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Abstract

Empirical evaluation of policies to mitigate climate change has been largely

con�ned to the application of discounted utilitarianism (DU). DU is contro-

versial, both due to the conditions through which it is justi�ed and due to its

consequences for climate policies, where the discounting of future utility gains

from present abatement e�orts makes it harder for such measures to justify

their present costs. In this paper, we propose sustainable discounted utilitari-

anism (SDU) as an alternative principle for evaluation of climate policy. Unlike

undiscounted utilitarianism, which always assigns zero relative weight to present

utility, SDU is an axiomatically based criterion, which departs from DU by as-

signing zero weight to present utility if and only if it exceeds future welfare.

Using the DICE integrated assessment model to run risk analysis, we show that

it is possible for future welfare to be below present utility along a `business

as usual' development path. Consequently SDU and DU di�er, and willing-

ness to pay for emissions reductions is (sometimes signi�cantly) higher under

SDU than under DU. Under SDU, stringent schedules of emissions reductions

increase social welfare, even if the discount rate is relatively high.
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1 Introduction

Empirical evaluation of policies to mitigate climate change has been largely con�ned

to the application of discounted utilitarianism (DU). DU means that one stream of

consumption is deemed better than another if and only if it generates a higher sum

of utilities discounted by a constant per period discount factor δ, where δ is positive

and smaller than one.

In spite of its prevalence, DU is controversial, both due to the conditions through

which it is justi�ed and due to its consequences for choice in economically relevant

situations, such as climate-change policy. As a matter of principle, DU gives less

weight to the utility of future generations and therefore treats generations in an

unequal manner. If one abstracts from the probability that the world will be coming

to an end, thereby assuming that any generation will appear with certainty, it is

natural to question whether it is fair to value the utility of future generations less

than that of the present one. This criticism has a long tradition dating back at

least as far as Ramsey (1928, p. 543), who argued that the practice of discounting

later enjoyments in comparison with earlier ones �is ethically indefensible and arises

merely from the weakness of the imagination�.

When applied to evaluating climate policies, DU means that the future utility

gains of present abatement e�orts are discounted, which makes it harder for such

measures to justify their present costs. This was one of the earliest �ndings in the

economic literature on climate change (cf. Cline, 1992; Nordhaus, 1991).

One way of treating generations equally is to evaluate policies according to undis-

counted utilitarianism, whereby future utilities are summed without being discoun-

ted. This alternative was highlighted during the debate following the publication

of the Stern Review (2007), which, while committed to DU, applied a utility dis-

count rate of very nearly zero. However, such a criterion (or DU with a near-zero

utility discount rate) may contradict our ethical intuitions if used to evaluate all

investments, as it is most likely to impose heavy sacri�ces on the present generation

for the bene�t of future generations that are likely to be much better o� (Arrow,

1999; Dasgupta, 2007; Mirrlees, 1967; Rawls, 1971). The reason for this weakness of

undiscounted utilitarianism is that it assigns zero relative weight to present utility

under all circumstances, i.e. even when the present is worse o� than the future.

Sustainable discounted utilitarianism (SDU), proposed by Asheim and Mitra

(2010), avoids the pitfalls of DU (which is too willing to sacri�ce future genera-
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tions) and undiscounted utilitarianism (which is too willing to sacri�ce the present

generation).

SDU departs from DU by placing the additional constraint on social welfare

evaluation that no weight be given to present utility if it exceeds future welfare. For

example, if the future consequences of climate change entail that present wellbeing

exceeds that of the future, then SDU takes into account the future bene�ts of present

mitigation e�orts, while ignoring their current costs. Therefore, if there is a non-

negligible probability that climate change will undermine future wellbeing, then SDU

promotes present action more than DU. However, SDU coincides with DU if the

future will for sure be better o� than the present in spite of climate change.

If the future will be better o� than the present, then additional present sacri-

�ce for the bene�t of the future may increase the undiscounted sum of present and

future utilities. It also increases the verge between present and future wellbeing,

thus making the intergenerational distribution more unequal. Therefore, it seems

uncontroversial to allow a trade-o� between present and future wellbeing in such

circumstances. However, if the future will be worse o� than the present, then addi-

tional present sacri�ce leading to a uniform increase of future wellbeing increases the

undiscounted sum of present and future utilities and decreases inequality. Hence,

such a transfer from the present to the future is desirable both from a utilitarian

and egalitarian perspective. This is the ethical underpinning for a condition called

�Hammond Equity for the Future�, which gives priority to the future in con�icts

where the future is worse o� than the present.

�Hammond Equity for the Future� is the key condition in the axiomatic basis for

SDU, as investigated by Asheim et al. (2010). SDU also satis�es Chichilnisky's (1996)

�No Dictatorship of the Present�. In contrast, DU is in con�ict both with �Hammond

Equity for the Future�, as it allows a trade-o� between present and future wellbeing

even when the present is better o� than the future, and �No Dictatorship of the

Present�, as the ranking of DU (on the set of bounded streams) does not depend on

what happens beyond some �nite future point in time.

Compared to DU, imposing �Hammond Equity for the Future� comes at the cost

of (i) removing sensitivity to the interests of the present if the present is better o�

than the future and (ii) relaxing to the set of non-decreasing streams the property

that the trade-o� between wellbeing in the �rst two periods be separable from the

remainder of the stream. Regarding (i), there is a large literature, starting with

Diamond (1965), which has established a con�ict between imposing equity conditions
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(like equal treatment and �Hammond Equity for the Future�) on the one hand, and

remaining sensitive to the interests of every generation on the other. Asheim et

al. (2010, Section 4) present a formal analysis showing how imposing on the set of

all streams the separability property of DU mentioned under (ii) is in con�ict with

equity conditions that respect the interests of future generations.

