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Optimal sample coordination using controlled

selection

Alina Matei ∗ Chris Skinner †

Abstract

Sample coordination maximizes or minimizes the overlap of two or

more samples selected from overlapping populations. It can be applied

to designs with simultaneous or sequential selection of samples. We

propose a method for sample coordination in the former case. We con-

sider the case where units are to be selected with maximum overlap

using two designs with given unit inclusion probabilities. The degree

of coordination is measured by the expected sample overlap, which

is bounded above by a theoretical bound, called the absolute upper

bound, and which depends on the unit inclusion probabilities. If the

expected overlap equals the absolute upper bound, the sample coordi-

nation is maximal. Most of the methods given in the literature consider

fixed marginal sampling designs, but in many cases, the absolute upper

bound is not achieved. We propose to construct optimal sampling de-

signs for given unit inclusion probabilities in order to realize maximal

coordination. Our method is based on some theoretical conditions on

joint selection probability of two samples and on the controlled selec-

tion method with linear programming implementation. The method

can also be applied to minimize the sample overlap.

Key words: sample surveys, sample coordination, simultaneous se-

lection of samples, joint selection probability of two samples, linear

programming.

1 Introduction

There are many sample survey applications where it is desirable to coordi-
nate the selection of different samples.The maximization of overlap between
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samples is referred to as positive coordination, whereas negative coordina-
tion refers to overlap minimization. One class of applications where positive
coordination may be desirable is in repeated surveys, where samples are se-
lected on successive occasions and sample overlap helps to improve precision
in the estimation of change. Another advantage to positive coordination in
either repeated surveys or surveys conducted simultaneously is the poten-
tial reduction in data collection costs. See Ernst (1999) for an example of
the simultaneous selection of samples with overlap maximization in the U.S.
Bureau of Labor Statistics: the Economic Cost Index and the Occupational
Compensation Surveys Program. One important reason why negative co-
ordination may be desirable to a survey-taking organisation is in order to
reduce the burden on sample units. See Perry et al. (1993) for an exam-
ple of the selection of samples with overlap minimization in the National
Agricultural Statistics Service: the Farm Costs and Returns Survey and the
Agriculture Survey and the Labor Survey.

The maximization or minimization of overlap between samples may often
have to be offset by other requirements on the designs, which rule out the
extreme options of complete or no overlap. For example, the inclusion prob-
abilities of different units in each sample may be pre-specified and may differ
between samples, thus preventing the selection of a single common sample.
Thus, the typical design problem faced in positive or negative coordination is
one of constrained optimization: how to construct a scheme for selecting the
samples which maximizes/minimizes (expected) overlap, subject to certain
constraints on how each of the samples is selected.

There is a long-established and large literature on sampling methods to
achieve positive or negative coordination. See, for example, Ernst (1999);
Ohlsson (1995); Mach et al. (2006) and the references therein. Many of
the methods proposed in the literature do not produce optimal overlap, but
do lead to more coordination than would be provided by the independent
selection of samples. One approach, which is based on clearly defined opti-
mization criteria, is formulating the problem as a linear programming task
known as the transportation problem (see Causey et al., 1985). In this ap-
proach the probabilities assigned to each of the possible pairs of samples
are treated as unknowns and constraints on the sampling schemes as well
as the objective function (the expected overlap) can be expressed linearly.
The problem with this approach, however, is that the number of possible
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samples can be very large and hence the computational requirements can be
prohibitive. Some approaches to reducing the amount of computation when
solving this transportation problem have been proposed. See Aragon and
Pathak (1990), Pathak and Fahimi (1992), Ernst and Ikeda (1995), Mach
et al. (2006).

Matei and Tillé (2005) developed an alternative approach, which is based
upon the same optimization criteria as the transportation problem, but em-
ploys a quite different (and less intensive) computational method, applying
a simple iterative proportional fitting (IPF) algorithm to an initial feasible
solution. They demonstrated that under certain conditions, their method
provides a solution to the same optimization problem addressed by the trans-
portation approach. The optimal solution, referred to as ‘maximal sample
coordination’, involves maximizing the expected overlap between two sam-
ples, subject to the ‘marginal’ sampling designs for each sample being fixed.

A problem with the method of Matei and Tillé (2005), however, is that
it does not always generate a solution which meets the theoretical conditions
required for optimality. The aim of this paper is to extend their approach to
address this problem, by use of the method of controlled selection, as set out
in Rao and Nigam (1990). We take into account the positive coordination,
but the negative case can be treated similarly.

Our extension of the method of Matei and Tillé (2005) does, however, in-
volve a reformulation of the constraints in the optimization problem. Instead
of requiring the ‘marginal’ sampling designs for each sample to be fixed, we
only require that the first-order inclusion probabilities are fixed. By reduc-
ing the constraints on the problem, we seek to use controlled selection to
reduce the probabilities (preferably to zero) of samples which would lead
to the theoretical conditions being breached. Such samples will be called
‘non-preferred’ samples in the terminology of controlled selection.

