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Abstract: Clogg and Eliason (1987) proposed a simple method for taking account of 

survey weights when fitting log-linear models to contingency tables. This paper 

investigates the properties of this method. A rationale is provided for the method when 

the weights are constant within the cells of the table. For more general cases, however, it 

is shown that the standard errors produced by the method are invalid, contrary to claims 

in the literature. The method is compared to the pseudo maximum likelihood method both 

theoretically and through an empirical study of social mobility relating daughter’s class to 

father’s class using survey data from France. The method of Clogg and Eliason is found 

to underestimate standard errors systematically. The paper concludes by recommending 

against the use of this method, despite its simplicity. The limitations of the method may 

be overcome by using the pseudo maximum likelihood method. 

 

Keywords: complex sampling; jackknife; log linear model; pseudo maximum likelihood; 
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1. Introduction 

Sample survey data provide the basis of much statistical modelling in the social 

sciences. Classical methods of fitting statistical models can, however, be invalid in the 

presence of complex sampling designs involving, for example, unequal weights, 

stratification or multi-stage sampling. To address this concern, there has been 

considerable development of methods which do take account of complex designs (e.g. 

Rao and Thomas, 1988; Skinner, Holt and Smith, 1989; Korn and Graubard, 1999; 

Chambers and Skinner, 2003). One approach, pseudo maximum likelihood (PML) 

estimation (Binder, 1983; Skinner, 1989), has found increasingly wide application and is 

now implemented in many statistical software packages, such as R (Survey Analysis), 

SPSS Complex SamplesTM, STATA (version 10+), LISREL (version 8.7+) and MPlus 

(version 3+). One advantage of this approach is its generality; it is applicable to a very 

broad class of complex sampling schemes and to a wide range of statistical modelling 

methods, especially those based upon generalized linear models but also other methods 

such as latent variable modelling (Asparouhov, 2005). 

In this paper we shall consider an alternative approach proposed by Clogg and Eliason 

(1987), hereafter referred to as CE, for use with one specific class of modelling methods: 

log-linear modelling of contingency tables. Although their proposal featured as just one 

of many ideas in their paper, it has received continuing attention, for example in the 

standard text book of Agresti (2002, p.391) and in the extension to latent class models of 

Vermunt and Magidson (2007). The primary rationale for the approach is that it provides 

a simple way of incorporating survey weights into the estimation of the log-linear model 

to give “appropriate parameter estimates and standard errors” (Agresti, 2002, p.391). It 
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has also been claimed that the approach leads to valid model testing procedures (Vermunt 

and Magidson, 2007). 

An acknowledged shortcoming of the CE approach is that it fails to take account of 

stratification or multi-stage sampling in the estimation of standard errors. Since it is very 

common for social surveys to employ multi-stage sampling and since the impact of multi-

stage sampling on standard errors is often much greater than the impact of unequal 

weights, this is a major disadvantage of the CE approach relative to the PML approach. 

Nevertheless, surveys do arise where there is no clustering and the survey weights exhibit 

appreciable variability. Moreover, there do exist software packages, for which log-linear 

modelling procedures via the PML approach are not available but the CE approach can be 

implemented easily (SAS® , for example, appears to fall in this category at present). 

The purpose of this paper is to investigate the properties of the CE approach and to 

compare them to those of the PML approach. For an earlier discussion of this 

comparison, see Patterson et al. (2002) and Vermunt (2002). 

The paper is organised as follows. In section 2, we introduce the log-linear model and 

explain how unequal probability sampling can affect the fitting of this model. This 

discussion is designed to motivate the CE approach which is set out in section 3. The 

theoretical properties of the CE approach are assessed in section 4 under a sampling 

design, chosen to be favourable to the CE approach. The PML approach is set out briefly 

in section 5 and then compared theoretically to the CE approach in section 6. An 

empirical comparison is provided in section 7 using data from the ‘Formation & 

Qualification Professionnelle’ survey, conducted in France in 1985. Conclusions are 

drawn in section 8. 
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2. The Log-linear Model and the Impact of Sampling 

As in Clogg and Eliason (1987) (hereafter CE), we may express a log-linear model for 

a contingency table as a matrix equation: 

   log( )s sXµ λ=  ,      (1) 

where log( )sµ  is an 1M ×  vector containing the logarithms of the expected frequencies 

for the M cells in the table, X  is an M p×  model matrix (or design matrix) containing 

specified values, usually either 0 or 1, and sλ  is a 1p × vector of unknown parameters, 

where p M≤ . 

We subscript 
sµ and 

sλ  by s to denote sample. This highlights a basic problem with 

this model for sample survey data: the parameters of the model are dependent upon the 

sampling scheme if, as is common, 
sµ  is defined in terms of the expected sample 

frequencies. To explore this dependence, suppose instead that the log-linear model is 

defined in terms of the expected population frequencies. To emphasize the distinction we 

remove the subscript s and write the population-level model as: 

log( ) Xµ λ= ,       (2) 

where we suppose the same design matrix X  applies. For simplicity, consider a sampling 

scheme where all units in the k
th

 cell of the table are included in the sample with 

probability kπ  and let log( )π  be the 1M ×  vector containing the log( )kπ . Then we may 

write: 

   log( ) log( ) log( )sµ π µ= + ,     (3) 

since the expected sample frequency in the k
th

 cell is given by kπ  times the expected 

population frequency. Hence from (2) and (3), we may write: 
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log( ) log( )s Xµ π λ= + .     (4) 

Provided the structure of X  is appropriate, the expression in (4) may be equated to 

the original expression in (1) for some special sampling schemes, for example: 

(i) equal probability selection:  if all the kπ  are equal then log( )π  will be a multiple 

of a vector of ones and if the first column of X  is specified to be a vector of ones, the 

vectors sλ  and λ  will only differ in their first element. Such a definition of X  is 

standard (e.g. Agresti, 2002, Ch.8) where the first element of sλ  represents the total 

sample size and the remaining elements determine the proportions falling into the 

different cells of the table. 

(ii) disproportionate stratified sampling according to one of the cross-classifying 

variables in a multi-way table:  provided X  is defined to include the main effects for the 

stratifying variable, the vectors sλ  and λ  will only differ with respect to those elements 

corresponding to these main effect terms. 

Thus, for some simple sampling schemes, it may be reasonable to follow the 

traditional approach of fitting model (1) to the sample frequencies, provided the design 

matrix is specified to capture the differential sampling effects and some of the parameter 

estimates are interpreted as absorbing effects of sampling, e.g. the grand mean term in 

example (i) and the main effects for the stratifying variable in example (ii). This approach 

is not suitable, however, for more complex sampling schemes. 

