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The probability of identification: applying ideas from forensic 

statistics to disclosure risk assessment 

 

C. J. Skinner 

University of Southampton, U. K. 

 

Summary.  This paper establishes a correspondence between statistical disclosure 

control and forensic statistics regarding their common use of the concept of ‘probability 

of identification’. The paper then seeks to investigate what lessons for disclosure control 

can be learnt from the forensic identification literature. The main lesson considered here 

is that disclosure risk assessment cannot, in general, ignore the search method employed 

by an intruder seeking to achieve disclosure. The effects of using several search methods 

are considered. Through consideration of the plausibility of assumptions and ‘worst case’ 

approaches, the papers suggests how the impact of search method can be handled. The 

paper focuses on foundations of disclosure risk assessment, providing some justification 

for some modelling assumptions underlying some existing record level measures of 

disclosure risk. The paper illustrates the effects of using different search methods in a 

numerical example based upon microdata from a sample from the 2001 Census. 
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1.  Introduction 

Statistical agencies conducting surveys or censuses need to protect the confidentiality of 

respondents when releasing outputs (Doyle et al, 2001). A major aim in confidentiality 

protection is to avoid identification. For example, the key ‘confidentiality guarantee’  in 

the National Statistics Code of Practice (National Statistics, 2004, p.7) is that ‘no 

statistics will be produced that are likely to identify an individual’ . Bethlehem et al. 

(1990) refer to similar principles elsewhere, such as in the International Statistical 

Institute Declaration on Professional Ethics. Concern about identification is particularly 

pronounced for releases of microdata, where the identification of a record in a microdata 

file might lead to the disclosure of the values of sensitive variables (Paass, 1988; Duncan 

and Lambert, 1989; Reiter, 2005). 

Principles of confidentiality protection, such as that embodied in the National 

Statistics Code of Practice, are often expressed broadly and require refinement if they are 

to be implemented in practice. The concept of identification itself seems fairly clear: it 

involves linking an element of the output, such as a microdata record, with a known 

individual or other specified unit (Bethlehem et al., 1990). More challenging is the 

concept of the probability of identification, to which confidentiality protection principles 

often refer. For example, the phrase ‘likely to’  in the National Statistics confidentiality 

guarantee is a probabilistic notion. The probability of identification is often referred to as 

identification risk or the risk of identity disclosure in the statistical disclosure control 

(SDC hereafter) literature (e.g. Paass, 1988; Duncan and Lambert, 1989; Reiter, 2005). 

The assessment of this probability is not straightforward, in particular since the 

underlying uncertainty might arise from a variety of sources, such as: whether an attempt 
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at identification by an intruder might take place, what auxiliary information an intruder 

might be able to use to attempt identification or which elements of the output or known 

individuals might be selected for an attempt at identification. Some of these sources of 

uncertainty may be handled by appropriate definition and alternative assumptions, such 

as via the components of risk approach of Marsh et al. (1991). Nevertheless, there remain 

challenges in assessing the uncertainty, as will become apparent in this paper.  

One field of statistical application where there has been rigorous discussion and 

development of methods for assessing the probability of identification is forensic science 

(e.g. Dawid, 1994; Balding and Donnelly, 1995). The aim of this paper is, first, to 

establish a correspondence between the forensic identification literature and that on SDC 

and then to consider the relevance of some ideas from the former literature to the 

assessment of identification risk in an SDC context.  

One particular implication of the forensic identification literature, upon which we 

shall focus, is that the probability of identification may depend upon the search method 

used by an intruder to select an element of the output and a known individual in the 

population for linking. While the SDC literature has acknowledged that intruders might 

employ different search methods to improve their chances of disclosure (e.g. Duncan and 

Lambert, 1989; Lambert, 1993), expressions for identification risk appearing in the SDC 

literature (e.g. Paass, 1988) are generally not dependent on the search method, for given 

auxiliary information. Following the forensic identification literature, we shall show how 

such dependence can arise. This finding makes the task of disclosure risk assessment 

harder, since the search method employed by a hypothetical intruder is necessarily 

unknown. We shall discuss how this problem might be addressed. 
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We shall argue that the assessment of identification risk in SDC may be viewed as a 

generalization of a forensic identification problem. As a consequence, we shall consider 

how forensic identification approaches may be extended to identification risk assessment 

in SDC. Our focus will be on the foundations of risk assessment methodology. We shall, 

however, outline an application in section 6 and provide some numerical illustrations 

using data from the 2001 Census.  

Our focus in an SDC context will be on microdata, although much of this paper will 

also be relevant to any form of output where identification is relevant, i.e. where there is 

concern about the linking of elements of the output to known individuals (or other 

specified units). Our discussion will apply to cases where SDC methods, such as 

perturbation (Willenborg and de Waal, 2001), have been applied, provided that each 

record of the resulting microdata (or element of the output) can still be interpreted as 

having originated from a given individual. Otherwise, it is not clear that there is reason to 

be concerned about identification.     

We are not the first to observe the connection between forensic science and SDC. 

The reference to ‘fingerprinting’  in Willenborg and de Waal (2001) provides a simple 

example. A deeper but more indirect connection may be traced via discussions of 

connections between forensic science and record linkage, e.g. Copas and Hilton (1990), 

and connections between record linkage and SDC, e.g. Paass (1988).   

We shall begin in Section 2 by introducing a basic mapping between the two 

problems of forensic identification and disclosure risk assessment. A formal framework 

will then be set out in Section 3 to encompass both problems, and it will be indicated how 

the latter may be treated as a generalization of the former. In Section 4, we restrict 
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attention to situations where an intruder seeks to achieve identification by a matching 

approach. The nature of identification risk for this approach and, in particular, the impact 

of different kinds of search methods are discussed in Section 5, with an illustration in 

Section 6. Finally, in Section 7 we discuss the broad conclusions and their SDC context. 

 

2. The basic correspondence between forensic identification and SDC 

To introduce the correspondence, we first set out the two problems in prototypical form.  

In forensic identification (e.g. Balding and Donnelly, 1995), a crime has been 

committed by an unknown culprit, who belongs to a specified population. The 

prosecuting authority identifies a member of this population as a suspect and brings the 

suspect to court. Identification occurs if the suspect and the culprit are identical, i.e. the 

suspect committed the crime or, in other words, the suspect is guilty. Data relevant to 

identification consist of values of variables observed both on the suspect and at the scene 

of the crime, e.g. from fingerprints, DNA profiles or eye witness testimony. 