In summary, the aim of the paper is to extend the method of Matei
and Tillé (2005) using the method of controlled selection in order to obtain
coordinated designs which meet specified optimality criteria, in situations
where the former method does not generate an optimal solution.

The paper is organized as following. In Section 2, the formal framework
and the design problem are set out. Section 3 reviews conditions needed
to realize maximal sample coordination. Section 4 shows the controlled se-
lection method may be applied to sample coordination. In Sections 5 and
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6, our proposed approach is presented and exemplified. Finally, Section 7
provides a discussion of the practical implications of the paper. A review of
the transportation problem approach is given in the Appendix.

2 Framework and design problem

Consider the selection of two samples, each from a separate population. Let
U1 and U2 denote the sets of labels of units in the populations from which
the two samples are drawn. Let s1 and s2 denote the sets of labels of the two
corresponding samples so that s1 ⊂ U1 and s2 ⊂ U2. Let U = U1 ∪U2 and,
without loss of generality write U = {1, . . . , k, . . . ,N}. In many applications
the two populations might be identical so that U = U1 = U2. The sets
of possible samples s1 and s2 are denoted S1 and S2, respectively. Let
m = |S1| and q = |S2|, where | s | denotes the cardinality of a general set
s, and write S1 = {s1

1, ..., s
1
m} and S2 = {s2

1, ..., s
2
q}. The pair of samples

sij = (s1
i , s

2
j ) is referred to as the bi-sample. The set of all possible bi-

samples is denoted S = {sij|sij = (s1
i , s

2
j ), s

1
i ∈ S1, s2

j ∈ S2, i = 1, . . . ,m, j =

1, . . . q}. The overall sampling design is represented by the probability that
bi-sample sij is selected, denoted pij = p(s1

i , s
2
j ) = p(sij) for sij ∈ S. The

resulting matrix P = (pij) of dimension m × q is used to denote the overall
design. The ‘marginal’ sampling designs for s1 and s2 may be derived from
the joint probabilities and are represented by the probability p1(s1

i ) that
sample s1

i ∈ S1 is selected and the probability p2(s2
j ) that sample s2

j ∈

S2 is selected, where
∑

s1

i∈S
1 p1(s1

i ) = 1 and
∑

s2∈S2 p2(s2
j ) = 1. We have∑q

j=1 pij = p1(s1
i ), and

∑m
i=1 pij = p2(s1

j). The marginal sampling design for
s1 is represented by the m × 1 vector p1 which contains the values p1(s1

i )

for s1
i ∈ S1. Similarly, the second marginal sampling design is represented

by the q × 1 vector p2 which contains the values p2(s2
i ) for s2

i ∈ S2. The
overall sampling design is said to be coordinated if p(s1

i , s
2
j) 6= p1(s1

i )p
2(s2

j )

(see Cotton and Hesse, 1992; Mach et al., 2006), i.e. if the two samples are
not selected independently.

The size of the overlap between two samples is denoted cij = |s1
i ∩s2

j | and,
in general, this is random. We therefore measure the degree of coordination
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by the expected sample overlap, given by:

E(cij) =
m∑

i=1

q∑

j=1

cijpij =
∑

k∈U

π1,2
k ,

where
π1,2

k =
∑

sij=(s1

i∋k,s2

j∋k)

sij∈S

pij

is the probability that unit k ∈ U is included in both samples.

To obtain an upper bound on this expected overlap, let

π1
k =

∑

s1

i∋k

s1

i∈S
1

p1(s1
i )

be the first-order inclusion probability of unit k ∈ U for the first design and
let

π2
k =

∑

s2

j∋k

s2

j∈S
2

p2(s2
j)

be the first-order inclusion probability of unit k ∈ U for the second design.
If k ∈ U1 \ U2, π2

k = 0 and if k ∈ U2 \ U1, π1
k = 0. Since π1,2

k ≤ min(π1
k, π

2
k),

the expected sample overlap is bounded above by

E(cij) ≤
∑

k∈U

min(π1
k, π

2
k). (1)

Matei and Tillé (2005) call
∑

k∈U min(π1
k, π

2
k) the Absolute Upper Bound

(AUB) and say that maximal sample coordination occurs when equality holds
in (1).

