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Abstract

Correlated nonresponse within clusters arises in certain survey set-
tings. It is represented by a random effects model and assumed to be
cluster-specific nonignorable, in the sense that survey and nonresponse
outcomes are conditionally independent given cluster-level random ef-
fects. Two basic forms of inverse probability weights are considered:
response propensity weights based on a marginal model, and weights
based on predicted random effects. It is shown that both approaches
can lead to biased estimation under cluster-specific nonignorable non-
response, when the cluster sample sizes are small. We propose a new
form of weighted estimator based upon conditional logistic regression,
which can avoid this bias. An associated estimator of variance and
an extension to observational studies with clustered treatment assign-
ment are also described. Properties of the alternative estimators are
illustrated in a small simulation study.
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1 Introduction

Survey weighting is widely used to correct for the potential biasing impact

of nonresponse [12, 13, 18]. An important tool in the construction of sur-

vey weights is inverse probability weighting, defined here as weighting by

the reciprocal of a response probability, estimated under a model. Such

weights may be combined with sampling weights for an integrated treatment

of nonresponse and sampling. They may also be combined with model-based

predictors of a survey variable to improve efficiency [4, 9]. Such combined

estimators may be doubly robust in the sense that consistent estimation can

be achieved in a modelling framework if either the response model or the

model for the survey variable is correct [2, 9].

Most discussions of inverse probability weighting (e.g. 3) assume that

responses for different units are independent. It is not uncommon in sur-

veys, however, for nonresponse to be correlated within clusters. Access of

interviewers to respondents in some surveys is dependent on authorities at a

cluster level, for example in surveys of employees within a firm, and response

for individuals within such a cluster may be influenced by the extent to

which the authorities encourage participation, inducing correlation. In other

surveys, nonresponse may display intra-cluster correlation simply because of

heterogeneity between clusters used for multistage sampling.

This paper investigates how to construct inverse probability weights,

when response is clustered and cluster membership is observed for both re-

sponding and nonresponding units, as is the case when the clusters define a

stage in a multi-stage sampling design. One established approach is to use

such design clusters or homogeneous sets of clusters as weighting adjustment
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cells [12], where the implicit model is that response probabilities vary just

by cell and may be estimated by cell-level response rates. We consider the

more general setting when auxiliary information at the sample level may in-

clude other variables in addition to cluster membership. A natural model for

nonresponse, given such auxiliary information, is a multilevel model (e.g., 6),

where clustered nonresponse is captured via random effect terms. Our inter-

est is in how to construct inverse probability weights based on such models.

Some methods to correct for nonresponse bias in a clustered survey were

proposed by (author?) [22]. These methods were based on a random effects

model for the survey variable and thus fall outside the class of weighting

methods we consider. We refer briefly to the relation between these differ-

ent approaches in §7. We make use of the concept of cluster-specific non-

ignorable nonresponse introduced by (author?) [22] to describe the case

when nonresponse may depend on unobserved cluster random effects which

may be correlated with the survey variables. This condition is weaker than

the usual missing at random condition, which is conventionally assumed if

inverse probability weighting is to correct for bias [20, p.146]. A key aim of

this paper is to construct weights which exploit the auxiliary information on

cluster membership to correct for bias when nonresponse is cluster-specific

non-ignorable, not just missing at random. The cluster-specific noninorable

condition has also been discussed, at least implicitly, by (author?) [14, Ex-

ample 6.24], (author?) [19] and (author?) [23].
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2 Estimation and Modelling Framework

Let U = {(i, j) : i = 1, . . . , N, j = 1, . . . ,Mi} denote a finite population, with

the jth unit in the ith cluster labelled (i, j). The population size is denoted

N0 =
∑N

1 Mi. Suppose the objective is to estimate Ty =
∑

(i,j)∈U yij, where

yij is a generic survey variable of interest. Many other parameters may be

expressed as a function of such totals and estimated by this function of the

corresponding estimated totals.

Let s = {(i, j) : i = 1, . . . , n, j = 1, . . . ,mi} ⊂ U denote a sample selected

by a probability sampling design from U , where the sample labels are ordered

in this way without loss of generality. Suppose that πij, the probability of

selection of (i, j) under the sampling design, is known and non-zero for each

(i, j) ∈ s.

Let Rij denote the response indicator variable, which is defined for all

units (i, j) ∈ U , irrespective of which sample s is selected, such that a sample

unit responds when Rij = 1 and not if Rij = 0. Thus, nonresponse is stable

in the terminology of (author?) [17]. Suppose that Rij, a 1 × k vector of

auxiliary variables xij and the cluster membership indicator i are observed

for all units in s, but that yij is only observed for sample units if Rij = 1.

Our primary focus will be on the inverse probability weighted estimator

of Ty given by

T̂y =
∑

(i,j)∈s

dij q̂ijRijyij, (1)

where dij = π−1ij is the design weight and q̂ij is a non-response weight, repre-

senting an inverse estimated response probability, to be discussed in §3. The

estimator in (1) is called the two-phase nonresponse adjusted estimator in
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(author?) [18, equation (6.3)].