The present paper proposes SDU as an alternative criterion to DU for the evalu-

ation of climate abatement policies, and it seeks to illustrate that substituting SDU

for DU matters for empirical evaluation of such policies. We do so by considering

the DICE integrated assessment model, built by William Nordhaus, but where we

run risk analysis, including alternative speci�cations for the important parameters

determining the climate sensitivity and damage function. Weitzman (2009, 2010a,b)

in particular has raised doubt concerning the climate sensitivity and damage func-

tion used in the standard DICE model. Our alternative speci�cations lead to a

non-negligible probability that some generation is better o� than its descendants, in

which case adopting SDU instead of DU matters for the evaluation, so much so that

we are able to show aggressive emissions abatement increases social welfare under

SDU, even when the utility discount rate is relatively high. By contrast, we con�rm

that such abatement policies fail to increase social welfare under DU. We also show

that the optimal abatement policy is more stringent under SDU than DU.

Our analysis is ethical in nature, asking what our generation as a collective should

do to serve the interests of all generations from an impartial perspective. This is

di�erent from taking a strategic perspective, asking what contemporary countries or

individuals should do to serve their own interests when such actions in�uence the

future strategic actions of other countries and individuals. Nevertheless, since SDU

bridges the gap between DU and undiscounted utilitarianism, we believe it is realistic

to suggest that our generation should take its recommendations into account.

The paper is organised as follows. In Section 2 we present formally the concept

of SDU. While Asheim and Mitra (2010) have already done so in a deterministic

setting and without explicit consideration of population growth, empirical evaluation

of climate policies does not permit either of these simpli�cations, so Section 2 extends

SDU to variable population and uncertainty. In Section 3 we present risk analysis

with DICE, discussing in particular our choice of climate sensitivity and damage

function, before in Section 4 reporting the results from our analysis. As we discuss

in the concluding Section 5, the present paper should be considered a �rst e�ort

in combining recent advances in axiomatic theories of intertemporal social choice
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(for a survey, see Asheim, 2010) with empirical evaluation of climate-change policies.

Nevertheless, we claim that our analysis is strongly indicative of the importance of

broadening the basis of climate-policy evaluation from DU to SDU and beyond.

2 What is Sustainable Discounted Utilitarianism?

In the empirical part of this paper we consider only consumption streams which

eventually become constant.1 This setting simpli�es the presentation of SDU, and

we refer the reader to Asheim and Mitra (2010) for the more general treatment.

Let ct > 0 denote consumption in period t, and let 0c = (c0, . . . , ct, . . . ) be an

in�nite stream of consumption, where there exists T ≥ 0 such that ct = cT for all

t ≥ T . A consumption stream 0c is called egalitarian if ct = c0 for all t ≥ 0.

Utility in a period is derived from consumption in that period alone. The utility

function U is assumed to be strictly increasing, strictly concave, continuous and

continuously di�erentiable for c > 0 with U ′(c) → ∞ as c → 0. Clearly, any utility

function with constant relative inequality aversion satis�es these assumptions.

Let δ ∈ (0, 1) denote the utility discount factor, and let ρ > 0 denote the utility

discount rate, where the relation between δ and ρ is given by

δ =
1

1 + ρ
. (1)

The theoretical presentation of SDU in this section is facilitated by using the utility

discount factor δ, while the numerical results in Section 4 are easier to interpret in

terms of the utility discount rate ρ. Keeping in mind eq. (1), this should not create

confusion.

In the axiomatic analysis of Asheim and Mitra (2010), time periods correspond

to non-overlapping generations assumed to follow each other in sequence. In the

empirical analysis of this paper, time periods are shorter, set to ten years (given

by the time-step of the DICE model). As long as the discount factor is properly

adjusted to re�ect a plausible trade-o� between present utility and future welfare

(straightforward when it is a function of the utility discount rate as above), this

choice of period-length does not matter. With overlapping generations, discounting

from an ethical perspective between di�erent generations should be di�erentiated

1We use a modelling horizon from 2005 to 2395 and assume that consumption remains at the

2395 level thereafter.
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from the self-interested discounting that people do within their own lifetimes, and

our analysis does re�ect the need to do such di�erentiation.

Given any δ ∈ (0, 1), the social welfare function (SWF) w de�ned by

w(0c) = (1− δ)
∑∞

t=0
δtU(ct) (2)

is the discounted utilitarian (DU) SWF. Multiplying by 1− δ ensures that the utility
weights

(
1− δ, (1− δ)δ, (1− δ)δ2, . . . , (1− δ)δt, . . .

)
sum up to one. Such a normal-

isation is useful, as it makes the utility of each generation comparable to the welfare

of the stream. The DU SWF is well-de�ned for the set of consumption streams which

eventually becomes constant. Furthermore, on this set, it is characterized by

w(0c) = (1− δ)U(c0) + δw(1c) (w.1)

w(0c) = U(c0) if 0c is egalitarian . (w.2)

Clearly, (2) implies (w.1) and (w.2). Conversely, for any 0c = (c0, . . . , ct, . . . ) with

ct = cT for all t ≥ T , it follows from (w.2) that

w(T c) = U(cT ) = (1− δ)
∑∞

t=T
δt−TU(ct) .

Repeated use of (w.1) now yields (2).

