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Variance estimation in the analysis of clustered
longitudinal survey data

Chris Skinner and Marcel de Toledo Vieira !

Abstract

We investigate the impact of cluster sampling on standard errors in the analysis of longitudinal survey data. We consider a
widely used class of regression models for longitudinal data and a standard class of point estimators of a generalized least
squares type. We argue theoretically that the impact of ignoring clustering in standard error estimation will tend to increase
with the number of waves in the analysis, under some patterns of clustering which are realistic for many social surveys. The
implication is that it is, in general, at least as important to allow for clustering in standard errors for longitudinal analyses as
for cross-sectional analyses. We illustrate this theoretical argument with empirical evidence from a regression analysis of
longitudinal data on gender role attitudes from the British Household Panel Survey. We also compare two approaches to
variance estimation in the analysis of longitudinal survey data: a survey sampling approach based upon linearization and a
multilevel modelling approach. We conclude that the impact of clustering can be seriously underestimated if it is simply
handled by including an additive random effect to represent the clustering in a multilevel model.

Key Words: Clustering; Design effect; Misspecification effect; Multilevel model.

1. Introduction

It is well known that it is important to take account of
sample clustering when estimating standard errors in the
analysis of survey data. Otherwise, standard error estimators
can be severely biased. In this paper we investigate the
impact of clustering in the regression analysis of
longitudinal survey data and compare it with the impact on
corresponding cross-sectional analyses. Kish and Frankel
(1974) presented empirical work which suggested that the
impact of complex designs on variances decrease for more
complex analytical statistics and so one might conjecture
that the impact on longitudinal analyses might also be
reduced. We shall argue that, in fact, the impact of
clustering on longitudinal analyses can tend to be greater, at
least for a number of common types of analysis and for
some common practical settings. An intuitive explanation is
that some common forms of longitudinal analysis of
individual survey data ‘pool’ data over time and enable
much temporal ‘random’ variation in individual responses
to be ‘extracted’ in the estimation of regression coefficients.
In contrast, it may only be possible to extract much less
variation in the effects of clustering since such clustering,
representing geography for example, often tends to generate
more stable effects than repeated measurements of
individual behaviour. As a consequence the relative
importance of clustering in standard errors can increase the
more waves of data are included in the analysis.

In addition to considering the impact of clustering on
variance estimation, we shall also consider the question of
how to undertake the variance estimation itself. It is natural
for many analysts to represent clustering via multilevel

models (Goldstein 2003, Chapter 9; Renard and Molenberghs
2002) and we shall consider how variance estimation
methods based upon such models compare with survey
sampling variance estimation procedures in the case of cluster
sampling.

There is a well established literature on methods for
taking account of complex sampling schemes in the
regression analysis of survey data. See e.g., Kish and
Frankel (1974), Fuller (1975), Binder (1983), Skinner, Holt
and Smith (1989) and Chambers and Skinner (2003). We
restrict attention here to ‘aggregate’ regression analyses
(Skinner et al. 1989), where regression coefficients at the
‘population level’ are the parameters of interest, where
suitable estimates of these coefficients may be obtained by
adapting standard model-based procedures using survey
weights and where the variances of these estimated
regression coefficients may be estimated by linearization
methods (Kish and Frankel 1974; Fuller 1975). In this
paper, we extend this work to the case when longitudinal
survey observations are obtained, based upon an initial
sample drawn according to a complex sampling scheme,
focussing again on the case of a clustered design. We
consider a standard class of linear regression models for
such longitudinal data, as considered in the biostatistical
literature (e.g., Diggle, Heagerty, Liang and Zeger 2002),
the multilevel modelling literature (e.g., Goldstein 2003)
and the econometric literature (e.g., Baltagi 2001). We
consider an established class of point estimators of a
generalized least squares type, modified by survey
weighting. For some applications of such methods to survey
data, see Lavange, Koch and Schwartz (2001); Lavange,
Stearns, Lafata, Koch and Shah (1996).
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The impact of a complex sampling scheme on variance
estimation will be measured by the ‘misspecification effect’,
denoted meff (Skinner 1989a), which is the variance of the
point estimator of interest under the actual sampling scheme
divided by the expectation of a specified variance estimator.
This is a measure of the relative bias of the specified
variance estimator. If it is unbiased then the meff will be
one. If the actual sampling scheme involves clustering but
the specified variance estimator is ‘misspecified’ by
ignoring the clustering, then the expectation of the variance
estimator will usually be less than the actual variance and
the meff will be greater than one. This concept is closely
related to that of the ‘design effect’ or deff of Kish (1965),
defined as the variance of the point estimator under the
given design divided by its variance under simple random
sampling with the same sample size, a concept more
relevant to the choice of design than to the choice of
standard error estimator.

