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ASSESSING THE PROTECTION PROVIDED BY
MISCLASSIFICATION-BASED DISCLOSURE LIMITATION

METHODS FOR SURVEY MICRODATA

BY NATALIE SHLOMO AND CHRIS SKINNER

University of Southampton

Government statistical agencies often apply statistical disclosure limita-
tion techniques to survey microdata to protect the confidentiality of respon-
dents. There is a need for valid and practical ways to assess the protection
provided. This paper develops some simple methods for disclosure limitation
techniques which perturb the values of categorical identifying variables. The
methods are applied in numerical experiments based upon census data from
the United Kingdom which are subject to two perturbation techniques: data
swapping (random and targeted) and the post randomization method. Some
simplifying approximations to the measure of risk are found to work well
in capturing the impacts of these techniques. These approximations provide
simple extensions of existing risk assessment methods based upon Poisson
log-linear models. A numerical experiment is also undertaken to assess the
impact of multivariate misclassification with an increasing number of iden-
tifying variables. It is found that the misclassification dominates the usual
monotone increasing relationship between this number and risk so that the
risk eventually declines, implying less sensitivity of risk to choice of iden-
tifying variables. The methods developed in this paper may also be used to
obtain more realistic assessments of risk which take account of the kinds of
measurement and other nonsampling errors commonly arising in surveys.

1. Introduction. Government statistical agencies have statutory and ethical
obligations to protect the confidentiality of the data they collect. At the same time,
their core mission is to ensure that these data are used effectively for statistical
purposes. Tensions between these two objectives may arise, in particular, when ac-
cess to microdata on individuals or establishments is to be provided to researchers,
so that they may conduct their own analyses of social or economic phenomena.
Although microdata may be anonymized by removing obvious identifying in-
formation such as name and address without damage to the statistical analyses,
such anonymization will rarely be considered sufficient for confidentiality protec-
tion, since the rich socio-economic information in the microdata may often enable
records to be identified by matching to another data source on known individuals or
establishments. Agencies have therefore developed a number of ways of protecting
confidentiality in this context. One common approach is to modify the microdata
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1292 N. SHLOMO AND C. SKINNER

file by applying a statistical disclosure limitation (SDL) method, such as recod-
ing or data perturbation, to those variables judged potentially identifying [Federal
Committee on Statistical Methodology (2005)]. Such modification can, however,
seriously reduce the utility of the microdata and it is therefore important for the
agency to be able to assess the protection provided by such methods in order to be
able to make judgements about the degree of modification to apply.

The aim of this paper is to develop methodology to assess the disclosure pro-
tection provided by the misclassification of one or more categorical identifying
variables. Misclassification is supposed here to arise in one of two ways. First, it
may be the result of the deliberate application by the agency of an SDL method,
specifically we consider the methods of data swapping [Dalenius and Reiss (1982)]
and post-randomization or PRAM [Gouweleeuw et al. (1998)]. This paper is mo-
tivated by experience of the use of such methods at government statistical agen-
cies (especially in the United Kingdom) with microdata from social surveys on
individuals or from population censuses. In these cases, the potential identifying
variables which might be used for matching are invariably categorical. A second
way in which misclassification may arise is as a result of measurement error which
arises naturally in surveys and takes the form of misclassification for categorical
variables [Kuha and Skinner (1997)]. In this case, we shall suppose that the agency
has some information about the nature of the misclassification mechanism.

In the current practice of statistical agencies, when the disclosure protection of
such methods is assessed, it is usually based upon simple measures, such as func-
tions of the diagonal elements of the misclassification matrix [Willenborg and De
Waal (2001), page 119], or a simple estimated probability that an apparent match
is correct [Gouweleeuw et al. (1998)], or via the outcome of a record linkage ex-
periment (see below). Reiter (2005) developed a more sophisticated approach by
defining a measure of identification risk, based upon the modeling framework of
Duncan and Lambert (1989), and showing how it could be assessed before and
after the application of a number of SDL methods, including data swapping. This
focus on identification risk is often appropriate in government contexts, where
judgments about protection are informed by legislation or codes of practice which
express threats to confidentiality in terms of individual respondents being identi-
fied. However, the need to model a very wide range of microdata variables and
relationships in Reiter’s (2005) approach may limit its application in practice. In
this paper we develop an approach which is based on a similar framework to Reiter
(2005), but which retains some of the simplicity of the former methods. We achieve
simplification by restricting the information set upon which the risk measure is
conditioned, extending the approach of Skinner and Shlomo (2008). Our approach
also extends Reiter (2005) by taking fuller account of the protection achieved from
sampling.

Assessing identification risk using record linkage experiments [e.g., Yancy,
Winkler and Creecy (2002); Domingo-Ferrer and Torra (2001)] is natural given
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the threat that such methods pose [Fienberg (2006)]. The experiment typically
involves matching records in the microdata file, masked by an SDL method, to
records in the original unmasked file. The risk is often defined as the proportion of
such matches which are correct [Spruill (1982)]. A problem with this approach is
that it makes an unjustified assumption that a hypothetical intruder has access to
data that are as good as the original data and may not take account of the disclosure
protection provided by sampling. We shall show in the Appendix that our proposed
approach to assessing identification risk in the case of exact matching does, in fact,
provide a closed form expression for the correct match proportion which would be
estimated by an experiment using a form of probabilistic record linkage proposed
by Fellegi and Sunter (1969). Record linkage experiments have the potential to
capture the impact of a wider range of types of potential attack, including those
that make explicit allowance for data masking and exploit greater computational
power [Winkler (2004)], but consideration of such extensions is beyond the scope
of this paper.