The sustainable discounted utilitarian (SDU) SWF modi�es DU by requiring that

an SDU SWF not be sensitive to the interests of the present generation if the present

is better o� than the future:

W (0c) =

 (1− δ)U(c0) + δW (1c) if U(c0) ≤W (1c)

W (1c) if U(c0) > W (1c) ,
(W.1)

W (0c) = U(c0) if 0c is egalitarian . (W.2)

Condition (W.1) means that future utilities are not discounted (the discount factor is

set to 1) if the present is better o� than the future. For any 0c = (c0, . . . , ct, . . . ) with

ct = cT for all t ≥ T , it follows from (W.2) that W (T c) = U(cT ). Repeated use of

(W.1) now allows us to recursively calculate W (T−1c), W (T−2c), and so on, ending

up with W (0c): Given that W (T c), W (T−1c), . . . , W (tc) have been determined,

where 1 ≤ t ≤ T , the next step in the recursion, W (t−1c), is determined by

W (t−1c) =

 (1− δ)U(ct−1) + δW (tc) if U(ct−1) ≤W (tc)

W (tc) if U(ct−1) > W (tc) .
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This explicit algorithm for calculatingW (0c) is the one used in the empirical analysis.

Hence, on our domain of eventually constant consumption streams, the SDU SWF

is uniquely determined.

The following result establishes that SDU welfare is a non-decreasing function

of time. Furthermore, SDU welfare is bounded above by DU welfare, with the two

welfare measures coinciding if the consumption stream is non-decreasing.

Proposition 1 Assume that 0c is eventually constant.

(i) For all t ≥ 0, W (0c) ≤W (tc) ≤ w(tc)

(ii) If 0c is non-decreasing, then W (0c) = w(0c).

Proof. This is a special case of Asheim and Mitra (2010, Proposition 2).

Part (ii) means SDU welfare di�ers from DU welfare only if the consumption stream

is not non-decreasing. Hence, existence of some t ≥ 0 such that ct > ct+1 is a

necessary, but insu�cient, condition for SDU welfare being strictly below DU welfare,

and emphasis will be placed on this possibility in the empirical analysis.

The stationary equivalent consumption c̄ of a consumption stream 0c is the con-

sumption level c̄, which if held constant yields the same welfare as the consumption

stream 0c. By (w.2), the stationary equivalent consumption c̄ of a consumption

stream 0c under DU satis�es U(c̄) = w(0c), or since U is strictly increasing:

c̄ = U−1
(
w(0c)

)
.

By (W.2), the stationary equivalent consumption c̄ of a consumption stream 0c under

SDU satis�es U(c̄) = W (0c), or since U is strictly increasing:

c̄ = U−1
(
W (0c)

)
.

We use the stationary equivalent consumption to express non-marginal welfare dif-

ferences in consumption terms (more on this in Section 4).

2.1 Variable population and uncertainty

Asheim and Mitra (2010) introduce SDU in a deterministic setting where population

growth is not explicitly discussed. Application of SDU to climate change, and indeed

to a number of other policy issues, requires explicit treatment of population growth

and uncertainty, however, and we turn to these issues now.
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In Asheim and Mitra (2010, p. 150), consumption in period t is interpreted as �a

non-negative indicator of the wellbeing of generation t�. However, how do we compare

the wellbeing of the present generation with the wellbeing of future generations if

population size changes over time?

One possibility is to represent the wellbeing of each generation by the product

of population size and the utility derived from per-capita consumption. This is the

position of `classical utilitarianism'. An alternative position is to let the wellbeing

of each generation depend only on per-capita consumption; this is called `average

utilitarianism'. It turns out that applying the condition which provides an axiomatic

support for SDU � �Hammond Equity for the Future� � at the level of individuals

yields an argument in favour of `average utilitarianism'.

At the level of individuals, �Hammond Equity for the Future� is concerned with a

situation where all present individuals are equally well o� and all future individuals

are equally well o�, but where the wellbeing of each present individual exceeds that of

each future individual. In this situation, �Hammond Equity for the Future�, combined

with conditions ensuring representation by means of a SWF, entails that no weight

be given to a uniform gain for present individuals. Hence, the comparison is between

present and future individual wellbeing. Under the assumption that consumption is

a comprehensive measure capturing all sources of human wellbeing, this corresponds

to a comparison between present and future per-capita consumption, in line with the

position of average utilitarianism.

As mentioned in the introduction and further explored by Asheim et al. (2010,

Section 3), the appeal of �Hammond Equity for the Future� is that it can be endorsed

both from a utilitarian and egalitarian point of view. The utilitarian support rests

on there being an in�nite number of future individuals. As long as there is an in�nite

number of generations, each with a positive number of individuals, this is satis�ed

independently of how population size develops over time. The egalitarian support for

the worse-o� future individuals in comparison with the better-o� present individuals

does not depend on their numbers, only their individual wellbeing.2

On this basis, we apply average SDU in our empirical analysis, and, for compar-

ison, we also apply average DU. At the same time, however, we should acknowledge

the substantial literature taking the opposite stance (see, e.g. Meade, 1955; Mir-

2The position of average utilitarianism is also supported in Asheim and Bossert's (2011) ax-

iomatic analysis of sustainability in the case where population is endogenous, so that each popula-

tion can control (or at least, in�uence) the size of the population in the next period.

7



rlees, 1967; Dasgupta, 2001; Blackorby et al., 2005), and the extension of SDU, �rst

in terms of its axiomatic foundations and then in application, to cases of variable

population would be a valuable future research project.

Now we turn to the analysis of uncertainty. We make the simplifying assumption

that the utility function U not only expresses aversion to inequality over time, but

also aversion to risk. It is of interest to separate inequality aversion from risk aversion,

but this is outside the scope of the present paper. In any case, the identity between

aversion to inequality over time and to risk is standard in the empirical literature on

climate-policy evaluation, so our results will be easier to compare to previous studies

in this way.