We also consider

T̂y,reg = T̂y + (T̂xs − T̂x)λ̂, (2)

where

T̂xs =
∑

(i,j)∈s

dijxij, T̂x =
∑

(i,j)∈s

dij q̂ijRijxij,

and

λ̂ =
( ∑

(i,j)∈s

dij q̂ijRijx
T
ijxij

)−1 ∑
(i,j)∈s

dij q̂ijRijx
T
ijyij,

introduced by (author?) [4] and called the two-phase generalized regres-

sion estimator by (author?) [18, equation (6.4)] and an augmented inverse

probability weighted complete case estimator by (author?) [20, p.148].

In order to construct the nonresponse weights q̂ij and to assess the prop-

erties of the estimators of Ty, we introduce a model framework ξ for the

generation of the Rij and yij. We assume that the distribution of (Rij, yij)

implied by ξ does not depend on the sample outcome s. Sampling and nonre-

sponse may thus be said to be unconfounded and sampling is noninformative

with respect to yij.

The basic parametric model we consider for Rij, unconditional on yij, is

pr(Rij = 1 | ui) = h(xijβ + ui), ui ∼ N(0, τ 2), (3)

where the ui are independent random effects, h(·) is a specified inverse link

function, such as the inverse logit function, the xij are treated as fixed, and

the k × 1 vector β and τ 2 are unknown parameters. The Rij are assumed

mutually independent conditional on the ui.

We shall only consider estimation in the case when the number of respon-

dents in each cluster, Ri+ =
∑mi

j=1Rij, is non-zero. (author?) [22] comment
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on ways in which biased estimation can arise when this is not the case. The

event that Ri+ = 0 could arise for two main reasons. First, in some surveys,

nonresponse may occur as a cluster-level process, for example at the school

level for a survey of children clustered in schools. We do not consider this

possibility further here. Secondly, this event could arise when nonresponse

is only an individual-level process, as in model (3), but mi is small, as for

example in a survey of adults clustered in households. The practical appli-

cability of this paper will be to surveys where the mi may not be large, e.g.,

values of 5 and 10 are considered in §6, but they are large enough for this

event to occur under model (3) with negligible probability.

In addition to the random effects model (3), we also consider the implied

marginal model:

pr(Rij = 1) = g(xijβ), (4)

where g(xijβ) = E{h(xijβ + ui)} and the expectation is taken across the

distribution of ui. This random effect will induce a correlation between Rij

and Rik for j 6= k.

We consider two principal assumptions regarding the relation between

Rij and yij. Nonresponse is said to be missing at random if the Rij

and yij are pairwise independent. The mechanism is said to be cluster-

specific nonignorable nonresponse, following (author?) [22], if model (3)

holds and the Rij and yij are independent conditional on the ui, that is

pr(Rij = 1|yij, ui) = pr(Rij = 1|ui).

To illustrate and motivate the cluster-specific nonignorable nonresponse

assumption, suppose that yij obeys a linear mixed effects model

yij = xijλ+ νi + εij, (5)
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where νi and εij are random effects with zero means, such that the Rij are

conditionally independent of the νi and εij given the ui and, furthermore, ui

is conditionally independent of the εij given the νi. Then, when both models

(3) and (5) hold, nonresponse is missing at random when ui and νi are inde-

pendent and cluster-specific nonignorable otherwise. The principal relevance

of this paper is to cases when nonresponse is cluster-specific nonignorable

but not missing at random. The key motivating application arises when

both nonresponse and the survey variable exhibit clustering, which may be

represented by the kind of joint cluster effect model for (Rij, yij) in (3) and

(5), where the cluster effects ui and νi display correlation after controlling

for observable xij. For example, when clustering is by geography, correlation

between area-level response rates and area means of the survey variable may

be induced by a common correlation with average area-level income which is

not available as an xij variable.

3 Construction of Nonresponse Weight

We now consider the construction of the weight q̂ij used in the estimators in

(1) and (2), when model (3) holds. We first consider three basic options to

serve as benchmarks for assessing the proposed option.

(i) Response propensity weights (13): the inverse link function g(·) in the

marginal probability pr(Rij = 1) in (4) is assumed known and the weights are

set to be q̂M
ij = g(xijβ̂

M)−1, where β̂M is obtained, for example, by maximum

likelihood estimation under the working model of independent observations.

(ii)Weights based on predicted random effects: set q̂RE
ij = h(xijβ̂

RE +

ûRE
i )−1, based on the random effects model in (3), where β̂RE and the ûRE

i
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and implicitly τ̂ 2RE might be obtained using an approximate maximum like-

lihood method, such as in (author?) [5, p.174], where ûRE
i is the mode of

an approximate predictive distribution for ui given the observed Rij.

(iii)Weights based on estimated fixed effects: set q̂FE
ij = h(xijβ̂

FE+ûFE
i )−1

as in (ii), but where the ui in (3) are now treated as unknown parameters

(fixed effects) and β̂FE and the ûFE
i are maximum likelihood estimators.

One advantage of this approach compared to (ii) when h(·) is the inverse

logit function is that it avoids numerical integration in the computation.

