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Abstract

Let W be a composite (two-tier) simple voting game (SVG) consisting of a
council, making yes/no decisions, whose members are delegates, each voting
according to the majority view in his/her district. The council’s decision
rule is an arbitrary SVG V . The mean majority deficit ∆[W ] is the mean
difference between the size of the majority camp among all citizens and the
number of citizens who agree with the council’s decision. Minimizing ∆[W ]
is equivalent to maximizing the sum of the voting powers of all the citizens,
as measured by the (absolute) Banzhaf index β′. We determine the V which
minimize ∆[W ]. We discuss the difference between majoritarianism and
equalization of the voting powers of all citizens.

Keywords : Banzhaf power index, equal suffrage, majoritarianism, mean ma-
jority deficit, simple voting game, square-root rules, two-tier decision-making.



Minimizing the Mean Majority Deficit:
The Second Square-Root Rule∗

1 Introduction

As far as we can tell, the first, better-known square-root rule (SQRR) was
first stated by Lionel Penrose in his 1946 paper [9, p. 57]. Penrose con-
sidered a two-tier voting system, such as ‘a federal assembly of nations’ (an
obvious reference to the newly established United Nations), in which a set of
constituencies of various sizes elect one delegate each to a decision-making
‘assembly of spokesmen’. He argued that in order to achieve an equitable
distribution of voting power in the assembly, equalizing the (indirect) voting
power of the people across all constituencies, the decision rule in the federal
assembly should be such that ‘the voting power of each nation in [the] as-
sembly should be proportional to the square root of the number of people
on each nation’s voting list’. By ‘voting power’ Penrose meant, essentially,
what later became known as the ‘(absolute) Banzhaf index’, usually denoted
by ‘β′’, a measure which he, in fact, was the first to propose.

Penrose does not give a rigorous proof of his SQRR, but justifies it by a
semi-heuristic (and, in our view, inconclusive) argument. On the other hand,
Banzhaf—who, unaware of Penrose’s theory, re-invented it some twenty years
later—provides in his paper [1] all the ingredients of a rigorous proof, but
not a precise statement of the SQRR itself.

Although the Penrose–Banzhaf SQRR is quite well known, it is often
misstated as though it prescribes a weighted voting system in which the
weights, rather than voting powers, of the delegates ought to be proportional
to the square roots of the sizes of their respective constituencies. This is
a mistake, because of course voting weights are in general not proportional
to voting powers. At one point ([9, p. 55]) Penrose himself seems to be
guilty of a wrong, or at least ambiguous, statement of his rule. For more
recent misstatements see, for example, [5, pp. 249, 254], [6, p. 171] and [7,
p. 226]. This confusion is particularly unfortunate because, as we shall see
below, there is in fact quite a different rule that does indeed require delegates’
weights to be proportional to the square roots of the sizes of their respective
constituencies.

This second SQRR is concerned with minimizing the mean deviation of the

∗We are indebted to the editors for some helpul suggestions.
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indirect two-tier decision-making rule from a ‘direct democracy’ simple ma-
jority rule.

Consider an arbitrary simple voting game (SVG) W with n voters. Sup-
pose that in a given division of the voters a bill was passed by the ‘yes’ votes
of a winning coalition of size k. If k < n − k, then the size of the majority
camp, n − k, exceeds by n − 2k the number k of voters who agree with the
decision; in this case we say that in the given division there is a majority
deficit of n − 2k. But if k ≥ n − k then the majority deficit is 0. Similarly,
suppose that in a given division a bill was defeated by the ‘no’ votes of a
blocking coalition of size k. If k < n− k, then again we say that in the given
division there is a majority deficit of n − 2k. But if k ≥ n − k then the
majority deficit is 0.

The majority deficit may be regarded as a random variable; we denote
its mean (or expected) value—the mean majority deficit—by ‘∆[W ]’. This
quantity is a measure of the deviation of W from a majority SVG with n
voters.

In Section 2 we shall give a rigorous probabilistic definition of ∆[W ]. We
shall also derive a very simple relationship between this quantity and the sum
of the (absolute) Banzhaf (Bz) powers of the voters of W , which we denote
by ‘Σ[W ]’. It transpires that minimizing ∆[W ] is equivalent to maximizing
Σ[W ].