 

3. The Clogg and Eliason Approach 

The CE approach may be motivated by equation (4). Suppose the expected sample 

frequencies in a contingency table are given in the vector sµ  and that the log-linear 
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model in (4) holds. Then, provided the inclusion probabilities 
kπ  are known and 

provided it is reasonable to make a standard ‘sampling model’ assumption, such as a 

Poisson or multinomial distribution, the parameter vector λ  may simply be estimated in 

a conventional way, e.g. using maximum likelihood (ML), by treating log( )π  as an offset 

term in the model. (See Agresti, 2002, p.385 for a discussion of the use of offset terms.) 

We shall generally assume in this paper that the inclusion probabilities are known, 

typically via survey weights. The more critical issue here is whether the sample 

frequencies obey a conventional ‘sampling model’. In this paper we shall take the 

conventional sampling model to be a Poisson distribution (e.g. Agresti, 2002, sect. 4.3.1), 

although equivalent arguments could be presented using the multinomial distribution (the 

main alternative conventional approach). Whether the sample frequencies do follow a 

Poisson distribution depends upon the nature of the sampling scheme. We suppose that at 

the population level, the population frequencies 
kN  in cells k do indeed follow Poisson 

distributions, that is they are outcomes of independent Poisson random variables with 

means kµ . A sampling scheme which favours the CE approach is Bernoulli sampling 

within cells, i.e. where each of the kN  units in cell k is included independently in the 

sample with probability kπ . In this case, standard theory for the Poisson distribution 

implies that the sample frequencies kn  will also be the outcomes of independent Poisson 

random variables, now with means sk k kµ π µ= . In other words, the sample frequencies 

will follow a conventional sampling model. It follows that, under this Bernoulli sampling 

scheme, the approach of fitting the model in a conventional way via expression (4) using 

log( )π  as an offset is valid. 
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The assumption that the inclusion probabilities are uniform within cells is very 

restrictive, however, and CE address the general case where survey weights vary between 

individual units. In this case, they replace the cell-level inclusion probabilities kπ  

appearing in log( )π  in (4) by an estimator of the sampling fraction /k kn N  in cell k given 

by ˆ/k k kz n N= , where ˆ
kN  is the sum of survey weights across sample units in cell k. CE 

then claim that if the model: 

log( ) log( )s z Xµ λ= +      (5) 

is fitted using conventional ML methods, treating log( )z  (the 1M ×  vector containing the 

log( )kz ) as an offset, then inference about the parameter vector λ , and in particular the 

implied standard errors, will be appropriate. 

We have seen that this claim is valid in one special case, i.e. where Bernoulli 

sampling is employed within cells and where the survey weights (assumed to be inverse 

inclusion probabilities) are constant within cells. We argue, however, that this claim is 

not valid in general for two main reasons. 

First, as noted in the introduction, complex sampling schemes impact on standard 

errors not only through unequal weights but also, and often more importantly, through 

other features of the design such as cluster sampling. It is well known that cluster 

sampling can seriously inflate standard errors. The use of the offset term in the CE 

approach takes no account of potential variance inflation from designs such as cluster 

sampling and thus will generally lead to invalid standard errors. 

The second reason why we argue that the CE approach will, in general, be invalid is 

that it does not adequately take account of the effects of weight variation. Since this is the 

main purpose of the discussion in CE, it is the theme which we shall focus on. In the next 
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section, we consider a sampling scheme which is designed to be as favourable to the CE 

approach as possible, while imposing no constraints on the variability of the weights. 

 

4. Theoretical Properties of CE Approach under a Poisson Sampling Design 

 4.1. The Poisson Sampling Design 

We saw in the previous section that the CE approach is valid if the population units 

are selected independently with probabilities which are constant within cells. In this 

section, we retain the assumption that population units are selected independently. This 

favours the CE approach, in particular by ruling out cluster sampling designs which 

might lead to underestimation of standard errors by the CE approach. We now, however, 

allow the inclusion probabilities to vary between units within cells. A sampling design 

which selects units independently with unequal probabilities is sometimes called a 

Poisson sampling design (e.g. Hájek, 1981). Since we shall treat the survey weights as 

reciprocals of the inclusion probabilities, we are also allowing the weights to vary 

between units. 

For simplicity, suppose that there is only a finite number of possible values of the 

sample inclusion probabilities, denoted 
1 2, ,..., Hπ π π . We shall refer to the different parts 

of the population which are sampled with different probabilities as strata, i.e. units in 

stratum h are sampled with probability hπ  ( 1, 2,...,h H= ). Note, however, that the 

Poisson sampling scheme does not ensure a fixed sample size within each stratum and 

hence this design does not correspond to standard stratified sampling. 

Let khN  be the population count in cell k in stratum h, so that 
1

H

k kh
h

N N
=

= ∑ . In order to 

construct a framework where the CE approach is natural, we shall assume that the 
khN  
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are generated independently as Poisson random variables: ( )kh khN Poisson µ∼ . This 

implies that ( )k kN Poisson µ∼ , where 
1

H

k kh
h

µ µ
=

= ∑ , and also that the numbers khn  of 

sample units which fall into cell k and stratum h are independently distributed as: 

( )kh h khn Poisson π µ∼ . It follows that the distribution of 
1

H

k kh
h

n n
=

= ∑  is also Poisson, as 

assumed in the CE approach, i.e. 

( )k skn Poisson µ∼ , where 
1

H

sk h kh
h

µ π µ
=

= ∑ .   (6) 

4.2. Point Estimation under the CE Approach 

The parameter vector λ  is estimated under the CE approach using ML estimation 

based upon (5), treating the ˆ/k k kz n N=  as fixed. As discussed by Vermunt (2002), the 

log likelihood used in the CE approach may be expressed as: 

log ( ) { log[ ( )] ( )}k k sk skL nλ µ λ µ λ= −∑ ,           (7) 

where, from (5), ( ) exp( )sk k kx zµ λ λ=  and kx  denotes the k
th

 row of X . The point 

estimator in the CE approach is denoted ˆ
CEλ  and is the value of λ  which maximizes (7). 

We show in the Appendix that, providing the model in (2) holds, then ˆ
CEλ  is 

consistent for λ  (under a suitable asymptotic framework). Thus, the CE approach does 

make use of the weights to correct for bias from unequal probability sampling, at least in 

large samples. Note, however, that if any of the cells are empty ( 0kn = ) then kz  is not 

defined and thus the estimator ˆ
CEλ  is not defined. 
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4.3. Standard Error Estimation under the CE Approach 

CE propose to obtain standard errors by treating the expression in (7) as a likelihood 

function with kz  treated as fixed. It is shown in the Appendix that this approach leads to 

a variance-covariance matrix of ˆ
CEλ  of the form 1J −� , where 'k sk k kJ x xµ= ∑�  and this 

matrix may be estimated by replacing the skµ  by kn . The CE standard errors are obtained 

as the square roots of the diagonal elements of this matrix. 

