterpreting our findings. In
particular, we cannot normalize for changes in gating measures, which, if
increasingly undertaken over time, would reducentes’ vulnerability to the impact
of natural disasters and thus bias the analysisnstgéinding significant upward
trends. What the results tell us is that, basethervery limited time-series data we
have for most countries, there is no evidence sofdiaa statistically significant
upward trend in normalized insured loss from ex&eevents outside the US and
West Germany. There could have been more frequetibamore intensive weather-
related natural disasters even in these other ldné our study could have simply
been incapable of detecting them. In addition to ioability to take into account
defensive mitigating measures undertaken by ratiomhviduals and governments,
which could translate into lower insured damage parad to the damage in the

absence of defensive mitigation, the time perio018 2008 may simply be too
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short to find significant trends in our global aysas$. It is noteworthy that for the US
and West Germany, for which we can analyze normdlibss from, respectively,
1973 and 1980 onwards, we do find a significantraase in normalized insured
losses for all non-geophysical disasters and sasaster sub-types over time.

By the same token, we warn against taking the figslifor the US and
Germany asconclusive evidence that climate change has already cause@® mo
frequent and/or more intensive natural disastefiectfg this country. To start with,
one needs to be careful in attributing such a ttendnthropogenic climate change,
i.e. climate change caused by man-made greenhasemissions. Our findings
reported in this article could be down to natutahate variability that has nothing to
do with anthropogenic climate change. Such nataliabate variability may well
explain our finding of a significant upward tremdinsured loss from hurricanes in the
US, for example.

Alternatively, our findings of upward trends coub@ driven by insurance
penetration representing a poor proxy for the slwrénsured assets at risk. As
another potential contributing factor, there arameodrivers of change on the
insurance side that might have contributed to nespensive disasters and are hard to
quantify. For instance, insured losses can alsmfiieenced by changes in insurance
coverage and claims handling procedures and ths obshese. Such changes could
have had an effect on insured losses over thedemsides, but are very difficult to
quantify. Claiming on insurance policies for damagmused by weather-related
disasters could have gone up over time. Therests thle moral hazard problem. It is
well known that with the knowledge of being insur@wividuals take less care to
avoid and mitigate damage than in the absence suframce. If such moral hazard

problems became more prevalent over time (for whighhave no evidence, but
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cannot exclude as a possibility either), then wsild lead to an increasing trend in
normalized insured damages over time, all otherghiequal.

Lastly, our findings could be driven by reporting® if insured loss from
early periods is systematically under-reported #mas under-represented in our
analysis. However, for the US and West Germany gaifstant reporting bias
regarding the more substantial losses is much liesly than for other countries,
given these are two of the biggest insurance msuikethe world. In sum, therefore,
before any firm conclusions can be drawn from @sults, more research is needed to
analyze which of these potential explanatory fagtof which anthropogenic climate
change is but one possibility, or which combinatminfactors drive the observed

upward trends in normalized insured disaster danmatiee US and West Germany.

22



References

Barredo, J.I., 2009, Normalised flood losses indper 1970-2006\atural Hazards
and Earth Systems Scienc@spp. 97-104.

BEA, 2010, Regional Economic Accounts, availablehétp://www.bea.gov/regional/
index.htm.

Botzen, W.J.W., Laurens M. Bouwer, and Jeroen MC.¥an den Bergh, 2010,
Climate change and hailstorm damage: empiricalesdd and implications for
agriculture and insurancBesource and Energy Economi® pp. 341-362.

Bouwer, Laurens M., 2011, Have past disaster lossesased due to anthropogenic
climate changeBulletin of the American Meteorological Soci¢fiyrthcoming).
doi: 10.1175/2010BAMS3092.1.

Brooks, Harold E. and Charles A. Doswell, 2001, iNalized Damage from Major
Tornados in the United States: 1890-19%¢&ather and Forecastindl6, pp.
168-176.

Cambridge Econometrics, 201Buropean Regional Dat&Cambridge, UK.