In Section 3 we set up a model of two-tier indirect decision-making, using
a composite SVG W = V [W1,W2, . . . ,Wm], in which V provides the decision
rule in a council of delegates, and the Wi are majority SVGs. We determine
the V for which Σ[W ] is maximal, hence ∆[W ] is minimal. We derive the
second SQRR, which was stated, albeit imprecisely and without proper proof,
by Morriss in [8, pp. 187–189].

In the concluding Section 4 we show by means of simple numerical ex-
amples that implementing the two SQRRs can lead to quite different results.
In view of this we stress the difference between equal suffrage (‘one person,
one vote’, briefly: ‘OPOV’) and majoritarianism, which have sometimes been
conflated with each other.

2 Sensitivity and mean majority deficit

In this section we state some definitions and results from the general theory
of a priori voting power.
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Definition 1 (i) By an SVG we mean a set W of subsets of a finite set N
such that ∅ 6∈ W ; N ∈ W ; and whenever X ⊆ Y ⊆ N and X ∈ W then also
Y ∈ W .

We refer to N as the assembly, to its members as voters, and to its subsets
as coalitions [of W ]. The winning coalitions are just those belonging to W ;
the rest are losing coalitions.

Voter a is critical in coalition S if S ∈ W but S − {a} 6∈ W ; a is critical
outside S if S 6∈ W but S ∪ {a} ∈ W ; a is critical for S if it is critical in or
outside S.

We say that voter a agrees with the outcome of coalition S [in W ] if
a ∈ S ∈ W or a 6∈ S 6∈ W .1

We shall take |N |, the number of members of N , to be n. While generally
N can be any finite set, we shall use the set In = {1, . . . , n} as a ‘canonical’
assembly of size n.

Definition 2 Let q be a positive real and let w1, . . . , wn be non-negative
reals such that 0 < q ≤

∑n
i=1 wi. In this connection we refer to q as the

quota and to the wi as weights. Further, if S ⊆ In we put wS =
∑

i∈S wi and
refer to wS as the weight of S.

We denote by ‘[q; w1, . . . , wn]’ the SVG with assembly In = {1, . . . , n}
whose winning coalitions are just those S ⊆ In with wS ≥ q.

Any SVG W isomorphic2 to [q; w1, . . . , wn] is called a weighted voting
game (WVG). It ‘inherits’, via the isomorphism, a quota and weights.

The WVG
[n+1

2
; 1, 1, . . . , 1︸ ︷︷ ︸

n times

] (1)

is denoted by ‘Mn’; any WVG isomorphic to it is called a majority SVG.

Definition 3 For any finite set N we define the Bernoulli space of N , de-
noted by ‘BN ’, to be the probability space whose points are just the subsets
of N , each of which is assigned the same probability, 1/2n.

Comment 1 (i) If each subset S of N is replaced by its characteristic func-
tion, then BN becomes the well-known space of n Bernoulli trials, with equal
probability, 1/2, for success and failure.

(ii) In what follows, we shall denote by ‘P’ and ‘E’ the probability measure
and expected value operator, respectively, on the space BN , where N is the

1This is short for saying that in a division in which S is the set of ‘yes’ voters, the
decision goes according to the way a votes.

2We take the notion of isomorphism of SVGs to be self-explanatory.
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assembly of some SVG. We shall usually not need to specify which SVG is
being referred to, because this will be clear from the context.

Definition 4 If W is an SVG with assembly N and a is any of its voters,
we put

β′
a[W ] =def P{X ⊆ N : a is critical for X in W}. (2)

We refer to β′
a[W ] as the Bz power of a in W , and to the function β′ itself

as the Bz measure [of voting power].

Comment 2 (i) In the literature β′ is often called the absolute Banzhaf
index (as distinct from the ordinary, or relative, Banzhaf index β, which is
obtained from β′ by normalization so that

∑
x∈N βx[W ] = 1.)

(ii) Our probabilistic definition of β′ is easily seen to be equivalent to the
definition more commonly given in the literature.