Assume that there is a probability distribution over consumption streams.3 By

writing V (u,w) := min{(1 − δ)u + δw,w}, it follows from (W.1) that W (0c) =

V (U(c0),W (1c)). Since V is a concave function of u and w, it follows from Jensen's

inequality that

E(V (U(c̃0),W (1c̃))) ≤ V (E(U(c̃0)), E(W (1c̃))) ,

with strict inequality if both U(c0) < W (1c) and U(c0) > W (1c) are assigned positive

probability. This means that dynamic programming methods cannot be used for

calculating the expected value of SDU welfare. However, calculating SDU welfare

for each realization and then taking expectations yields a correct result. This is what

we do in the empirical analysis.

3 Risk analysis with DICE

In order to examine empirically the di�erences between climate policy evaluation

under SDU and DU, we employ the DICE integrated assessment model of the joint

climate-economy system, built by William Nordhaus (we adapt the 2007 version of

the model, described in Nordhaus, 2008). In brief, DICE couples a standard Ramsey-

Cass-Koopmans model of economic growth to a simple model of the climate system.4

3In the empirical part this corresponds to the empirical distribution of 1000 random draws of a

Latin Hypercube sample.

4IPCC (Houghton et al., 1997) coined the term `simple climate model' to denote models, which

specify the atmosphere, surface and deep oceans as one-dimensional, uniformly mixed boxes, which

exchange heat and/or CO2 with each other. By contrast, atmosphere-ocean general circulation

models (AOGCMs), the most complex type of climate model, divide the atmosphere and ocean into

a detailed three-dimensional grid, with many longitudinal, latitudinal and vertical points.
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Output of a composite good is produced using aggregate capital and labour inputs,

augmented by exogenous total factor productivity in a Cobb-Douglas production

function. However, industrial production is also associated with the emission of

carbon dioxide, which is an input to the simple climate model,5 resulting in radiative

forcing of the atmosphere and an increase in global mean temperature. The climate

model couples back to the economy by means of a so-called `damage function', which

is a reduced-form polynomial equation associating a change in temperature with a

loss in utility, expressed in terms of equivalent output. The damage function in DICE

implicitly takes account of the economy and society's capacity to adapt to climate

change, which reduces the amount of output lost for a given increase in global mean

temperature, so that the representative agent is left to choose how much to invest in

abating CO2 emissions from production versus how much to invest in the composite

capital good for future consumption. The model is globally aggregated and is resolved

in decadal time steps from 2005 up to 2395.

DICE is described in full in Nordhaus (2008), and for the sake of brevity we focus

our exposition here on those parts of the model we have modi�ed. Since uncertainty

is central to climate policy, we select a subset of eight of the most important pa-

rameters in DICE, and specify each as random. Table 1 lists these parameters and

the form and parameterisation of their probability distribution. In selecting these

eight parameters, we have followed the lead of Nordhaus' (2008) own risk analysis.

However, in the case of two parameters, we have chosen an alternative speci�ca-

tion. They describe the climate sensitivity and the curvature of the damage function

respectively, and we devote special attention to them below.

The �rst four parameters in Table 1 play a role in determining CO2 emissions.

Of these four parameters, Kelly and Kolstad (2001) showed that growth in total

factor productivity and in population are particularly important. The reason is

that, in integrated assessment models such as DICE, growth in CO2 emissions is

proportional to growth in global economic output, which in turn is determined in

signi�cant measure by productivity growth and by the stock of labour. In addition,

where a classical utilitarian SWF is applied, the larger (smaller) is the population

when the impacts of climate change occur, the higher (lower) is the social valuation

of climate damage (although, as above, this is not a consideration for us). However,

while CO2 emissions are proportional to output, the proportion is usually assumed

to decrease over time due to changes in economic structure away from CO2-intensive

5Alongside exogenous emissions of carbon dioxide from land use.
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Table 1. Uncertain parameters for simulation of modi�ed DICE-2007.

Parameter Units Functional Mean Standard Source

form deviation

Initial growth Per Normal 0.0092 0.004 Nordhaus

rate of TFP year (2008)

Asymptotic Millions Normal 8600 1892 Nordhaus

global population (2008)

Rate of Per Normal -0.007 0.002 Nordhaus

decarbonisation year (2008)

Total resources Billion tons Normal 6000 1200 Nordhaus

of fossil fuels of carbon (2008)

Price of back- US$ per ton of Normal 1170 468 Nordhaus

stop technology carbon replaced (2008)

Transfer coe�cient Per Normal 0.189 0.017 Nordhaus

in carbon cycle decade (2008)

Climate ◦C per doubling of Log- 1.099* 0.3912* Weitzman

sensitivity atmospheric CO2 normal (2009)

Damage function Fraction of Normal 0.082 0.028 Own

coe�cient α3 global output estimate

*In natural logarithm space.

production activities, and to increases in the e�ciency of output with respect to

CO2 emissions in a given activity. In DICE, this is achieved by virtue of a variable

representing the ratio of emissions/output, which decreases over time as a function

of a rate-of-decarbonisation parameter. A further check on industrial CO2 emissions

is provided in the long run by the �nite total remaining stock of fossil fuels, which

is also treated here as an uncertain parameter.

The �fth uncertain parameter in Table 1 is the price of a so-called `backstop' tech-

nology, which in the context of climate-change mitigation is the price of a technology

that is capable of completely nullifying CO2 emissions. In DICE, the backstop is

deployed if the control rate on CO2 emissions reaches 100%, so it is conceptually the

marginal cost of the last unit of emissions abatement. Such a technology could most

plausibly be a zero-emissions energy technology such as solar or geothermal power.6

6It could also be a geo-engineering technology such as arti�cial trees to sequester atmospheric
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The backstop price starts very high (mean = US$1170/tC), but declines over time.

Hence it becomes an important determinant of the cost of abatement in the long

run.