Statistical modeling approaches to identification risk assessment have been pro-
posed by a number of authors [e.g., Paass (1988); Duncan and Lambert (1989);
Fuller (1993)]. It is generally assumed that an intruder seeks to identify an individ-
ual in the microdata by matching records to known individuals in the population
using identifying variables, also called key variables, values of which are known
both for the microdata records and for the known individuals. This paper builds
on the literature which has used models for categorical key variables as a basis for
assessing disclosure risk. Bethlehem, Keller and Pannekoek (1990) is a seminal
contribution. We follow especially Skinner and Shlomo (2008), who considered
the use of log-linear models to assess identification risk. Their work did not, how-
ever, consider the impact of SDL methods on risk, other than the recoding of key
variables.

The empirical work in this paper is based upon the 2001 population census
in Great Britain, which will be used to provide population data to validate risk as-
sessments for samples, viewed as representing potential sample surveys. Our focus
will be on the impact of SDL methods on identification risk. The effects of these
methods on the utility of potential data analyses is also vitally important and we
provide some information loss measures to analyze and compare the perturbation
methods.

Our paper is organized as follows. Measures of identification risk in the pres-
ence of misclassification are developed in Section 2. Since these measures depend
upon population quantities which may be unknown, methods of estimating these
measures using sample data are considered in Section 3. Applications using census
data are presented in Section 4 for a random and targeted data swapping method
and a random and targeted post-randomization method (PRAM). A further nu-
merical illustration with multivariate misclassification is presented in Section 5.
Section 6 contains a concluding discussion.
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2. Identification risk under misclassification. Consider the release of a mi-
crodata file consisting of records for a sample s = {1,2, . . . , n} drawn from a finite
population U of size N . We suppose an intruder seeks to match a known target
unit in U to a record in the file using C categorical key variables X1, . . . ,XC .
We assume the agency knows the intruder’s choice of key variables. Possible de-
partures from this assumption are discussed in Section 6. The variable formed by
cross-classifying the key variables, as measured by the intruder on the target unit,
is denoted X and its values are labeled 1,2, . . . ,K . The value of X recorded in
the microdata, after the application of the SDL method (and natural measurement
error), is denoted X̃. We treat the values of X for population units as fixed and sup-
pose the values of X̃ for the records in the microdata are determined independently
by a misclassification matrix M , where

Pr(X̃ = j |X = k) = Mjk.(2.1)

To assess the disclosure protection provided by misclassification, we imagine
that the intruder observes a match between a specific sample unit A and a tar-
get population unit B , that is, observes X̃A = XB (where X̃A is the value of X̃

for unit A and XB is the value of X for unit B), and measures disclosure risk
in terms of the uncertainty as to whether A = B . A simple ad hoc measure of
this uncertainty is given by Mjj (or 1 − Mjj ), where j is the common value of
X̃A and XB . Willenborg and De Waal [(2001), page 121] propose that the agency
specifies upper bounds for these diagonal elements of M according to the level
of protection required. Following Reiter (2005), we define the identification risk
as Pr(A = B|data), where the values X̃A and XB are implicitly included in the
data and the nature of the probability mechanism will be clarified later. A simpli-
fied approach to estimating this risk is given by Gouweleeuw et al. (1998), who
make the very conservative assumption that the intruder knows that B is in the
sample and approximate Pr(A = B|data) by Pr(XA = j |X̃A = j) = Mjj Pr(XA =
j)/

∑
k Mjk Pr(XA = k), which they estimate by

Mjjfj

/∑
k

Mjkfk,(2.2)

where fk is the number of units in s for which X = k (they in fact use the odds
rather than the probability). In contrast to the highly simplifying assumptions of
Gouweleeuw et al. (1998), Reiter (2005) allows for considerable generality by
adopting a very wide definition of data in Pr(A = B|data), so that it may include
all the values of X̃i in the sample as well as the values of any other microdata
variables. This creates not only a major modeling task to assess the probability
of interest, but also the possibility that this probability will be sensitive to the
specification of the model.

We seek an intermediate position, avoiding the very conservative assumption
that the intruder knows that B is in the sample, but reducing the scope of data in
Pr(A = B|data) to avoid the complex modeling issues. We define the matching
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variable Z̃i to be 1 if X̃i = XB and 0 otherwise and we take the data to consist of
the values Z̃i for i ∈ s. We suggest that this is the critical information to consider
when assessing the probability that an observed match is correct. We shall also
restrict our attention further to the case when a unique sample unit matches B (so
Z̃a = 1 and Z̃i = 0 if i �= a for some unit a ∈ s). This is the worst case and thus
of most interest, that is, the risk will be lower if B matches more than one sample
unit. In this case, we obtain the following expression for the identification risk:

Identification risk = Pr(A = B|Z̃1, . . . , Z̃n)
(2.3)

= Pr(EB)
/ ∑

a∈U

Pr(Ea),

where Ea is the event that population unit a is sampled and its value X̃a matches
XB and that no other population unit is both sampled and has a value of X̃ which
matches XB . In order to allow for the effect of unequal probability sampling and
the potential use of sampling weights, we suppose that units in the population U

are selected independently into the sample s with inclusion probabilities πj which
may depend on the value X̃ = j for the unit. Writing Xa = k and XB = j and
using our previous assumptions about the misclassification mechanism, we obtain
Pr(Ea) = αjMjk/(1 − πjMjk), where αj = πj

∏
l(1 − πjMjl)

Fl and Fj is the
number of units in the population with X = j . Hence,

Pr(A = B|Z̃1, . . . , Z̃n)
(2.4)

= [Mjj/(1 − πjMjj )]
/[∑

k

FkMjk/(1 − πjMjk)

]
.