We shall illustrate our theoretical arguments with
analyses of data from the British Household Panel Survey
(BHPS) on attitudes to gender roles, where the units of
primary analytic interest are individual women and the
clusters consist of postcode sectors, used as primary
sampling units in the selection of the first wave sample from
an address register.

The framework, including the models and estimation
methods, is described in Section 2. The theoretical
properties of the variance estimation methods are considered
in Section 3. Section 4 illustrates these properties numer-
ically, using an analysis of BHPS data. Some concluding
remarks are provided in Section 5.

2. Regression model, data and
inference procedures

Consider a finite population U = {1, ..., N} of N units,
assumed fixed across a series of occasions ¢ = 1,...,7. We
shall refer to the units as individuals, although our
discussion is applicable more generally. Let y, denote the
value of an outcome variable for individual i € U at
occasion ¢ and let y, = (y,,..., ¥;) be the vector of
repeated measurements. Let x, denote a corresponding
1 x g vector of values of covariates for individual i at
occasion ¢ and let x;, = (x},..., x/;). We assume that the
following linear model holds for the expectation of y,
conditional on (x, ..., xy) :

E(y;) = xB, ey

where B isa g x 1 vector of regression coefficients and the
expectation is with respect to the model. We suppose that 3
is the target for inference, that is the regression coefficients
are the parameters of primary interest to the analyst.
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Although we shall consider further features of this model,
such as the covariance matrix of y,, these will be assumed
to be of secondary interest to the analyst.

The data available to make inference about  are from a
longitudinal survey in which values of y, and x, are
observed at each occasion (wave) ¢ =1,..,7 for indi-
viduals i in a sample, s, drawn from U at wave 1 using a
specified sampling scheme. For simplicity, we assume no
non-response here, but return to this possibility in Section 4.

In order to formulate a point estimator of §, we extend
the specification of (1) to the following ‘working’ model:

Vi =X B +u +v,, @)

where u, and v, are independent random effects with zero
means and variances GZ = pc” and 63 =(1-p)o’ re-
spectively, conditional on (x,, ..., x,). This model may be
called a uniform correlation model (Diggle et al. 2002, page
55) or a two-level model (Goldstein 2003). The parameter
p is the intra-individual correlation.

The basic point estimator of 3 we consider is

-1
B = (zwi Xy x:) zWi XV, 3)
where w, is a survey weight and V' isa T x T estimated
covariance matrix of y, under the working model (2), i.e., it
has diagonal elements 6* and off-diagonal elements p &7,
where (p, &%) is an estimator of (p, c”). (Note that in fact
& cancels out in (3) and hence o* does not need to be
estimated for ). In the absence of the weight terms and
survey considerations, the form of (3 is motivated by the
generalized estimating equations (GEE) approach of Liang
and Zeger (1986). The idea here is that B, as a generalized
least squares estimator of 3, would be fully efficient if the
working model (2) held. However, # remains consistent
under (1) and may still be expected to combine within- and
between-individual information in a reasonably efficient
way even if the working model for the error structure does
not hold exactly.

The survey weights are included in (3) following the
pseudo-likelihood approach (Skinner 1989b) to ensure that
B is approximately unbiased for P with respect to the
model and the design, provided (1) holds.

There are a number of alternative ways of estimating p.
In a non-survey setting, Liang and Zeger (1986) provide an
iterative approach which alternates between estimates of 3
and p. Shah, Barnwell and Bieler (1997) describe how
survey weights may be incorporated into this approach and
implement this method in the REGRESS procedure of the
software SUDAAN. By default, SUDAAN implements
only one step of this iterative method and, in the non-survey
setting, Lipsitz, Fitzmaurice, Orav and Laird (1994)
conclude there is little to be lost by using only a single step.
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For the working model in (2), the approach of Liang and
Zeger (1986) to the estimation of B and p is virtually
identical to the iterative generalized least squares (IGLS)
estimation approach of Goldstein (1986). Both methods
iterate between estimates of 3 and p and both use GLS to
estimate [ given the current estimate of p. The only slight
difference is in the method used to estimate p. Pfeffermann,
Skinner, Holmes, Goldstein and Rasbash (1998) show how
to incorporate survey weights into the IGLS approach and
their method may be expected to lead to very similar
estimates of p to those in the SUDAAN REGRESS
procedure. For the purposes of this paper, the precise form
of p will not be critical and we may view P as either a
weighted GEE or a weighted IGLS estimator.

We now turn to the estimation of the covariance matrix
of B under the complex sampling scheme. We shall gen-
erally assume that a stratified multistage sampling scheme
has been employed. We consider two main approaches to
variance estimation.