Changnon, Stanley A. and Joyce M. Changnon, 198&mSCatastrophes in the
United StatedNatural Hazards6, pp. 93-107.

Changnon, Stanley A., Roger A. Pielke, David ChamgrRichard T. Sylves and
Roger Pulwarty, 2000, Human Factors Explain therdased Losses from
Weather and Climate Extreme8ulletin of the American Meteorological
Society 81(3), pp. 437-442.

Changnon, Stanley A., 2001, Damaging Thunderstoatividy in the United States,
Bulletin of the American Meteorological Sociegg(4), pp. 597-608.

Changnon, Stanley A., 2003, Shifting Economic Inipdmom Weather Extremes in
the United States: A Result of Societal Changeg, ®lobal WarmingNatural

Hazards 29, pp. 273-290.

23



Changnon, Stanley A., 2007, Catastrophic winternsso An escalating problem,
Climatic Change84, pp. 131-139.

Changnon, Stanley A., 2009a, Temporal and spaigttilsbtions of wind storm
damages in the United Stat&imatic Change94, pp. 473-482.

Changnon, Stanley A., 2009b, Increasing major lasbes in the U.S.Climatic
Change 96, pp. 161-166.

Crompton, Ryan P. and K. John McAneney, 2008, Nosaa Australian insured
losses from meteorological hazards: 1967-20B6yironmental Science &
Policy, pp. 371-378.

D’Adda, Carlo and Antonello E. Scorcu, 2003, On Thme Stability of the Output-
capital RatioEconomic Modelling20, pp. 1175-1189.

De Ronde, J.G., J.P.M. Mulder, and R. Spanhoff3280orphological Developments
and Coastal Zone Management in the Netherlandstniational Conference on
Estuaries and Coasts November 9-11, 2003, Hanggtooa.

Dessens, J., 1995, Severe convective weather icdhtext of a nighttime global
warming.Geophysical Research LetteB2 (10), pp. 1241-1244.

Downton, M., J. Z. B. Miller, and R. A. Pielke J2Q05, Reanalysis of U.S. National
Weather Service flood loss databdsetural Hazards Revievé, pp. 13-22.

Elsner, J. P., J.P. Kossin, and T. H. Jagger, 2008, increasing intensity of the
strongest tropical cycloneNature455, pp. 92-95.

Institute for Business and Home Safety, 2008, Thendiits of Modern Wind
Resistant Building Codes on Hurricane Claim Fregyeand Severity — A
Summary Report; available at: http://www.ibhs.oeyisroom/downloads
/20070810_102941_10167.pdf.

IPCC, 2001, Climate Change 200mpacts, Adaptation, and VulnerabilitiNew

York: Cambridge University Press.

24



IPCC, 2007a,Climate Change 2007: The Physical Science Bablisw York:
Cambridge University Press.

IPCC, 2007bClimate Change 2007: Impacts, Adaptation, and \talbiity, New
York: Cambridge University Press.

Karl, Thomas R., Gerald A. Meehl, Christopher Dll&fi Susan J. Hassol, Anne M.
Waple, and William L. Murray (eds.), 2008/eather and Climate Extremes in a
Changing Climate. Regions of Focus: North Ameridawaii, Caribbean, and
U.S. Pacific IslandsReport by the US Climate Change Science Prograiritee
Subcommittee on Global Change Research, SynthedifAasessment Product
3.3. http://downloads.climatescience.gov/sap/sdpdp3-3-final-all.pdf.

Katz, R. W., 2002, Stochastic modeling of hurricateenage Journal of Applied
Meteorology 41(7), pp. 754-762.

Knutson, Thomas R., John L. McBride, Johnny ChasrriKEmanuel, Greg Holland,
Chris Landsea, Isaac Held, James P. Kossin, Arikagava and Masato Sugi,
2010, Tropical cyclones and climate charigature Geoscien¢e, 157-163.