The general design problem of interest is how to construct a sampling
design P such that maximal sample coordination holds. This construction
will be under certain constraints. The standard constraints considered in the
transportation problem and in the method of Matei and Tillé (2005) is that
the marginal designs p1 and p2 are given (and thus fixed). We shall also
consider the weaker constraint that only the marginal inclusion probabilities,
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π1
k, π

2
k, k ∈ U , are given. We denote the vectors of these values by π

1 and
π

2 respectively.
One approach to maximization of the expected overlap

∑m
i=1

∑q
j=1cijpij

is to use linear programming, treating the pij as the unknowns. This lin-
ear programming problem, under the constraint that the marginal sampling
designs are given, is in the form of the transportation problem (see Causey
et al., 1985, and the Appendix for a description).

An alternative approach is the method set out in Matei and Tillé (2005).
To specify this method, we first consider conditions under which maximal
coordination occurs. These conditions are fundamental to the specification
of our proposed method.

3 Conditions for maximal sample coordination

Matei and Tillé (2005) discuss conditions under which maximal sample co-
ordination occurs, i.e.

E(cij) =
∑

k∈U

min(π1
k, π

2
k). (2)

Given arbitrary marginal sampling designs, p1 and p2, the AUB cannot
always be achieved (see Ohlsson, 2000, for some examples using different
methods for sample coordination). Maximal sample coordination for un-
equal probability designs can be achieved for Poisson sampling with per-
manent random numbers (Brewer et al., 1972, 1984) for each design or for
Keyfitz’s method (Keyfitz, 1951). These two methods suffer, however, from
some drawbacks: the random sample size for the former, and the limitation
to one unit drawn per stratum for the latter. For stratified simple random
sampling without replacement (srswor), the sequential srswor with perma-
nent random numbers (Ohlsson, 1995) can yield maximal expected overlap
for positive coordination and does not suffer from the drawbacks mentioned
above. The method of Mach et al. (2006), based on a reduced transportation
problem, yields optimal expected overlap for positive coordination of several
surveys and negative coordination of two surveys with stratified srswor de-
signs, subject to constraints on marginal sampling designs.
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For two fixed (but arbitrary) marginal sampling designs, theoretical con-
ditions to achieve the AUB are given in Matei and Tillé (2005) and are
summarised in Proposition 1.

Proposition 1 Let (pij) denote an arbitrary sampling design for which the

marginal designs p1 and p2 are given. Let I = {k ∈ U |π1
k ≤ π2

k} be the set

of ‘increasing’ units, and let D = {k ∈ U |π1
k > π2

k} be the set of ‘decreasing’

units, with U = I ∪ D, and I ∩ D = ∅. The AUB is achieved by the design

iff the following two relations are fulfilled:

a) if (s1
i \s

2
j) ∩ I 6= ∅ then pij = 0,

b) if (s2
j\s

1
i ) ∩ D 6= ∅ then pij = 0,

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , q}.

Matei and Tillé (2005) proposed the use of Iterative Proportional Fitting
(IPF) (Deming and Stephan, 1940) to obtain a design pij for which conditions
a) and b) of Proposition 1 are satisfied, subject to given marginal designs p1

and p2. We now outline this method.
The values pij are obtained using an iterative process. To simplify nota-

tion, however, we do not use subscripts for the iteration steps. Let P = (pij)

be initially any matrix of dimension m × q, for which the implied marginal
designs correspond to the given values p1 and p2. For example, pij might
be obtained from applying p1 and p2 independently, i.e. pij = p1(s1

i )p
2(s2

j ).

Then modify P by assigning zero values to elements pij of P implied
by conditions a) and b) of Proposition 1. More precisely, let P0 denote the
matrix of dimension m × q, with elements p0

ij , where

p0
ij = 0, if (s1

i \s
2
j ) ∩ I 6= ∅, or (s2

j\s
1
i ) ∩ D 6= ∅,

and p0
ij = pij , otherwise, and modify P by replacing it by P0. Note that

the transformation from P to P0 depends upon the sets I and D, which
themselves depend upon the inclusion probabilities π

1 and π
2. These are

taken here to be fixed but we could be more explicit about this dependence
by writing P0 = {P;π1,π2}0.

As a result of this transformation, the row and column totals of P0

will differ, in general, from the given values p1 and p2, respectively, so the
constraints on the joint probabilities pij will no longer be respected, i.e.
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∑q
j=1 p0

ij 6= p1(s1
i ) ,

∑m
i=1 p0

ij 6= p2(s2
j). To ensure that these constraints

are respected, the non-zero values of P0 are modified using the IPF proce-
dure. The IPF procedure iteratively modifies the matrix P0 and is applied
until convergence is reached. The final matrix P has the property that∑m

i=1

∑q
j=1 cijpij equals the AUB, if the latter can be achieved, and the

marginal constraints are respected.

Remark 1 If, however, there exist either row(s) i′ and/or column(s) j′ of

the matrix P0 which consist entirely of zeros (so that
∑q

j=1 p0
i′j =

∑m
i=1 p0

ij′ =

0) then the AUB cannot be achieved by the above IPF procedure since the cor-

responding row or column sums must all be strictly positive.