We shall present theoretical reasons in the next section why each of the

above options may not correct adequately for bias from cluster-specific non-

ignorable nonresponse when the mi may be small. We now propose an al-

ternative conditional logistic regression approach for this case, designed to

remove the dependence of the weighting method on the random effects. The

basic idea is to construct the weight as pr(Rij = 1 | Ri+)−1. It may be

shown (e.g., 1, p.251) that when model (3) holds and h(·) is the inverse logit

function, we have

pr(Rij = 1 | Ri+) =

∑
ri∈B1ij

exp(
∑mi

j=1 rijxijβ)∑
ri∈B2i

exp(
∑mi

j=1 rijxijβ)
, (6)

where rij denotes a possible value taken by Rij, ri = (ri1, . . . , rimi
), ri+ =∑

j rij, B1ij = {ri : rij = 1, ri+ = Ri+} and B2i = {ri : ri+ = Ri+}. The

absence of the ui in (6) arises from the sufficiency of Ri+ for ui. In practice, β

is unknown and we propose to estimate it by conditional maximum likelihood.

We suppose that the first element of xij is the intercept and write xij =

(1 x1ij), β = (β0 β
T
1 )T and xijβ = β0+x1ijβ1. The parameter β0 cancels from

(6) and we express the weight as q̂CML
ij = pr(Rij = 1 | Ri+; β1 = β̂CML

1 )−1,
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where β̂CML
1 is obtained by solving the conditional score equation given by

U(β1) =
n∑
i=1

mi∑
j=1

Uij(β1) = 0, Uij(β1) = Rijx1ij −
∑
ri∈B2i

ai(β1)x1i+r/{mi

∑
ri∈B2i

ai(β1)},

ai(β1) = exp
( mi∑
j=1

rijx1ijβ1

)
, x1i+r =

mi∑
j=1

rijx1ij.

The conditional logistic approach is closer to the fixed effects than the

random effects approach in the sense that, given β, the weights in cluster

i depend only on the Rij in cluster i and they are not shrunk to a cluster

average using outcomes from other clusters. In the special case when xij = xi

and we replace xijβ + ui by ui, since xi is effectively confounded with ui,

both the conditional logistic and fixed effects weights reduce to mi/Ri+,

the inverse response rate in cluster i, a traditional choice of weight with

clustered survey data [22]. In the general case, ûFE
i is the solution of Ri+ =∑

j h(xijβ + ûFE
i ), for given β, and thus both sets of weights in cluster i may

be viewed as functions of the cluster level response rate Ri+/mi, with the

functions depending, in slightly different ways, on h(·) and β. Compared

to the random effects approach, the conditional logistic approach has the

advantage that it does not depend on assumptions about the distribution of

ui nor about the relation of ui to xij. On the other hand, it does depend on

the assumption that h(·) is the inverse logit function in order that (6) holds

and is free of ui. Since we have assumed that sampling and nonresponse

are unconfounded, we have not incorporated design weights in either the

expression in (6) or the construction of β̂CML
1 .
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4 Bias Properties of Weighted Estimators

We now consider how well the four weighting approaches described in the

previous section correct for the bias arising from nonresponse which is either

missing at random or cluster-specific nonignorable. This bias is approximated

in an asymptotic framework, where increasing values of n, the number of

sampled clusters, index a sequence of finite populations and samples (8, sect.

1.3), such that the population size N0 also increases but the cluster sample

sizes, mi, may remain small. We ignore stratification for simplicity but note

that, in practice, the sampling of clusters is usually stratified and it may be

more appropriate to assume that the number of strata increases, with the

numbers of clusters within each stratum remaining small and fixed.

We suppose that under the asymptotic framework, β̂M = βM + op(1),

β̂RE = βRE + op(1), τ̂ 2RE = τ 2RE + op(1), β̂CML = βRE + op(1), where

g(xijβ
M) is the true value of pr(Rij = 1) in (4) and (βRE, τ 2RE) define the

true model when (3) holds. See, e.g., (author?) [11] for the consistency

of β̂M. The consistency of β̂CML depends on h(·) being the inverse logit

function. It is well-known, however, that the fixed effects estimator β̂FE is not

consistent under model (3), where the ui are treated as unknown parameters

and the mi may be small (1, p.496). We therefore do not attempt here to

approximate the bias of the corresponding estimator of Ty, although we shall

consider this estimator in the simulation study in §6.

Let qM
ij and qCML

ij denote the values of q̂M
ij and q̂CML

ij obtained when

β̂M and β̂CML are replaced by βM and βRE respectively and let qRE
ij =

h(xijβ
RE+ũRE

i )−1, where ũRE
i is the limiting value of ûRE

i , with (β̂RE, τ̂ 2RE)

replaced by (βRE, τ 2RE).
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Let T̂y in (1) be denoted T̂M
y , T̂RE

y or T̂CML
y when q̂ij = q̂M

ij , q̂RE
ij or q̂CML

ij ,

respectively, and let T̃y =
∑
dijqijRijyij be denoted T̃M

y , T̃RE
y or T̃CML

y when

qij = qM
ij , qRE

ij or qCML
ij , respectively. We are interested in the biases of T̂M

y ,

T̂RE
y and T̂CML

y when nonresponse is either missing at random or cluster-

specific nonignorable. We shall approximate these by the biases of T̃M
y , T̃RE

y

and T̃CML
y , for which expressions are given in the following result, together

with a form (in (7)) of asymptotic equivalence between (T̂M
y , T̂RE

y , T̂CML
y )

and (T̃M
y , T̃RE

y , T̃CML
y ). Since T̃RE

y is biased in general when nonresponse

is missing at random, it will also be when it is cluster-specific nonignorable

and thus we do not present a bias expression for that case.