Our first approach is the classical method of linearization
(Skinner 1989b, page 78). The estimator of covariance
matrix of B is

r -1
ry7-1
> wxlV x,}
Lies

x Z”h (ny, = 1)2(% - Z,)(z, — Zh)':|
L & a

v(p) =

r -1
x Z%#V%} @
where 4 denotes stratum, a denotes primary sampling unit
(PSU), n, is the number of PSUs in stratum 4, z,,=
Yow.xV'e, z, =%,z,/n, and e, = y, — x, . Similar
estimators are considered by Shah et al. (1997, pages 8-9)
and Lavange efal. (2001). If the weights, the sampling
scheme and the difference between n/(n —1) and 1 are
ignored, this estimator reduces to the ‘robust’ variance
estimator presented by Liang and Zeger (1986).

Our second approach is more directly model-based. The
model is first extended to represent the complex population
underlying the sampling scheme and inference then takes
place with respect to the extended model. We consider only
the case of two-stage sampling from a clustered population,
where the two-level model in (2) is extended to the three-
level model (Goldstein 2003):

Vair = X B+ M, + Uy + Ve )

The additional subscript a denotes cluster and the
additional random term m, with variance Gf] represents the
cluster effect (assumed independent of u,, and v ). We let
o, and o denote the variances of u, and v, respec-
tively. Inference then takes place using IGLS, which may be

5

weighted to avoid selection bias. This approach generates an
estimated covariance matrix of the estimator of 8 directly.
It should be noted, however that the estimator of 3 derived
using weighted IGLS under model (5) may differ slightly
from the estimator in (3) (although, for given estimates of
the three variance components in (5), it will be the same as a
weighted GEE estimator with a working covariance matrix
based on this three-level model). Nevertheless, from our
experience of social survey applications, such as in Section
4, and from theory (Scott and Holt 1982) the difference
between these alternative point estimators will often be
negligible.

Two broad approaches to deriving variance estimators
from (5) are available. First, ignoring survey weights, the
standard IGLS method (Goldstein 1986) may be employed,
assuming that each random effect follows a normal distri-
bution. Second, to avoid the assumption of normal
homoscedastic random effects, a ‘robust’ variance esti-
mation method (Goldstein 2003, page 80) may be
employed. This approach is extended to handle survey
weights in Pfeffermann efal. (1998). Leaving aside
stratification, their variance estimator is identical to the
linearization estimator in (4) for a given value of p.

3. Properties of variance estimators

In this section we consider the properties of the
estimators of the covariance matrix of  described in the
previous section. We focus first on the linearization
estimator v(B) in (4).

The consistency of v(B) for the covariance matrix of
follows established arguments in a suitable asymptotic
framework (e.g., Fuller 1975; Binder 1983). The one non-
standard feature is the presence of V™' in B and v(fs) and
the dependence of V' on p. In fact, in large samples the
covariance matrix of B depends on p only via its limiting
value p’ (in a given asymptotic framework). To see this,
write B —P = (Zsu,.)_lzséi, where wu, = w,x/V 'x,
Z =wx/V'é and & =y, — x,B. Note that, under weak
regularity conditions (Fuller and Battese 1973, Corollary 3),
the asymptotic dis;m'bution of p—P is the same as that of
B'—B=,u) Xz, where u, =wxV 'x, z=
w,x/V e and V" takes the same form as ¥ with p
replaced by p* = plim(p), the probability limit of p in the
asymptotic framework. Writing z° =X,z /n and U=
plim(zsu: /n), we may thus approximate the covariance
matrix of B asymptotically by var(p) =~ U var(z" )U". If
the working model (2) holds then p" =p and this
covariance matrix will be the same for any consistent
method of estimating p. Even if the working model does
not hold, v(B) will be consistent for U ' var(z )U™
within the kinds of asymptotic frameworks considered by
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Fuller (1975) and Binder (1983) and under the kinds of
regularity conditions they and Fuller and Battese (1973) set
out.

We next explore the impact on the linearization method
of ignoring a complex sampling design. We denote by
vO(B) the linearization estimator obtained from expression
(4) by ignoring the design, i.e., by assuming only a single
stratum with PSUs identical to individuals so that n, = n is
the overall sample size and z,, is replaced by z,=
w, xV'e. We shall be concerned with the bias of v, ()
when in fact the design is complex. Let Bk denote the k™
element of  and let Vo (8 .) denote the k ™ clement of
Vo (B). Then, following Skinner (1989a, page 24), we shall
measure the relative bias of the ‘incorrectly specified’
variance estimator v, (Bk) as an estimator of Var(fsk) by
the misspecification effect, meff[fsk,vo (Bk)]zvar(fsk) /E[v,
(Bk)]. Since V(Bk) is a consistent estimator of Var(Bk),
meff[Bk, vO(Bk)] may be estimated by V(Bk)/VO(Bk) and
is closely related to the idea of design effect.