We show in the Appendix that in fact, if we properly take account of the fact that 
kz  

is not fixed, the (large sample) variance-covariance matrix of ˆ
CEλ  can be expressed as: 

          ˆ( )CEv λ  1 1 2 1{ ' }k k sk k kJ J c x x Jµ− − −= + ∑� � � ,        (8) 

where 2

kc  is the squared coefficient of variation of the survey weights within cell k. Thus 

the CE approach will generally underestimate the standard error of each parameter 

estimate. It will only provide valid standard errors if the survey weights are constant 

within cells as discussed in section 2, but this is not a case of great interest since the CE 

approach was specifically formulated to deal with situations where the weights vary. 

When the distribution of the weights is the same in each cell k so that 2 2

kc c=  does not 

depend on k, expression (8) simplifies further to 2 1ˆ( ) (1 )CEv c Jλ −= + � . Hence, in large 

samples, the CE estimator underestimates the variance-covariance matrix by a factor 

2(1 )c+  and, in particular, the variance of each element of ˆ
CEλ  is underestimated by this 

factor. In the general case when the 2

kc  depend on k, the degree of underestimation may 

be interpreted as an average of the 21 kc+ . 



 11 

One special case under the assumed sampling design, where the distribution of the 

weights is the same in each cell k, arises when the strata are independent of the cell 

variables, so that kh k hµ µ φ= , where hφ  denotes the probability of falling in stratum h and 

1hφ =∑ . This case may be called ‘non-informative stratification’. In this case, 2

kc  is 

equal to the overall coefficient of variation of the weights across all cells: 

2 2 1

1 1

1
H H

k h h h h
h h

c c π φ π φ−

= =

= = −∑ ∑ . 

The above results imply some possible modifications of the CE approach. For 

example, if the weights are judged to be roughly independent of the cell variables then 

the CE standard errors could be modified by multiplying them by a factor 2ˆ1 c+  where 

ĉ  is the sample coefficient of variation of the weights. We do not pursue this idea, 

however. 

 

5. Pseudo Maximum Likelihood (PML) Approach 

The PML approach is motivated by the ‘census’ likelihood for model (2) which would 

apply if the whole population was sampled and the kN were known. In this case the ML 

estimator of λ  would be obtained by solving the ‘census’ likelihood equations (c.f. 

Agresti, 2002, p.335) given by: 

    [ ( )] 0k k k kN xµ λ− =∑ ,           (9) 

where ( ) exp( )k kxµ λ λ= . The PML estimator of λ , denoted ˆ
PMLλ , is defined as the 

solution of (9) when the 
kN  are replaced by the weighted counts ˆ

kN . It may be obtained 

by using one of the standard ML fitting routines for log linear modelling (Agresti, 2002, 
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sect. 8.7) with the weighted counts. The variance-covariance matrix of ˆ
PMLλ  may be 

obtained by either linearization or replication methods.  

The linearization method may be implemented by first taking the standard estimator 

of the variance-covariance matrix 1

0
ˆ{ ' [ ( )] }k PMLv X diag Xµ λ −=  (Agresti, 2002, p.339),  

obtained from the ML fit to the weighted counts, as above. The linearization estimator 

may then (c.f. Rao and Thomas, 1988, sect. 5.2) be expressed as  

    
0 0

ˆ( ) 'L PMLv v X VXvλ = ,   

where V is an estimator of the variance-covariance matrix of the vector of ˆ
kN , which 

takes account of the complex sampling. The estimator Lv  does not appear to be 

implemented in standard statistical software at present. (Although there is now much 

software implementing PML for generalized linear models (GLMs) and log-linear models 

can be represented as GLMs, this representation treats cell counts as observations and 

does not allow for complex sampling at the unit level.) Instead, 
Lv  can be computed by 

matrix multiplication after first calculating V from survey software, such as Survey 

Analysis in R (Lumley, 2004). The ˆ
kN  may first be scaled by a constant before 

calculating ˆ
PMLλ  and 0v  to avoid numerical problems (if the population is large) and to 

enable 0v  to be more interpretable. If the constant is set as ˆ/k kk kf n N= ∑ ∑ , the 

weighted counts sum to the sample size and 0v  is interpretable as an approximate 

variance-covariance matrix ignoring the effects of complex sampling. Scaling by f  

should not affect ˆ
PMLλ  nor ˆ( )L PMLv λ  but should multiply 

0v  by 1f −  and V  by 2f . 
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Such matrix manipulations may be avoided by employing a replication method, such 

as the jackknife or bootstrap, where different sets of weights are constructed for each of a 

series of ‘replicates’. The point estimate λ̂  (which could be either ˆ
PMLλ  or ˆ

CEλ ) is  

computed for each replicate and the estimated variance is obtained as a simple measure of 

the variability (across replicates) of these estimates. In the case of the jackknife and 

stratified multi-stage sampling, the replicates correspond to the primary sampling units 

(PSUs) 1, 2,..., hj n=  within strata 1,2,...,h H= . The set of weights ( )hj
w  for replicate hj   

is constructed by assigning zero weight to all sample units from PSU j  in stratum h , 

inflating the weights of other units in this stratum by the factor /( 1)h hn n −  and leaving 

the remaining weights the same (Rust and Rao, 1996). For replicate hj , λ  is estimated 

just as λ̂  is computed except that the original survey weights are replaced by the 

replicate weights ( )hjw . The resulting estimator is denoted ( )ˆ hjλ . This is repeated for each 

replicate and the jackknife estimator of the variance of λ̂  is then given by: 

( ) ( )

1 1

1ˆ ˆ ˆ ˆ ˆ( ) ( )( ) '
hnH

hj hjh
J

h jh

n
v

n
λ λ λ λ λ

= =

 −
= − − 

 
∑ ∑ .   (10) 

This estimator is consistent for the variance of λ̂  under general assumptions about the 

survey weights and the stratified multi-stage design (Shao and Tu, 1995, Ch.6).  

 

6. Theoretical Comparison of the CE and PML Approaches 

6.1. Comparison of Standard Error Estimators 

As we showed in section 4.3, the standard error estimators produced by the CE 

approach are generally biased and inconsistent as a result either of non-independence 
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between the selection of different units, e.g. via cluster sampling, or because of unequal 

survey weights within the cells of the table. On the other hand, the PML method is 

designed so that the standard error estimators are consistent. 