In identification risk assessment for microdata (e.g. Paass, 1988), a microdata file is 

to be released, based upon data provided by a sample of responding units from a 

population in a survey or census. The file consists of records for these sample units, each 

with the values of several variables. An intruder, i.e third party, has information about 

one or more known units in the population and seeks to link one of these with one of the 

records. Identification occurs if the selected known unit is identical to the responding unit 

which provided data for the record. Data relevant to identification consist of values of 

variables which are both recorded in the microdata and available to the intruder for the 

known units. These are often called key variables.  
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The correspondence between the two problems is summarised in Table 1. The 

crime corresponds to cooperation by a responding unit in a survey or other form of data 

collection, normally undertaken under some pledge of confidentiality. (Given most 

agencies’  desire to avoid non-response, the correspondence is ironic!) The culprit 

corresponds to the responding unit. For simplicity, we shall generally suppose that both 

the culprit and the respondent are individuals. They each belong to some specified 

population.  The prosecuting authority corresponds to the intruder. The suspect, identified 

by the prosecuting authority, corresponds to the individual chosen by the intruder for 

linking to a given record in the microdata.  To assess the probability that the suspect is 

guilty, the court will use evidence which links the suspect to the scene of the crime via 

some shared characteristics, which correspond to the key variables. Some of the other 

forms of correspondence in Table 1 will be returned to in Section 3.  

In the forensic identification problem there is just one crime, one culprit and one 

suspect. (Note that if the crime is committed by several individuals jointly then we use 

the term culprit to denote this cluster of individuals. Likewise, the suspect may consist of 

a cluster of individuals who are suspected to have committed the crime jointly.) The 

forensic identification problem therefore corresponds to a special case of the disclosure 

risk assessment problem, where there is just a single record in the microdata and where 

the intruder links just one known individual to this record. We thus view the SDC 

problem as generalizing the forensic identification problem to the case where multiple 

crimes are committed and there are multiple potential suspects that might be linked to 

these crimes. 
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3. Formalisation of the correspondence 

We now seek to expand upon and formalise the correspondence introduced in the 

previous section. We begin in Section 3.1. by setting out our general framework for 

assessing identification risk in the context of SDC. Then, in Section 3.2., we discuss how 

the forensic identification problem may be considered in this framework. 

3.1. SDC problem 

We consider a rectangular microdata file in which each record contains values on a 

common set of variables for a unit in a finite population U of size N. The units might in 

principle take different forms, for example households or businesses, but here we shall 

assume that they are individuals for simplicity. The microdata file might have been 

subject to perturbation by SDC methods, provided that it remains meaningful to associate 

each record with a unique individual. 

We follow Paass (1988) and assume, hypothetically, that an intruder seeks to link 

one or more microdata records to one or more known individuals in the population using 

the values of certain key variables observed in both the microdata and on the known 

individuals. The known individuals might be drawn from a different source available to 

third parties, for example a database consisting of multiple records containing values of 

the key variables.  

We define identification risk as the probability that a link between a particular 

record and a particular known individual is correct, conditional on an intruder having 

selected this record and this individual for linkage using a specified search method and 

specified auxiliary information. If the intruder attempts multiple links between several 

records and several known individuals then there is an identification risk for each 



 8 

attempted link. Our definition implies a risk for each (record, known individual) pair 

which might have resulted from an intruder attack and, in particular, for the case when 

the known individual is in fact the individual to which the record belongs. We shall take 

the latter case to define the identification risk for a given record. The possible 

combination of such record level measures of risk to form a file level measure will be 

discussed in Section 7. 

Suppose then that the intruder arrives at a potential link between a microdata record 

r and a known individual in the population, denoted B, as a result of using a particular 

search method. The intruder might, for example, begin with a given target individual, B, 

in the population for which additional information is sought, and then search for the 

record in the microdata which appears to provide the best match to B. Let A(r) denote the 

individual to which microdata record, r, belongs and write A(r) as A when this is 

unambiguous. Identification occurs if A=B. Note that, in our notation, A and B represent 

unique identifiers of units in the population, e.g. names and addresses, whereas r belongs 

to the set s of microdata records which are labelled arbitrarily, {1,..., }s n= . The values of 

the key variables for r and B are denoted by ( )A rX  and BX�  respectively, where ~ is used 

to signify that the key variables may be recorded in different ways in the two sources, for 

example because of measurement error, different definitions or because some SDC 

method has been applied to the microdata.   

The identification risk, may then be expressed as: 

identification risk Pr( ( ) | , ,microdata populationA r B X X= = � search method),                   (1) 

where microdataX  and populationX�  consist of the values assumed available to the intruder 

on X for records in the microdata and on X� for individuals in the population, respectively. 
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We suppose that the probability in (1) refers to two possible kinds of stochastic 

mechanism: first, a superpopulation model for  the generation of the values X  and X� , 

which may include a stochastic SDC mechanism used to perturb X  or measurement 

error mechanisms affecting both X  and X� ; and second, the selection of r and B , i.e. the 

combination of the search method and any probability sampling scheme (and 

nonresponse mechanism) which led to the selection of the respondents, underlying the 

microdata, from the population. 

We may compare the identification risk in (1) with the probability 

Pr( ( ) | , )microdata populationA r B X X= � , representing the uncertainty faced by  the intruder when 

assessing whether an arbitrary record r belongs to an arbitrary known individual B, prior 

to any search, assuming the same information on X  and X�  is available. Such 

probabilities are considered by Paass (1988) and Reiter (2005). If this probability and the 

probability in (1) are the same then the search method is said to be ignorable. If this 

condition holds then disclosure risk assessment should be easier, since the search method 

of a hypothetical intruder is necessarily unknown. However, we shall show in section 5.2. 

that search methods need not necessarily be ignorable and we shall discuss in section 5.4. 

how we might deal with this possibility.  

The probability in (1) is to be interpreted from the perspective of the releasing 

agency or disclosure auditor, based upon a set of stated assumptions about what auxiliary 

information might be available and the various stochastic mechanisms above. These 

assumptions are taken to be ones that could be publicly defended as realistic or 

correspond to confidentiality protection guidelines. 
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3.2. Forensic Identification 

We now outline the corresponding set-up in forensic identification, following the analogy 

set out in Section 2. The microdata sample is reduced to a single record r corresponding 

to the culprit ( )A r committing the crime and B becomes the suspect, observed to have a 

particular combination of traits, i.e. key variables, known to be shared by the criminal. 

For simplicity, we conceive of the criminal and the suspect as individuals, although these 

might be groups of individuals working together. The population consists of the set of 

individuals who could have committed the crime and the search method refers to the 

selection of B from this population. There is only one culprit and hence the search 

method does not refer to the selection of A.  In the SDC set-up, ( )A r might therefore be 

interpreted as having committed the ‘crime’  of acting as a respondent in a survey, 

providing data upon which the given microdata record has been based.   