The sixth and seventh parameters in Table 1 capture important uncertainties in

climate science. At a very high level of abstraction, one can distinguish between (i)

uncertainties in climate modelling that derive from the cycling of carbon between its

various 'sinks' (the atmosphere, the hydrosphere, the biosphere and the lithosphere),

which therefore render forecasts of the atmospheric stock of CO2 for a given pulse of

emissions uncertain, and (ii) uncertainties in the relationship between a rising stock

of atmospheric CO2 and temperature. In DICE, the carbon cycle is represented by

a system of equations, each containing several parameters. Here, uncertainty about

the carbon cycle is captured in a tractable way by focussing on a parameter that

determines the proportion of CO2 in the atmosphere in a particular time period,

which dissolves into the upper ocean in the next period.

3.1 Climate sensitivity

Uncertainty about the relationship between atmospheric CO2 and temperature is

captured by a random climate-sensitivity parameter. The climate sensitivity is the

increase in global mean temperature, in equilibrium, that results from a doubling in

the atmospheric stock of CO2. In simple climate models, it is critical in determining

how fast and how far the planet is forecast to warm in response to emissions. The

IPCC's Fourth Assessment Report compiled a number of recent estimates of the

climate sensitivity (IPCC, 2007). It concluded that the best estimate of the climate

sensitivity is 3◦C, that there is a greater than 66% chance of it falling in the range 2�

4.5◦C (the IPCC's �likely� range), and a less than 10% chance of it being lower than

1.5◦C (�very unlikely�). This leaves around a 17% chance that the climate sensitivity

exceeds 4.5◦C, and indeed a critical feature of all 18 probability density functions

of the climate sensitivity compiled by IPCC is that they have a positive skew, with

a long tail of high estimates. These tails can be attributed to uncertainty about

feedbacks (Roe and Baker, 2007), related for example to clouds and water vapour,

and about the cooling e�ect of aerosols.

In Nordhaus' (2008) risk analysis with DICE, the random climate-sensitivity

parameter is normally distributed with a mean of 3◦C and a standard deviation of

CO2, except that DICE has exogenous emissions of CO2 from land use.
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1.1◦C. Compared with the evidence compiled by IPCC, however, this distribution

may signi�cantly underestimate the probability of very high values. For example, a

value of 6.3◦C, which is three standard deviations from the mean of Nordhaus' normal

distribution, is assigned a probability of only around 0.1%, whereas several of the pdfs

in IPCC (2007) put the corresponding probability at 5�10%. Similarly, in his review

of the evidence, Weitzman (2009) considers that there is a 1% chance of the climate

sensitivity exceeding 10◦C. According to the above normal distribution, this is less

likely than a `six sigma' event, so it has a probability of less than 10−7%. Therefore we

specify the random climate-sensitivity parameter as lognormally distributed. With

the parameterisation in Table 1, it can easily be veri�ed that a value of at least

6.3◦C, for example, is associated with a 3% probability.

3.2 The damage function

The �nal parameter in Table 1 is one element of the damage function linking tempera-

ture and output-equivalent losses in utility. In recent years, there has been increasing

focus in climate-change economics on this critical function (e.g. Weitzman, 2010a),

which is unsurprising when one considers that, without the damage function, the

accumulation of atmospheric CO2 has no consequence for social welfare. In many

past studies, including those with DICE, the approach has been to specify losses in

utility as a quadratic function of global mean temperature:

Ω(T ) =
1

1 + α1Tt + α2T 2
t

, (3)

where Ω, to keep our nomenclature consistent with Nordhaus (2008), is the propor-

tion of output lost at time t, T is the increase in global mean temperature over the

pre-industrial level, and α1 and α2 are coe�cients.

The coe�cients α1 and α2 are calibrated on the large literature devoted to es-

timating the cost of climate change in particular sectors of the economy, such as

agriculture, energy, and health (summarised in Parry et al., 2007). This literature

provides estimates of varying reliability and validity, but it can generally be concluded

that the loss in utility for warming of up to about 3◦C is relatively well constrained,

and is equivalent to a few percent of output. Unfortunately, what the impacts of

climate change will be for larger amounts of global warming remains largely in the

realm of guesswork (Weitzman, 2009), due to possible non-linearities in the biophys-

ical and socio-economic response to changes in climate variables, as well as possible

singularities in the climate system itself (e.g. a collapse in the Antarctic ice sheet,

12



or a shutdown in the ocean circulation), all of which are very poorly understood at

present. This points the spotlight at the functional form for damages.

There has never been any stronger justi�cation for the assumption of quadratic

damages than the general supposition of a non-linear relationship, added to the fact

that quadratic functions are of a familiar form to economists, with a tractable linear

�rst derivative (i.e. the marginal bene�t function of emissions reductions). However,

when extrapolated to large temperature levels, the implications of a quadratic func-

tion have recently been cast in doubt. Both Ackerman et al. (2010) and Weitzman

(2010b) have shown that, with Nordhaus' (2008) calibration of equation (3), 5◦C

warming results in a loss of utility equivalent to just 6% of output, despite such

warming being equivalent to the di�erence between the present global mean temper-

ature and the temperature at the peak of the last ice age, while it takes around 18◦C

of warming for losses in utility to exceed the equivalent of 50% of output.