This expression assumes the intruder does not know whether B ∈ s. If this event
was known to arise and was included in the conditioning set, (2.4) should be mod-
ified by setting πj = 1 and replacing Fk by fk . This produces an expression that
is similar to that given earlier in (2.2) from Gouweleeuw et al. (1998) but makes
fewer approximations. For expression (2.4), the identification risk also assumes
that the Fk are part of the data, that is, known. In practice, this will often not be
the case, as discussed by Skinner and Shlomo (2008), and it will be necessary to
integrate the Fk out of this expression as will be discussed in Section 3. It follows
from (2.4) that

Pr(A = B|Z̃1, . . . , Z̃n) ≤ 1/Fj

with equality holding if there is no misclassification. The extent to which the left-
hand side of this inequality is less than the right-hand side measures the impact of
misclassification on disclosure risk.

If the inclusion probabilities πj are all small, we may approximate (2.4) by

Pr(A = B|Z̃1, . . . , Z̃n) = Mjj

/(∑
k

FkMjk

)
.
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Moreover, if the population size is large, we have approximately
∑

k FkMjk ≈
F̃j , where F̃j is the number of units in the population which would have X̃ = j

if they were included in the microdata (with misclassification). Hence, a simple
approximate expression for the risk, natural for many social surveys, is

Pr(A = B|Z̃1, . . . , Z̃n) = Mjj/F̃j .(2.5)

An alternative derivation of this result is provided in the Appendix under the
assumption that the intruder adopts the probabilistic record linkage approach of
Fellegi and Sunter (1969), making a link if the match variable Z̃a = 1. The identi-
fication risk is the probability that the match is correct and the above approximation
is obtained if the probability is defined with respect to the sampling scheme, the
misclassification mechanism and a random selection of a pair for matching as in
Fellegi and Sunter (1969).

Another approximation to expression (2.4) is obtained by assuming the misclas-
sification is small, say, Mjj = (1 − δ)φjj and Mjk = δφjk (j �= k), where the φ

are fixed and δ → 0. In this case, we have

Pr(A = B|Z̃1, . . . , Z̃n)
(2.6)

≈ F−1
jj

(
1 − [F̃j − FjMjj ]/[FjMjj/(1 − πjMjj )])

or

Pr(A = B|Z̃1, . . . , Z̃n)
(2.7)

≈ [Mjj/(1 − πjMjj )]/[(FjπjM
2
jj )/(1 − πMjj ) + F̃j ].

Note that none of approximations (2.5), (2.6) or (2.7) depend upon Mjk for
j �= k and so knowledge of these probabilities is not required in the estimation of
risk.

The definition of risk in (2.3) applies to a specific record. Agencies will also
usually wish to consider aggregate measures to enable them to make judgements
about the whole file. Following Skinner and Shlomo (2008), we define an aggre-
gate measure as the sum of the record-level measures in (2.4) across sample unique
records:

τ = ∑
j∈SU

[Mjj/(1 − πjMjj )]
/[∑

k

FkMjk/(1 − πjMjk)

]
,(2.8)

where SU is the set of key variable values which are sample unique. This mea-
sure may be interpreted as the expected number of correct matches among sample
uniques. For some purposes, an agency might find this measure easier to inter-
pret if it is transformed into a measure with an upper bound, such as by dividing
by the number of sample uniques to obtain a proportion. However, we shall stick
with the untransformed τ as a measure of the total number of units, for example,
individuals, threatened with identification.
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We also consider, for comparison, a related measure which could be used if the
misclassification status of microdata records is known. Let SUCC denote the set
of key variable values which are sample unique and where these sample unique
values have been correctly classified. The measure is given by

τ ∗
CC = ∑

j∈SUCC

1/Fj ,(2.9)

and again may be interpreted as the expected number of correct matches among
sample uniques. We also define τ ∗ as the corresponding measure of risk in the ab-
sence of perturbation, that is, the sum of 1/Fj across key values which are unique
in the sample with respect to X.

3. Risk estimation. An agency wishing to apply an SDC method to survey
microdata will generally not know the values of Fj or F̃j appearing in the risk ex-
pressions. We do suppose that the values of Mjk are known. Skinner and Shlomo
(2008) discuss the estimation of risk in the absence of misclassification based on a
Poisson log-linear model. In this case, expression (2.4) reduces to 1/Fj and their
broad approach is to define the risk as the conditional expectation of this quantity
given the observed data and to estimate this expectation using data for the sample
counts fj , j = 1,2, . . . ,K , for which a log-linear model is fitted. Expression (2.5)
provides a simple way to extend their approach to misclassification provided Mjj

is known. Since the f̃j , j = 1,2, . . . ,K , represent the available data, all that is re-
quired is to ignore the misclassification and estimate the expectation of 1/F̃j given
the data from the f̃j , j = 1,2, . . . ,K , as in Skinner and Shlomo (2008), that is, by
fitting a log-linear model now to the f̃j , j = 1,2, . . . ,K , following the same crite-
ria as before. This results in an estimate Ê(1/F̃j |f̃j = 1) based on the assumptions
of the Poisson distribution for the population and sample counts. These estimates
should be multiplied by the Mjj values and summed if aggregate measures of the
form in (2.8) are needed. It would appear to be rather more complex to estimate
the expressions including terms in Fj . In the presence of complex sampling, the
estimation method may be adapted using the method of pseudo maximum likeli-
hood estimation [Rao and Thomas (2003)] by incorporating survey weights in the
estimation as discussed by Skinner and Shlomo (2008).