Krugman, Paul, 1992, CommeNBER Macroeconomics Annudl, pp. 54-56.

Kunz, M., J. Sander and Ch. Kottmeier, 2009, Ret¢emtds of thunderstorm and
hailstorm frequency and their relation to atmosphecharacteristics in
southwest Germanynternational Journal of Climatology29, pp. 2283-2297.

Lavery, Sarah and Bill Donovan, 2005, Flood risknagement in the Thames Estuary
looking ahead 100 year®hilosophical Transactions of the Royal Society A
363, pp. 1455-1474.

Miller, Stuart, Robert Muir-Wood and Auguste Boisade, 2008, An exploration of
trends in normalized weather-related catastropksels in: Diaz, Henry F. and
Richard J. Murnane (edsflimate Extremes and Societygp. 225-247. New

York: Cambridge University Press.

25



Min, Seung-Ki, Xuebin Zhang, Francis W. Zwiers, a@dbriele C. Hegerl, 2011,
Human contribution to more-intense precipitatiortrexes, Nature 470, pp.
378-381.

Neumayer, Eric and Fabian Barthel, 20102011, Nammg Economic Loss from
Natural Disasters: A Global Analysi&lobal EnvironmentaChange, 21(1), pp.
13-24. doi:10.1016/j.gloenvcha.2010.10.004.

NHGIS, 2010, Census of Population and Housing 13¥10, available at:
http://data.nhgis.org/nhgis/.

Nordhaus, William D., 2010, The economics of humies and implications of global
warming,Climate Change Economics, pp. 1-20.

Pall, Pardeep, Tolu Aina, Daithi A. Stone, PeterStott, Toru Nozawa, Arno G.J.
Hilberts, Dag Lohmann, and Myles R. Allen, 2011 tfopogenic greenhouse
gas contribution to flood risk in England and Waleautumn 2000Nature470,
pp. 382-385.

Peterson, Thomas C., Xuebin Zhang, Manola Brurgitjrand Jorge Luis Vazquez-
Aguirre, 2008, Changes in North American extremasved from daily weather
data,Journal of Geophysical Researcti3, D07113.

Pielke, R. A., Jr., Gratz, J., Landsea, C. W., i@s]Jl D., Saunders, M. A., and
Musulin, R., 2008, Normalized hurricane damagetha United States: 1900—
2005,Natural Hazards Reviev®(1), pp. 29-42.

Pielke, Roger A. Jr. and Christopher W. Landse&®81Normalized Hurricane
Damages in the United States: 1925-1988ather and Forecastingept. 1998,
pp. 621-631.

Pielke, Roger A. Jr., Christopher W. Landsea, RRdklusulin and Mary Downton,
1999, Evaluation of Catastrophe Models using a Ndimad Historical Record,

Journal of Insurance Regulatiph8(2), pp. 177-194.

26



Pielke, Roger A. Jr., Jose Rubiera, Christopherdsaa, Mario L. Fernandez, and
Roberta Klein, 2003, Hurricane Vulnerability in lratAmerica and The
Caribbean: Normalized Damages and Loss PotenNalsjral Hazards Review
4(3), pp. 101-114.

Raghavan, S. and S. Rajseh, 2003, Trends in Tho@geone Impact: A Study in
Andhra Pradesh, Indi&dmerican Meteorological Societg4, pp. 635-644.

Schiesser, Hans-Heinrich, 2003, Hagel. Extremereignisse und Klimaanderung
Bern: Organe consultatif sur les changements ciguas (OcCC). pp. 65-68.
Bern. http://www.proclim.ch/4dcgi/occc/fr/Report™85

Schmidt, Silvio, Claudia Kemfert and Peter HOpp@)2 Tropical cyclone losses in
the USA and the impact of climate change — A trandlysis based on data
from a new approach to adjusting storm lossEsyironmental Impact
Assessment Revie@0, pp. 359-369.

Schwab, Anna K., Katherine Eschelbach and DavidBthwer, 2007,Hazard
Mitigation and Preparednessioboken: Wiley & Sons.