There are various ways to remedy what is increasingly regarded as an implausible

forecast. Following equation (3), utility losses can be ramped up by increasing the

coe�cients α1 and α2, but only at the expense of unrealistically large losses in utility

for the initial 3◦C warming. Conceptually, much follows from the speci�cation of the

utility function. Working with a standard utility function whose sole argument is

consumption of the composite good, we can introduce a higher-order term into the

damage function to capture greater non-linearity, as Weitzman (2010b) does.7 We

specify the following function:

Ω(T ) =
1

1 + α1Tt + α2T 2
t + α̃3T 7

t

, (4)

where α̃3 is a normally distributed random coe�cient with mean and standard devi-

ation reported in Table 1. The remaining coe�cients α1 and α2 are as in Nordhaus

(2008). If α̃3 takes its mean value, 5◦C warming results in a loss of utility equiva-

lent to around 7% of output, while 50% of output is not lost until the global mean

temperature is roughly 11◦C above the pre-industrial level. Thus the mean value of

function (4) remains fairly conservative at high temperatures. However, when α̃3 is

three standard deviations larger than the mean, 5◦C warming triggers an output loss

of around 25% of output, and 50% of output is lost when warming reaches just 6◦C.

This is very close to the speci�cation of Weitzman (2010b). Conversely, at three

standard deviations below the mean, α̃3 is small enough that function (4) virtually

7The alternative is to specify utility as a function not only of consumption but also of environ-

mental quality directly, for example indexed by global mean warming.
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collapses to function (3), so our risk analysis on the damage function can be said

to span the approaches taken by Nordhaus on the one hand and Weitzman on the

other.

4 Results

As reported in Section 2, a necessary, but insu�cient, condition for SDU welfare to

be below DU welfare is that there exists some period t ≥ 0 such that ct > ct+1.

This period t has to be smaller than the model's terminal period T , as we impose

constant consumption beyond T . Satisfying this condition will in general depend on

severe climate-change damage, since the DICE model, in line with other integrated

assessment models, predicts strong growth in production in the absence of such

damage. For example, when all the coe�cients αi of the damage function are set

to zero, so that damages are `switched o�', global mean consumption per capita in

DICE is forecast to grow in real terms from US$6,667 in 2005, the base year, to

US$26,159 in 2105, and onwards to over US$80,000 in 2205.8 Hence the probability

that ct > ct+1 for 0 ≤ t < T may be low, but as long as it is not zero, SDU may lead

to a di�erent evaluation of policies to cut CO2 emissions than will DU. Therefore we

begin our analysis of the modelling results by investigating the probability that per-

capita consumption is falling at some point over the modelling horizon, conditional

on the schedule of emissions cuts pursued.

To begin with, we examine three such climate-change policies. They are, �rst,

`business as usual', second, a schedule of emissions cuts to limit the atmospheric

concentration of CO2 to twice its pre-industrial level (560 parts per million, hereafter

referred to as the 2 CO2 policy), and, third, a more aggressive schedule of cuts to

limit the concentration of CO2 to only one-and-a-half times its pre-industrial level

(420ppm, hereafter referred to as the 1.5 CO2 policy). The latter two schedules, the

abatement schedules, have both been prominent in recent international negotiations

about climate policy. Figure 1 presents estimates of the probability that, for each

of these three policies, ct > ct+1 with respect to any two successive time periods

between 2005 and 2205. To generate these estimates, we take a Latin Hypercube

sample of the eight uncertain parameters in DICE, yielding 1000 random draws.

[FIGURE 1 ABOUT HERE]

8Using Nordhaus' (2008) standard values for DICE's variables and parameters.
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Figure 1 shows that the probability of falling consumption per capita is positive,

but small, under all three policies. Indeed, for the coming century, the probability

is virtually the same across the three policies, despite the very di�erent emissions

control rate under business as usual compared with those under the two abatement

policies. This is because, in a very small number of draws, climate damage is so

large as to drive consumption growth negative, irrespective of the emissions controls

put in place. We can see from Figure 1 that the probability of this is, for example,

0.002 in 2025.9 However, what Figure 1 clearly shows is the pay-o� to abatement in

the 22nd century, when the probability of falling consumption increases signi�cantly

under business as usual, while remaining broadly steady under the 2 CO2 and 1.5

CO2 abatement policies.

4.1 Welfare evaluation of emissions cuts

Table 2 goes on to examine what these underlying estimates of consumption per

capita mean for SDU and DU welfare.

Before we explain the results, a few words are in order about our measure of

welfare changes. In computing social welfare according to SDU and DU, we obtain

the value of the two abatement policies compared with business as usual in terms

of social welfare, measured in utils. We need to express the change in social welfare

due to abatement in consumption-equivalent terms, in order to quantify willingness

to pay. However, matters are complicated by the very large changes in social welfare

we must contemplate as a result of the risk analysis (e.g. in a future contingency

where climate damage is severe under business as usual, but can largely be avoided

by abatement). We cannot simply normalise the change in social welfare using the

(inverse of the) marginal social welfare of a unit of consumption,10 because the

welfare change may not be marginal, so that the �rst-order approximation of the

utility function may be poor (see also Dietz and Hepburn, 2010). Therefore we turn

to the concept of the stationary equivalent consumption, a concept which, following

Weitzman (1976), is a standard way of representing social welfare in dynamic settings

9In fact, Figure 1 shows that aggressive initial emissions abatement along the 1.5 CO2 policy path

actually makes matters worse for a time, as the high initial cost of abatement drives consumption

growth negative earlier than under the other two policies in one of the 1000 draws.

10Whereby 1
U′ ∆W is our welfare change measure in consumption-equivalent terms, where ∆W

is the change in social welfare according to either SDU or DU between one of the two abatement

policies on the one hand and business as usual on the other.
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Table 2. Change in expected stationary equivalent

of 2 CO2 and 1.5 CO2 policies compared with

business as usual, according to SDU and DU.