The evidence recovered from the crime scene about the culprit is denoted AX . The 

corresponding characteristics of the suspect are denoted BX� . Again the key variables may 

be recorded in different ways, for example if AX  includes variables obtained from eye-

witness accounts then these may be subject to measurement error. The identification risk 

corresponds to the probability that the suspect is guilty, that is that B is the same person 

as A.  

Explicit expressions for this probability of guilt may be obtained under 

distributional assumptions. For example, for the case where AX  and BX�  are normally 

distributed,   Lindley (1977) provides expressions for the likelihood ratio (for A B=  vs. 

A B≠ ) corresponding to this ‘posterior’  probability of guilt given the observed values 
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of AX  and BX� . Fuller (1993) provides expressions which may be interpreted as 

extensions of Lindley’ s results to the SDC case. Expressions for a further special case 

will be considered in the next section. 

 

4. Linkage by matching 

The discussion in Sections 2 and 3 applies to a very wide class of possible search 

methods. In practice, an important class of methods, relevant to both SDC and forensic 

identification, may be defined in terms of matching. In this case, there is a decision rule 

with a binary outcome, match or non-match, for any pair ( , )A BX X� . Thus, for a given 

record, r, in the microdata with key variable values ( )A rX  (or analogously a given crime 

with evidence ( )A rX  about the culprit), the decision rule defines a set rS  of possible 

individuals in the population with values of BX�  which match ( )A rX  (and all remaining 

individuals will not match).  

Some examples of how such a matching rule might arise are: 

(i) if the key variables are categorical, misclassification is ignored and AX  

is said to match BX�  if all of the key variables take the same value; 

(ii) if the key variables are continuous or categorical and AX  is said to 

match BX�  if measurement error is judged to make AX  and BX�  

‘indistinguishable’  (Balding and Donnelly, 1995, p.36);  

(iii) if the key variables are continuous or categorical and a record linkage 

decision rule of the Fellegi and Sunter (1969) type is used, generating 

three possible outcomes: ‘link’ , ‘non-link’  or a ‘possible link’  for each 
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pair ( AX , BX� ). We suppose the ‘possible link’  category is pooled with 

one of the other two categories. 

Such matching approaches have been widely considered in the forensic identification 

literature. For example, Kingston (1965) defines identification in terms of the same kind 

of set rS  as above. We shall return to example (i) in Section 6. 

 

5. Identification Risk for Linkage by Matching  

In this section we consider the nature of the probability of identification in (1) for the 

kinds of linkage methods described in Section 4. Sections 5.1. and 5.2. will focus on the 

case of a single record, as in forensic identification. The more general case will be 

considered in Sections 5.3 and 5.4.  

5.1. Basic Formulation for a Single Record 

We begin by considering an arbitrary record r in the microdata, ignoring the remaining 

microdata records, as in the forensic identification case. We define rS as in Section 4 and 

let rF  denote the size of this set. We assume that any discrepancies of measurement 

between X and X� are allowed for in the matching rule sufficiently so that ( )A rX�  matches 

( )A rX , i.e.  ( ) rA r S∈ , and thus 1rF ≥ . 

Suppose that, using the linkage approach, an intruder finds an individual B in rS . 

We initially assume that rF  is known. By assumption about the linkage rule and the fact 

that the remaining records are being ignored, the key variable values ( ) ,A r BX X�  carry no 

information about identification, i.e. whether ( )A r B= , beyond the following 
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information: ( ) ,r rA r S B S∈ ∈ and rF . Thus, the identification risk in (1) may be 

expressed as: 

  identification risk = Pr( ( ) | , ,microdata populationA r B X X= � search method) 

     Pr( ( ) | ( ) , ,r r rA r B A r S B S F= = ∈ ∈ , search method).             (2)  

Under fairly weak conditions on the mechanism leading to the selection of r and B, the 

expression in (2) reduces to  

   identification risk 1/ rF=  .              (3)                          

For example, (3) holds if the intruder is equally likely to select B as any member of rS , 

conditional on r and the event rB S∈ . Assumptions for (3) to hold are also made and 

justified by Dawid (1994, assumption A1) and Balding and Donnelly (1995, Assumption 

1 and equation 7) in the forensic identification context. One circumstance where (3) 

might be questionable in an SDC context is where the intruder begins with an arbitrary 

target individual in the population, unequal probability sampling is employed in the 

selection of the microdata sample and a match is observed which is unique in the 

microdata. In this case, the rF  possible samples that could lead to this observed outcome 

are not necessarily equally likely if the probability function in (2) is defined in terms of 

the sampling scheme. Hence (3) may not hold. Nevertheless, in this case it appears 

difficult to arrive at an alternative to 1/ rF  for the right hand side of (3), which is a 

function of information which an intruder might realistically have in practice, and we 

shall not pursue such concerns here. For the remainder of the paper we shall suppose that 

expression (2) does reduce to expression (3). 
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The simple expression 1/ rF  in (3) has been noted by several authors, both in the 

forensic identification literature, e.g. Kingston (1965), and in the SDC literature, e.g. 

Duncan and Lambert (1989). The difficulty with (3) in practice is that rF  will generally 

be unknown. Indeed, in the SDC context a key consideration is to ensure that the form of 

release should not permit key variables to be available where rF  might be known to a 

potential intruder and be small, say one or two. When rF  is unknown, we remove it from 

the conditioning set in (2) to give: 

identification risk Pr( ( ) | ( ) ,r rA r B A r S B S= = ∈ ∈ , search method)  

   
1

Pr( ( ) | ( ) , , ,
N

r r r
F

A r B A r S B S F F
=

= = ∈ ∈ =∑  search method)   

Pr( | ( ) , ,r r rF F A r S B S× = ∈ ∈  search method)            

   
1

(1/ )
N

F

F
=

= ∑ Pr( | ( ) , ,r r rF F A r S B S= ∈ ∈  search method) ,  

under our assumption that (2) reduces to (3), and hence 

        identification risk   (1/ | ( ) , ,r r rE F A r S B S= ∈ ∈  search method),       (4) 

where the expectation is with respect to the conditional distribution 

Pr( | ( ) , ,r r rF A r S B S∈ ∈ search method) of rF  given the observed events. The problem of 

determining the identification risk then reduces to one of determining this distribution. 