To investigate the nature of meff[Bk, Vo (Bk)], we first
write:

vO(B) = (zsui )_l[n/(n -1)]
[ZG-06-9)(Zw) O

where z = Y z, /n. Then, as an asymptotic approximation,
we have E[v,(B)] = U '[n"'S]]U"", where S. is the
probability limit of the finite population covariance matrix
of z: . Using the fact that the numerator of meff[Bk,
Vo (B )] may be approximated by U Var(E*)U ! we can
thus write:

(U var(zH U,

ffA’OA = -l Lo*y -1y ° 7
meff[f,, vy (B, )] O[S, (7)

where (U™), is the ™ row of U™, This simplifies in the
case g =1 to:

meff[B, v, ()] = var(z")/[n"'S]]. ®)

We may explore more specific forms of these
expressions under different models and assumptions about
the weights and the sampling scheme. We focus here on the
impact of clustering, assuming equal weights and no
stratification. Consider the three-level model in (5) and, to
simplify matters, suppose that ¢ =1 and x, =1 and f is
the mean of y,,. Then, straightforward algebra shows that
the value of z, for individual ; within cluster a is
[+p (T -DI'Y, (m, +u, +v,). Now suppose that
two-stage sampling is employed with a common sample
size m per cluster. Then, evaluating the variance var(z")
and probability limit .S : in (8) with respect to the model in
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(5), we find, in a similar manner to Skinner (1989a, page
38):

meff[B,v,(B)] = 1 + (m — )1, )

where 1 = Gf] /(GTZ] +o. +0./T) is the intracluster
correlation of z,.* . We see that, under this model, the meff
increases as T increases (provided o, > 0) and thus the
impact of clustering on variance estimation is greater in the
longitudinal case than for the cross-sectional problem
(where T =1).

This finding depends on the rather strong assumption that
the cluster effects n, are constant over time. In fact, (9) still
holds if we replace m, by a time-varying effect m,,
providled we replace t by 1t =var(n,)/[var(n,) +
o, +c./T], where n, = ¥,m, /T. Now, the meff will
increase as T increases if (and only if) o +c./T
decreases faster with 7' than var(n,). Whether this is the
case will depend on the particular application. However, we
suggest that for many longitudinal surveys of individuals
with area-based clusters (the kind of setting we have in
mind), this condition is plausible. In such applications we
may often expect G- to be large relative to - (i.e., for the
cross-sectional intracluster correlation to be small) in
particular as a result of wave-specific measurement error
and thus for . + o> /T to decrease fairly rapidly as T
increases. The socio-economic characteristics of areas may
often be expected to be more stable and only in unusual
situations might we expect measurement error to lead to
much occasion-specific variance in m,. Thus, we suggest
that the ratio of var(n,) for 7 =5, say, compared to
T =1 may in such applications usually be expected to be
greater than (o, + o /5)/(c. + ©.) which will approach
1/5as o /c. approaches 0. We thus suggest that in many
practical circumstances it will be more important to allow
for clustering in longitudinal analyses than in corresponding
cross-sectional analyses. An empirical illustration is
provided in Section 4.

We now consider the properties of variance estimators
based upon the three-level model in (5). We consider only
the approach based upon the assumption of normally
distributed homoscedastic random effects, ignoring survey
weights, given the (virtual) equivalence of the ‘robust’
multilevel approach and linearization.

If model (5) is correct and we can indeed ignore survey
weights then the model-based variance estimator will be
consistent (Goldstein 1986). However, as discussed in
Skinner (1989b, page 68) and supported by theory in
Skinner (1986), the main feature of clustering likely to
impact on the standard errors of estimated regression coef-
ficients is the variation in regression coefficients between
clusters. This is not allowed for in model (5).
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To see how model (5) may fail to capture the effects of
clustering adequately, consider the cross-sectional case
(T =1) where x is scalar. Then, if the three-level model
(5) holds, an approximate expression for the meff of the
variance estimator of 3 based upon the two-level model (2)
is:

meff =1+ (m - D11, (10)

where 1, = csf] /(csf] + 0. +0.) and 1, is the intracluster
correlations for x (Scott and Holt 1982; Skinner 1989D,
page 68). This result extends in the longitudinal case, to:

1 < meff <1+ (m—1)r,, (11)

where % is the long-run (7 = o) version of T (see
Appendix) and t, is an intracluster correlation coefficient
for z,; =%,x,/T. The proof of this result and the
simplifying assumptions required are sketched in the
Appendix. The main point is that both 7 and t, will often
be small in which case Tt, will be very small and thus meff
may be implausibly close to one with the model-based
variance estimator being subject to downward bias. We
explore this empirically in Section 4. Of course, random
coefficients could be introduced into model (5) and we
consider this also in Section 4. However, given the difficulty
of specifying a correct random coefficient model, this
approach does not seem likely to be very robust.