Theorem 1 Under conditions given below expression (11),

N−10 T̂M
y = N−10 T̃M

y + op(1), N−10 T̂RE
y = N−10 T̃RE

y + op(1),

N−10 T̂CML
y = N−10 T̃CML

y + op(1). (7)

When nonresponse is missing at random,

Ep{Eξ(T̃M
y − Ty)} = 0, (8)

where Ep and Eξ denote expectation under the sampling design and the model,

respectively.

When nonresponse is cluster-specific nonignorable and model (5) holds,

Ep{Eξ(T̃M
y − Ty)} =

∑
U

Eξ{h(xijβ + ui)Eξ(νi | ui)}
Eξ{h(xijβ + ui)}

. (9)

When nonresponse is missing at random and model (5) holds,

Ep{Eξ(T̃RE
y − Ty)} = Ep[

∑
s

dij{Eξ(qRE
ij Rij)− 1}xijλ]. (10)
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When nonreponse is either missing at random or cluster-specific nonig-

norable and when model (5) need not necessarily hold,

Ep{Eξ(T̃CML
y − Ty)} = 0. (11)

The expressions in (7) may be proved through Taylor expansion of the

q̂ij as functions of β̂ around β, and τ̂ 2 around τ 2 in the case of q̂RE
ij , under

the model ξ for the Rij. The proof uses the consistency of the β̂ and τ̂ 2. It

also assumes that the functions of β̂ and τ̂ 2 have continuous first derivatives

and that N−10

∑
s dijRijδijyij = Op(1), for the derivatives δij of each of these

functions with respect to β̂, and τ̂ 2 in the case of q̂RE
ij , evaluated at their true

values.

Expressions (8)–(11) follow by direct evaluation. For illustration, the key

result (11) is obtained by noting that when nonresponse is cluster-specific

nonignorable we have

Ep{Eξ(T̃CML
y − Ty)} = EpEξ[

∑
(i,j)∈s

dij{Eξ(qCML
ij Rij | ui)− 1}Eξ(yij | ui)]

and

Eξ(q
CML
ij Rij | ui) = Eξ{Eξ(qCML

ij Rij | Ri+, ui) | ui} = Eξ{qCML
ij Eξ(Rij | Ri+) | ui} = 1.

Hence, the proposed weighting approach results in removal of bias for T̃CML
y

when nonresponse is cluster-specific nonignorable or is missing at random.

By comparison, we see from expressions (8) and (9) that T̃M
y is unbiased

only when nonresponse is missing at random. When nonresponse is cluster-

specific nonignorable, response propensity weighting may lead to bias. This

is not surprising since this weighting approach makes no attempt to control
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for clustering. The bias expression in (9) will generally be non-zero when

ui and νi are correlated. If h(·) is an increasing function, as for the logit

function, and ui and νi are positively correlated then we may expect the bias

to be positive.

Turning to weighting based on predicted random effects, we observe that

T̃RE
y may be biased, even when nonreponse is missing at random. This

may occur when the Eξ(q
RE
ij Rij) = Eξ{h(xijβ

RE + ũRE
i )−1Rij} differ from

unity. As the mi increase, the ũRE
i will approach ui and Eξ{h(xijβ

RE +

ũRE
i )} will approach 1. But for small mi this will not generally be the case.

The problem is that, when mi is small, there may be correlation between

Rij and ũRE
i , which depends on Ri1, . . . , Rimi

, conditional on ui. Assuming

again that h(·) is increasing, we may expect that h(xijβ + ũRE
I ) and Rij are

negatively correlated, conditional on ui, suggesting that the biasing effect

when nonresponse is missing at random will be to shrink T̃RE
y towards zero.

Even if nonresponse does not depend on xij, so that βRE = 0, we may still

have bias, unless τ 2 is also zero.

Our discussion in this section has so far related to the basic weighted

estimator T̃y. We now consider parallel results to those in Theorem 1 for the

regression estimator T̃y,reg in (2). It follows, by analogy to (8) and (9) that

Ep{Eξ(T̃M
x − T̂xs)} = 0,

whether nonresponse is missing at random or cluster-specific nonignorable.

Hence the bias properties of T̂M
y,reg follow those of T̂M

y , that is these estimators

are both approximately unbiased when nonresponse is missing at random but

are subject to potential bias (as in (9)) when it is cluster-specific nonignor-
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able. Turning to T̂RE
y,reg, we note that, analogous to (10) we have:

Ep{Eξ(T̃RE
x − T̂xs)} = Ep[

∑
s

dij{Eξ(qRE
ij Rij)− 1}xij].