We now consider how to obtain an expression for this distribution, following the 

approach used in the forensic identification literature. This involves specifying both a 

superpopulation model, governing the probability process underlying the event rB S∈ , 

and a search method. Treating the record r as fixed, we may specify the superpopulation 

model by specifying the distribution of the binary indicator variables riZ  for whether iX�  

matches ( )A rX (for individuals i in the population). The event rB S∈  then corresponds to 
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the event 1rBZ =  and the assumption that ( )A rX�  matches ( )A rX  corresponds to the event 

that 1rAZ = . A standard superpopulation model (e.g. Kingston,1965; Dawid, 1994) which 

treats the size, N, of the population as fixed, is that the ,riZ i U∈ , are independent and 

identically distributed Bernoulli trials with p denoting the probability of a match.  This 

implies that rF  is Binomially distributed with parameters N and p and we refer to this as 

the Binomial model. The relation between these models and some models used in SDC 

will be considered in Section 6. We shall treat p as known, for simplicity, in the 

remainder of this section. In forensic identification applications, p will often be estimated 

from a population database, possibly one from which a suspect has been selected. In SDC 

applications, p might similarly be estimated from a database available to an intruder, but 

also from multiple records in the microdata, as will be discussed in Section 6. The latter 

option has no analogue in forensic identification.  

In the following section, we set out a number of possible search methods 

considered in the forensic identification literature and discuss the nature of the 

conditional distribution for rF  and the expression for the risk in (4) given these search 

methods and the Binomial model. 

5.2 Search Methods from forensic identification literature 

In this section, we describe a series of search methods, labelled r1, r2,… to signify that 

the search begins with a specified record.  

Search Method r1: suspect is selected by searching the population randomly until a 

                    match is found. 

This method may be illustrated in the SDC context by the ‘journalist scenario’  of Paass 

(1988), where a journalist selects a record from the microdata with an unusual 
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combination of values of the key variables and tries to find an known matching individual 

in the population by searching through sources accessible to the journalist until a match is 

found. The implicit assumption here is that the ‘systematic’  element of the journalist’ s 

method of searching the population is fully captured by the matching rule and that, 

otherwise, the search is equally likely to lead to any one of the rF members of rS . 

Under this search method, we may write Pr( | ( ) ,r r rF A r S B S∈ ∈ , search method) 

= Pr( | ( )r rF A r S∈ , search method) since, conditional on ( ) rA r S∈ , the event rB S∈  is 

not informative about rF  because some match must be found if we search long enough. 

The event ( ) rA r S∈ tells us that 1rAZ =  but, under the Binomial model, is not informative 

about riZ  for i A≠  and so the conditional distribution of rF  is obtained by writing 

1 ( 1)r rF F= + −  and noting that the conditional distribution of 1rF −  given ( ) rA r S∈  

under this search method is Binomial with parameters 1N −  and p (Lenth, 1986; Dawid, 

1994, p.167). Straightforward calculation using the Binomial density shows that the 

expectation in (4) has the closed form expression: 

    identification risk [1 (1 ) ] /[ ]Np Np= − − .           (5) 

An implicit assumption here is that N and p are known. A further assumption is that y, the 

number of non-matches arising before the intruder finds a match, is unrecorded and hence 

not conditioned upon. The effect of recording y will be considered in method r3. 

Search Method r2: suspect is drawn at random from the population and found to match. 

This method appears less plausible in the SDC context, since the expected payoff to a 

potential intruder seems likely to be too low if no search is undertaken. The nearest 

parallel appears to be the case of ‘spontaneous recognition’  (Willenborg and de Waal, 
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2001, p.62) where an intruder happens, by chance, to observe a match between a 

microdata record and a known individual.  

For this search method, the event rB S∈  is informative about rF , making larger 

values of rF more likely. We may write: 

Pr( | ( ) , ) Pr( | ( ) ) Pr( | , ( ) )r r r r r r r rF A r S B S F A r S B S F A r S∈ ∈ ∝ ∈ ∈ ∈ , (6) 

where implicitly each term also conditions on the search method. The first term on the 

right hand side of (6) is the density function of 1 ( 1, )rF Bin N p+ −� , as for method r1. 

The second term equals /rF N  since we assume the suspect is drawn randomly. We may 

interpret the implied distribution Pr( | ( ) , )r r rF A r S B S∈ ∈  as a ‘size-biased’  Binomial 

distribution (Dawid, 1994; Balding and Donnelly, 1995). It is straightforward to show 

that the constant of proportionality in (6) is  /[1 ( 1) ]N N p+ −  and hence that the 

conditional expectation in (4) takes the form: 

identification risk 1/{1 ( 1) }N p= + − .            (7) 

Search Method r3: as search method r1 but where the length of the search is recorded. 

If y is recorded then the event rB S∈  does become informative about rF , as for method 

r2.  Indeed, if 0y = , methods r2 and r3 are identical. To obtain the conditional 

distribution of rF  of interest, all components of expression (6) may be modified by 

including the event of y previous non-matches alongside the conditioning event 

( ) rA r S∈ . This simply has the effect of replacing  N  by N y−  in each of the terms on 

the right hand side of (6) and hence (c.f. Dawid,1994; Balding and Donnelly, 1995)  

expression (7) is modified to:  

  identification risk = 1/{1 ( 1 ) }N y p+ − − .          (8) 
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Search Method r4: suspect is found to be unique match in a database. 

If a search is made among y+1 potential suspects in a database, the same probability 

calculations may be made as for method r3 with y known (Balding and Donnelly, 1995) 

and so the identification risk is the same for these two methods. In the SDC context, this 

method corresponds again to the journalist scenario where the database represents a 

particular source available to the journalist. 

These results for methods r3 and r4 have been subject to some debate in the 

forensic identification literature. Expression (8) implies that the greater the value of y, i.e. 

the longer the search, the greater the risk of identification, although this increase will tend 

to be minor if the fraction of the population searched, /y N , is small. This contrasts with 

an alternative argument, advanced for example by Stockmarr (1999), that the risk may be 

severely reduced by such a database search. See Dawid (2001) and Balding (2002) for 

some of the ensuing debate. To illustrate this debate in an SDC context, suppose that a 

journalist claims to have found a unique match between a named individual and a record 

in a public use microdata file released by a statistical agency. On discussion, the 

journalist admits to have found the match by searching through a large database of 

100,000 individuals. The agency might claim, following the alternative argument,  that it 

is not surprising that a match has been found as a result of such an extensive search and 

argues that, as a result, little weight should be given to the observed match, i.e. the 

probability that the match is correct should be treated as small. This paper’ s position, 

following e.g. Balding (2002), is to suggest that such an argument would be misleading. 