Abatement SDU DU

policy 5% Mean 95% 5% Mean 95%

2 CO2 -0.13 4.26 0.71 -0.13 0.16 0.55

1.5 CO2 -1.59 3.44 0.59 -1.60 -0.66 0.34

and which we have already discussed in Section 2.11

Table 2 displays our estimates of the stationary equivalent consumption of the

2 CO2 and 1.5 CO2 abatement policies, compared with business as usual, according

to both SDU and DU. We report the mean estimate, i.e. the expected change in

the stationary equivalent, and also indicate the nature of the underlying distribution

of the change in the stationary equivalent by reporting both the 5th and 95th per-

centiles. The utility discount rate ρ in these calculations is 0.02, thus the per-period

(i.e. decadal) discount factor is ∼0.82, and the coe�cient of relative inequality/risk

aversion is set to two. For these (and all subsequent) calculations, we use the full

modelling horizon from 2005 to 2395.

The table contains our core result, showing that willingness to pay for emissions

abatement is signi�cantly larger under SDU than under DU. For the 2 CO2 policy, the

expected increase in the stationary equivalent is 4.26% under SDU, nearly thirtyfold

higher than the corresponding estimate of 0.16% under DU. For the 1.5 CO2 policy,

the expected increase is 3.44% under SDU, but -0.66% under DU. Intriguingly, this

policy reduces social welfare according to DU, but according to SDU it increases it.

These results follow directly from the �nding, detailed in Figure 1, that consumption

is more likely to fall under business as usual than under either of the two abatement

policies. SDU places greater value on these policies than DU as a consequence: they

are more likely to guarantee sustainability, de�ned as non-decreasing wellbeing.

What Table 2 also shows is the in�uence of uncertainty, speci�cally the small

11We could instead have applied the balanced growth equivalent (BGE) introduced by Mirrlees

and Stern (1972). The BGE of a given amount of social welfare is the initial level of consumption

per capita, which, if it grows at a constant annual rate over all time, yields the same amount of

social welfare. However, as Antho� and Tol (2009) show, the stationary equivalent consumption

gives the same result as the BGE (independently of the choice of growth rate), provided the utility

function exhibits constant relative inequality/risk aversion.
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number of random draws in which climate damage is severe. This is evident in

comparing the expected change in the stationary equivalent with the 95th percentile

change under SDU. For both policies, the expected change is in fact greater than the

95th percentile, indicating that a few random draws (less than 5%) have a change

in the stationary equivalent so large as to drive the expectation above the 95th

percentile. This is one way of showing that concerns about intergenerational equity

and concerns about uncertainty are closely linked in the context of climate change.

Figure 2 explores the sensitivity of the expected change in the stationary equiva-

lent as estimated under both SDU and DU to ρ. We examine values for ρ ∈ (0, 0.05)

(corresponding to a range for the decadal discount factor of 1�0.62). It is evident

that, in line with the distribution of near-term abatement costs and longer-term ben-

e�ts, the expected change in the stationary equivalent of the two abatement policies

is a decreasing function of ρ, both under SDU and under DU. Indeed, it falls rapidly

as ρ is initially increased from 0.

[FIGURE 2 ABOUT HERE]

However, what is more interesting is that the expected change in the stationary

equivalent under SDU holds up to a greater extent than under DU, so that the dif-

ference between the two evaluation principles grows. When ρ = 0, the two principles

yield an identical evaluation. The reason for this can readily be seen by comparing

(w.1) and (W.1) in Section 2: when the discount factor approaches unity, the SDU

algorithm approaches the DU algorithm.12 However, as ρ increases, the two algo-

rithms can yield di�erent results depending on the probability of falling consumption

per capita, and Figure 2 bears this out. For both policies, the expected change in the

stationary equivalent falls and eventually becomes negative under DU, but remains

positive under SDU. As ρ rises, the far-o� future matters less and less under DU,

and it is in the far-o� future that the bene�ts of abatement accrue. However, under

SDU the far-o� future can continue to receive signi�cant weight, if at some point in

time future discounted utility is below present utility. We know from Figure 1 that

this is the case.

12In the limit, as ρ → 0, or equivalently, δ → 1, it follows from (w.1), (w.2), (W.1) and (W.2)

that DU and SDU welfare are determined only by the eventual constant part of 0c beyond T , where

ct = cT for all t ≥ T . Then both DU and SDU welfare become insensitive to present wellbeing, as

w(0c) = W (0c) = U(cT ), illustrating a problematic aspect of undiscounted utilitarianism.
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4.2 Optimal policies

Finally, rather than evaluating exogenous policy settings, it is informative to com-

pare the optimal schedule of emissions abatement under SDU and DU. To do this,

we set ρ = 0.02, and follow Nordhaus (2008) in simultaneously solving a schedule

of emissions control rates {µt} (where for each t, µt ∈ [0, 1]) that maximises the ex-

pectation of SDU and DU respectively. Thus the emissions control rate is a number

between 0 and 1, which controls the emissions intensity of output, and a control rate

of µt results in a fraction 1− µt of output contributing to emissions.

In an integrated assessment model such as DICE, and especially in running risk

analysis, solving this optimisation problem is a non-trivial computational challenge.

However, we are able to �nd a solution using a genetic algorithm (Riskoptimizer)

and with two modi�cations to the basic optimisation problem.13 Figure 3 presents

the schedule of optimal emissions abatement corresponding to SDU and DU. It can

be seen, intuitively, that emissions abatement is at least as high under SDU as it is

under DU in every time period, and is considerably higher in some, speci�cally in the

latter half of this century and in the next (top panel). The bottom panel also brings

out the di�erences between the two sets of optimal controls, but it further shows

that, nevertheless, optimal annual emissions are increasing under SDU and DU for

at least the next one hundred years (albeit much less than under business as usual,

given the control rates). This is explained by our choice of ρ = 0.02, which favours

less aggressive strategies of emissions control, all else equal. Setting ρ closer to zero

would see the �ow of emissions peaking earlier, under DU and especially under SDU.