4. Application of perturbative disclosure limitation techniques. In this
section we consider two specific perturbative SDL techniques used at statistical
agencies: data swapping and the post-randomization method (PRAM). Both tech-
niques introduce misclassification of the key variables to lower the probabilities of
identifying individuals. We present examples of how to assess the impact of these
techniques on identification risk. Since the misclassification is under the control of
the statistical agency, the misclassification matrix M is known.
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4.1. Data swapping. The method of data swapping is based on exchanging the
values of one or more key variables between pairs of records. In order to minimize
bias, the pairs of records are typically selected within strata defined by control vari-
ables, such as the age and sex of the individual. In addition, the perturbation can
be targeted to high-risk records that are more likely to be population uniques, for
example, on rare ethnicities. It is common that geographic variables are swapped
between records for the following reasons:

• For given values of the control variables, the sensitive variables are likely to
be relatively independent of geography and, therefore, it is expected that less
bias will occur. In addition, swapping geography will not normally result in
inconsistent and illogical records. By contrast, swapping a variable such as age
would result in many inconsistencies with other variables, such as marital status
and education.

• At a higher geographical level and within control strata, the marginal distribu-
tions are preserved.

• The level of protection increases by swapping variables which are highly
“matchable” such as geography.

For this experiment, we carry out a simple data swapping procedure where the
geography variable of Local Authority District (LAD) is exchanged between a
pair of individuals. The population includes N = 1,468,255 individuals from an
extract of the 2001 United Kingdom (UK) Census. We drew 1% Bernoulli samples
(n = 14,683) and define six key variables for the risk assessment: Local Authority
(LAD) (11), sex (2), age groups (24), marital status (6), ethnicity (17), economic
activity (10), where the numbers of categories of each variable are in parentheses
(K = 538,560). We implement a random data swap by drawing a sub-sample of
10% and 20% in each of the LADs. The remaining individuals are not perturbed.
On the sub-samples in each LAD, half of the individuals are flagged. For each
flagged individual, an unflagged individual is randomly chosen within the sub-
sample and their LAD variables swapped, on condition that the individual chosen
was not previously selected for swapping and that the two individuals do not have
the same LAD, that is, no individual is selected twice for producing a pair. We
also implemented a 10% and 20% targeted data swap where the LAD variable
is swapped separately within two groups defined by “White British” and “Other”
ethnicities. For the 20% swap, LADs were swapped randomly between all pairs of
individuals in the “Other” group and a small percentage (7%) of individuals in the
“White British” group. This swapping rate was chosen so that the total percentage
of swapped individuals would be 20% as in the random data swapping. For the
10% swap, LADs were swapped randomly from among the “Other” group that
compose 10% of the total individuals in the sample.

The misclassification matrix M for the data swapping designs can be expressed
simply in terms of the 11 × 11 misclassification matrix, denoted Mg = [Mg

jk], for
the LAD variable g:
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For the random swap:

• On the diagonal: M
g
jj = 0.9 or M

g
jj = 0.8 for the 10% and 20% swaps respec-

tively.
• Off the diagonal: M

g
jk = 0.1 × nk/(

∑
l �=j nl) or M

g
jk = 0.2 × nk/(

∑
l �=j nl),

where nk is the number of records in the sample in LAD k, k = 1,2, . . . ,11,
for the 10% and 20% swaps respectively.

For the targeted swap on the 10% swap, the values M
g
jk for the “Other” ethnicity

are calculated as follows:

• On the diagonal: M
g
jj = 0.25.

• Off the diagonal: M
g
jk = 0.75 × n2k/(

∑
l �=j n2l), where n2k is the number of

records in the sample with “Other” ethnicity in LAD k, k = 1,2, . . . ,11.

For the targeted swap on the 20% swap, the misclassification matrix M is de-
fined separately according to the “White British” and “Other” ethnicities as fol-
lows:

• On the diagonal: M
g
jj = 0.93.

• Off the diagonal: M
g
jk = 0.07 × n1k/(

∑
l �=j n1l), where n1k is the number of

records in the sample with “White British” ethnicity in LAD k, k = 1,2, . . . ,11.

The values M
g
jk for the “Other” ethnicity are calculated as follows:

• On the diagonal: M
g
jj = 0.

• Off the diagonal: M
g
jk = 1×n2k/(

∑
l �=j n2l), where n2k is the number of records

in the sample with “Other” ethnicity in LAD k, k = 1,2, . . . ,11.

4.2. The post-randomization method (PRAM). A more direct method that is
used for exchanging values of categorical variables is PRAM. For this method,
values of categories in a given record are changed or not changed stochastically
according to a misclassification matrix. This matrix is chosen to preserve expected
marginal frequencies of the variables. Let f c be the row vector of sample fre-
quencies of the different categories of key variable Xc and pc = f c/n be the cor-
responding vector of sample proportions, where n is the sample size. For each
record, the category of Xc is changed or not changed according to the probabil-
ities in the misclassification matrix Mc. Let f̃ c be the row vector of perturbed
frequencies. Then E(f̃ c|f c) = f cMc, where the expectation is with respect to the
misclassification mechanism. The matrix Mc may be expected to be nonsingular
since small perturbation rates should imply that it is “close to” diagonal. The in-
verse Mc−1

can be used to obtain an unbiased estimator of the original frequency
vector: f̂ c = f̃ cMc−1

. In addition, we can place the condition of invariance on the
matrix Mc, that is, f cMc = f c, and preserve the expected marginal frequencies.
This releases the users of the perturbed file of the extra effort to obtain unbiased
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moment estimates of the original data, since f̃ c itself will be an unbiased estimate
of f c.