6.2. Comparison of Point Estimators 

The point estimators, ˆ
PMLλ  and ˆ

CEλ , for the two approaches are not identical (as noted 

by Vermunt, 2002) but they are both consistent for the true value of λ  if the model in (2) 

holds. If the model in (2) does not hold then, as the sample size increases, ˆ
PMLλ  and ˆ

CEλ  

will not in general converge to the same quantities. Whether the limiting value of either 

ˆ
PMLλ  or ˆ

CEλ  is of interest depends on the scientific objectives. One possible advantage of 

ˆ
PMLλ  is that it can be shown that its limiting value does not depend on the sampling 

scheme (cf. comments of Patterson et al., 2002). 

We next compare the variances of the elements of ˆ
PMLλ  and ˆ

CEλ  under the assumption 

that the model in (2) is correct. To do this we write both estimators as solutions of the 

estimating equations: 

ˆ{ ( )} 0k k k k ka N xµ λ− =∑ ,    (11) 

where for ˆ
PMLλ  we set 1ka =  and for ˆ

CEλ  we set k ka z=  (see Appendix). 

The variance of any linear combination of the elements of the vector λ  solving (11) 

is minimized by setting 
k ka x  proportional to: 

exp( )1

ˆvar( )

k

k

x

N

λ

λ

∂

∂ 1

1

1
k kH

h kh
h

xµ
π µ−

=

=
∑

. 

Hence the optimal choice of 
ka  is 
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1

1

/
H

kopt k h kh
h

a µ π µ−

=

∝ ∑  

and an estimate of the optimal ka  is 1 2
ˆ /kopt k ka S S= , where 1kS  is the sum of weights and 

2kS  is the sum of squared weights in cell k. One special case arises when the weights are 

constant in which case kopta  is constant and both ˆ
PMLλ  and ˆ

CEλ  are equal and optimal. 

The CE point estimator ˆ
CEλ  is optimal if the weights are constant within cells. In 

general, however, the CE approach takes no account of weight variation within cells and 

thus will not be optimally efficient. The PML point estimator ˆ
PMLλ  will be close to 

efficient when the weights are variable but tend to be unrelated to the cells as, for 

example, in the case of non-informative stratification mentioned in section 4.3. There 

seems no reason to expect ˆ
CEλ  to tend to be always more efficient than ˆ

PMLλ  nor vice 

versa. 

 

7. Empirical Comparison of the CE and PML Approaches 

We now set out to compare the CE and PML approaches empirically. We use data 

from the 1985 Enquête Formation & Qualification Professionnelle, a survey with 

complex sampling design and post hoc reweighting that was conducted by the French 

Statistical Office and for which a stratum variable and a weight variable are available in 

the data file. In the following sections, we briefly describe the sampling characteristics of 

the survey, then the data and contingency table we use and the log-linear model we 

consider. Finally, we systematically compare the corresponding CE and PML estimators 

and standard errors. 
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7.1. Sampling Characteristics of the Survey 

The 1985 Formation & Qualification Professionnelle survey was designed to be 

representative of the population of ordinary households in the 1982 census and covered 

all employed and unemployed persons, whatever their age, and all persons not in the 

labour market aged between 13 and 69 in 1982. The survey was administered to a 

stratified sample of 46,500 individuals drawn from the 1982 census with sampling 

fractions that varied between about 1/200 and 1/2500 (Laulhé and Soleilhavoup, 1987; 

Gollac, Laulhé and Soleilhavoup, 1988a, 1988b). 

More precisely, the survey sample was drawn from the (very large) 1982 master 

sample in order to concentrate interviews within the geographical areas covered by the 

team of interviewers of the French Statistical Office so as to minimize travelling costs. 

The sampling was divided into two phases. First, a sample of 38,000 dwellings was 

drawn from the master sample so that all dwellings in the population had an equal 

probability of inclusion of 1/200. Then the individuals in these dwellings were stratified 

according to nationality in two categories (French, foreigners), position as regards the 

labour market, socio-economic class and age group. Second, the final sample of 46,500 

individuals was drawn from the 73 resulting strata using different (sub-)sampling 

fractions, ranging from 13% to 100%, determined by the objectives of the survey. As a 

result, the probabilities of inclusion of the different individuals in the census population 

ranged between 1/200 and 1/2690. These probabilities are referred to as the initial 

sampling fractions. The geographical clustering in the master sample is not identified in 

the file and will be ignored in our analyses for reasons of practicality and simplicity. The 

possible clustering of individuals in dwellings will also be treated as negligible since it 
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will happen with very small probability (especially since we shall restrict attention to a 

subsample of women in a particular age range). In summary, the sample will be treated as 

being derived by (disproportionate) stratified simple random sampling. 

The interviews were completed between mid April and the end of June 1985 with 

39,233 completed questionnaires collected. To take account of not only the 

disproportionate stratification but also other sources of missing data (because of unknown 

addresses, long term absences and refusals), weights were constructed as ratios of census 

counts to counts of survey respondents within weighting classes defined by the strata 

cross-classified with residential area at the census (rural, urban, or Parisian).  The 

resulting final weight variable is available for each case in the data file, for use in 

producing estimates for the population. 

7.2. Data, Contingency Table and Log-linear Model 

For our analysis we restrict attention to the sub-sample of 5,159 women, with French 

nationality at the date of the survey, aged between 35 and 59 at the end of December 

1985, currently employed at the date of the survey, and who reported information about 

their current socio-economic class and their father’s socio-economic class when they 

stopped attending school or university on a regular basis. Table 1 displays characteristics 

of this sub-sample across the strata. The 5,159 women belong to 18 different strata with 

initial sampling fractions varying between 1/310 and 1/2500. The distribution is very 

uneven as only 2 women appear in the least numerous stratum while 1,581 belong to the 

most numerous one. For descriptive purposes, Table 1 also presents the mean and 

standard deviation of the final weight in each stratum. The discrepancy in each stratum 

between the average final weight and the inverse of the initial sampling fraction reflects 
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the adjustments that result from missing data, and the standard deviation of the final 

weight reflects the variability of the case-by-case weighting within each stratum. 

Our analysis is based on the 7 x 7 two-way contingency table that cross-classifies 

women’s socio-economic class with their father’s socio-economic class when they 

stopped attending school or university on a regular basis. The mobility table uses a 

discrete and unordered socio-economic classification defined as follows: (1) higher-grade 

salaried professionals; (2) company managers and liberal professions; (3) lower-grade 

salaried professionals; (4) artisans and shopkeepers; (5) non-manual workers; (6) foremen 

and manual workers; (7) farmers. Table 2 presents both unweighted frequencies and 

weighted frequencies in the mobility table after rescaling the latter to the exact sample 

size (see scaling by f  in section 5). 

We aim at analysing the structure and strength of the association between father’s 

socio-economic class and daughter’s socio-economic class in 1985 within French society. 