It is true that the probability of finding a match does increase the longer the search and 

thus that the journalist’ s discovery may be unremarkable overall. Nevertheless, for the 
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particular record for which a match is found, the fact that a further proportion of the 

population has been searched for a match without success increases rather than decreases 

the probability that the match is correct. The issue is then whether the value of this 

increased probability for this record (i.e. expression (8) under the Binomial model, 

assuming p is known) is of concern. 

Search Method r5: method r1 is extended by continued searching. 

If the search is continued without a further match being found then this method may be 

treated as equivalent to either methods r3 or r4, with y equal to the number of non-

matches. If the continued search leads to another individual being found which matches, 

then Dawid (1994) provides an expression for the resulting risk, assuming y is not 

recorded. In the extreme, if a complete search of the population revealed rF , the number 

of individuals in the population matching A, the risk would again become 1/ rF , as in (3). 

5.3. Generalization: Search Methods for SDC 

Attention was restricted to the case of a single record in the previous two sections. In the 

general SDC setting, however, there will be multiple records in the microdata. Possible 

extensions of the previous search methods to this case will be considered in this section 

and are summarised in Table 2.  These extensions are of two types, termed fishing and 

directed searches by Paass (1988).  

In a fishing method, the intruder first selects a record (or records) in the microdata, 

possibly a record that he/she expects to be easier to identify as a result of having unusual 

values or combinations of values of key variables. For example, Paass (1988) considers 

an expenditure survey, where an intruder might select an individual purchasing two or 

more boats. The intruder then seeks to find a match for this record using one of the 
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methods r1, r2... above. The judgement about the record being unusual might be based 

upon the microdata, in the extreme if the record is unique in the sample with respect 

to X (i.e. does not match any other record). We let r1u, r2u… denote the use of search 

methods r1, r2… for a record which is unique in this sense. We treat the case where the 

intruder selects multiple records for linkage as repetition of methods r1, r1u etc.  

In what Paass (1988) refers to as a directed search, the intruder begins with a 

known target individual (or individuals) in the population and then searches for a match 

in the microdata. Out of six scenarios considered by Paass (1988), only one (the journalist 

scenario above) involves fishing. The remaining five are directed searches. In three of 

these, it is assumed that the intruder begins with a particular individual in the population 

and then searches the microdata file for a match. In the remaining two scenarios the 

intruder begins with a set of known individuals in the population and then seeks matches 

for each of these in the microdata file. Duncan and Lambert (1989), Lambert (1993) and 

Reiter (2005) also focus on the case of a directed search.  

By interchanging the role of the known population individuals and the microdata 

records, the search methods in Section 5.2 may be transposed to the case of a directed 

search. We assume that any intruder who has managed to gain access to the microdata 

would search the whole file and would not stop at an intermediate stage, for example, at 

the first match to the target individual, B. We thus reject the counterparts of methods r1, 

r2 and r3 as unrealistic, since they involve either stopping (r1 and r3) or no search at all 

(r2). The counterpart of method r4, treating the microdata file as the counterpart of the 

database, is:  
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Search method B1: for a given target individual B, a unique matching microdata record 

is found. 

The use of B in the notation B1 is intended to signify that the search begins with a 

specified known individual B. The intruder cannot search for matches among individuals 

falling outside the microdata sample and thus the counterpart of method r5 is rejected as 

impossible. We also reject methods which generate more than one match in a search of 

the microdata, on the grounds of restricting attention to worst cases. It would be possible 

to qualify method B1 by some method for selecting the target individual. For example, a 

method which selected the individual as unique within a database might be denoted B1u. 

It would also be possible for the intruder to select more than one known individual for 

linkage, for example the set of individuals within a database, resulting in an effective 

repetition of method B1. We shall, however, only explore such extensions implicitly 

through consideration of B1. 

5.4. Generalization: Risk assessment for SDC 

In this section, we consider the generalization of the results on identification risk in 

Sections 5.1 and 5.2. to the case of SDC for the search methods discussed in Section 5.3. 

We also seek to compare these methods with respect to risk in order to narrow the class 

of search methods which it is reasonable for a disclosure risk assessor to consider. This is 

desirable in practice since dependence of the risk upon the search method complicates the 

task of the assessor, given that the intruder will generally be hypothetical and hence the 

search method unknown. We shall argue in this section that it is reasonable for the 

assessor to restrict attention among the search methods to r1u and B1 and their extensions 
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to repeated records or known individuals. We consider two types of search methods in 

turn, under the headings discussed in the Section 5.3. 

5.4.1. Fishing methods 

We suppose first that the intruder begins by selecting a microdata record and then seeks a 

match in the population. The expressions for identification risk in Section 5.2. were 

derived for arbitrary records and hence will still apply provided the selection does not 

depend on some event which is informative about rF  and any information provided by 

other records is ignored. Consider, following an example of Paass (1988), the case of an 

expenditure survey where there is a separate code in the microdata for individuals who 

purchase two or more boats. In one form of attack, an intruder might decide in advance to 

select any individual who falls into this category for a matching attempt on grounds of 

prior judgement that this is an unusual category. In this case, this selection is not 

dependent on any observed event and the expressions for identification risk in Section 

5.2. will continue to apply, under the assumptions made there provided we ignore 

observed data from other records. (This argument might be formalised under a given 

superpopulation model using the irrelevance of stopping rules, following Berger and 

Wolpert, 1984, p.74).  

In a second form of attack, the intruder might seek an unusual category on the basis 

of observing the microdata, for example it might be observed that there is only one 

individual in the microdata who purchases two or more boats. Here, conditioning the risk 

on the search method (see (1)) corresponds to conditioning on this observed sample 

uniqueness. These two forms of attack correspond to the distinction between methods r1, 

r2,…  of Section 5.2. and methods r1u, r2u,… of Section 5.3. 
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It follows from our definition in (1), however, that even in the case of method r1 

we should condition the risk on microdataX , i.e. the information provided by other microdata 

records and, in particular, sample uniqueness if it occurs. Thus the risk for an individual 

in the microdata who was selected by method r1 and subsequently found to be sample 

unique should be the same as if the same individual was selected by the intruder using 

method rlu after observing sample uniqueness. The risk for method r1 will tend to be 

higher if it is observed that the individual is not sample unique and hence, if concern is 

with the worst cases, we may argue that it is sufficient to restrict attention to r1u. 

In fact, if the sampling fraction is small, as is common in many SDC applications,  

sample uniqueness will not carry much information about rF  under the Binomial model 

where p is given, since rF  will be primarily determined by the behaviour of non-sample 

individuals. See section 6 for more detailed discussion of this point. We may therefore 

expect the risk for methods r1u, r2u,…  to be very similar to that for methods r1, r2,…  in 

these circumstances. For simplicity, we shall now compare risk for the latter methods and 

then infer that similar comparative properties will apply to the former methods. We 

suppose that the event of sample uniqueness represents the worst case, in terms of what 

microdata information the intruder might use to select a record for matching, and thus 

suppose that it is unnecessary to consider conditioning (1) on other features of microdataX . 