To obtain an invariant transition matrix, the following two-stage algorithm is
applied [see Willenborg and De Waal (2001)]. Let Mc be the misclassification
matrix: Mc

jk = Pr(X̃c = k|Xc = j), where j represents the original category and
k the perturbed category. Now calculate the matrix Q using the Bayes formula by
Qc

kj = Pr(Xc = j |X̃c = k) = Mc
jk Pr(Xc = j)/[∑l M

c
lk Pr(Xc = l)]. We estimate

the entries of this matrix by Q̂c
kj = Mc

jkp
c
j /[

∑
l M

c
lkp

c
l ], where pc

j is the sample

proportion in category j . The matrix Rc = McQ̂c is invariant, that is, pcRc =
pc, since Rc

ij = ∑
k[pc

jM
c
ikM

c
jk/

∑
l M

c
lkp

c
l ] and

∑
i p

c
i R

c
ij = ∑

k pc
jM

c
ik = pc

j . The

vector of the original proportions pc is the eigenvector of R. In practice, Q̂c can
be calculated by transposing matrix Mc, multiplying each column j by pc

j and

then normalizing its rows so that the sum of each row equals one. We define Rc∗ =
αRc + (1 − α)I , where I is the identity matrix of the appropriate size. Rc∗

is also
invariant and the amount of misclassification is controlled by the value of α.

We conduct a second experiment using the same data and setup described in
Section 4.1 and PRAM to perturb the geographical variable LAD. For the random
perturbation, an 11 × 11 misclassification matrix Mc is defined for the 11 cate-
gories of LAD where the diagonal elements are 0.9 and 0.8 and the off-diagonal
elements are equal to a probability of 0.1 and 0.2 for the 10% and 20% perturbation
respectively. The invariant misclassification matrix is calculated with α = 0.55.
For each individual, a random uniform number between 0 and 1 is generated and
the category of the LAD changed (or not changed) if it is in the interval defined
by the cumulative probability. For the 10% targeted perturbation, we define the
misclassification matrix for the “Other” ethnicities with 0.25 on the diagonal and
0.75 on the off-diagonals and the invariant parameter α = 0.85. For the 20% tar-
geted perturbation, we define the misclassification matrix for the “Other” ethnic-
ities with 0 on the diagonal and 1 on the off-diagonals, and the misclassification
matrix for the “White British” ethnicity with 0.93 on the diagonal and 0.07 on the
off-diagonals. For both matrices, the invariant parameter is α = 1.

4.3. Results of disclosure risk assessment. Since we know the misclassifica-
tion matrix M and the true population counts Fj in these experiments, we can
assess the performance of expressions (2.5)–(2.7) as approximations to (2.4). We
do this by summing all the expressions across sample unique records, as in the ag-
gregate risk measure τ in (2.8) and comparing the resulting sums. We also compare
these measures to the measure in (2.2) of Gouweleeuw et al. (1998). In addition,
we consider the more practical situation when neither the Fj nor the F̃j are known
to the agency, all that is observed is the “misclassified” sample and the matrix M .
In this case, we carry out the risk estimation as described in Section 3 through the
use of the Poisson log-linear model on the sample counts f̃j . The log-linear model
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was chosen using a forward search algorithm and the outcome of goodness of fit
statistics as developed in Skinner and Shlomo (2008). We calculate the naive esti-
mated risk measure obtained from the log-linear model on the misclassified sample
and the adjusted estimated risk measure, taking into account the misclassification
matrix. The experiments were repeated under different samples and each pertur-
bation method applied independently and we found that all of the experiments
produced similar results. Table 1 presents results of one of the simulation exper-
iments for each of the perturbation methods: random and targeted data swapping
and PRAM.

The estimates presented in Table 1 for the risk of identification are similar for
random data swapping and PRAM. Misclassification reduces the risk in the file
from about τ ∗ = 360 to about τ ∗

CC = 290 for the 20% perturbation and τ ∗
CC = 320

for the 10% perturbation for those methods. The measure τ ∗ is interpreted as the
expected number of correct matches which an intruder would make if matches
were attempted with all sample unique records. The decrease in this measure from
360 to 290 as a result of misclassification is modest since a large number of records
remain unchanged. An alternative interpretation of τ could be obtained by dividing
by the number of sample uniques to give the proportion of sample uniques which
would be expected to be identified correctly. This proportion ranges in Table 1
between 0.116 for the 10% Random Swap, 0.053 for the 10% Targeted Swap,
0.108 for the 20% Random Swap and 0.030 for the 20% Targeted Swap.

The identification risk is reduced considerably with the targeted data swapping
since many more sample uniques are perturbed. The misclassification is reduced
from about τ ∗ = 360 to about τ ∗

CC = 85 for data swapping and τ ∗
CC = 130 for

PRAM for the 20% perturbation and to about τ ∗
CC = 150 for data swapping and

τ ∗
CC = 160 for PRAM for the 10% perturbation. The three approximations to the

risk measure in (2.8) all provide good results, although the approximation in (2.6)
slightly underestimates. The measure in (2.8) relies on knowledge of both the full
misclassification matrix M and the population counts Fj . In contrast, the approx-
imations (2.5), (2.6) and (2.7) only require knowledge of the probability of not
misclassifying a record, that is, the probabilities on the diagonals. The alternative
risk measure τ ∗