The measure proposed by Penrose in [9, p. 53] was in fact β′/2. In stating
his definition, he asserts as an obvious fact the following result, whose proof
is indeed quite simple.3

Lemma 1 If W is an SVG and a is any of its voters, then

P{X ⊆ N : a agrees with the outcome of X in W} =
1 + β′

a[W ]

2
, (3)

where N is the assembly of W. IIII

Definition 5 For any SVG W we put

Σ[W ] =def

∑
x∈N

β′
x[W ], (4)

where N is the assembly of W . We refer to Σ[W ] as the sensitivity of W .
Further, we put Σn =def Σ[Mn]; so that Σn is the sensitivity of any

majority SVG with exactly n voters.

Comment 3 By an easy combinatorial argument one obtains:

Σn =
m

2n−1

(
n

m

)
, (5)

3For a proof see, for example, [3, pp. 124–125].
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where m = [n/2] + 1 is the least integer greater than n/2. Hence, a routine
calculation, using Stirling’s well-known approximation formula for n!, yields

Σn ∼
√

2n

π
, (6)

where ‘∼’ means that the ratio of the two sides tends to 1 as n increases.

The sensitivity of an SVG has an interesting interpretation, as the expected
value of an important random variable which we now proceed to define.

Definition 6 For any SVG W with assembly N , we define the random vari-
able Z[W ] on the Bernoulli space BN by stipulating that the value of Z[W ]
at any coalition S ⊆ N equals the number of voters who agree with the
outcome of S in W minus the number of those who do not agree with the
outcome of S in W .

Further, if W is the majority SVG with assembly N , we denote Z[W ] by
‘MN ’, and refer to it as the margin [in N ].

Comment 4 Note that the value of MN at any coalition S ⊆ N equals the
absolute value of the difference between |S| and |N − S|, that is, the excess
of the size of the majority camp over that of the minority camp. If the voters
are evenly divided, then the value of MN is of course 0.

Theorem 1 Let W be an SVG. Then

E(Z[W ]) = Σ[W ]. (7)

Proof. For each voter x and coalition S, let ZxS equal 1 or −1 according as
x agrees or does not agree with the outcome of S. From Lemma 1 it follows
by an easy calculation that E(Zx) = β′

x[W ]. But clearly Z[W ] =
∑

x∈N Zx.
Hence

E(Z[W ]) =
∑
x∈N

β′
x[W ] = Σ[W ], (8)

as claimed. IIII

Corollary 1 E(MN) = Σn. IIII

Definition 7 For any SVG W with assembly N , we define the random vari-
able D[W ], called the majority deficit [of W], on the Bernoulli space BN by
stipulating that the value of D[W ] at any coalition S ⊆ N equals the size of
the majority camp minus the number of voters who agree with the outcome
of S in W .
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Thus, if the voters who agree with the outcome of S inW are the majority,
or if the voters are evenly divided, then the value of D[W ] at S is 0; but if
the voters who agree with the outcome of S in W are the minority then the
value of D[W ] at S equals that of the margin MN .

Further, we put ∆[W ] =def E(D[W ]). We call ∆[W ] the mean majority
deficit (MMD) [of W].

Clearly, the MMD is a measure of the average absolute deviation of an SVG
from majority rule.

Theorem 2 For any SVG W with exactly n voters,

∆[W ] =
Σn − Σ[W ]

2
. (9)

Proof. By Comment 4, the value of MN always equals the margin by which
the size of the majority camp exceeds that of the minority camp. Hence the
size of the majority camp itself is given by the value of

n + MN

2
. (10)

Also, by Definition 6 the number of voters who agree with the outcome is
always given by the value of

n + Z[W ]

2
. (11)

Thus by Definition 7 we have:

D[W ] =
n + MN

2
− n + Z[W ]

2
=

MN − Z[W ]

2
. (12)

We now apply the expected value operator E to both sides. By Definition 7
we obtain on the left-hand side ∆[W ]; and by Corollary 1 and Theorem 1 we
obtain on the right-hand side

Σn − Σ[W ]

2
, (13)

as claimed. IIII

Comment 5 From Theorem 2 it is clear that, for a given assembly N , an
SVG W maximizes Σ[W ] iff it minimizes ∆[W ].
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Now, since the random variable D[W ] has no negative values, it follows
that its expected value ∆[W ] is minimized—in fact, vanishes—iff D[W ] van-
ishes everywhere in the space BN . By Definition 7 this means that all coali-
tions of size > n/2 must win and all those of size < n/2 must lose. For odd
n there is just one such SVG: the majority SVG with assembly N . For even
n there are other such SVGs, all having sensitivity Σn, since the vanishing of
D[W ] imposes no condition on any coalition of size n/2: it may be winning
or losing.