Our focus in this section has so far been on the potential
bias (or inconsistency) of variance estimation methods. It is
also desirable to consider their efficiency. In particular, the
linearization method may be expected to be less efficient
than model-based variance estimation if the model is
correct. The relative importance of efficiency vs. bias may
be expected to increase as the number of clusters decreases.
Wolter (1985, Chapter 8) summarises a number of
simulation studies investigating both the bias and variance
of the linearization variance estimator and these studies
suggest that the linearization method performs well even
with few clusters. Possible degrees of freedom corrections
to confidence intervals for regression coefficients based
upon the linearization method with small numbers of
clusters are discussed by Fuller (1984). A simulation study
of estimators for multilevel models in Maas and Hox (2004)
does not suggest that the linearization method performs
noticeably worse than the model-based approach, in terms
of the coverage of confidence intervals for coefficients in
B, even with as few as 30 clusters.

4. Example: Regression analysis of BHPS
data on attitudes to gender roles

We now present an application to BHPS data to illustrate
some of the theoretical properties discussed in the previous
section.

7

Recent decades have witnessed major changes in the
roles of men and women in the family in many countries.
Social scientists are interested in the relation between
changing attitudes to gender roles and changes in behaviour,
such as parenthood and labour force participation (e.g.,
Morgan and Waite 1987; Fan and Marini 2000). A variety
of forms of statistical analysis are used to provide evidence
about these relationships. Here, we consider estimating a
linear model of form (1), with a measure of attitude to
gender roles as the outcome variable, y, following an
analysis of Berrington (2002).

The data come from waves 1, 3, 5, 7 and 9 (collected in
1991, 1993, 1995, 1997, and 1999 respectively) of the
BHPS and these waves are coded ¢ =1,...,7 = 5 respec-
tively. Respondents were asked whether they ‘strongly
agreed’, ‘agreed’, ‘neither agreed nor disagreed’, ‘dis-
agreed’ or ‘strongly disagreed’ with a series of statements
concerning the family, women’s roles, and work out of the
household. Responses were scored from 1 to 5. Factor
analysis was used to assess which statements could be
combined into a gender role attitude measure. The attitude
score, y,, considered here is the total score for six selected
statements for woman i at wave ¢. Higher scores signify
more egalitarian gender role attitudes. Berrington (2002)
provides further discussion of this variable. A more
sophisticated analysis might include a measurement error
model for attitudes (e.g., Fan and Marini 2000), with each of
the five-point responses to the six statements treated as
ordinal variables. Here, we adopt a simpler approach,
treating the aggregate score , and the associated
coefficient vector [ as scientifically interesting, with the
measurement error included in the error term of the model.

Covariates for the regression analysis were selected on
the basis of discussion in Berrington (2002) but reduced in
number to facilitate a focus on the methodological issues of
interest. The covariate of primary scientific interest is
economic activity, which distinguishes in particular between
women who are at home looking after children (denoted
‘family care”) and women following other forms of activity
in relation to the labour market. Variables reflecting age and
education are also included since these have often been
found to be strongly related to gender role attitudes (e.g.,
Fan and Marini 2000). All these covariates may change
values between waves. A year variable (scored 1, 3, ..., 9) is
also included. This may reflect both historical change and
the general ageing of the women in the sample.

The BHPS is a household panel survey of individuals in
private domiciles in Great Britain (Taylor, Brice, Buck and
Prentice-Lane 2001). The initial (wave one) sample in 1991
was selected by a stratified multistage design in which
households had approximately equal probabilities of
inclusion. The households were clustered into 250 primary
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sampling units (PSUs), consisting of postcode sectors. All
resident members aged 16 or over were selected in sample
households. All adults selected at wave one were followed
from wave two onwards and represent the longitudinal
sample. The survey is subject to attrition and other forms of
wave non-response. To handle this non-response, we have
simply replaced s in (3) by the ‘longitudinal sample’ of
individuals for which observations are available for each of
t =1,..,T and have chosen not to apply any survey
weighting since our aim is to study potential misspeci-
fication effects associated with clustering and we wish to
avoid confounding these with weighting effects. We also
ignore the impact of stratification in the numerical work in
this section (but see Section 5 for some comments on the
effect of weights and stratification).

Given the analytic interest in whether women’s primary
labour market activity is ‘caring for a family’, we define our
study population as women aged 16-39 in 1991. Thus our
data consist of the longitudinal sample of women in the
eligible age range for whom full interview outcomes
(complete records) were obtained in all five waves, a sample
of n=1,340 women. These women are spread fairly evenly
across 248 postcode sectors. The small average sample size
of around five per postcode sector combined with the
relatively low intra-postcode sector correlation for the
attitude variable of interest leads to relatively small impacts
of the design, as measured by meffs. Since our aims are
methodological ones, we have chosen to group the postcode
sectors into 47 geographically contiguous clusters, to create
sharper comparisons, less blurred by sampling errors which
can be appreciable in variance estimation. The meffs in the
tables we present therefore tend to be greater than they are
for the actual design. The latter results tend to follow similar
patterns, although the patterns are less clear-cut as a result of
sampling error.