For that purpose, we use the log-linear model proposed by Hauser (1978, 1980) that 

identifies the two-way interaction effects by constraining some of them to be equal across 

cells of the contingency table. Assuming that i  and j  respectively index father’s class 

and daughter’s class, that the cells )j,i(  are assigned to K  mutually exclusive and 

exhaustive subsets and that each of those sets shares a common interaction parameter kδ , 

the logged expected frequency in cell )j,i(  of the mobility table is expressed as follows: 

ij i j klog µ α β γ δ= + + +  if the cell )j,i(  belongs to subset k . 

Thus, aside from total (α ), row (
iβ ), and column ( jγ ) effects, each expected 

frequency is determined by only one interaction parameter ( kδ ) which “reflects the 
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density of mobility or immobility in that cell relative to that in other cells in the table” 

(Hauser, 1980, p.416). The interaction parameters of the model may therefore “be 

interpreted as indexes of the social distance between categories of the row and column 

classifications” (Hauser, 1980, p.416). 

A previous paper (Vallet, 2005) relied on sociological hypotheses to build such a 

model of the father-daughter mobility table with 7=K  interaction parameters. The 

allocation of the interaction effects across the cells of the contingency table that 

characterizes the postulated model is presented in the upper part of Table 3. In our 

underlying hypotheses, we assumed that the association between origin class and 

destination class is symmetrical across the main diagonal, and we also emphasized that 

three aspects must be considered to describe the structure and strength of the association: 

the relative desirability of different socio-economic class positions; the relative 

advantages afforded to individuals by different socio-economic class origins; and the 

relative barriers that face individuals in seeking access to different socio-economic class 

positions. Although this initial model did not satisfactorily fit the data on conventional 

criteria of statistical significance, the expected frequencies were generally close to the 

observed frequencies. On the basis of an examination of residuals, a few modifications 

were introduced to reallocate some cells to a different interaction parameter (Vallet, 

2005). The final model, with again 7=K  interaction parameters, that resulted from this 

process and proved to satisfactorily fit the data is presented in the lower part of Table 3. 

For the initial and final log-linear models, we now compare estimates and standard 

errors obtained in four different ways: the standard ML approach for the tables of 
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unweighted frequencies and of weighted rescaled frequencies; the CE approach; and the 

PML approach. 

7.3. Computation 

To implement the first three approaches, we used both the CATMOD and GENMOD 

procedures in SAS
®

 software and obtained exactly the same results. To implement the CE 

approach, we computed ijz  as the ratio of the unweighted frequency to the weighted 

rescaled frequency in cell )j,i(  and then introduced )z(Log ij  as an offset in the log-

linear model (see section 3). As ijz  cannot be defined for cell (1,7) since it is empty in 

Table 2, we decided to treat this cell as a structural zero for all four approaches. 

No survey procedure for log-linear modelling is available in the SAS® software that 

could be used for direct implementation of the PML approach. For that purpose, we 

therefore use the CATMOD SAS
®
 procedure in the context of the SASMOD module of the 

IVEware software (Raghunathan, Solenberger and Van Hoewyk, 2002). SASMOD is a 

SAS macro that provides a framework for performing complex design analysis, with or 

without missing data, for a collection of SAS
®

 procedures. Before invoking the SAS
®

 

procedure, the SASMOD setup file must include the definition of three variables: a stratum 

variable (here, the variable that identifies to which of the 18 strata (Table 1) each 

observation belongs); a weight variable (here, the (rescaled) weight variable available in 

the data file); and a cluster variable (here, as no Primary Sampling Unit (PSU) variable is 

available, we use a pseudo variable with a different value between 1 and 5,159 for each 

observation). Then the SASMOD module computes the variance estimates using a variant 

of the jackknife method in (9) based upon HU −  (here 5,141) replicate estimates, where 

H  denotes the number of strata and U  the total number of PSUs (personal 
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communication from T. E. Raghunathan, 2006). For either the initial model or the final 

model estimated on our data, SASMOD computations take about 50 minutes with an Intel® 

Pentium® IV 2.2 GHz processor. 

To estimate the true variance of the CE point estimator, we implemented the jackknife 

method in (9) by nesting the GENMOD procedures in a loop in SAS
®

. We also applied this 

method to each of the other point estimators and found that with the PML estimator we 

obtained exactly the same results as with SASMOD. 

7.4. Comparison of Parameter Estimates and Standard Errors 

Table 4 presents parameter estimates and standard errors obtained for the initial and 

final models under all four approaches. We consider the point estimates first. The 

estimates obtained by applying the standard ML approach to the weighted rescaled table 

are identical to those from the PML approach as expected. Thus, there are really just 

three sets of point estimates to compare. The most marked differences are between the 

unweighted estimates and the other two (PML and CE) estimates. As discussed in section  

6.2, both the latter estimators will be approximately unbiased if the model is true. We 

cannot be certain that either of the models is true but it seems reasonable to view the 

differences between the unweighted estimates and the other two estimates as evidence of 

bias in the former procedure (cf. Clogg and Eliason (1987, p.22)). This bias is especially 

pronounced in the case of the jγ  parameters and this may be attributed to the strong 

correlation between the column variable (women’s socio-economic class in 1985) and 

one of the stratifying variables (women’s socio-economic class at the census) upon which 

the sampling is differential. The PML and CE estimates are broadly similar and should 

not lead to any difference in substantive interpretation for either model. Leaving aside 
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consideration of the standard errors, there seems no strong reason to prefer one set of 

estimates to the other. One possible argument in favour of the PML estimator, following 

Patterson et al. (2002) and mentioned in section 6.2, is that the PML estimator is 

‘estimating’ a well-defined population quantity if the model is false, whereas the CE 

estimator is then estimating a quantity dependent on the arbitrariness of the sampling 

scheme. 

As regards standard errors in Table 4, only those for the PML estimator have been 

estimated in a way which takes appropriate account of the complex sampling. Since the 

weighted rescaled and the PML point estimators are identical, the differences between the 

standard errors for these two estimators demonstrate that the former method can often 

lead to seriously incorrect standard errors, as noted by Clogg and Eliason (1987, p.24). 

We have also calculated valid standard errors for the unweighted point estimators using 

the jackknife method and found that these too can differ from the values in Table 4, 

although the differences are more minor. We do not report or comment on these results 

further, however, since the unweighted point estimators show clear bias and so their 

standard errors are of little interest. 

Of much more importance to the theme of this paper are the standard errors for the 

CE approach. The standard errors of the CE point estimator obtained via a valid jackknife 

approach are compared in Table 5 with those obtained via the CE approach. We observe  

that the CE approach uniformly underestimates the standard errors. The jackknife value is 

often at least 10% higher and sometimes at least 20% higher. Our empirical investigation 

therefore illustrates how the CE variance estimator can systematically underestimate the 

true variability. Moreover, we observe in Table 4 that the standard errors obtained under 
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the CE approach are virtually identical to those of the unweighted approach. Hence the 

device of including the offset term in the model seems to provide virtually no benefit in 

capturing the effect of unequal sampling weights on the standard error. It should be noted 

that the standard errors in Tables 4 and 5 are only sample estimates. However, it seems 

quite implausible that the systematic patterns observed are a result of sampling variation 

when the sample size is over 5,000 and the patterns are so similar for the different 

parameters. 