Under the assumption that sampling is noninformative, we have λ̂ = λ+

op(1) under model (5) and it follows that, in the limit, T̂RE
y,reg is approximately

unbiased when nonresponse is missing at random, unlike T̂RE
y . This depends

on the truth of (5), unlike the approximate unbiasedness of T̂CML
y . When

nonresponse is cluster-specific nonignorable, T̂RE
y,reg will be subject to potential

bias like T̂RE
y . Its approximate form, analogous to (10), is:

Ep{Eξ(T̃RE
y,reg − Ty)} = Ep

∑
s

dijEξ[{Eξ(qRE
ij Rij)− 1}νi].

Finally, we note that the large sample bias of T̂CML
y,reg follows that of T̂CML

y ,

with both being zero when nonresponse is cluster-specific nonignorable or

missing at random.

5 Variance Estimation

In this section we outline an approach to estimating the variance of the

proposed estimator T̂CML
y . We adopt a linearization approach in which a

linearized variable zij is determined, such that the variance of T̂CML
y may be

approximated by the variance of
∑

s zij (21). The variance estimator may

then be constructed following a standard survey sampling approach for linear

statistics. In order to construct zij we first recall from §3 that we may write

the conditional logistic weight as a function of β̂CML
1 . As a first order Taylor

expansion we have
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T̂CML
y = T̃CML

y +
∑
s

dijRijyijδij(β
RE
1 )(β̂CML

1 − βRE
1 ), (12)

where δij(β1) = ∂qCML
ij (β1)/∂β1.

A Taylor expansion of β̂CML
1 is

β̂CML
1 = βRE

1 + I(βRE
1 )−1U(βRE

1 ), (13)

where I(β1) is the information matrix (cf. 7):

I(β1) = −∂U(β1)

∂β1

=
n∑
i=1

{
∑

ri∈B2i
ai(β1)x

T
1i+rx1i+r∑

ri∈B2i
ai(β1)

−
∑

ri∈B2i
ai(β1)x

T
1i+r∑

ri∈B2i
ai(β1)

∑
ri∈B2i

ai(β1)x1i+r∑
ri∈B2i

ai(β1)
}.

Substituting (13) in (12) , we obtain the linearized variable as

zij = dijRijq
CML
ij yij + {

∑
(i,j)∈s

dijRijyijδij(β
RE
1 )}I(βRE

1 )−1Uij(β
RE
1 ). (14)

In order to construct a variance estimator it is necessary to replace βRE
1

in (14) by β̂CML
1 and qCML

ij by q̂CML
ij . The first term in (14) would be the

linearized variable, were the weight q̂CML
ij to be treated as fixed. The re-

maining term provides an adjustment for the fact that q̂CML
ij is an estimator.

An analogous expression to (14) is provided in (author?) [10, Theorem 1]

for the case when the weight q̂M
ij is used and there is no clustering.

One commonly used estimator of the variance of a linear statistic, in the

case of stratified selection of clusters, is given by

ν =
H∑
h=1

nh
(nh − 1)

∑
i∈sh

(zi+ − z̄h)2, (15)
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where zi+ =
∑mi

j=1 zij, z̄h = n−1h
∑

i∈sh zi+, and sh denotes the set of nh clus-

ters drawn in stratum h for h = 1, . . . , H and it is assumed that nh ≥ 2 for

each h. This effectively assumes that the zi+ may be treated as indepen-

dent and identically distributed within strata, which may be a reasonable

approximation for many sampling schemes where clusters are selected as pri-

mary sampling units and the fraction of primary sampling units selected in

each stratum is small and when nonresponse is independent between clus-

ters. A practical advantage of this approach is that it allows for clustered

nonresponse as well as complex forms of sampling within clusters.

6 Simulation Study

A small simulation study is now undertaken to illustrate the properties of the

four weighted point estimators in §3 and the variance estimator derived in

the previous section. We created a finite population with N = 200 and Mi =

M = 10, where the values of xij, Rij and yij were generated, respectively,

from: xij = (1, x1ij), x1ij ∼ N(2, 1), truncated below by 0 and above by 4;

Rij ∼ model (3) with h(·) the inverse logit function, β = (β0, β1)
T , τ 2=1;

yij ∼ model (5) with λ = 5, εij ∼ N(0, 1) and νi = αi + δui, where αi ∼

N(0, 1).

Since αi, ui and εij are generated independently, nonresponse is missing at

random if δ = 0 and cluster-specific nonignorable otherwise. We consider four

possible sets of values for the parameters β = (β0, β1)
T and δ, representing

different missing data mechanisms: (i) MCAR: (β0, β1) = (1, 0), δ = 0, (ii)

MAR: (β0, β1) = (0, 0.5), δ = 0, (iii) CSNI1: (β0, β1) = (1, 0), δ = 5 and (iv)

CSNI2: (β0, β1) = (0, 0.5), δ = 5.
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Both choices of (β0, β1) generate an overall response rate of about 70%.

We drew 1000 samples using (a) simple random cluster sampling with n = 50,

mi = M = 10 and (b) two stage sampling, with simple random sampling at

each stage with n = 50, mi = 5. For each of the 1000 replications, new

values of the Rij were generated along with the new samples. Other finite

population values were kept fixed. Any samples for which Ri+ = 0 for some

i were rejected.