Suppose then that one of the methods r1, r2, … , r5 is employed and that the 

selection of the record is not informative so that the expressions for identification risk in 

Section 5.2. still apply. Note that these results also depend upon assumptions about the 

sampling scheme, discussed in Section 5.1. We now consider each of methods r2, … , r5 
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in turn, comparing them with method r1, and argue that it is reasonable to restrict 

attention amongst the search methods r1 to r5 just to method r1. 

Consider first search method r2. We have already suggested in Section 5.2. that this 

method is less plausible than the other methods. Moreover, search method r1 will, in 

general, lead to higher risk than method r2 since the size biasing in the latter method 

makes larger values of rF more likely and these are associated with lower risk. Balding 

and Donnelly (1995) give an example where N=101, p=0.004 and the expressions in (5) 

and (7) are 0.826 and 0.714 respectively. Thus, disregarding method r2 but considering 

method r1 will be a conservative approach to risk assessment. 

Methods r3 and r4 may lead to slightly higher risk than method r2, but the risk will 

only be higher than method r1 if a substantial proportion of the population is searched. 

For example, if N=101 and p=0.004 then1/{1 ( 1 ) } 0.826N y p+ − − >   requires 48y ≥ , i.e. 

almost half the population must be searched. Indeed, using the approximation that N is 

large, p is small and 1Np <<  considered in Balding and Donnelly, it will in general be 

necessary for at least half the population to be searched (i.e. / 0.5y N > ) for methods r3 

or r4 to lead to a higher risk than method r1. Principles governing SDC often enable such 

‘disproportionate’  amounts of intruder information to be ruled out. For example the 

National Statistics Code of Practice (National Statistics, 2004, pp.7, 8) states, in relation 

to the use of SDC methods, that assumptions about the “information likely to be available 

to third parties” should be made “against the following standard: it would take a 

disproportionate amount of time, effort and expertise for an intruder to identify a 

statistical unit to others, or to reveal information about that unit not already in the public 

domain”. 
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Method r5 may also be disregarded on the grounds that the only relevant cases 

under this method reduce to those under methods r3 and r4 since it seems reasonable to 

discount the possibility of the intruder reporting that they have found a second match, 

because this would be expected to substantially reduce the risk by ruling out the 

possibility of population uniqueness. The resulting risk would be at most 0.5. For 

example, for the case N=101, p=0.004, expression (4.8) in Dawid (1994) implies the risk 

is 0.467. 

Finally, let us turn to methods r1u-r5u. As discussed earlier, we may expect the risk 

for these methods to be similar to that for methods r1-r5 for a given selected individual 

and thus we suggest the above argument for restricting attention to r1 may be extended to 

justify restricting attention to r1u out of the former methods. As noted earlier, it is 

appropriate to condition the risk for r1 on the observed occurrence or otherwise of sample 

uniqueness and, taking the worst case, since the risk of r1 given sample uniqueness is the 

same as the risk for r1u, we argue it is sufficient to restrict attention to the latter method.  

5.4.2. Directed Searches 

Turning to method B1, we note first that it is isomorphic to method r4 if we interchange 

the role of the microdata and the database.  Under this isomorphism, the indicator 

variables riZ are translated into variables BiZ�  for individuals i U∈ , indicating whether iX  

matches BX� . For individuals i outside the microdata sample, iX  is defined to contain the 

values of the key variables which would be recorded in the microdata if i were selected 

into the sample. It is assumed that 1BBZ =� . The corresponding Binomial model is that the 

BiZ� are independent and identically distributed Bernoulli trials with p�  denoting the 

probability of a match.  
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It then follows, as above, that under this new Binomial model, the identification 

risk is given by  

   identification risk = 1/{1 ( ) }N n p+ − � ,            (9) 

where n is size of the microdata sample.  

We expect that, for the same individual, p  and p� will be of similar magnitude in 

many practical applications. As discussed in the previous section, expression (9) 

(with p p=� ) will only be greater than the risk for method r1 if the sampling fraction, 

/n N , is high, roughly greater than 0.5. Since we expect the risks for r1u and r1 to be 

similar, we expect that in cases with small sampling fractions, it will usually be 

reasonable for the disclosure risk assessor to disregard B1 in favour of r1u. 

 

6. An Application with Categorical Key Variables and No Misclassification 

We now illustrate the assessment of risk in one kind of SDC application which arises 

with sample microdata from population censuses or social surveys. It is assumed that the 

key variables are categorical and identically measured in the two sources, with linkage 

based upon exact matching, i.e. example (i) of section 4. In this case, we label the 

combinations of categories of the key variables by x  so that the earlier expression X  for 

the key variables may now take the integer values 1,...,x K= . These combinations may 

be interpreted as cells in a multi-way contingency table. The Binomial model considered 

earlier implies a multinomial model for this contingency table. Since we assume that X�  

is identical to X and that linkage is based upon exact matching, the Binomial model in 

section 5.1 for a given record with X x=  implies that the events iX x=  for different 

population units i U∈  are independent and identically distributed with Pr( )i xX x p= = , 
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where the subscript x  is added to the probability p  to indicate that this model relates to 

the event iX x= . Assuming that the Binomial model holds for all records with all 

possible values 1,...,x K= , it follows that the iX  are independent and identically 

distributed random variables with Pr( )i xX x p= = , 1,...,x K= , 1xp =∑ . 1,...,x K= . 

(Since X X=�  and hence p p=� , this model is also a consequence of the Binomial model 

in section 5.4.2.) The population counts xF  in the cells x thus follow a multinomial 

distribution with parameters xp  and N, 1,...,x K= . A related model, more common in the 

SDC literature, is the Poisson model where the xF are independently distributed as 

( )x xF Poisson λ� . The multinomial model can, in fact, be derived from the Poisson 

model by conditioning on xN F= ∑ and setting /x x xp λ λ= ∑ (McCullagh and Nelder, 

1989, p.165). Even unconditionally, it may be argued that the two models have very 

similar SDC consequences when the xp  are small and N is large (Chen and Keller-

McNulty, 1998).  