Finally, we compare the jackknife estimates for the CE estimator in Table 5 with the 

jackknife estimates for the PML estimator in Table 4. We observe that these are very 

similar. This is not surprising since the values of the point estimators were similar too. It 

implies that, at least for this application, there is no evidence of an efficiency advantage 

of the CE point estimator compared to the PML approach. 

 

8. Conclusions 

Clogg and Eliason (1987) proposed, amongst many other ideas, a simple method for 

handling survey weights in log-linear modelling. This method has continued to be cited. 

We have investigated the properties of this method using both statistical theory and an 

empirical study of social mobility using French survey data. Despite its simplicity, we 

recommend against the use of the method for the following reasons: 

• the standard errors produced by the method are invalid in general as a means 

of capturing the effect of weighting, contrary to claims in the literature. They 

are only valid in one or two very special cases. They generally underestimate 

the true standard errors. This has been shown theoretically in the case of 
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unequal probability Poisson sampling and empirically in the case of 

disproportionate stratified sampling. In our empirical study the method 

produced standard errors which were virtually identical to ignoring the survey 

weights entirely. 

• the standard errors produced by the method take no account of the effects of 

complex sampling other than weights. In the authors’ experience, there is a 

common misperception among survey data users that weights are the only 

aspect of complex sampling that need to be taken account of in data analyses, 

whereas for most social surveys, multi-stage sampling has a much greater 

impact than weighting on standard errors. 

• the method does correct for bias in point estimation but we see no clear 

advantages of this approach compared to the equally simple approach of 

fitting a model to a weighted table. 

• we are not aware of any rigorous theoretical justification of claims in the 

literature (e.g. Vermunt and Magidson, 2007) that this method leads to valid 

model testing procedures in the presence of survey weights and, on the basis 

of the theoretical work in this paper, we do not find this plausible. 

We consider that the pseudo maximum likelihood (PML) approach overcomes these 

limitations of the method of Clogg and Eliason (1987). Although the PML method does 

not appear to be implemented currently in log-linear modelling procedures in standard 

software packages, it is often feasible to employ replication variance estimation methods, 

such as the jackknife or bootstrap, where the point estimates are repeatedly computed for 

different replicates to obtain valid standard errors. 
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Appendix: Proofs of Results in Section 4 

Consider first the consistency of ˆ
CEλ  which maximizes (7) or, alternatively, may be 

defined as the solution of the estimating equations: 

[log ( )] / { exp( ) } 0k k k k kL n x z xλ λ λ∂ ∂ = − =∑ , 

which may also be expressed as: 

ˆ[ exp( )] 0k k k k kN x z xλ− =∑  .                          (A1) 

Consider the set-up of section 4.1, where 1

1

ˆ
H

k kh h
h

N n π −

=

= ∑ , and assume an asymptotic 

framework, where H and 1 2, ,..., Hπ π π  are fixed and the 1 2, ,..., Hµ µ µ  each increase to 

infinity. In this framework, the ˆ /k kN µ  will each converge in probability to unity. 

Moreover, if the model in (2) is correct, so that exp( )k kxµ λ= , then ˆ / exp( )k kN x λ  will 

converge in probability to unity. It then follows from (A1) that, provided the design 

matrix is defined in a non-redundant way so that (in large samples) (A1) has a unique 

solution, ˆ
CEλ  will be consistent for λ . 

Consider now the CE standard errors obtained from the information matrix based on 

(7), given by: 

2 2( ) [log ( )] / exp( ) 'k k k k kJ L x z x xλ λ λ λ= −∂ ∂ = ∑ . 

Hence the CE estimator of the variance covariance matrix of ˆ
CEλ is: 

1ˆ ˆˆ ( ) ( )CE CE CEV Jλ λ −= .      (A2) 

When the model in (2) holds, we may write alternatively that ( ) 'k k k k kJ z x xλ µ= ∑  

and in large samples: 

   ( ) ( ) 'k sk k kJ J x xλ λ µ= ∑�� .     (A3) 
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The actual variance-covariance matrix of ˆ
CEλ  may be obtained by linearization as 

follows. The first order Taylor expansion of ˆexp( )k CEx λ  around ˆ
CEλ λ=  is: 

ˆ ˆexp( ) exp( ) exp( ) ( )k CE k k k CEx x x xλ λ λ λ λ+ −� . 

Substituting into (A1) gives: 

ˆˆ[ exp( ) exp( ) ( )] ' 0k k k k k CE k kN x x x z xλ λ λ λ− − −∑ �  

or 

1ˆ ˆ{ exp( ) ' } [ exp( )] 'k kCE k k k k k k k kx z x x N x z xλ λ λ λ−+ −∑ ∑�         

         1 ˆ( ) [ exp( )] 'k k k k kJ N x z xλ λ λ−= + −∑ . 

Thus, in large samples, we may approximate the variance-covariance matrix of ˆ
CEλ  

by: 

1 ˆvar{ ( ) [ exp( )] '}k k k k kJ N x z xλ λ− −∑ ,    (A4) 

which is equivalent in large samples, using (A3), to: 

1 1ˆ( ) var{ ( )( / ) '} ( )k k k sk k kJ N x Jλ µ µ µ λ− −−∑� �  

1 2 1ˆ( ) { ( / ) var( ) ' } ( )k sk k k k kJ N x x Jλ µ µ λ− −= ∑� �  

Now 

2

1

ˆvar( ) var( )
H

k h kh
h

N nπ −

=

= ∑  1

1

H

h kh
h

π µ−

=

= ∑ . 

So the (large sample) variance-covariance matrix of ˆ
CEλ  can be expressed as: 

              1 1 2 1( ) ( ) { ' } ( )k k sk k kJ J c x x Jλ λ µ λ− − −= + ∑� � � ,                (A5) 

where 2 1 2 2 1 2

1 1 1 1 1

[ ( ) ] / [ ] / 1
H H H H H

k h kh h kh kh k h kh h kh k
h h h h h

c π µ π µ µ µ π µ π µ µ− −

= = = = =

= − = −∑ ∑ ∑ ∑ ∑ .     (A6) 
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Note that 2
0

k
c ≥  from the Cauchy-Schwarz inequality. Hence the CE approach 

generally underestimates standard errors of any element of ˆ
CEλ . The CE standard errors 

will only be appropriate if 0kc =  for each k that is if 1

h kh h khπ µ π µ−∝  which requires that 

the 
hπ  are constant, i.e. 

hπ π= . To show that 
kc  is the coefficient of variation of the 

weights in cell k, let 

1

1
1 1

ˆ
H H

k k kh h kh k
h h

S N n π µ µ−

= =

= = =∑ ∑�  and 2 1

2
1 1

H H

k kh h kh h
h h

S n π µ π− −

= =

= ∑ ∑� . 