This characterization of the SVGs that maximize Σ[W ] is proved by
Dubey and Shapley [3, pp. 106–107] using a very different argument. Below
we shall use a somewhat modified form of their argument to prove Theorem 3.

3 The second square-root rule

We begin by recalling the definition of a composite SVG.4

Definition 8 Let m be a positive integer and let V be an SVG with canonical
assembly Im = {1, . . . ,m}. For each i ∈ Im, let Wi be an arbitrary SVG,
with assembly Ni. We put N =def

⋃m
i=1 Ni.

First, we define the quotient map q from the power set of N to that of
Im: for any X ⊆ N we put

qX =def {i ∈ Im : X ∩Ni ∈ Wi}. (14)

We now define the SVG V [W1, . . . ,Wm], called the composite of W1, . . . ,Wm

(in this order!) under V . We put

V [W1, . . . ,Wm] =def {X ⊆ N : qX ∈ V}. (15)

We refer to V as the top and to Wi as the i-th component of the composite
SVG V [W1, . . . ,Wm].

Comment 6 A composite SVG W = V [W1, . . . ,Wm] may be used to model
two-tier decision-making. To this end, we regard V as a council of ‘delegates’:
voter i of V is a delegate representing the ‘citizens’ belonging to the i-th
‘constituency’ Ni. When a bill is proposed, the entire citizenry N divides on
it, and the decision within each Ni is made in accordance with the component
Wi, the decision rule of that constituency. Then the council divides, each
delegate i voting ‘yes’ or ‘no’, depending on the decision reached in the i-th
constituency. The decision of the council, reached in accordance with the
decision rule V , is regarded as the final decision of the entire composite W .

4Our definition is essentially that given by Shapley in [10, p. 63].
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To proceed, we set up a model consisting of a composite SVG, satisfying
three additional conditions.

Model. Our model is a composite SVG W = V [W1, . . . ,Wm]. In this
connection we use the terminology and notation introduced above, in Defi-
nition 8 and Comment 6. We impose the following three conditions.

(i) The Ni are pairwise disjoint: each citizen belongs to just one con-
stituency.

(ii) Each of the Wi is a majority SVG.

(iii) The size ni of each Ni is so large that the error in the approximations
Σni

∼
√

2ni/π (Comment 3) is negligibly small.

Comment 7 If ni is odd, the a priori probability that delegate i will vote
‘yes’ on a given bill is of course exactly 1/2. But by virtue of our Condi-
tion (iii) that the ni are very large, we may also assume that where ni is even
the probability that delegate i will vote ‘yes’ is as close to 1/2 as makes no
difference, because the probability that the citizens of Ni will be evenly split
is negligibly small.

Also, the votes of the delegates are mutually independent, since the vote
of delegate i depends only on the votes of citizens in the i-th constituency,
and the constituencies are pairwise disjoint.

It follows from what was said in the preceding two paragraphs that the
probability of an event G in the space BIm is as near as makes no difference
to the probability of q−1[G] in the space BN . (Here q is the quotient map
defined in Definition 8.)

Stated less formally: if G is any event defined in terms of division of the
council and votes of the delegates, without direct reference to the votes of
citizens, then the probability P(G) can be computed, with negligible error,
as though V were a stand-alone SVG rather than the top of the composite
SVG W .

Let us now consider a citizen x belonging to the i-th constituency Ni. We
wish to find β′

x[W ], the (indirect) Bz power of x as a voter of W . By
Definition 4, β′

x[W ] is equal to the probability of the event E that x is
critical as a voter of W . Stated more fully, E is the event that all other
citizens, across all constituencies, vote in such a way that x’s vote will decide
the final fate of the bill.

Now, x’s vote can have this effect iff the following two things happen:
first, x’s vote is able to tip the balance within x’s own constituency, Ni; and,
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second, the vote of delegate i in the council is able to tip the balance there.
Therefore E is the conjunction (intersection) of two events, F and G, where
F is the event that x is critical as a voter of Wi, and G is the event that
delegate i is critical in the council.