Hence, the procedure of Matei and Tillé (2005) cannot be guaranteed to
construct a solution which achieves the AUB. Sub-optimal solutions (when
the AUB is not achieved) can be obtained by replacing zeros on the row(s)
i′ and/or columns j′ with a small quantity, say ε, defined as 10−6, to assure
the marginal constraints and the convergence of the IPF procedure. Our
goal is not, however, to obtain sub-optimal solutions. One situation when
the IPF procedure does provide theoretically an optimal solution is when the
samples are completely overlapping, since there is then at least one non-zero
value on each row and column of P0 (s1

i \ s2
j = s2

j \ s1
i = ∅ if s1

i = s2
j and

pij 6= 0). Another situation when the AUB is achieved is as follows.

Remark 2 Consider what happens when the conditions (s1
i \s

2
j) ∩ I 6= ∅ or

(s2
j\s

1
i )∩D 6= ∅ in Proposition 1 are not fulfilled for all pairs (i, j) and it is

not possible to set pij to zero. If the following condition is satisfied

(s1
i \s

2
j ) ∩ I = ∅, for all i = 1, . . . ,m, and for all j = 1, . . . , q, (3)

then, if k ∈ (s1
i \s

2
j ) we have k ∈ D and π1,2

k =
∑

sij=(s1

i ∋k,s2

j∋k)

sij∈S

pij = π2
k −

∑
sij=(s1

i∋k,s2

j 6∋k)

sij∈S

pij. Since we have supposed (s2
j\s

1
i )∩D = ∅, it follows that

π1,2
k = π2

k = min(π1
k, π

2
k). Similarly, if the following condition is satisfied

(s2
j\s

1
i ) ∩ D = ∅, for all j = 1, . . . , q, and for all i = 1, . . . ,m, (4)

then π1,2
k = π1

k = min(π1
k, π

2
k).
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Thus, if conditions (3) and (4) are simultaneously satisfied, maximal sam-

ple coordination is possible since π1,2
k = min(π1

k, π
2
k), for all k ∈ U. In this

case, we can obtain a joint probability pij, using the IPF procedure directly

with the marginal distributions p1 and p2, without setting any values to zero,

and the AUB is always achieved.

4 Maximal sample coordination using controlled se-

lection

As mentioned in Remark 1, there are cases where the application of the
Matei and Tillé (2005) procedure leads to some rows and/or some columns
in P which consist entirely of zeros so that the constraints on the marginal
sample probabilities are violated. To address this problem, we propose the
use of controlled selection. In order to achieve the AUB we shall consider
relaxing the constraints used in the method of Matei and Tillé (2005) that
the marginal designs p1 and p2 are fixed. Instead, we shall consider methods
which only require that the inclusion probabilities π

1 and π
2 for each of the

marginal designs are fixed.
As discussed in Rao and Nigam (1990), the method of controlled selec-

tion begins by classifying all possible samples as either ‘preferred’ or ‘non-
preferred’. The method then takes an initial sampling design p̃, and then
defines a new design p̃∗ which selects ‘nonpreferred’ samples s with prob-
ability p̃∗(s) ≤ p̃(s), while maintaining the assigned inclusion probability
of each unit in the population. The resulting sampling design p̃∗ is called
‘controlled’, while the initial one is called ‘uncontrolled’. In what follows the
subscript ‘∗’ will denote a controlled design.

Consider the coordination of two designs with simultaneous selection and
fixed inclusion probabilities π

1 and π
2. Suppose that any initial design P

is used for which the marginal designs imply these given inclusion probabili-
ties. And suppose that zeros are assigned as discussed in the previous section
resulting in P0. Suppose that this matrix has some row(s) i′ (with corre-
sponding sample denoted s1

i ′) and/or columns j′ (with the corresponding
sample denoted s2

j ′) with only zero values.
For illustration, consider the following simple example: suppose that two

samples of size two are to be drawn from U1 and U2, respectively, where
U1 = {1, 2, 3} and U2 = {1, 2, 3, 4}. The inclusion probabilities π

1 and
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π
2 determine the sets I and D and suppose these inclusion probabilities

are fixed to take values which imply that I = {1, 2, 4} and D = {3}. All
possible samples for the first marginal design are listed on the rows of P0,
displayed below in Expression (5). Similarly, all possible samples for the
second marginal design are listed on the columns of P0. The non-zero values
of the matrix P0 are denoted x. Note that j′ ∈ {6}, with s2

6 = {3, 4}, and
there are no i′ rows in P0.