The sample variance of the weights within cell k is then: 

2 1 2

2 1
1 1

/ ( / ) ( ) /( ) ( / )
H H

h hk k k k k kh h h kh kh h kh
h h

v S n S n µ π π µ µ π µ−

= =

= − −∑ ∑ ∑ ∑�  

and the squared coefficient of variation of the weights in cell k is: 

1 2

1 1 1

( )( ) /( ) 1
H H H

kh h h kh kh
h h h

µ π π µ µ−

= = =

−∑ ∑ ∑  

which is identical to 2

kc  in (A6). 
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Table 1 – Characteristics of the sub-sample used for analysis in the different strata 

Stratum 
(status as recorded in master sample in 1982; note that status in 1985 

might differ, e.g. on nationality, and age will increase by 3 years) 

Sample 
size 

Initial 
sampling 

fraction 

Mean of 
final weight 

Standard 
deviation of 

final weight 

French women, in the labour market, farmers, aged 32 – 51 234 1/940 959.85 123.67 

French women, in the labour market, farmers, aged 52+ 83 1/1250 1245.55 47.53 

French women, in the labour market, artisans and shopkeepers, 32 – 51 223 1/1040 1144.54 87.61 

French women, in the labour market, artisans and shopkeepers, 52 + 28 1/1360 1487.79 120.05 

French women, in the labour market, company managers and higher-

grade professionals, 32 – 51 

747 1/310 344.25 44.21 

French women, in the labour market, company managers and higher-

grade professionals, 52+ 

94 1/340 388.76 67.22 

French women, in the labour market, lower-grade professionals, 32 – 51 1 064 1/600 669.29 111.77 

French women, in the labour market, lower-grade professionals, 52 + 101 1/620 720.25 76.06 

French women, in the labour market, non manual workers, 32 – 51 1 581 1/830 934.72 129.21 

French women, in the labour market, non manual workers, 52 + 214 1/830 946.18 111.74 

French women, in the labour market, manual workers, 32 – 51 535 1/760 839.90 74.58 

French women, in the labour market, manual workers, 52 + 60 1/1080 1193.80 50.60 

French women, in the labour market, unemployed who never worked 

before 

13 1/400 491.69 93.49 

French women, students 7 1/900 1000.14 110.70 

French women, who were previously in the labour market, less than 70 2 1/2270 2464.00 247.49 

Other French women, out of the labour market, 32 – 51 146 1/2500 2794.81 620.64 

Other French women, out of the labour market, 52 + 17 1/2500 2794.76 389.26 

Foreign women, in the labour market, employed or unemployed, 32 – 

51 

10 1/730 831.20 189.88 

Total 5 159 - 850.34 451.33 

 

 

Table 2 – Unweighted frequencies and weighted (rescaled) frequencies in the mobility table 

 
 

                  Daughter’s class 
 

Father’s class 

 

 

Frequency 

1 2 3 4 5 6 7 Total 

1 Higher-grade salaried 

  professionals 

Unweighted 

Weighted 

 

164.00 

81.23 

 

25.00 

13.01 

 

136.00 

113.18 

 

12.00 

15.35 

 

59.00 

66.32 

 

9.00 

8.08 

 

0.00 

0.00 

 

405.00 

297.17 

 

2 Company managers and 

  liberal professions 

Unweighted 

Weighted 

 

56.00 

28.78 

 

27.00 

11.72 

 

37.00 

38.22 

 

14.00 

14.46 

 

28.00 

32.45 

 

3.00 

2.65 

 

3.00 

7.01 

 

168.00 

135.29 

 

3 Lower-grade salaried 

  professionals 

Unweighted 

Weighted 

 

95.00 

48.08 

 

16.00 

11.44 

 

161.00 

129.70 

 

15.00 

22.79 

 

115.00 

131.79 

 

18.00 

18.20 

 

4.00 

4.77 

 

424.00 

366.78 

 

4 Artisans and shopkeepers Unweighted 

Weighted 

 

97.00 

52.25 

 

35.00 

21.35 

 

219.00 

174.45 

 

78.00 

118.41 

 

200.00 

223.37 

 

35.00 

39.57 

 

8.00 

14.27 

 

672.00 

643.67 

 

5 Non-manual workers Unweighted 

Weighted 

 

59.00 

30.18 

 

7.00 

3.68 

 

145.00 

120.03 

 

32.00 

53.42 

 

182.00 

216.57 

 

29.00 

28.65 

 

3.00 

4.17 

 

457.00 

456.70 

 

6 Foremen and manual 

  workers 

Unweighted 

Weighted 

 

128.00 

64.18 

 

18.00 

14.88 

 

419.00 

361.46 

 

124.00 

184.12 

 

930.00 

1065.19 

 

339.00 

355.76 

 

37.00 

47.06 

 

1995.00 

2092.66 

 

7 Farmers Unweighted 

Weighted 

 

38.00 

20.29 

 

8.00 

5.63 

 

164.00 

134.71 

 

73.00 

101.98 

 

342.00 

394.83 

 

136.00 

140.49 

 

277.00 

368.80 

 

1038.00 

1166.73 

 

Total Unweighted 

Weighted 

637.00 

324.99 

136.00 

81.71 

1281.00 

1071.75 

348.00 

510.54 

1856.00 

2130.52 

569.00 

593.40 

332.00 

446.08 

5159.00 

5159.00 

 

Note: Weighted frequencies are rescaled to the sample size by multiplying them by the ratio 5159/4386881. 
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Table 3 – Initial model and final model for the structure of the association in the mobility table 

 
Initial model 1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II III IV V VI VII VII 

2 – Company managers and liberal professions III II IV IV VI VII VII 

3 – Lower-grade salaried professionals IV IV IV V V VI VII 

4 – Artisans and shopkeepers V IV V IV V VI VI 

5 – Non-manual workers VI VI V V V V VI 

6 – Foremen and manual workers VII VII VI VI V IV V 

7 – Farmers VII VII VII VI VI V I 

 

Final model 1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II II III IV V VI VII 

2 – Company managers and liberal professions II II III III V VI IV 

3 – Lower-grade salaried professionals III III III IV IV V VI 

4 – Artisans and shopkeepers IV III IV III V V V 

5 – Non-manual workers V V IV IV IV V V 

6 – Foremen and manual workers VI VI V IV IV III IV 

7 – Farmers VII VI VI IV V IV I 

 