Trapp, Robert J., Noah S. Diffenbaugh, and Alexar@lehovsky, 2009, Transient
response of severe thunderstorm forcing to elevatgdenhouse gas
concentrationsgieophysical Research LetteB6, L01703.

Trapp, Robert J., Noah S. Diffenbaugh, Harold EodBs, Michael E. Baldwin, Eric
D. Robinson, and Jeremy S. Pal, 2007, Changes wereethunderstorm
environment frequency during the 21st century cdusg anthropogenically
enhanced global radiative forcin@roceedings of the National Academy of
Sciences of the United States of Amerids, pp. 19719-19723.

UNCTAD (2005), Trade and Development Aspects ofitaace Services and
Regulatory Frameworks, Geneva: UNCTAD,; available at

http://www.unctad.org/en/docs/ditctncd200515 _en.pdf

27



US Census Bureau, 2010a, Population Estimates: irtpudnits, available at:
http://www.census.gov/popest/housing/.

US Census Bureau, 2010b, Historical Census of Hgu3iables: Home Values,
available at: http://www.census.gov/hhes/www/hog&iansus/historic /values.
html.

Vranes, Kevin and Roger Pielke Jr., 2009, Normdlifarthquake Damage and
Fatalities in the United States: 1900-2008&¢tural Hazards Reviewl0(3), pp.
84-101.

Weather Service flood loss databdsatural Hazards Revievé, pp. 13-22.

World Bank, 2010,World Development Indicators Online Databasashington,

DC: World Bank.

28



Table 1: Average insured losses and disaster cqantsub-type.

Average positive loss per event

ites

Disaster subtype Global Germany United Std
All disasters 2455 103.7 385.2
2,553 274 1,047
Avalanches 250.1 - -
1
Blizzard/ snow storm 245.3 195.6 315.6
32 1 18
Cold wave 242.9 210.6 -
10 3
Drought 299.4 - 409.9
14 9
Flash flood 64.3 20.7 61.5
63 4 9
General flood 176.7 166.5 194.2
268 18 46
Earthquake 344.5 8.9 1537.5
107 1 15
Hailstorm 92.4 116.5 143.4
213 25 67
Heat wave 16.2 11.5 -
3 1
Lightning - - -
Landslide 60.9 - -
5
Local windstorm 21.1 67.4 33.6
76 12 6
Rock fall - - -
Sandstorm 16.3 - -
1
Storm surge 2.1 2.1 -
1 1
Subsidence 591.6 - -
23
Tropical cyclone 921.8 - 2,855.0
292 74
Tempest storm 112.5 48.6 155.0
765 100 479
Tornado 145.6 6.9 185.2
185 17 139
Tsunami 8.3 - -
2
Volcanic eruption 86.5 - 61.2
9 1
Winter damage 271.7 100.5 279.2
55 5 31
Wildfire 165.5 - 211.1
79 54
Winter storm 222.3 177.7 204.3
349 86 99

Note: All values in non-normalized million USD o®@8; Number of events in italics.
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Table 2: List of insurance types for which premia iacluded.

Insurance class Insurancesincluded Disaster subtypes affected
Global sample
Property insurance e.g. residential - buildingsidential -

contents, commercial - buildings,
commercial - contents, commercial -
business interruption, industrial -
buildings, industrial - contents, industrial
business interruption

Engineering insurance e.g. machinery breakdowchinary -
business interruption, boiler, erection all
risk, construction all risk, electronic
equipment insurance

all disaster subtypes

United States

Property insurance Householders/Homeowners: Homerswn
Multiple Peril
Agriculture: Farmowners multiple peril,
crop (multiple peril) all disaster subtypes

Industrial/ Commercial: Non-liability
multiple peril, commercial multiple peril,
other

Allied lines

Earthquake
Flood from National Flood Insurance
Program NFIP

Other flood

Engineering insurance Machinery breakdown
Boiler and machinery
Inland marine (Construction all risk,