P0 =




{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2} x 0 0 0 0 0
{1, 3} x x x 0 0 0
{2, 3} x 0 0 x x 0


 (5)

In general, the AUB cannot be achieved using the method of Matei and
Tillé (2005) if there exist samples of the form s1

i ′ and s2
j ′ . For the controlled

selection method, these define the ‘nonpreferred’ samples. We now introduce
controlled selection algorithms to reduce the probability of these samples
arising. If the probabilities can be reduced to zero, then the AUB can be
achieved, whilst preserving the fixed values of π

1 and π
2.

We introduce two linear programming algorithms designed to reduce the
probabilities of the ‘nonpreferred’ samples. In each case, the algorithm begins
with a matrix P0 constructed from some feasible initial design P which
implies the given inclusion probabilities π

1 and π
2. The first algorithm will

be a plug-in application of the method of Rao and Nigam (1990) in our
context. It provides a solution (a ‘controlled’ design) for each of the two
‘uncontrolled’ plans, p1 and p2. The second algorithm will be defined on the
set of bi-samples. The two initial sampling designs are not involved directly.
Here the ‘uncontrolled’ plan is the initial joint sampling design, which is not
explicitly defined, and has as marginal distributions the two plans, p1 and
p2.

To formulate the first algorithm, we define the sets of ‘nonpreferred’
samples for P0 as: S1

∗ = {s1
i ∈ S1 | p0

ij = 0, for all j = 1, . . . , q} and
S2
∗ = {s2

j ∈ S2 | p0
ij = 0, for all i = 1, . . . ,m}. The algorithm for marginal

design t = 1, 2 is defined as the linear programming solution to the following
problem

min
pt
∗

∑

st
ℓ
∈St

∗

pt
∗(s

t
ℓ), (6)
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subject to ∣∣∣∣∣∣∣∣

∑
st
ℓ
∋k

st
ℓ
∈St

pt
∗(s

t
ℓ) = πt

k, k ∈ U,

∑r
ℓ=1 pt

∗(s
t
ℓ) = 1,

pt
∗(s

t
ℓ) ≥ 0, ℓ = 1, . . . , r,

where r = m if t = 1 and r = q if t = 2.

For t = 1, the algorithm defined by (6) may be used to reduce the proba-
bility of selecting samples s1

i ′ for which p0
i ′j = 0, for all j = 1, . . . , q. Similarly,

for t = 2, the algorithm is used to reduce the probability of selecting samples
s2
j ′ for which p0

ij ′ = 0, for all i = 1, . . . ,m. The inclusion probabilities π1
k

and π2
k are preserved via the first constraint. A solution to the linear pro-

gramming Problem (6) always exists. If the value of the objective function
equals zero, the AUB is achieved.

To formulate the second algorithm, define the set of ‘nonpreferred’ bi-
samples for the joint sampling design by S∗ = {sij = (s1

i , s
2
j ) ∈ S | with p0

ij =

0, i = 1, . . . ,m, j = 1, . . . , q}. In this case the set of ‘nonpreferred’ bi-samples
is determined by all zeros in P0, and not only those from rows i′ and columns
j′. The goal is to reduce the impact of the bi-samples with p0

ij = 0. The
algorithm is the linear programming solution to the following problem:

min
p∗

∑

sij∈S∗

p∗(sij), (7)

subject to ∣∣∣∣∣∣∣∣∣∣∣∣

∑
s1
i
∋k

s1
i
∈S

1

∑
s2

j∈S
2 p∗(sij) = π1

k, k ∈ U,

∑
s2
j
∋k

s2
j
∈S

2

∑
s1

i∈S
1 p∗(sij) = π2

k, k ∈ U,

∑m
i=1

∑q
j=1 p∗(sij) = 1,

p∗(sij) ≥ 0, i = 1, . . . ,m, j = 1, . . . , q.

For any feasible solution of Problem (7), the AUB is achieved if the
objective function is 0. The inclusion probabilities π1

k and π2
k are preserved

by the first two constraints of this problem.

Remark 3 Rao and Nigam (1992) extended the approach given in Rao and

Nigam (1990), and proposed a method to construct a controlled plan which

matches the variance of a general linear unbiased estimator of a total asso-

ciated with a specified uncontrolled plan. The controlled plan is constructed
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using linear programming. The general linear unbiased estimator of the total

Y =
∑N

i=1 yi has the form

Ŷ =
∑

k∈s

dk(s)yk, s ∈ S̃,

where S̃ is the set of all possible samples s, and the weights dk(s) may depend

on the unit k or s or both. Ŷ is unbiased under the uncontrolled plan. The

unbiasedness condition imposed by Rao and Nigam is
∑

s∋k dk(s)p̃∗(s) =

1, k = 1, . . . , N where p̃∗(s) is the controlled plan. For the Horvitz-Thompson

estimator with dk(s) = 1/πk, where πk = Pr(k ∈ s), and a large class

of sampling designs the unbiased condition is simply πk =
∑

s∋k p̃∗(s), k =

1, . . . , N. This condition is included as a constraint in Problems (6) and (7).