Simulation results are presented in Tables 1 and 2 for these four missing

data mechanisms, for the four weighting approaches in §3 and for the two

choices of (n,mi) above. The relative bias reported in the tables is the

mean of the estimated total across the 1000 replications less the true finite

population total, divided by this population total. The relative standard

error reported is the standard deviation of the estimated total across the 1000

replications divided by the true finite population total. To help understand

the impact of estimating βRE by β̂CML, we also include results for T̃CML
y ,

i.e., T̂CML
y with β̂CML replaced by βRE.

We comment first on the bias properties. There is no evidence of bias

in T̃CML
y , as should be the case from (11), nor is there evidence of bias in

T̂CML
y . The asymptotic equivalence of T̃CML

y and T̂CML
y in (7) holds here to

a suitable approximation. We observe evidence of bias in T̂M
y under missing

data mechanisms (iii) and (iv), where δ = 5, but not for mechanisms (i) and

(ii), as expected, in approximation, from (8) and (9). Since the value, 0.5,

of the intra-cluster correlation implied by δ = 5 is fairly large, we repeated

the simulations with δ = 1, implying an intra-cluster correlation of 0.07,

and found the bias of T̂M
y to be reduced but still clearly the worst of all
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Table 1: Simulation estimates, based on 1000 replicates, of relative bias,
standard errors and root mean squared errors of weighted estimates of totals
for alternative weighting methods and missing data mechanisms. Cluster
sampling with n = 50, mi = 10

Missing data Weighting Relative Relative Relative
mechanism method Bias (%) SE (%) RMSE (%)
MCAR Response propensity (−0.1) 2.3 2.3

Fixed effects (0.0) 2.5 2.5
CML, estimated (0.0) 2.5 2.5
CML, true parameter (0.0) 2.9 2.9
Random effects −2.8 2.4 3.6

MAR Response propensity (−0.1) 2.3 2.3
Fixed effects (0.1) 2.3 2.3
CML, estimated (0.1) 2.3 2.3
CML, true parameter (0.1) 2.5 2.5
Random effects −2.4 2.3 3.3

CNI1 Response propensity 11.1 6.2 12.7
Fixed effects (−0.1) 6.3 6.3
CML, estimated (−0.1) 6.3 6.3
CML, true parameter (−0.2) 6.4 6.4
Random effects 2.2 6.1 6.4

CNI2 Response propensity 11.4 6.2 12.9
Fixed effects (−0.1) 6.3 6.3
CML, estimated (−0.1) 6.3 6.3
CML, true parameter (−0.1) 6.4 6.4
Random effects 2.7 6.0 6.6

Parentheses surround estimates which are within two simulation standard errors of 0. SE,
standard error; RMSE, root mean squared error; MCAR, missing completely at random;
MAR, missing at random; CSNI, cluster-specific nonignorable; CML, conditional maxi-
mum likelihood.
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Table 2: Simulation estimates, based on 1000 replicates, of relative bias,
standard errors and root mean squared errors of weighted estimates of totals
for alternative weighting methods and missing data mechanisms. Two stage
sampling with n = 50, mi = 5

Missing data Weighting Relative Relative Relative
mechanism method Bias (%) SE (%) RMSE (%)
MCAR Response propensity (−0.1) 3.2 3.2

Fixed effects (0.2) 3.7 3.7
CML, estimated (0.2) 3.6 3.6
CML, true parameter (0.1) 4.0 4.0
Random effects −3.1 3.3 4.5

MAR Response propensity (0.0) 3.1 3.1
Fixed effects (0.2) 3.2 3.2
CML, estimated (0.2) 3.2 3.2
CML, true parameter (0.1) 3.4 3.4
Random effects −2.6 3.2 4.1

CNI1 Response propensity 10.4 6.6 12.3
Fixed effects (0.0) 6.7 6.7
CML, estimated (0.0) 6.6 6.6
CML, true parameter (−0.1) 7.0 7.0
Random effects 3.6 6.4 6.4

CNI2 Response propensity 10.8 6.6 12.6
Fixed effects (−0.1) 6.8 6.8
CML, estimated (0.0) 6.7 6.7
CML, true parameter (−0.1) 7.0 7.0
Random effects 4.2 6.4 7.6

Parentheses surround estimates which are within two simulation standard errors of 0. SE,
standard error; RMSE, root mean squared error; MCAR, missing completely at random;
MAR, missing at random; CSNI, cluster-specific nonignorable; CML, conditional maxi-
mum likelihood.
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estimators. As anticipated in §4, there is evidence of negative bias in T̂RE
y

under mechanisms (i) and (ii), when δ = 0. As δ increases we found the bias

of T̂RE
y to shift in the direction towards that of T̂M

y . For δ = 1 we found it

still negative. For missing data mechanisms (iii) and (iv) with δ = 5 we see

in Tables 1 and 2 that the bias is positive, as for T̂M
y . The bias of T̂RE

y under

mechanism (ii) does decline as mi increases but, repeating the simulation for

mi = 20, we still find a relative bias of -1.7% so the decline is not rapid. We

presented no theory for T̂FE
y in §4. We observe in Tables 1 and 2 that it

seems to share a similar absence of bias to T̂CML
y .