Cargo) all disaster subtypes
Ocean Marine (Offshore Energy, among
others)

Other Aircraft

Motor physical damage  Motor hull (no third par@gdility) all disasters subtypes, excl.

temperature highs and lows

West Germany

Property insurance Glass (Private Sachversicherung:
Glasversicherung)
Residential - contents (Private
Sachversicherung: Verbundene
Hausratversicherung)
Residential - buildings (Private
Sachversicherung: Verbundene
Wohngebaudeversicherung)
Commercial - fire (partially windstorm
included) (Feuerversicherung:
Gewerbe/Sonstige (enthielt
Sturmdeckungen in friheren Jahren)
Extended coverage to industrial fire
(Industrieversicherung: Extended
Coverage)
Industrial all risk (Industrieversicherung:
Alle Risiken)
Commercial - windstorm (Gewerbliche
Sachversicherung: Sturmversicherung)

all disaster subtypes
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Agriculture - animal (Landwirtschaftliche
Sachversicherung: Tier)

Agriculture - hail (Landwirtschaftliche
Sachversicherung: Hagel)

Engineering insurance Machinery breakdown (Teclmgisc
Versicherung: Maschinenversicherung)

Errection/construction (Technische
Versicherung: Montageversicherung)

Electronics/electric devices (Technische _
Versicherung: Elektronik/Schwachstrompgll disaster subtypes

Construction work (Technische
Versicherung: Bauleistung)
Machinery - business interruption
(Technische Versicherung: Maschinen-
Betriebsunterbrechungsversicherung)

Motor physical damage  Motor hull (no third partgdility) all disasters subtypes, excl.
(Kraftfahrzeugkaskoversicherung) temperature highs and lows

Notes: For the global sample, only examples givemsaurance markets differ and not all products are
available on all insurance markets; Engineeringriaisce data not available for all countries; farsih,

only property insurance premia used.
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Table 3: Comparison of our results with previouslsts

This paper’s analysis

Comparable analyses

Study Study
Disaster type Region period Results Study period Results Remarks
All disasters Global 1990-2008 no trend Neumayer Barthel 2011  1980-2009 no trend economic loss
Non-geophysical Global 1990-2008 no trend Millealet2008 1950-2005 no trend since 1950/  economic loss

Non-geophysical Developed countrieg990-2008 no trend

Convective events  Global 1990-2008 no trend
Storm events (excl. Global 1990-2008 no trend
tropical cylcones)

Tropical cyclones Global 1990-2008 no trend
Precipitation-related Global 1990-2008 no trend

events
Non-geophysical
Convective events
Flooding

United States
United States
United States

1973-2008 positierdr
1973-2008 poditara
1973-2008 positive trend

Temperature highs  United States 1973-2008 no trend
Temperature lows United States 1973-2008 no trend
Winter storms United States 1973-2008 no trend

All storms United States 1973-2008 positive trend

Hurricanes United States 1973-2008 positive trend

Non-geophysical
Convective events

West Germany
West Germany

1980-2008 positivedire
1980-2008 no trend

Flooding West Germany 1980-2008 no trend
Winter storms West Germany 1980-2008 positive trend
All storms West Germany

positive trend since 1970

Neumayer and Barthel 20111980-2009 no trend
Neumayer and Barthel 2011 198®-2 no trend
Neumayd Barthel 2011  1980-2009 no trend
Neumayer and Barthel 201D80-2009 no trend

no trend
no trend

Neumaye Barthel 2011 1980-2009
Neumayer and Barthel 201D80-2009

1950-1996 no trend
1970-2009 poditeved
1926-2000 no trend

Changnon et al. 2000
Neumayer and Barthel 2011
Do et al. 2005
no previous study
no previous study
Ghan 2007
ha@non 2001
Changnon 2003
Changnon 2009a