5 The proposed method

We propose two methods for obtaining maximal sample coordination. In
each case, we suppose that π

1 and π
2 are fixed and we want to obtain

joint selection probabilities pij to achieve the AUB. The two methods are as
follows:

- Method I:

a) if conditions (3) and (4) are both satisfied, directly apply the IPF
procedure to obtain pij, using as marginal distributions the initial
plans, p1 and p2;

b) otherwise, set the values of pij to zero as described in Section 3,
i.e. replace P by P0;

c) if there exist rows i′ and/or columns j′ in P0 containing only zero
values:

c1) apply the first algorithm defined by (6) to obtain p1
∗ and/or

p2
∗ with minimum values of p1

∗(s
1
i ′) and/or p2

∗(s
2
j ′);

c2) if S1
∗ = ∅ then set p1

∗ = p1; if S2
∗ = ∅ then set p2

∗ = p2;

c3) apply the IPF procedure to obtain all pij different from zero
with the marginal distributions p1

∗ and p2
∗;
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d) else if there are no rows or columns of P0 consisting of zeros,
obtain pij using the IPF procedure based on the initial marginal
plans, p1 and p2.

- Method II

– apply the second algorithm based upon (7) to compute pij =

p(sij) = p∗(sij);

– the new probabilities, p1
∗ and p2

∗, are obtained as marginal prob-
abilities of the solution (pij).

Remark 4 As mentioned in Rao and Nigam (1992), to select samples s1
i or

s2
j with controlled probabilities p1

∗(s
1
i ) or p2

∗(s
2
j ), one can use the cumulative

sums method or Lahiri’s method (see Lahiri, 1951; Cochran, 1977).

Remark 5 The proposed method assumes the simultaneous selection of sam-

ples for two designs. However, this procedure can also be used for successive

sampling (where samples are drawn on two successive occasions) if there are

no rows i′ in matrix P0 with only zero values. Consequently, the second de-

sign can be modified applying Problem (6), and becomes an optimal design

for the first one (which is considered fixed), in order to achieve the AUB.

Remark 6 Since π1,2
k ≥ max(0, π1

k + π2
k − 1), k = 1, . . . ,N , the expected

sample overlap is bounded below by

E(cij) ≥
∑

k∈U

max(0, π1
k + π2

k − 1). (8)

Minimal sample coordination occurs when the expected overlap equals the

Absolute Lower Bound (ALB) defined by
∑

k∈U max(0, π1
k + π2

k − 1) in Ex-

pression (8). To reach the ALB similar conditions as in Proposition 1 are

defined below:

Proposition 2 Let (pij) denote an arbitrary sampling design for which the

marginal designs p1 and p2 are given. Let Ĩ = {k ∈ U |π1
k + π2

k − 1 ≤ 0} and

let D̃ = {k ∈ U |π1
k + π2

k − 1 > 0}, with U = Ĩ ∪ D̃, and Ĩ ∩ D̃ = ∅. The ALB

is achieved by the design iff the following two relations are fulfilled:

a1) if (s1
i ∩ s2

j) ∩ Ĩ 6= ∅ then pij = 0,
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b1) if
(
U \ (s1

i ∪ s2
j)

)
∩ D̃ 6= ∅ then pij = 0,

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , q}.

The proposed method can be applied for ALB by solving Problems (6) or (7)

based now on Proposition 2 instead of Proposition 1.

Remark 7 As in other approaches based on mathematical programming (Causey

et al., 1985; Ernst and Ikeda, 1995; Ernst, 1986, 1996, 1998; Ernst and

Paben, 2002; Mach et al., 2006), the sizes of Problems (6) and (7) can in-

crease very fast. Thus, the procedure is operationally feasible to implement

only for moderate m and q.

6 Example

We now apply the two methods proposed in Section 5 to an example taken
from Causey et al. (1985) (see also the Appendix). Suppose U = U1 = U2 =

{1, 2, 3, 4, 5} and consider the following two initial sampling plans. There are
m = 12 possible samples s1

i in the first initial sampling plan, as listed below:

{1}, {2}, {3}, {4}, {5}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {},

with the selection probabilities

p1 = (0.15, 0.018, 0.012, 0.24, 0.04, 0.3, 0.05, 0.036, 0.006, 0.024, 0.004, 0.12).

For the second design, there are q = 5 possible samples {1}, {2}, {3}, {4}, {5}
with selection probabilities

p2 = (0.4, 0.15, 0.05, 0.3, 0.1).