In practice, the xp  are unknown, but inference about them may be made using the 

multiple records of the microdata. As discussed in section 5.1., we may suppose that an 

intruder could not know the values of the xF  but he/she may be expected to be able to 

compute the corresponding sample counts xf  from the multiple microdata records. In 

typical SDC applications, interest will focus on the ‘riskiest’  cells where xf  is small, say 

one or two (the values of xp  for empty cells with 0xf =  will not be of interest since 

these cells contain no microdata records susceptible to identification). The data within a 

cell x with such a small value of xf  will, however, carry little information, on its own, 
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about xp . For the model to be useful for risk assessment, it is therefore natural to consider 

‘borrowing information’  between cells by modelling the relation between the xp  in 

different cells.  One approach is to consider a compound model, such as a Poisson-

gamma model (Bethlehem et al., 1990) where the xλ , 1,...,x K= , are independent and 

identically gamma distributed or a Dirichlet-multinomial model where the  xp  follow a 

Dirichlet distribution. Such models imply that the identification risk is the same for each 

microdata record, since they treat all cells as exchangeable and make no use of the key 

variable characteristics used to construct the cells. Such characteristics may be 

conditioned upon in a log-linear model, relating xp  or xλ  to main effects and interactions 

between the key variables (Skinner and Holmes, 1998; Elamir and Skinner, 2006), in 

order to obtain more ‘realistic’  probabilities of identification, which may vary across 

cells. We now illustrate this with a numerical example, drawing on Skinner and Shlomo 

(2005). 

The data come from the 2001 United Kingdom Census for two large areas with a 

combined size of 950,000N ≈  individuals. A simple random sample of size 

0.005 4,750n N≈ ≈  is drawn from this ‘population’  to mimic a sample survey. The 

advantage of using census data is that the population characteristics can be used to 

validate sample-based procedures.  

The following six key variables (with numbers of categories in parentheses) are 

used: area (2), sex (2), age band (18), marital status (6), ethnicity (17) and economic 

activity (10).  The categories are the same as those used for the Samples of Anonymised 

Records from the census. See Dale and Elliot (2001) for a discussion of the choice of key 

variables in similar settings. The number of key variable combinations is thus K = 73,440 
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= 2×2×18×6×17×10. We assume the multinomial model above, that is that the population 

counts xF  in the cells of the six-way contingency table formed by cross-classifying the 

key variables are generated by a multinomial distribution with parameters N and xp , 

1,...,x K= .  As above, we suppose the  xF  are unknown but the corresponding sample 

counts xf  are known  ( xF N=∑ , xf n=∑ )  and may be used to make inference about 

the parameters xp . We suppose that such inference is conducted using a log-linear model 

for xp  including all main effects and two-way interactions (e.g. Agresti, 2002). Using the 

population data for validation, this model has been found to generate ‘reasonable’  

disclosure risk assessments both for these data (Skinner and Shlomo, 2005) and similar 

data sources (Skinner and Holmes, 1998; Elamir and Skinner, 2006). Let ˆ xp  denote the 

maximum likelihood estimate of xp  under this multinomial log-linear model. In Table 3 

we present values of  ˆ xp  for three individuals selected from the sample. We consider 

only the 739 sample unique cells, i.e. cells where 1xf = , to continue our ‘worst case’  

analysis, and select those sample unique individuals with the minimum, median and 

maximum values of ˆ xp  across these 739 cells. A comparison of the second and third 

columns in the table shows how the values ˆ xp  could help the intruder infer which of the 

sample uniques are likely to have smaller (or larger) values of xF . For example, 

individuals in ethnic minority groups tend to fall into cells with smaller values of xF  and 

this is picked up by the model through the main effect term for the ethnic group. Unusual 

combinations of pairs of key variables, e.g. widowed 20-24 year-olds, are picked up 

through the two-way interaction terms in the model. Impossible two-way combinations, 
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e.g. married 0-4 year olds, can also be handled in the model and will, of course, not 

appear in the sample.  

Table 3 also includes estimates of identification risk for these three individuals 

under different assumptions about the intruder’ s search method. Considering first search 

method r1 and replacing p by ˆ xp  in expression (5) gives risk estimates of 0.9298, 0.0149 

and 0.009 for the sample unique individuals with minimum, median and maximum values 

of ˆ xp  respectively. We might conclude that the release of the sample microdata are not 

‘likely to identify’  the second and third individuals, in the language of the Code of 

Practice. However, the risk for the first individual appears high. In fact, the first 

individual is not population unique. There are, in fact, five women in the second area in 

the population who are recorded as being aged 20-24, of separated marital status, in the 

Bangladeshi ethnic group and with ‘looking after home’  as their economic activity. Out 

of the ten sample unique individuals with the lowest values of ˆ xp  just three turn out to be 

population unique so the risk estimate of 0.9298 might be judged somewhat high. This 

raises questions about the choice of the log-linear model and the estimation method 

which we shall not pursue here. Our focus is on the comparison of risk estimates for 

different search methods treating these values of ˆ xp  as realistic and given. 

The above risk estimates for method r1 only use the microdata to estimate xp  and 

ignore the information that the individuals are sample unique. As discussed in Section 

5.4.1., conditioning on sample uniqueness is equivalent to considering method r1u. The 

microdata sample is obtained by simple random sampling of size n (without replacement) 

so, under the multinomial model, the conditional distribution of xF  given 1xf =  may be 
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obtained using the fact that the frequencies, xf  and  x xF f−  are independently 

Binomially distributed: ( , )xf Bin n p�  and ( , )x xF f Bin N n p− −� . Hence the risk is 

given by  

 1(1/ | 1) (1/[1 ( )]) [1 (1 ) ] /[( 1) ]N n
r r r rE F f E F f p N n p− += = + − = − − − + ,              (10) 

i.e. as in expression (5) but with N  replaced by 1N n− + . Table 3 shows that the impact 

of this change is minor in all three cases. Inspection of expressions (5) and (10) indicates 

that this will generally be the case if the sampling fraction n/N is small. 

We next consider search method r2. As expected from the discussion in section 

5.4.1, Table 3 displays lower risk estimates for this method than method r1, although the 

reduction is not great. The risk for methods r3 and r4 is given by expression (8). This 

expression depends on the number y+1 of individuals in the database used for matching 

(in method r4). We now calculate how large y+1 must be for the risk of methods r3 or r4 

to exceed the risk of method r1u. Equating (8) and (10) and solving for y+1, we find that 

it is necessary to search databases of sizes at least 463,000, 17,300 or 5,550 for the 

minimum, median and maximum cases respectively. Most importantly, we find that for 

the most risky case we must search a database of almost half the size of the population 

for method r4 to lead to a higher risk than method r1u. This accords with the discussion 

in section 5.4.1.    