We first estimate meffs for the linearization estimator, as
discussed at the beginning of Section 3. Using data from just
the first wave and setting x,, = 1, the estimated meff for
this cross-sectional mean is given in Table 1 as about 1.5.
This value is plausible since, if we make the usual
approximation of (9) for unequal sample cluster sizes by
replacing m by m, the average sample size per cluster, we
find that 1+ (m—-1)t=15 and m =1,340/47 = 29
imply a value of 1 of about 0.02 and such a small value is
in line with other estimated values of t found for attitudinal
variables in British surveys (Lynn and Lievesley 1991,
Appendix D).

Table 1 Estimates for longitudinal means

ﬁ s.e. meffs
Waves 1-9 1-9 1 1,3 1,35 1-7 19
19.83 0.12 1.51 1.50 1.68 1.81 1.84
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To assess the impact of the longitudinal aspect of the
data, we estimated a series of meffs using data for waves
l,....,t fort=2,3,...,5. Although these estimated meffs
are subject to sampling error, there seems clear evidence in
Table 1 of a tendency for the meff to increase with the
number of waves. This trend might be anticipated from the
theoretical discussion in Section 3 if the average level of
egalitarian attitudes in an area varies less from year to year
than the attitude scores of individual women. This seems
plausible since the latter will be affected both by
measurement error and genuine changes in attitudes, so that
var(n,) may be expected to decline more slowly with T
than var(u, +v,). We may therefore expect t, and
consequently the meff, to increase as 7' increases, as we
observe in Table 1.

We next elaborate the analysis by including indicator
variables for economic activity as covariates. The resulting
regression model has an intercept term and four covariates
representing contrasts between women who are employed
full-time and women in other categories of economic
activity. The estimated meffs are presented in Table 2. The
intercept term is a domain mean and standard theory for a
meft of a mean in a domain cutting across clusters (Skinner
1989b, page 60) suggests that it will be somewhat less than
the meff for the mean in the whole sample, as indeed is
observed with the meff for the cross-section domain mean
of 1.13 in Table 2 being less than the value 1.51 in Table 1.
As before, there is some evidence in Table 2 of tendency for
the meff to increase, from 1.13 with one wave to 1.50 with
five waves, albeit with lower values of the meffs than in
Table 1. The meffs for the contrasts in Table 2 vary in size,
some greater than and some less than one. These meffs may
be viewed as a combination of the traditional variance
inflating effect of clustering in surveys together with the
variance reducing effect of blocking in an experiment. Such
variance reduction arises if the domains being contrasted
share a common cluster effect (of the form 1, in model (5))
which tends to cancel out in the contrasts, implying that the
actual variance of the contrast is lower than the expectation
of the variance estimator which assumes independence
between domains. The latter expectation will be inflated by
common cluster effects. The main feature of these results of
interest here is that there is again no tendency for the meffs
to converge to one as the number of waves increases. If
there is a trend, it is in the opposite direction. For the
contrast of particular scientific interest, that between women
who are full-time employed and those who are ‘at home
caring for a family’, the meff is consistently well below one.

We next refine the model further by including, as
additional covariates, age group, year and qualifications.
The estimated meffs are given in Table 3. The meffs for the
regression coefficients corresponding to categories of
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economic activity again vary, some being above one and
some below one, for the same reasons as for the contrasts
(which may also be interpreted as regression coefficients) in
Table 2. There is again some evidence of a tendency for
these meffs to diverge away from one as the number of
waves increases. A comparison of Tables 1 and 3 confirms
the observation of Kish and Frankel (1974) that meffs for
regression coefficients tend not to be greater than meffs for
the means of the dependent variable.

Table 2 Estimates for regression with covariates
defined by economic activity

B s meffs
Waves 19 19 11,3135 1-7 19
Intercept 20.58 0.11 1.131.01 1.09 1.38 1.50
Contrasts for
PT employed -1.03 0.10 0.930.91 0.93 1.00 0.89
Other inactive -0.80 0.15 0.600.96 0.68 0.76 0.81
FT student 0.41 0.24 1.101.32 1.14 1.48 1.44
Family care -2.18 0.10 0.720.49 0.58 0.66 0.60
Note: a) intercept is mean for women full-time employed

b) contrasts are for other categories of economic activity
relative to full-time employed

Table 3 Estimates for regression coefficients with
additional covariates in model

B s.e. meffs

Waves 19 19 1 13135 17 19
Intercept 20.20 0.30 095 0.87 0.87 1.04 1.07
Year, ¢ -0.04 0.01 - 0.86 0.69 0.59 0.96
Age Group