CC in (2.9) also turns out to behave similarly to (2.8). The value of
the measure in (2.2) of Gouweleeuw et al. (1998) is much higher than the values
of the other measures, reflecting the very conservative assumption that the intruder
knows that the target unit is in the microdata sample. In practice, the population
counts will generally be unknown to the statistical agency (and the intruder) for
survey data. We therefore consider the method in Section 3 based upon the Pois-
son log-linear model. The estimated aggregate risk measures appear to perform
well with estimates for the risk measure under misclassification of about 285 for
random data swapping and PRAM under the 20% perturbation and about 310 for
random data swapping and PRAM under the 10% perturbation. The estimated ag-
gregate risk measures are about 140 for targeted data swapping and 160 for tar-
geted PRAM for the 20% perturbation and about 90 for targeted data swapping
and 130 for targeted PRAM for the 10% perturbation.
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TABLE 1
Identification risk estimates for microdata samples generated from UK 2001 Census subject to

perturbative SDL methods—Risk measure τ∗ no misclassification = 358.1

SDL method

Random Targeted

Identification risk measures Swap PRAM Swap PRAM

10% perturbation
Identification risk measures for perturbed data with known population counts

Risk measure τ in (2.8) 321.6 325.8 146.3 161.6
Approximation in (2.5) 321.4 325.5 146.2 161.4
Approximation in (2.6) 317.7 321.7 144.8 159.8
Approximation in (2.7) 321.6 325.6 146.3 161.6
Risk measure τ∗

CC in (2.9) 316.6 318.2 149.5 160.3

Estimated risk measures based on sample data
Risk measure in (2.2) 2486.7 2489.1 1749.1 1899.3
Naive risk measure

(Poisson log-linear model
on misclassified sample) 343.2 347.6 297.2 285.4

Estimated risk measure
(Poisson log-linear model
adjusted for misclassification) 308.8 312.7 142.7 157.9

20% perturbation
Identification risk measures for perturbed data with known population counts

Risk measure τ in (2.8) 298.9 299.7 82.2 133.8
Approximation in (2.5) 298.4 299.3 82.1 133.7
Approximation in (2.6) 280.4 283.5 81.7 132.7
Approximation in (2.7) 298.9 299.8 82.2 133.8
Risk measure τ∗

CC in (2.9) 292.8 292.2 85.0 133.4

Estimated risk measures based on sample data
Risk measure in (2.2) 2264.0 2311.7 1419.8 1688.2
Naive risk measure

(Poisson log-linear model
on misclassified sample) 358.6 349.5 262.5 285.2

Estimated risk measure
(Poisson log-linear model
adjusted for misclassification) 286.8 283.1 90.3 133.2

Another important consideration when assessing disclosure risk for releasing
microdata is the individual per-record (record-level) disclosure risk measures in
(2.4). Individual records with high disclosure risk might be subjected to further tai-
lored perturbation. In Figure 1, we plot the per-record (record-level) risk measures
in (2.4) for the sample uniques against the estimated adjusted risk measures (as
described in Section 3) based on the Poisson log-linear model for the experiment



ASSESSING THE PROTECTION PROVIDED BY MISCLASSIFICATION 1303

FIG. 1. Scatterplot of inidividual per-record risk measures in (2.4) against estimated risk measures
based on the Poisson log-linear model under 20% random data swap.

based on 20% random data swapping. In addition, we summarize this bivariate
distribution for the sample uniques in a two-way table in Table 2. In both of the
analyses we see a good fit between the risk measures in (2.4) and their estimated
risk measures. The Spearman’s rank correlation is 0.91.

4.4. Results of information loss assessment. The utility of microdata that has
undergone data masking techniques is measured here in terms of the closeness of
the results of an analysis based upon the perturbed data compared to the same
analysis based upon the original data. The nature of the results and the type of
analysis depend on user requirements. In general, microdata is multi-purpose and
used by many different users. For this assessment we use the following three in-
formation loss measures reflecting distortions of distributions in two-way tables,
as considered by Gomatam and Karr (2003) and Shlomo and Young (2006):

TABLE 2
Cross-classification of sample uniques according to per-record risk measures in (2.4) and estimates

based on Poisson log-linear model under 20% random data swap

Estimates from Poisson log-linear model

Per-record risk measures from (2.4) 0.00–0.09 0.10–0.49 0.50–1.00 Total

0.00–0.09 1961 133 4 2098
0.10–0.49 180 325 76 581
0.50–1.00 8 69 75 152
Total 2149 527 155 2831
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• Relative absolute average distance per cell: Let D represent a frequency distri-
bution for a two-way table produced from the microdata and let D(r, c) be the
frequency in the cell in row r and column c. The distance metric is

RAAD(Dorig,Dpert) = 100 × (Davg − AAD)/Davg,

where the average cell size is defined as

Davg = ∑
r,c

Dorig(r, c)/RC

with R the number of rows and C the number of columns in the table, and the
AAD metric is defined as

AAD(Dorig,Dpert) = ∑
r,c

|Dpert(r, c) − Dorig(r, c)|/RC

with pert and orig referring to the perturbed and original tables respectively.
The RAAD provides a measure of the average absolute perturbation per cell
compared to the average cell size of the table.

• Impact on measures of association:

RCV(Dorig,Dpert) = 100 × (
CV(Dpert) − CV(Dorig)

)
/CV(Dorig),

where

CV(D) =
√

χ2/min(R − 1,C − 1)

is Cramer’s measure of association, defined in terms of χ2, the usual Pearson
chi-squared statistic for testing independence in the two-way table. The RCV
provides a measure of attenuation of the association.