Moreover, F and G are independent, because F is completely determined
by the votes of the citizens of Ni, whereas G is determined by the votes in
council of all delegates other than i, which in turn are determined by the
votes of citizens of all constituencies other than Ni. Therefore,

β′
x[W ] = P(F)P(G). (16)

The P here is of course the probability measure on the space BN , which is
the product space of the Bernoulli spaces of all the constituencies. Now, the
event F involves only the i-th constituency; so its probability P(F) can be
computed as though in BNi

. Thus P(F) = β′
x[Wi].

Also, by Comment 7 P(G) is equal, or as close as makes no difference, to
β′

i[V ]. Thus
β′

x[W ] ∼ β′
x[Wi]β

′
i[V ]. (17)

From this it is very easy to derive the Penrose–Banzhaf SQRR. But we are
headed in another direction. Summing (17) over Ni we obtain∑

x∈Ni

β′
x[W ] ∼ Σni

β′
i[V ], (18)

which, in view of Condition (iii) of our model can be written as∑
x∈Ni

β′
x[W ] ∼ κ

√
niβ

′
i[V ], (19)

where κ =
√

2/π, a numerical constant. Summing (19) over all i we get

Σ[W ] ∼ κ
m∑

i=1

√
niβ

′
i[V ]. (20)

Let us introduce a few abbreviations. First, we put

wi =def

√
ni, (21)

and regard these wi as weights on Im. Thus, if T ⊆ Im we shall take wT to
be

∑
i∈T wi. Next, we put

w =def wIm =
m∑

i=1

wi. (22)
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Finally, we put

Θ[V ] =def

m∑
i=1

wiβ
′
i[V ]. (23)

In terms of these abbreviations we can re-write (20) as

Σ[W ] ∼ κΘ[V ]. (24)

Taking m and the wi as fixed, we shall now determine precisely the V that
maximize Θ[V ].

Lemma 2 For given m and wi, Θ[V ] attains its maximal value iff the council
V satisfies the following two conditions:

(i) Every coalition T such that w(T ) < w/2 is a losing coalition of V;

(ii) Every coalition T such that w(T ) > w/2 is a winning coalition of V.

In particular, Θ[V ] attains its maximal value if

V = [w/2 + ε; w1, . . . , wm], (25)

where ε is a sufficiently small non-negative real.

Proof (outline). We proceed as in the proof of Theorem 2 in [3, p. 107].
Let T be a minimal winning coalition of V (that is, a member of V that does
not include any other member) and let V ′ be the SVG obtained from V by
removing T . In V ′ each a ∈ T is no longer critical in T , whereas each a 6∈ T
becomes critical outside T . Threfore

Θ[V ′] = Θ[V ]− w(T )− w(Im − T )

2n−1
. (26)

On the other hand, if T is a maximal losing coalition of V and V ′ = V ∪{T},
then by the same token

Θ[V ′] = Θ[V ] +
w(T )− w(Im − T )

2n−1
. (27)

From these facts the claim of our lemma follows easily. IIII

In view of (24), we now have:

Theorem 3 (Morriss) If the ni are sufficiently large, then—with vanishing
or negligibly small error—the conditions of Lemma 2 provide a solution to
the problem maximizing the sensitivity Σ[W ] and thus minimizing the MMD
∆[W ]. IIII
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Comment 8 We have attributed this result to Morriss because in [8, pp.
187–189] he states its most salient part: namely, that Σ[W ] is maximized by
making the council a WVG in which delegates’ weights are proportional to
the square roots of the sizes of their respective constituencies. (He omits to
mention the crucial proviso that the quota should equal, or be just greater
than, half the total weight. He also omits to mention that this solution need
not be the only one. But, as shown in Example 2 below, there may be other
solutions satisfying the conditions of Lemma 2.) He provides no rigorous
proof, but some heuristic arguments that we do not find convincing.5

He himself attributes his result to Penrose, citing [9]; but this seems to
us mistaken, as the issue of maximizing total voting power is never broached
in [9]. The source of the error appears to be Penrose’s misstatement of his
SQRR, to which we have alluded in the Introduction.

4 Discussion

Both the Penrose–Banzhaf SQRR and the second SQRR, that of Theorem 3,
depend on our model. Therefore the implementation of these rules as a
way of achieving, or at least approximating, equal suffrage or majority rule,
respectively, in a real-life case can be justified only to the extent that the
assumptions of that model are satisfied.