1949-2003 positive trend

1949-1998 increase since 1974

1950-1997 no trend

1952-2006 increase since 1992
ielk@and Landsea 1998 1925-1995 no trend

Pielke et al. 2008 1900-2005 no trend

Neumayer and Barthel 20111970-2009 no trend

Schmidt et al. 2009 1950-2005 no trend sincsO19

economic loss
economic loss
economic loss
economic loss

economic loss
economic loss

economic loss
economic loss

only thunderstorms
storms and floods
only windstorms
economic loss
economic loss
economic loss
economic loss

positive trend since 1970

Nordhaus 2010

no previous study
no previous study
no previous study
no previous study

1980-2008 no trend (maifyinano previous study

1900-2008 positive trend sinc@®1@conomic loss
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Figure 1: Correlation of total sum insured andltptamia in Germany.
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Notes: R-squared of regression 0.983. Analysis moyriod from 1993 to 2009; Due to data
availability, only values for insurance types resilal — buildings (Verbundene
Wohngebaudeversicherung), residential — contenerbidhdene Hausratsversicherung), commercial
wind storm — buildings & contents (Gewerbliche $®tuersicherung), and crop hail insurance
(Landwirtschaftliche Hagelversicherung) are incldidén 2009, premia for these insurance types

constituted 67 percent of all premia for propertyd aengineering insurance affected by natural

disasters.

33



Figure 2: Insurance penetration in the United Statel West Germany.
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Figure 3: Global deflated insured losses from ratdisasters.
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Figure 4: Global normalised insured losses frondisksters.
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Figure 5: Global normalised insured losses from-geophysical disasters.
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Figure 6: Normalised insured losses from non-gesigly disasters in developed

countries.
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Figure 7a: Global normalized insured losses fromveotive events.
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Figure

7b: Global normalized insured losses froinstakm events except tropical

cyclones.
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Figure 7c: Global normalized insured losses frapitral cyclones.
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Figure 7d: Global normalized insured losses froecimitation-related events.
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Figure 8a: Normalized insured losses of non-gedphalsdisasters in the United States

using changes in personal income (top) and changedue of housing units

(bottom).
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Figure 8b: Normalized insured losses from convectivents in the United States

using changes in personal income (top) and changedue of housing units

(bottom).
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Figure 8c: Normalized insured losses from floodimtghe United States using

changes in personal income (top) and changes ue\adlhousing units (bottom).
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Figure 8d: Normalized insured losses from tempeeatighs in the United States

using changes in personal income (top) and changedue of housing units

(bottom).
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Figure 8e: Normalized insured losses from tempegatows in the United States

using changes in personal income (top) and chamgeglue of housing units

(bottom).

6
1

4
1

2
1

P— —

T T T T T T T
1975 1980 1985 1990 1995 2000 2005
Coeff. of year: .007
tvalue: .745
pvalue: 462

0
1
|

Mormalised losses in billion USD of 2008

4 6
1 1

2
1

= B = I -?I‘I = n_

T T T T T T T
1975 1980 1985 1990 1995 2000 2005
Coeff. of year: .007
tvalue: 649
pvalue: 402

Mormalised losses in billion USD of 2008
0
1

Note: 60 disasters, thereof 33 with a positive ieddoss; Includes damages from winter damages and

cold waves.

47



Figure 8f: Normalized insured losses from wint@rsts in the United States using

changes in personal income (top) and changes ue\ailhousing units (bottom).
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Figure 8g: Normalized insured losses from all swnm the United States using

changes in personal income (top) and changes ue\adlhousing units (bottom).
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Figure 8h: Normalized insured losses from hurrisaire the United States using

changes in personal income (top) and changes ue\adlhousing units (bottom).
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Figure 9a: Normalized insured losses of non-geaphldisasters in West Germany.
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Figure 9b: Normalized insured losses from convectivents in West Germany.
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Figure 9c: Normalized insured losses from floodmiVest Germany.
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Figure 9d: Normalized insured losses from winterrss in West Germany.
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Figure 9e: Normalized insured losses from all semmWest Germany.
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