• Impact on an ANOVA analysis: another form of bivariate analysis consists of
comparing proportions in a category of a column (outcome) variable between
categories of a row (explanatory) variable. Let P c(r) = D(r, c)/

∑
c D(r, c) be

the proportion in column c for row r and define the between-row variance of
this proportion by

BV(P c) = ∑
r

(
P c(r) − P c)2

/(R − 1),

where P c = ∑
r D(r, c)/

∑
rc D(r, c). The measure of information loss is

BVR(P c
orig,P

c
pert) = 100 × (

BV(P c
pert) − BV(P c

orig)
)
/BV(P c

orig).

The BVR provides a measure of attenuation of between group differences in an
ANOVA analysis.

Table 3 presents results of the information loss measures on the misclassified
samples used in Table 1. We obtain similar results for the information loss mea-
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TABLE 3
Information loss measures for microdata samples generated from UK 2001 Census subject

to three perturbative SDL methods

SDL method

Random Targeted

Information loss measures Swap PRAM Swap PRAM

10% perturbation
RAAD on LAD × ethnicity 98.5 98.1 97.4 97.2
RAAD on LAD × economic activity 97.0 96.9 96.1 95.8
RCV on LAD × ethnicity −9.9 −10.4 −13.3 −12.9
RCV on LAD × economic activity −10.8 −9.8 −11.0 −10.4
BVR on prop. “White British” across LAD −20.9 −23.8 0 0
BVR on prop. “Indian” across LAD −12.6 −13.0 −18.9 −17.3

20% perturbation
RAAD on LAD × ethnicity 97.4 97.2 96.5 96.4
RAAD on LAD × economic activity 95.8 95.5 95.0 94.9
RCV on LAD × ethnicity −20.4 −20.4 −17.8 −16.9
RCV on LAD × economic activity −18.1 −17.0 −16.2 −14.4
BVR on proportion “White British” across LAD −37.4 −39.6 0 0
BVR on proportion “Indian” across LAD −37.5 −39.1 −34.2 −29.5

sures when comparing data swapping and PRAM with an expected improvement
under the smaller perturbation rate of 10%. The targeted perturbation shows slight
improvements to the RAAD compared to the random perturbation under both per-
turbation rates. The targeted perturbation is generally worse for the RCV and BVR
compared to the random perturbation under the 10% perturbation rate, but there
are slight improvements under the 20% perturbation rate. The impact on the BVR
for other ethnic groups (not shown) was mixed with most of the ethnic groups
following the same pattern of attenuation as seen for the “Indian” ethnic group.
There were a few exceptions due to small sample sizes. For example, we obtained
a positive value for the BVR of “Chinese” ethnicity. Overall, the considerable re-
duction in disclosure risk achieved by the 20% targeted data swapping in Table 1
does not appear to be offset by any major reduction in utility compared to the other
methods.

In Figure 2 we plot a risk-utility map [Duncan, Keller-McNulty and Stokes
(2001)]. The points on the map represent different candidate releases, that is, per-
turbation methods with different levels of perturbation. In addition to the levels
considered earlier, we also include 2% and 5% targeted and random perturba-
tion. The points are denoted T for targeted or R for random; 20 for 20%, 10 for
10%, 5 for 5% or 2 for 2%; and S for swapping or P for PRAM. The points are
plotted against the risk measure τ in (2.8) on the Y-axis and the information loss
measure RAAD for LAD × ethnicity on the X-axis. We see that, at the same level
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FIG. 2. Risk-utility map.

of information loss between the targeted 10% perturbation and the random 20%
perturbation with respect to the RAAD, we obtain lower disclosure risk with the
targeted 10% perturbation. The same applies to the targeted 5% perturbation and
the random 10% perturbation, with the targeted 5% perturbation having less dis-
closure risk than the random 10% perturbation at the same level of information
loss. We draw a line to connect points on the risk-utility frontier [Gomatam, Karr
and Sanil (2005)] and note that in all cases, at given levels of information loss, the
targeted data swapping provides the lowest disclosure risk compared to the other
methods, although there is little difference between targeted swapping and targeted
PRAM. Targeting did not appear to lead to much greater information loss for the
other measures in Table 3 and the general conclusion here is that targeting seems
useful, enabling less perturbation to be applied and hence less information loss for
a given level of risk protection. Of course, this finding could vary in other settings
and an agency could use a similar risk-utility approach, based on its own data, to
determine its preferred SDL approach.

5. Impact of misclassifying multiple key variables. The previous section
only provided estimates of the impact of misclassifying one key variable. In
this section we provide a further numerical illustration to demonstrate the poten-
tial impact of misclassifying multiple key variables. We consider a simple setup
where the C key variables X1, . . . ,XC are independent and binary. Their val-
ues in the external information and the microdata are denoted Xc and X̃c re-
spectively, c = 1, . . . ,C. We suppose that Pr(Xc = 2) = p, Pr(Xc = 1) = 1 − p,
Pr(X̃c = 2|Xc = 1) = θ1 and Pr(X̃c = 1|Xc = 2) = θ2 for c = 1, . . . ,C. The mis-
classification probabilities Mjk in (2.1) will thus consist of products of C terms,
each term being one of θ1, 1 − θ1, θ2 or 1 − θ2. To force X and X̃ to share the
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FIG. 3. Risk measure for different numbers of key variables and rates of misclassification.

same marginal distribution, we set θ2 = (1 − p)θ1/p so that Pr(X̃c = 1) = p and,
to simplify, write θ1 = θ .

In our experiment we generated values of X for a population of size N , drew
a sample of size n by simple random sampling and then generated the values X̃.
Various choices of (N,n,C,p, θ) were considered. We also generated X̃ for all
population units so that F̃j could be computed.