Apart from the three conditions (i)–(iii) of the model, there are implicit
assumptions built into it. Thus, delegates are assumed to vote in the council
according to the majority view in their respective constituencies. This need
not mean that they conduct a referendum or opinion poll on each bill. Per-
haps it is good enough if delegates, wishing to be re-elected, are reasonably
sensitive to the wishes of their electorates. But if councillors tend to vote in
disregard of the views of their constituents then the model is unrealistic.

A second in-built assumption is even more problematic. In using the
probability space BN , it is tacitly assumed that all citizens, irrespective of
constituency, vote independently of each other; in particular, this implies
that in the long run the votes of citizens of the same constituency are not
more highly correlated than votes of citizens of different constituencies. This
is quite realistic if the division of the citizenry into constituencies is more or
less random, say a matter of mere administrative convenience, unconnected
in any systematic way with the attitudes of citizens to the issues that are to
be decided by the council. But if citizens of the same constituency habitually
vote as a single bloc, then again the model is unrealistic.

5See also op. cit., Note 9 on p. 249, and pp. 229–231.
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However, let us put such misgivings on one side and confine ourselves
to situations in which the model is realistic. The following simple numer-
ical example illustrates the difference between the prescriptions of the two
SQRRs.

Example 1 Consider a county made up of a constituency numbering 9 mil-
lion citizens and two constituencies, each numbering 1 million.

First let us see how the Penrose–Banzhaf SQRR may be applied here. It
prescribes that the Bz powers of delegates 1, 2 and 3 in V should be in the
proportion 3:1:1. It is not difficult to verify by trial and error6 that there is
just one acceptable solution, namely

V = [3; 2, 1, 1], (28)

for which β′
1[V ] = 3/4 and β′

i[V ] = 1/4 for i = 2, 3. (The same Bz powers are
also obtained for the dual of this SVG, V∗ = [2; 2, 1, 1], but this is an improper
SVG, having disjoint winning coalitions, which is normally unacceptable.)

With this V we obtain Σ[W ] ≈ 2194 to the nearest unit. This should be
compared with the sensitivity of the ‘direct democracy’ majority model: the
majority SVG with the 11m citizens as voters. Using the standard approxi-
mation (Comment 3) we obtain Σ11·106 ≈ 2646 to the nearest unit. Hence

∆[W ] ≈ 226. (29)

Now let us see what happens if we maximize Σ[W ]. Theorem 3 yields a
unique solution for V , namely

V = [3; 3, 1, 1]. (30)

Here delegate 1 is a dictator, and the other two delegates, and consequently
also their constituents, are dummies! This is surely unacceptable, precisely
because it is purely an artefact of the choice of V : subject to our present
assumptions, the citizens of the two smaller constituencies would not be
dummies under the Penrose–Banzhaf SQRR or under direct democracy. It
is no consolation that with this maximizing V we obtain a higher sensitivity,
Σ[W ] ≈ 2394 to the nearest unit; and for the MMD we now have the absolute
minimum for the given set-up,

∆[W ] ≈ 126, (31)

which is very small indeed.

6Or by consulting the table in [11, pp. 310–312], which lists all isomorphism types of
SVGs with at most four voters.
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Of course, the solutions provided by Theorem 3 need not always be unac-
ceptable. This is illustrated by the following example.

Example 2 Consider a county that has one constituency with 9 million
citizens, as in Example 1, but three (instead of two) constituencies with 1
million citizens. The Penrose–Banzhaf SQRR prescribes that the Bz powers
of delegates 1, 2, 3 and 4 in V should be in the proportion 3 : 1 : 1 : 1. Here
again there is a unique proper solution, namely

V = [3; 2, 1, 1, 1], (32)

for which β′
1[V ] = 3/4 and β′

i[V ] = 1/4 for i = 2, 3, 4.
For this V we obtain Σ[W ] ≈ 2394 to the nearest unit. On the other

hand, for the corresponding majority SVG (with 12m citizens) the standard
approximation (Comment 3) yields Σ12·106 ≈ 2764 to the nearest unit. Hence

∆[W ] ≈ 185. (33)

Happily, this V also satisfies conditions (i) and (ii) of Lemma 2. Indeed,
from (21) we have here w1 = 3000 and wi = 1000 for i = 2, 3, 4; and note
that Lemma 2 does not impose any condition on coalitions T for which
wT = 3000, so it allows {1} to be a losing coalition and {2, 3, 4} to be a
winning one.