16-21 0.00 -

22-27 -0.71 0.25 1.22 1.37 1.44 1.73 1.64

28-33 -0.89 0.27 1.38 1.40 1.46 1.68 1.59

34+ -1.03 0.27 094 1.10 1.13 1.26 1.34
Economic Activity

FT employed 0.00 -

PT employed  -0.93 0.10  0.97 0.95 0.96 1.06 0.91

Other inactive  -0.75 0.15  0.60 0.96 0.68 0.77 0.81

FT student 0.17 0.24 093 132 123 1.39 1.32

Family care -2.09 0.10  0.77 0.59 0.70 0.78 0.67
Qualification

Degree 0.00 -

QF -0.52 0.21  0.77 0.64 0.75 0.87 0.85

A-level -0.61 0.24  0.98 0.87 094 0.94 1.01

O-level -0.44 0.20  0.62 0.62 0.59 0.69 0.73

Other -1.16 022 0.83 0.83 0.78 0.80 0.82

We next consider model-based standard errors obtained
from the three level model in (5), as discussed in section 2.
The results are given in Table 4 in the column headed ‘3
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level model-based’. For comparison, we also estimate the
standard errors under the two level model in (2) - the results
are in the column headed ‘2 level model-based’. The
estimates in the two columns are virtually identical. There is
a single digit difference in the third decimal place for some
coefficients and slightly greater difference for the intercept
term. We suggest that this is evidence that simply adding in
a random area effect term can seriously understate the
impact of clustering on the standard errors of the estimated
regression coefficients. This evidence is in line with the
theoretical upper bound for the meff in (11). The estimated
value of 7 in (11) is 0.019 and none of the covariates may
be expected to display important intra-area correlation so the
expected values of the variance estimators for the two-level
and three-level models would be expected to be very close.

We suggested in Section 3 that the main feature of
clustering likely to impact on the covariance matrix of B is
the variation in regression coefficients between clusters. We
have explored this idea by introducing random coefficients
in the model. Treating the elements of 3 now as the
expected values of the random coefficients, we found that
the estimates of 3 were hardly changed. We found that the
estimated standard errors of these estimates were indeed
inflated, much more so than from the introduction of the
extra cluster random effect in model (5), and that the
inflation was of an order similar to those of the meffs in
Tables 2 and 3. Nevertheless, the IGLS method did lead to
several negative estimates of the variances of the random
coefficients, raising issues of which coefficients to allow to
vary or more generally the issue of model specification.
This problem is accentuated with increasing numbers of
covariates, as the number of parameters in the covariance
matrix of the coefficient vector increases with the square of
the number of covariates. Overall, the inclusion of random
coefficients seems to raise at least as many problems as it
solves, if the clustering is not of intrinsic scientific interest,
and thus does not seem a very satisfactory way to allow for
clustering in variance estimation. It is simpler to change the
method of variance estimation.

As mentioned at the end of Section 2, one alternative is a
‘robust’ variance estimation method based on the model in
(5) (Goldstein 2003, page 80). Values of such robust
standard error estimates are also included in Table 4. As
anticipated in Section 2, the robust standard error estimator
for the two level model performs very similarly to the
linearization estimator which ignores clustering. The robust
standard error estimator for the three level model performs
very similarly to the linearization estimator which allows for
two stage sampling. The slight differences reflect the
differences between the methods of estimating V.

Statistics Canada, Catalogue No. 12-001-XPB
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Table 4 Estimated standard errors of regression coefficients

Linearization

Multilevel modelling

SRS complex

2 level model-based 2 level robust 3 level model-based 3 level robust

Intercept 0.287  0.296 0.253
Year, ¢ 0.014 0.014 0.013
Age Group
16-21
22-27 0.191  0.245 0.155
28-33 0.214  0.270 0.187
34+ 0.237  0.275 0.218
Economic Activity
FT employed
PT employed 0.103  0.098 0.098
Other inactive ~ 0.166  0.150 0.146
FT student 0.207  0.238 0.199
Family care 0.125  0.102 0.112
Qualification
Degree
QF 0.228  0.210 0.207
A-level 0.238  0.239 0.209
O-level 0.234  0.199 0.217
Other 0.247  0.224 0.229

0.288 0.259 0.293
0.014 0.013 0.014
0.192 0.155 0.243
0.215 0.187 0.266
0.238 0.218 0.271
0.103 0.098 0.096
0.166 0.146 0.148
0.207 0.199 0.236
0.125 0.112 0.101
0.228 0.208 0.211
0.240 0.210 0.237
0.235 0.218 0.199
0.249 0.230 0.223

The linearization method in the presence of two-stage
sampling is thus very close to robust variance estimation
methods used in the literature on multilevel modeling. The
distinction between the methods becomes stronger if we
allow also for stratification and weighting. Another
distinction is that in the multilevel modeling approach,
differences between model-based and the robust standard
errors might be used as a diagnostic tool to detect departures
from the model (Maas and Hox 2004). For example, the
large differences in the three-level standard errors for the
coefficients of age group in Table 4 might lead to
consideration of the inclusion of random coefficients for age
group. This contrasts with the survey sampling approach
where the error structure in model (5) is only treated as a
working model and it is not necessarily expected that
standard errors based upon this model will be approximately
valid.