Finally, we consider method B1. Expression (9) is the same as expression (8) for 

method r4 when p p=� (which we are assuming in this section) and when the size y+1 of 

the database is the same as the sample size n . We have 4750n ≈  and since this is 

smaller than the three database sizes above, method B1 always leads to a lower risk than 
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method r1u. In fact, it gives very similar results to method r2 since the sampling fraction 

is small.  

In summary, we conclude from the numerical comparison in Table 3 that it is 

sufficient to consider only method r1u as a worse case, but that the values of the risk for 

all the methods are of a similar magnitude so that the ‘worst case’  approach would not be 

overly conservative if an intruder employed one of the other methods. Following the 

discussion in section 5, we may expect to be able to generalise the finding that method 

r1u is the worst case to any situation where the sampling fraction is small, X X= �  and 

any errors in the estimation of xp can be ignored. 

 

7. Discussion 

A key objective of SDC for microdata release is to limit the ability of an intruder to 

achieve identification. This requires limiting the identification risk for any record which 

might be selected for linkage. A main theme of this paper has been to consider, following 

discussion in the forensic identification literature, how this identification risk may depend 

upon the search method used by the intruder to select the record for linkage. We have 

discussed how this dependence might occur and have suggested that, in practice, it may 

be handled by considering worst cases amongst a number of plausible alternative search 

methods. Our discussion suggests a focus on the method denoted r1u earlier, a focus 

which is consistent with the modelling foundations of approaches in Skinner and Holmes 

(1998) and Elamir and Skinner (2006) for categorical key variables. This paper therefore 

provides some justification for the assumptions in these two papers. Another possible 

analogous application of the ideas in this paper would be to the assessment of the threat 
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to disclosure posed by record linkage methods based upon a mixture of categorical and 

continuous key variable. 

In this paper we have defined identification risk at the record level. In practice, it 

will often be necessary in SDC work to make judgements about risk at the file level. This 

may be achieved by aggregating record level measures, as discussed by Lambert (1993), 

or by defining a file-level measure directly. For example, Skinner and Elliot (2002) 

consider two measures which may be represented as two alternative averages of values of 

1/ rF (c.f. equation (4)). The two measures correspond to alternative possible search 

methods: one to the intruder drawing a sample unique record in the microdata at random 

(with equal probabilities); the other to the intruder selecting at random any population 

unit which match a sample unique record. The two measures can, however, take very 

different values, illustrating how such file level measures can be very sensitive to 

assumptions about the intruder’ s search method. Indeed, we suggest this sensitivity is 

rather greater than the dependence of record level measures upon the search method, as 

discussed in this paper.  

There are a number of other pros and cons of file-level vs. record level measures. 

File-level measures, such as the population-averaged measure in Skinner and Elliot 

(2002), not only have the advantage that they are simple but they can also be estimated 

robustly, whereas inference about record-level measures may be expected to be more 

model-sensitive (given the relative amount of ‘information’  available at each level). On 

the other hand, the aims of SDC are often expressed in a way that seems to correspond 

better to a definition at the record level. For example, the requirement in the National 

Statistics Code of Practice (National Statistics, 2004, p.11) that “ the guarantee of 
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confidentiality must be applied equally to all statistical units”  suggests reference to a unit 

level concept of disclosure risk. Model sensitivity can be handled in the framework of a 

sensitivity analysis, which seems a necessary feature of disclosure risk assessment in any 

case if alternative sets of assumptions about the possible auxiliary key information 

available to an intruder are to be considered, as well as alternative assumptions about 

possible measurement error. The sensitivity analysis could also be used to handle the 

selection of alternative types of records. If it is desired to aggregate record level measures 

across records and if large values of the measure are of most concern then a suitable 

approach might be count the number of records for which the identification risk is above 

a given threshold (Lambert, 1993, p.317). Combining record-level measures by counting 

or averaging seems likely to be more robust to model specification than taking the 

maximum value.     
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Table 1. Correspondence between Two Prototypical Problems 
 
Notation Forensic Identification Statistical Disclosure Control 

 Crime Responding to a survey 
A Culprit, committing crime Respondent 

U ( A U∈ ) Population of possible culprits Population, from which respondent 
drawn  

 Prosecuting authority bringing 
suspect to trial 

Intruder 

B ( U∈ ) Suspect selected by prosecuting 
authority 

Known individual linked by intruder 
to microdata record 

r 
 

Label for evidence at scene of 
crime 

Label for microdata record derived 
from respondent’ s data 

A(r) Culprit producing evidence r Respondent providing data in record r 

( )A rX  Traces of culprit at crime scene Key variable values on record r 

BX�  Characteristics of suspect 
corresponding to variables in X  

Key variable values observed on 
individual B 

 Search method  
(selection of B) 

Search method (Scenario of attack) 
(selection of r and B) 

 
 
 
Table 2. Alternative Intruder Search Methods 
 
Notation Starts with 

selection of: 
Proceeds by: 

    Fishing Methods 
r1 Arbitrary 

record, r 
searching population randomly until match is found 

r2 Arbitrary 
record, r 

drawing individual at random from the population and 
observing match by chance 

r3 Arbitrary 
record, r 

 as method r1 but recording length of search 

r4 Arbitrary 
record, r 

searching database of known individuals and finding unique 
match 

r5 Arbitrary 
record, r 

extending method r1 by searching for additional matches 

r1u, r2u, 
r3u,…  

Arbitrary 
sample unique 
record, r  

as for method r1, r2, r3…  respectively 

   Directed Searches 
B1 Known 

individual in 
population, B 

searching microdata records and finding unique match 
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Table 3. Estimated Identification Risk for Sample Unique Cases with Minimum, 
Median and Maximum Values of Estimated Cell Probabilities. 
 

Estimated identification risk for different 
search methods 

 
 
 

Combination of 
key variables, x  

 
 

 
ˆ xp  

 
 
 

xF  
 

 
method 

r1 
 

expression 
(5) 

 
method 

r1u 
 

expression 
(10) 

 
method 

r2 
 

expression 
(7). 

 
method 

B1 
 

expression 
(9) 

Area B, woman, 
aged 20-24, 
separated, 
Bangladeshi ethnic 
group,  
looking after home 

 
1.56×10-7 

 
minimum 
 

 
5 

 
0.9298 

 
0.9301 

 
0.8715 

 
0.8721 

Area A, man, aged 
65-69, divorced, 
white British 
ethnic group, full-
time employed 

 
7.08×10-5 

 

median 

 
65 

 
0.0149 

 
0.0150 

 
0.0148 

 
0.0148 

Area A, man, aged 
40-44, re-married, 
white British 
ethnic group, full-
time employed  

 
0.00121 
 
maximum 

 
870 

 
0.0009 

 
0.0009 

 
0.0009 

 
0.0009 
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