But Lemma 2 admits also another proper solution, namely

Ṽ = [4; 3, 1, 1, 1]. (34)

Here β′
1[Ṽ ] = 7/8 and β′

i[Ṽ ] = 1/8 for i = 2, 3, 4. This solution yields of
course the same (minimal) value for ∆ but does not equalize the citizens’
indirect voting powers (as measured by β′); indeed, it follows from (17) that
the ratio between the power of a member of the large constituency and that
of her fellow-citizen in a small constituency is 7 : 3. So on egalitarian grounds
V is to be preferred.

Most lay people, as well as many scholars, often confuse majority rule with
equal suffrage. Such confusion is evident, for example, in some of the opinions
of US Supreme Court judges in cases involving imposition of the OPOV prin-
ciple on state legislatures and local government. The confusion was shared by
liberals, such as the great radical reformer William O Douglas, who ardently
supported Supreme Court activism in enforcing OPOV, and by their more
conservative opponents, such as the formidable John M Harlan. Thus Dou-
glas, delivering the Supreme Court’s majority opinion in the famous case
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of Gray v Sanders,7 supported the Court’s pro-OPOV ruling by some ar-
guments that are in fact majoritarian. Conversely, Harlan, in his separate
opinion in the case of Whitcomb v Chavis et al,8 attacked the imposition of
OPOV using anti-majoritarian arguments.9

Also, some of the debate around the indirect two-tier system used in elect-
ing the president of the US, via an Electoral College, seems to be confused
in a similar way.10 The opponents of the present system sometimes seem to
imply that it is inherently incapable of implementing the OPOV principle.
This is of course false. True, the present allocation of Electoral votes (in ef-
fect, weights) to the various states results in inequality of suffrage as between
citizens.11 But this inequality can be eliminated or very greatly reduced by
a proper re-allocation. On the other hand, the MMD of the system cannot
possibly be eliminated or brought close to 0. Therefore a case against the
two-tier system as such can be made on majoritarian grounds.

In cases where a two-tier system of decision-making is preferred or obligatory
(as in federal or international bodies), it may sometimes be possible, as in
Example 2, to satisfy the OPOV principle and at the same time minimize
the MMD; but as Example 1 shows, the prescriptions of majoritarianism
and equality of suffrage do not necessarily coincide, and may in fact sharply
clash. The MMD cannot be made to vanish (except in some trivial cases, with
degenerate constituencies), but it may be possible to reduce it considerably.
However, this may result in an unequal—sometimes extremely unequal—
distribution of voting power. How much inequality, or how high a value of
the MMD, one is prepared to tolerate depends on the relative values one
attaches to egalitarianism and majoritarianism.

Be that as it may, in our view the main value of Theorem 3 is descriptive
rather than prescriptive. It provides a benchmark for the sensitivity of a
composite SVG W = V [W1, . . . ,Wm] where the number m of constituencies
and their respective sizes ni are given. It is surely always of interest to find

7372 US Reports (1963), p. 368 ff.
8403 US Reports (1971), p. 143 ff.
9For detailed analysis of these and other US judicial opinions in cases involving OPOV,

see [4, Ch. 4].
10As is well known, the Electoral College operates in effect as a weighted voting council,

with the Electors of each state as a single bloc voter. There are however two minor
exceptions: Maine and Nebraska, whose Electors may split.

11See for example Banzhaf [2], where he shows, using the SQRR, that the present
allocation over-represents the biggest states. Formerly, ignorance of the SQRR led to the
general belief that the big states are under-represented.
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out how close W is to majority rule. To this end, the sensitivity Σ[W ] of
any such W should be compared with the maximal value achievable with the
given m and ni, specified by Theorem 3, as well as with the sensitivity Σn of
the corresponding direct majority rule.12

12Since the minimal sensitivity of an SVG with n voters, obtained for the unanimity
rule, is n/2n−1, a logarithmic scale is more appropriate for these comparisons than a linear
one.
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