Turning to the standard errors, we first compare T̃CML
y and T̂CML

y . Some

results in the literature (e.g. 15, 10) suggest that the use of an unweighted

estimate of the response propensity rather than its true value can, paradox-

ically, reduce variance and this is indeed observed in Tables 1 and 2 in all

cases. There is some evidence in these tables that the variance of T̂CML
y can

be a little larger than those of T̂M
y and T̂RE

y , but the smaller bias of T̂CML
y off-

sets this effect. The root mean squared error of T̂CML
y is always smaller than

that of T̂RE
y , sometimes substantially so, and it is also considerably smaller

than that of T̂M
y for the cluster-specific nonignorable cases. Of course, the

relative root mean squared error and the extent of the bias-variance trade-off

will depend on sample size.

The somewhat larger variances of T̂CML
y and T̂FE

y observed in Tables 1

and 2 seem to be associated with greater variability in the weights q̂CML
ij than

the q̂M
ij or q̂RE

ij . These weights are truncated below by unity and it is the very

large weights that are of potential concern. Comparison of the weights result-

ing from the use of β̂CML versus its true value suggests that the estimation
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of β is not a major source of the weight variability in the simulation study.

Large weights q̂CML
ij arise primarily when one of the conditional probabilities

of response in (6) is small. This may be partly because the response rate in

the cluster is low, perhaps by chance, which will also lead to a larger value

of q̂FE
ij , and partly because an outlying value of xij, with xijβ unusually low,

is included in the sample of mi units and that unit responds.

We now turn to results on the regression estimator T̂y,reg in Table 3.

Results for T̂M
y,reg were almost identical to those for T̂M

y , as anticipated for

bias in §4, and are thus not included in the table. Results for T̂FE
y,reg and T̃CML

y,reg

were almost identical to those for T̂CML
y,reg and are also thus not included,

although it is of interest to note that the reduction in variance of T̂CML
y,reg

vs. T̃CML
y,reg observed in Tables 1 and 2 seems to disappear once regression

estimation is used. Table 3 shows how the bias of T̂RE under the first two

missing data mechanisms is removed by regression estimation, as anticipated

in §4. However, T̂RE
y,reg remains biased under the cluster-specific nonignorable

mechanisms. As expected, regression estimation does lead to some reduction

in variance. As in Tables 1 and 2, T̂RE
y,reg does show some slight variance gains

relative to T̂CML
y,reg but this is more than offset by bias and the root mean

squared error of T̂CML
y,reg is in no cases greater than that of T̂RE

y,reg.

Finally we present in Table 4 some results on the estimation of the vari-

ance of T̂CML
y for the case of cluster sampling. We consider two versions of

the variance estimator in (15). Both include a finite population correction

(1−n/N). Estimator (i) includes only the first term from (14) and so treats

the weight q̂CML
ij as fixed. Estimator (ii) includes both terms in (14) and so

allows for variation in β̂CML
1 . Allowing for uncertainty in estimation of β1
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Table 3: Simulation estimates, based on 1000 replicates, of relative bias,
standard errors and root mean squared errors of regression weighted estimates
of totals for alternative weighting methods and missing data mechanisms

Missing data Weighting Relative Relative Relative
mechanism method Bias (%) SE (%) RMSE (%)
n=50, mi=10
MCAR CML, estimated (0.1) 2.3 2.3

Random effects (0.0) 2.3 2.3
MAR CML, estimated (0.1) 2.3 2.3

Random effects (0.0) 2.3 2.3
CSNI1 CML, estimated (−0.1) 6.2 6.2

Random effects 5.0 5.9 7.8
CSNI2 CML, estimated (−0.1) 6.3 6.7

Random effects 4.2 6.4 7.6

n=50, mi=5
MCAR CML, estimated (0.1) 3.2 3.2

Random effects (0.0) 3.2 3.2
MAR CML, estimated (0.2) 3.1 3.1

Random effects (0.1) 3.1 3.1
CSNI1 CML, estimated (−0.1) 6.5 6.5

Random effects 6.8 6.3 9.3
CSNI2 CML, estimated (0.0) 6.7 6.7

Random effects 7.0 6.3 9.4
Parentheses surround estimates which are within two simulation standard errors of 0. SE,
standard error; RMSE, root mean squared error; MCAR, missing completely at random;
MAR, missing at random; CSNI, cluster-specific nonignorable; CML, conditional maxi-
mum likelihood.
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Table 4: Simulation estimates, based on 1000 replicates, of relative bias,
standard errors and root mean squared errors of standard error estimators for
conditional maximum likelihood estimation of totals for alternative missing
data mechanisms. Cluster sampling with n = 50, mi = 10

Missing data Standard Error Relative Relative Relative
mechanism Estimator Bias (%) SE (%) RMSE (%)
MCAR Treating weight as fixed 10.7 13.7 17.4

Allowing for variation in β̂ −3.2 10.3 10.8
MAR Treating weight as fixed 3.9 10.3 11.0

Allowing for variation in β̂ −1.0 9.3 9.4
CSNI1 Treating weight as fixed 3.1 10.3 10.8