We report values of risk measure (2.5) summed over sample uniques
∑

SU Mjj/

F̃jj in Figure 3 for N = 100,000, n = 2000, p = 0.2 and for various choices of C

and θ . Note that the number of sample uniques increases as we add in more binary
key variables. For C = 11 we have about 240 sample uniques and for C = 30 we
have about 1960 sample uniques. In the absence of misclassification, we find that
the risk increases monotonically and rapidly with C. This is because the number
of population uniques is increasing with C and the fact that any observed match
with a population unique must be a true match. On the other hand, in the presence
of misclassification, we find that the risk does not increase monotonically, rather
it reaches a maximum and then declines. As expected, the more misclassification,
the lower the disclosure risk.

We do not present information loss measures for the simulation since their val-
ues follow theoretically. For any analysis involving a given set of variables, say, the
estimation of a table cross-classifying two particular key variables, the addition of
further key variables will have no systematic impact on any of the information loss
measures, since each of the variables of interest will be perturbed in the same way,
irrespective of the inclusion of other key variables. The only variation we might
expect to observe would be as a result of simulation variation. Any information
loss function in Figure 3 should therefore be flat.
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6. Discussion. In this paper we have shown how existing methods for assess-
ing identification risk in survey microdata may be extended in a relatively sim-
ple way to capture the impact of SDL methods based on misclassification. We
presented a general expression for the risk under misclassification in (2.4) and
showed that the simple formula in (2.5) provided a good approximation to this
expression in two experiments based upon UK census data. The advantage of the
formula in (2.5) is that it enables the extension of existing risk assessment methods
for unpeturbed data based on Poisson log-linear models, as discussed in Skinner
and Shlomo (2008), to handle perturbative SDL methods. We demonstrated this
extended approach also with the census data and provided a disclosure risk-data
utility analysis. We showed how a targeted SDL method could dominate corre-
sponding random methods.

One challenge faced by agencies when assessing identification risk is the need
to make assumptions about the information available to the intruder, specifically
the nature and number of key variables. We conducted a numerical experiment to
assess the sensitivity of the identification risk to the misclassification of different
numbers of key variables. In the absence of misclassification, the risk can increase
rapidly with the number of key variables. We observed that misclassification can,
however, dominate this effect with the risk eventually declining as the number of
key variables increases. This is potentially an encouraging finding for agencies,
since the sensitivity of the identification risk to departures from assumptions about
the choice of key variables may be reduced in some settings when the kinds of
SDL methods considered here are used and, in cases such as in Figure 3, there
may even be a natural upper bound for the risk across plausible choices.

Another issue faced by agencies is whether to release values of the parameters of
the SDL method employed, for example, the swapping rate. The information loss
measures used in Section 4.4 assume that users of the microdata simply ignore
the perturbation in their analyses of the data. The agency’s aim is to find an SDL
method for which both the information loss and the disclosure risk are considered
satisfactorily small. If this is not feasible, then it may be necessary for the agency
to resort to an SDL method which leads to nonnegligible distortion of analyses.
In this case it may be desirable for data analysts to be provided with values of the
parameters of the SDL method to enable them to undertake valid inference, as dis-
cussed, for example, in Gouweleeuw et al. (1998) for PRAM (note that our use of
invariant PRAM was designed to avoid this need). The disclosure risk implications
of releasing such SDL parameters will not be pursued further here.

The findings of this paper are not only relevant to understanding the impact of
SDL methods, but also to the assessment of risk, before the application of SDL
methods, in a way which more realistically takes account of the errors of classi-
fication which arise in survey data from measurement, coding and processing as
well as from imputation for missing data, providing the agency has estimates for
the diagonal elements of the misclassification matrix.
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APPENDIX: DERIVATION OF (2.5) UNDER PROBABILISTIC
RECORD LINKAGE

Suppose, as before, that a microdata record i is linked to a target unit B by
comparing the values of X̃i and XB . Following the approach of Fellegi and Sunter
(1969), let γ (X̃i,XB) = j if X̃i = XB = j , j = 1, . . . ,K , and γ (X̃i,XB) = K +1
if X̃i �= XB and suppose that exact matching is used, so that a link is made if
γ (X̃i,XB) ≤ K . Suppose the intruder draws the pair (i,B) at random (with equal
probability) from the set of pairs s × s∗, where s∗ is the subset of units in U ap-
pearing in the external database from which the intruder selects B . Partition s × s∗
as M = {(i,B)|i = B} and U = {(i,B)|i �= B} and let m(j) = Pr[γ (X̃i,XB) =
j |(i,B) ∈ M], u(j) = Pr[γ (X̃i,XB) = j |(i,B) ∈ U ] and p = Pr[(i,B) ∈ M],
where Pr(·) is defined with respect to the selection of (i,B), the selection of the
sample s and the misclassification mechanism. Then the identification risk for a
linked pair (i,B) for which X̃i = XB = j is given by

φj = Pr[(i,B) ∈ M|(X̃i,XB) = j ] = m(j)p

m(j)p + u(j)(1 − p)
.

A large sample size approximation gives m(j) ≈ Mjjfj/n∗, u(j) ≈ (πF̃jfj −
πMjjfj )/(nn∗ − πn∗), p = π/n, where fj is the number of units b in s∗ for
which Xb = j and n∗ is the size of s∗. It follows that φj ≈ Mjj/F̃j irrespective
of the manner in which s∗ is selected from U . Skinner (2008) provides further
discussion of identification risk under probabilistic record linkage.
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