Note: Rows and columns in the matrices respectively correspond to father’s socio-economic class and daughter’s socio-economic 

class. Among the interaction effects, I is supposed to be the strongest and VII the weakest. 
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Table 4 – Comparison of parameter estimates and standard errors (in parentheses) 

Initial model Final model 

Parameter 
Unweighted 

Weighted 

rescaled 

Clogg & 

Eliason 

Pseudo 

maximum 

likelihood 

Unweighted 
Weighted 

rescaled 

Clogg & 

Eliason 

Pseudo 

maximum 

likelihood 

1β  (se) 
-1.813 

(0.087) 

-1.825 

(0.086) 

-1.828 

(0.086) 

-1.825 

(0.098) 

-1.747 

(0.084) 

-1.754 

(0.083) 

-1.763 

(0.083) 

-1.754 

(0.093) 

2β  (se) 
-2.626 

(0.107) 

-2.621 

(0.108) 

-2.612 

(0.106) 

-2.621 

(0.133) 

-2.663 

(0.102) 

-2.610 

(0.105) 

-2.632 

(0.102) 

-2.610 

(0.125) 

3β  (se) 
-1.532 

(0.079) 

-1.559 

(0.078) 

-1.549 

(0.079) 

-1.559 

(0.090) 

-1.492 

(0.076) 

-1.517 

(0.075) 

-1.514 

(0.076) 

-1.517 

(0.085) 

4β  (se) 
-0.856 

(0.069) 

-0.857 

(0.067) 

-0.855 

(0.070) 

-0.857 

(0.079) 

-0.633 

(0.061) 

-0.614 

(0.059) 

-0.643 

(0.061) 

-0.614 

(0.068) 

5β  (se) 
-1.134 

(0.072) 

-1.104 

(0.072) 

-1.111 

(0.073) 

-1.104 

(0.082) 

-1.036 

(0.067) 

-1.013 

(0.065) 

-1.021 

(0.067) 

-1.013 

(0.075) 

6β  (se) 
0.492 

(0.049) 

0.510 

(0.049) 

0.505 

(0.049) 

0.510 

(0.056) 

0.487 

(0.048) 

0.507 

(0.047) 

0.497 

(0.048) 

0.507 

(0.054) 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ  (se) 
2.187 

(0.149) 

1.179 

(0.139) 

1.261 

(0.149) 

1.179 

(0.166) 

2.177 

(0.148) 

1.196 

(0.138) 

1.238 

(0.148) 

1.196 

(0.157) 

2γ  (se) 
0.585 

(0.169) 

-0.269 

(0.169) 

-0.182 

(0.170) 

-0.269 

(0.205) 

0.450 

(0.167) 

-0.373 

(0.167) 

-0.321 

(0.167) 

-0.373 

(0.198) 

3γ  (se) 
2.889 

(0.140) 

2.360 

(0.120) 

2.424 

(0.140) 

2.360 

(0.150) 

2.855 

(0.139) 

2.341 

(0.119) 

2.376 

(0.139) 

2.341 

(0.146) 

4γ  (se) 
1.473 

(0.147) 

1.508 

(0.124) 

1.555 

(0.148) 

1.508 

(0.156) 

1.204 

(0.147) 

1.253 

(0.124) 

1.282 

(0.147) 

1.253 

(0.153) 

5γ  (se) 
3.089 

(0.137) 

2.895 

(0.116) 

2.943 

(0.137) 

2.895 

(0.143) 

3.167 

(0.137) 

2.971 

(0.116) 

3.003 

(0.137) 

2.971 

(0.144) 

6γ  (se) 
1.605 

(0.146) 

1.297 

(0.126) 

1.349 

(0.146) 

1.297 

(0.150) 

1.638 

(0.146) 

1.340 

(0.126) 

1.370 

(0.146) 

1.340 

(0.150) 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ  (se) 
3.561 

(0.163) 

3.451 

(0.146) 

3.569 

(0.163) 

3.451 

(0.189) 

4.163 

(0.228) 

4.096 

(0.266) 

4.138 

(0.228) 

4.096 

(0.252) 

IIδ  (se) 
2.730 

(0.119) 

2.619 

(0.147) 

2.660 

(0.118) 

2.619 

(0.135) 

3.215 

(0.191) 

3.104 

(0.251) 

3.123 

(0.191) 

3.104 

(0.214) 

IIIδ  (se) 
2.396 

(0.150) 

2.297 

(0.189) 

2.326 

(0.149) 

2.297 

(0.186) 

2.276 

(0.187) 

2.252 

(0.245) 

2.275 

(0.187) 

2.252 

(0.208) 

IVδ  (se) 
1.683 

(0.086) 

1.633 

(0.093) 

1.700 

(0.085) 

1.633 

(0.105) 

1.692 

(0.183) 

1.658 

(0.243) 

1.675 

(0.183) 

1.658 

(0.204) 

Vδ  (se) 
1.161 

(0.084) 

1.078 

(0.092) 

1.154 

(0.084) 

1.078 

(0.103) 

1.245 

(0.181) 

1.217 

(0.241) 

1.240 

(0.181) 

1.217 

(0.201) 

VIδ  (se) 
0.683 

(0.072) 

0.641 

(0.080) 

0.699 

(0.072) 

0.641 

(0.087) 

0.731 

(0.177) 

0.708 

(0.239) 

0.702 

(0.177) 

0.708 

(0.196) 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Deviance 86.11 77.12 75.58 - 47.71 33.69 34.77 - 

DF 29 29 29 - 29 29 29 - 
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Table 5 – Comparison of estimated standard errors for Clogg-Eliason estimator: 

Clogg-Eliason approach vs Jackknife method allowing for complex design 

 
Initial model Final model 

Parameter Clogg & 

Eliason 
Jackknife 

Clogg & 

Eliason 
Jackknife 

1β   0.086 0.102 0.083 0.096 

2β   0.106 0.130 0.102 0.122 

3β   0.079 0.090 0.076 0.086 

4β   0.070 0.078 0.061 0.068 

5β   0.073 0.081 0.067 0.074 

6β   0.049 0.055 0.048 0.054 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ   0.149 0.158 0.148 0.155 

2γ   0.170 0.204 0.167 0.201 

3γ   0.140 0.144 0.139 0.143 

4γ   0.148 0.152 0.147 0.149 

5γ   0.137 0.140 0.137 0.141 

6γ   0.146 0.147 0.146 0.148 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ   0.163 0.181 0.228 0.253 

IIδ  0.118 0.139 0.191 0.218 

IIIδ  0.149 0.192 0.187 0.212 

IVδ  0.085 0.101 0.183 0.207 

Vδ   0.084 0.099 0.181 0.204 

VIδ   0.072 0.084 0.177 0.200 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 
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