It follows that the inclusion probabilities of the marginal designs are

π
1 = (π1

k)k = (0.5, 0.06, 0.04, 0.6, 0.1),

π
2 = (π2

k)k = (0.4, 0.15, 0.05, 0.3, 0.1),

and these determine the sets I = {2, 3, 5} and D = {1, 4}.

Given an arbitrary initial design P for which the marginal designs are as
above, the matrix P0 takes the form set out below in (9). The rows corre-
spond to the possible samples for the first design and the columns correspond
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to the possible samples for the second design. The non-zero values of ma-
trix P0 are denoted x. Note that there are two rows consisting of zeros and
corresponding to: s1

9 = {2, 5} and s1
11 = {3, 5}, and there are no columns

consisting just of zeros.

P0 =




{1} {2} {3} {4} {5}
{1} x x x 0 0
{2} 0 x 0 0 0
{3} 0 0 x 0 0
{4} 0 x x x 0
{5} 0 x x 0 x
{1, 4} x x x x 0
{1, 5} x x x 0 x
{2, 4} 0 x 0 0 0
{2, 5} 0 0 0 0 0
{3, 4} 0 0 x 0 0
{3, 5} 0 0 0 0 0
{} 0 x x 0 0




(9)

We now apply Method 1 given in Section 5. The samples {2, 5} and {3, 5}

have only zero values in the corresponding rows of P0 and so the application
of IPF to this matrix cannot lead to maximal coordination for the given
marginal designs using the method of Matei and Tillé (2005) . We apply the
first algorithm defined by (6) for the case t = 1, with S1

∗ = {{2, 5}, {3, 5}}.

The result is a new probability design

p1
∗ = (0.3, 0, 0, 0.4, 0, 0.1, 0.1, 0.06, 0, 0.04, 0, 0).

The zero values in p1
∗ correspond to the samples {2}, {3}, {5}, {2, 5}, {3, 5}

and {}. The application of the algorithm is not necessary for the case t = 2

since there is no single column in P0 consisting of zeros. We apply the
IPF procedure for the samples with non-zero selection probabilities in the
first design p1

∗ and for all samples of the second design p2. The marginal
distributions are now p1

∗ and p2. The resulting matrix P = (pij)6×5 is given
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in (10).

P =




{1} {2} {3} {4} {5} p1
∗

{1} 0.3 0.00 0.00 0.0 0.0 0.30
{4} 0.0 0.09 0.01 0.3 0.0 0.40

{1,4} 0.1 0.00 0.00 0.0 0.0 0.10
{1,5} 0.0 0.00 0.00 0.0 0.1 0.10
{2,4} 0.0 0.06 0.00 0.0 0.0 0.06
{3,4} 0.0 0.00 0.04 0.0 0.0 0.04

p2 0.4 0.15 0.05 0.3 0.1 1




(10)

The matrix of the sample overlaps C = (cij)6×5 is given in (11).

C =




1 0 0 0 0
0 0 0 1 0
1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 1 0




. (11)

Finally,
∑6

i=1

∑5
j=1 cijpij =

∑
k∈U min(π2

k, π
2
k) = 0.9 and the maximal

sample coordination is possible. Using the transportation problem approach
and the uncontrolled plans, p1 and p2, Causey et al. (1985) have given the
solution 0.88. Yet, with our approach, the AUB 0.9 is achieved.

We next apply Method II in Section 5 to the same example. Suppose
that π1

k and π2
k are fixed, ∀k ∈ U and we use the second algorithm defined

by (7) to compute the values p∗(sij) = p∗,ij. The solution P∗ = (p∗,ij) of this
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problem is given in (12).

P∗ =




{1} {2} {3} {4} {5} p1
∗

{1} 0.10 0.09 0.01 0 0 0.20
{2} 0 0.06 0 0 0 0.06
{3} 0 0 0.04 0 0 0.04
{4} 0 0 0 0.30 0 0.30
{5} 0 0 0 0 0.10 0.10
{1, 4} 0.30 0 0 0 0 0.30

{1, 5} 0 0 0 0 0 0
{2, 4} 0 0 0 0 0 0
{2, 5} 0 0 0 0 0 0
{3, 4} 0 0 0 0 0 0
{3, 5} 0 0 0 0 0 0
{} 0 0 0 0 0 0

p2
∗ 0.40 0.15 0.05 0.30 0.10 1




(12)

The new marginal probabilities are obtained as p1
∗(s

1
i ) =

∑5
j=1 p∗,ij and

p2
∗(s

2
j ) =

∑12
i=1 p∗,ij , i = 1, . . . , 12, j = 1, . . . , 5. The last 6 rows in P∗ have

only zeros values. For the first design, the samples s1
i with p1

∗(s
1
i ) 6= 0 are

{1}, {2}, {3}, {4}, {5}, {1, 4}.