Allowing for variation in β̂ 1.0 9.9 9.9
CSNI2 Treating weight as fixed 1.4 13.1 13.1

Allowing for variation in β̂ (0.2) 12.0 12.0
Parentheses surround estimates which are within two simulation standard errors of 0. SE,
standard error; RMSE, root mean squared error; MCAR, missing completely at random;
MAR, missing at random; CSNI, cluster-specific nonignorable.

reduces the variance estimates, as is appropriate given that the variance of

T̂CML
y is smaller than that of T̃CML

y in Tables 1 and 2. Estimator (ii) does

display significant if relatively modest bias in three out of four cases. This

may be attributed to the small between-cluster degrees of freedom. Estima-

tor (i) has larger root mean squared error than estimator (ii) in each case,

but is always conservative and this may be attractive in some applications,

especially since this estimator is simpler to compute.

7 Extension to Observational Studies with

Clustered Treatment Assignment

The use of the conditional maximum likelihood estimator to correct for large-

sample bias may be extended to treatment effect estimation in observational

studies with clustered treatment assignment . Suppose that aij denotes a

0-1 treatment assignment variable which is subject to clustering and obeys
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model (3) with Rij replaced by aij, where ui is the random effect term. Let

yij = (y0ij, y1ij) denote the potential outcomes under either treatment (16).

Write yi = (yTi1, . . . , y
T
imi

)T , ai = (ai1, . . . , aimi
) and xi = (xTi1, . . . , x

T
imi

)T

and define the conditional propensity score as eij = pr(aij = 1 | ai+, xi),

where ai+ =
∑

j aij. Just as in (6), eij is free of ui and observable, subject

to parameter estimation. Let ei = (ei1, . . . , eimi
)T . The treatment assign-

ment assumption corresponding to cluster-specific nonignorable nonresponse

is that ai and yi are conditionally independent given ui and xi. We might

refer to this as cluster specific nonignorable treatment assignment. Then we

may show, corresponding to Theorem 3 of (author?) [16], that ai and yi

are conditionally independent given ei. This enables treatment effects to be

estimated consistently under cluster-specific nonignorable treatment assign-

ment using the conditional propensity score in an analogous way to the use of

standard propensity scores. This will be of most interest when the potential

outcomes also display clustering and have associated random effects which

are correlated with ui conditional on xi.

8 Discussion

We have shown, theoretically and with simulation evidence, that an attempt

to allow for clustered response via the introduction of predicted random ef-

fects into the estimated probability of response can induce negative relative

bias in the inverse probability weighted estimator when nonresponse is miss-

ing at random and the cluster sizes are not large. In our simulation study

we found a negative relative bias of about 2% for cluster sizes of between 5

and 20, declining to about 1% as these sizes increased to 50. In such cir-
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cumstances, if the missing at random assumption is plausible, it seems safer

to employ simple response propensity weights based upon a marginal model

for response. If nonresponse is cluster-specific nonignorable but not missing

at random then the latter approach may be subject to bias. We found the

relative bias could be as high as 10% with high intra-cluster correlations in

both the survey variable and the nonresponse process. With a more modest

intra-cluster correlation of about 0.01 in the survey variable, we found this

bias reduced to about 2%. The proposed conditional maximum likelihood

approach removes this bias, when the number of sampled clusters is large

even if the cluster sizes are small. We have also shown in §7 how this con-

ditional maximum likelihood approach might be extended to the estimation

of treatment effects in observational studies.

In addition to its bias correction advantage, the conditional maximum

likelihood approach is not dependent on the assumption that the ui term

in (3) is Gaussian, nor that it is independent of xij. There are, however,

potential disadvantages to the conditional maximum likelihood approach. It

depends on the logistic form of the model in (3). It becomes increasingly

computationally intensive as the sizes of the sets B1ij and B2i grow. And,

as we observed in the simulation study, it can lead to more variable weights

and lower efficiency.

Efficiency considerations need not be overriding. There is considerable in-

terest among survey researchers in methods which may help detect or correct

for bias when sample sizes are large. Moreover, the efficiency of the simple

estimator in (1) may be expected to be improved by the use of the regression

estimator in (2). The improvement will depend on how well xij predicts yij.
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The regression estimator also has the double robustness benefit, mentioned

in the introduction, that consistency may be achievable when nonresponse is

missing at random even if the nonresponse model is misspecified, provided

the model for the survey variable in (5) holds. Furthermore, like the simple

estimator, it may be expressed as a weighted estimator with weights which

do not depend on yij. This has various practical advantages in multipurpose

surveys. For an estimator outside this class of weighted estimators, which is

efficient even under cluster-specific nonignorable nonresponse, see (author?)

[22]. A simpler modification of the conditional maximum likelihood approach

would be to use what (author?) [12] calls response propensity stratification,

forming classes by grouping values of q̂CML
ij and then replacing this weight

by the inverse observed response rate in the group. This approach may be

less sensitive to the logistic link function assumption and may help smooth

large values of q̂CML
ij .

In the simulation study we observed that the fixed effects estimator per-

formed similarly to the conditional maximum likelihood estimator and it may

be that in practice it will often provide a reasonable proxy to this estimator,

while not requiring such strong model assumptions nor so much computation.
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