5. Discussion

We have presented some theoretical arguments and
empirical evidence that the impact of ignoring clustering in
standard error estimation for certain longitudinal analyses
can tend to be larger than for corresponding cross-sectional
analyses. The implication is that it is, in general, at least as
important to allow for clustering in standard errors for
longitudinal analyses as for cross-sectional analyses and that
the findings of, for example, Kish and Frankel (1974),

Statistics Canada, Catalogue No. 12-001-XPB

should not be used as grounds to ignore complex sampling
in the former case.

The longitudinal analyses considered in this paper are of
a certain kind and we should emphasise that the patterns
observed for meffs in these kinds of analyses may well not
extend to all kinds of longitudinal analyses. To speculate
about the class of models and estimators for which the
patterns observed in this paper might apply, we conjecture
that increased meffs for longitudinal analyses will arise
when the longitudinal design enables temporal ‘random’
variation in individual responses to be extracted from
between-person differences and hence to reduce the
component of standard errors due to these differences, but
provides less ‘explanation’ of between cluster differences,
so that the relative importance of this component of standard
errors becomes greater.

The empirical work presented in this paper has also been
restricted to the impact of clustering. We have undertaken
corresponding work allowing for weighting and strat-
ification and found broadly similar findings. Stratification
tends to have a smaller effect than clustering. The sample
selection probabilities in the BHPS do not vary greatly and
the impact of weighting by the reciprocals of these
probabilities on both point and variance estimates tends not
to be large. There is rather greater variation among the
longitudinal weights which are provided with BHPS data
for analyses of sets of individuals who have responded at
each wave up to and including a given year 7. The impact
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of these weights on point and variance estimates is some-
what greater. As T increases and further attrition occurs,
the longitudinal weights tend to become more variable and
lead to greater inflation of variances. This tends to
compound the effect we have described of meffs increasing
with 7.

Leaving aside consideration of stratification and
weighting, we have compared two approaches to allowing
for cluster sampling. We have treated the survey sampling
approach as a benchmark. We have also considered a
multilevel modelling approach to allow for clustering. We
have suggested that the use of a simple additive random
effect to represent clustering can seriously understate the
impact of clustering and may lead to underestimation of
standard errors. If the clustering is of scientific interest, one
solution would be to consider including random
coefficients. Another would be to use the ‘GEE2’ approach
(Liang, Zeger and Qagqish 1992) and specify an additional
parametric model for E(y; y;). If the clustering is treated as
a nuisance, simply reflecting administrative convenience in
data collection, we suggest the survey sampling approach
has a number of practical advantages. This is discussed
further by Lavange ef al. (1996, 2001) in relation to other
applications to repeated measures data.

Appendix
Justification for (11)

For simplicity, x and B are taken to be scalar, B is
taken to be the ordinary least squares estimator and it is
assumed that the sample sizes within clusters are all equal to
m. The meff in (11) is defined as Var3([§)/ E3[v2(f5)],
where E; and var, are moments with respect to the three-
level model in (5) and v, (B) is a variance estimator based
upon the two-level model in (2). Under (5) we obtain

-2
van )= (24 | (1% +0l T, +0 T |
cit c ci cit

where + denotes summation across a suffix, Gf], GZ and csi
are the respective variances of n,,u, and v, and x, is
centred at 0. We further suppose that v, (B) is defined so
that E[v, (B)]= (L x5,) 7[(0],+6,) T i, +0) L5, -
After some algebra we may show that

meff =1+ (m-1) 7t p[l+(T -1, 1/[1+(T-Dpt,], (12)

where % =oc’/(c2 +062), p=(o>+0)/(c:+0

2 1 2 i 2 ! 2 T]2 ! 1 2u
G,), T, =06,/0, . = XuxX,, /(nT), G
[X.(x,./TY/n-c2/T[1-1/T], 1. =0c4/c, o =

Yazoln, ol =[X.(z,, /m)/C—c>/m]/[1-1/m] and

(&)

n = Cm is the sample size. Note that Tp = 1, and, when

+
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T =1,t, =1, so that (12) reduces to (10). In general
p <1 and (11) follows from (12). In fact, we estimate p as
0.59 in our application so the bound in (11) is not expected
to be very tight.
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