As for the first method, the AUB is achieved. And, as for the first
method, the number of possible samples with a strictly positive probability
(the sample support) for the first design is greatly reduced, since we obtain
6 possible samples instead of 12.

7 Discussion

In this paper, we have proposed a method for sample coordination, designed
to maximize (or minimize) expected overlap between two samples, while
constraining the inclusion probabilities for units in each sample to specified
values. The method is primarily designed for use when two surveys are being
conducted simultaneously and it is desired to maximize (or minimize) the
overlap between the two samples. For example, both surveys may involve
multistage stratified sampling and the primary sampling units (PSUs) might
consist of geographical areas. If both surveys are to use face-to-face inter-
viewing then inclusion of the same PSUs in both surveys might reduce travel
and interviewer recruitment costs if the same interviewers can work on both
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surveys. The inclusion probabilities for the PSUs in each survey may be
prespecified according to a probability proportional to size design and the
size measures employed in the two surveys might differ so that it may not
be feasible to employ the same sample of PSUs in both surveys.

The proposed method in such circumstances involves first specifying
probability designs for the sampling of PSUs in each survey, which meet
the conditions on the inclusion probabilities. Next, the method of Matei and
Tillé (2005) is applied to maximize the expected overlap between the two
designs, generating a new joint design for the two samples. Next, one of the
methods of controlled selection described in this paper is applied to improve
the expected overlap further, subject to the given inclusion probabilities.
The extent to which the increase in expected overlap is practically useful
requires further investigation in real survey applications. In the numerical
example in this paper, the use of controlled selection increased the expected
overlap from 0.88 to 0.9.

Although we have focussed on the problem of achieving maximal sample
coordination in circumstances when two samples are to be selected simulta-
neously, under some circumstances the method can also be applied to the
selection of successive samples in repeated surveys. In this case, the marginal
sample design for the first sample will generally be given and the aim is to
select the second sample with specified inclusion probabilities such that ex-
pected overlap is maximum. Our approach can then be applied by using
first the method of Matei and Tillé (2005) with the sampling design on the
first occasion given. As pointed out in Remark 5, however, our approach to
controlled selection can then only be applied if the IPF algorithm of Matei
and Tillé (2005) does not result in any of the samples which were feasible at
the first occasion being made impossible.

Our final comment relates to computation. A key motivation for the
method Matei and Tillé (2005) was to avoid the major computational de-
mands of linear programming approaches to coordination. In our approach,
however, we have reintroduced some element of linear programming. Some
further research is required to compare the computational demands of our
approach and the traditional linear programming approach via the trans-
portation problem.
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Appendix

Transportation problem

Sample coordination using the transportation problem approach was studied
by Raj (1968), Arthnari and Dodge (1981), Causey et al. (1985), Ernst and
Ikeda (1995), Ernst (1996), Ernst (1998), Ernst and Paben (2002) and more
recently by Mach et al. (2006). The transportation problem was used to
maximize (minimize) the overlap between samples for periodic surveys with
a multistage stratified design. Causey et al. (1985) assumed the following
conditions for applying the transportation problem approach: there are two
surveys with different stratifications and each stratum S in the second survey
is a separate overlap problem. Samples using the two designs are selected
sequentially, on two different time occasions. Let m be the number of initial
strata which have a non-empty intersection with S. The intersection between
S and an initial stratum i is a random subset s1

i , for i = 1, . . . ,m. The
probability p1(s1

i ) is known. On the second occasion, there are q possible
samples s2

j , with the selection probability p2(s2
j ), j = 1, . . . , q.

Following Causey et al. (1985), the transportation problem to be solved
for positive coordination is given in Problem (13):

max
m∑

i=1

q∑

j=1

cijpij, (13)

subject to ∣∣∣∣∣∣∣∣

∑q
j=1 pij = p1

i , i = 1, . . . ,m,∑m
i=1 pij = p2

j , j = 1, . . . , q,∑m
i=1

∑q
j=1 pij = 1,

pij ≥ 0, i = 1, . . . ,m, j = 1, . . . , q,

where

cij = |s1
i ∩ s2

j |, p
1
i = Pr(s1

i ), p
2
j = Pr(s2

j ), pij = Pr(s1
i , s

2
j),

19



s1
i ∈ S1 and s2

j ∈ S2 denote all the possible samples in the first and second
design, respectively, with m = |S1| and q = |S2|. We suppose that p1

i >

0, p2
j > 0 in order to compute the conditional probabilities. So, given p1 and

p2, finding the optimum expected overlap amounts to finding the maximum,
over all P = (pij)m×q. Once a solution pij is obtained using Problem (13),
conditional on the already selected sample s1 = s1

i , the selection probability
for s2

j is pij/p
1
i . For negative coordination, the function max is replaced by

min in Problem (13), keeping the same constraints.
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