[FIGURE 3 ABOUT HERE]

13First, we only solve µt from 2005 to 2245 inclusive, rather than all the way out to 2395. This

considerably reduces the scope of the optimisation problem, in return for making little di�erence

to the results, since in the standard version of DICE µt = 1, t > 2245 (i.e. abatement yields

high bene�ts relative to costs in the far-o� future). Our own results also show that µt → 1 as

t → 2245. Second, we guide the optimisation by imposing the soft constraint that µt is non-

decreasing everywhere (via an exponential penalty function when µt decreases between any two

time periods). Otherwise, the algorithm struggled to �nd a path towards the global maximum. As

a soft constraint, the penalty does not enter the welfare evaluation. We were able to verify that the

algorithm's best solution satis�ed the property of non-decreasingness in µt, and that no solution

was found which returned higher SDU/DU, where µt was decreasing at any point.
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5 Concluding remarks

In this paper we have introduced sustainable discounted utilitarianism (SDU) as an

alternative criterion to discounted utilitarianism (DU) for the evaluation of climate-

abatement policies and we have conducted a risk analysis with the DICE integrated

assessment model in order to �nd out how much the switch matters empirically. To

set the stage for this application, we �rst extended the concept of SDU to variable

population and uncertainty (speci�cally risk). On the back of recent controversies, we

also adjusted the climate sensitivity and damage function used in the standard DICE

model, as part of our wider risk analysis. The result is that, with our alternative

speci�cations, there is a non-negligible probability that some generation is better o�

than its descendants due to the impacts of climate change.

In expectations and at an aggregate level, integrated assessment models like

DICE assume that the future will be much better than the present, due largely

to the assumption of positive growth in total factor productivity. In our empirical

analysis we have exploited the possibility that in contingencies where the climate

sensitivity is large (so that the increase in atmospheric CO2 leads to a large rise in

temperature) and temperature rise leads to large damages, development of wellbeing

may not be monotonically increasing. When such circumstances are assigned positive

probability, SDU more than DU promotes present action against climate change,

as our analysis has shown. Hence, moving from DU to SDU matters empirically.

Furthermore, this result is robust in the sense that the di�erence between DU and

SDU remains substantial even if a high discount rate is applied (we looked at rates

up to 5% per annum).

This last observation is particularly signi�cant. In the introduction, we found

ourselves agreeing with the arguments of Arrow, Dasgupta, Rawls and others that

the use in climate-policy evaluation of undiscounted utilitarianism, or similarly the

use of DU with a near-zero discount rate, leads to unappealing transfers of wealth

from the present to the future, when applied consistently across the wider set of

investment opportunities. Our analysis shows that concern for the wellbeing of future

generations might be better taken into account using SDU with a positive discount

rate substantially away from zero. What precisely that rate should be, when used

alongside SDU, ought to be the focus of a renewed discussion, which is beyond the

scope of this paper. In any case, we have shown that, within a relatively broad range,

tough emissions abatement schedules will continue to increase social welfare.
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At a spatially disaggregated level, climate change may lead to reduced wellbeing

(also when compared to present wellbeing) for certain groups, but not for others.

Provided that large-scale compensation schemes will not be undertaken, this applies

in particular to those living in geographical areas where climate change is likely to

be especially severe, and/or where vulnerability is particularly high. One example is

likely to be marginal agricultural regions in Africa, another low-lying coastal com-

munities in South and Southeast Asia. At such a disaggregated level, it will matter

much more to apply SDU instead of DU, as SDU in e�ect does not discount the

utility loss due to climate change for those groups that are so severely a�ected.

Therefore, it will be of great interest to apply the SDU criterion (or a similar

criterion � extended rank-discounted utilitarianism � proposed by Zuber and Asheim,

2010) for evaluating climate change in models where e�ects are disaggregated on

groups, and compare DU to alternative criteria in such a setting. We will turn to

this in future work. However, even the present analysis is strongly indicative of the

importance of broadening the basis of climate-policy evaluation from DU to SDU

and beyond.

Finally, we should comment on the prospect that SDU might actually be applied

in policy-making. SDU is the outcome of an explicitly ethical approach to policy

evaluation (and within that, an axiomatic approach). As such, one is challenged

to adopt an impartial perspective on questions of intergenerational distribution. In

reality of course, the present generation � seen as one of a series of non-overlapping

generations � enjoys the autonomy to make its own decisions, and the incentive

to behave self-interestedly is strong. From a positive point of view, undiscounted

utilitarianism can be criticised for this reason: there is plenty of evidence to show

that the utility of future generations is discounted at some substantially positive rate,

despite ethical objections. However, our conviction is that the case for DU depends

in large part on the assumption that the future will be better o� than the present

for certain, such that if the present generation believed its decisions could leave the

future worse o� than it, it could be persuaded to revise those decisions. Hence

we do believe that the criterion of SDU might in�uence the present generation in its

evaluation of climate policies, and other policies where the sustainability of wellbeing

is under threat.
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Figure 1: Probability of falling consumption per capita for three emissions abatement

policies (business as usual, 2 CO2 and 1.5 CO2).
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Figure 2: Expected change in stationary equivalent consumption per capita under

SDU and DU as a function of the utility discount rate, for the 2 CO2 (top) and 1.5

CO2 (bottom) policies.

25



0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

2000 2050 2100 2150 2200 2250

E
m

is
si

o
n

s 
co

n
tr

o
l r

at
e

DU

SDU

0

2

4

6

8

10

12

14

16

2000 2050 2100 2150 2200 2250

In
d

u
s
tr

ia
l 
e
m

is
s
io

n
s
 o

f 
C

O
2
 (

G
tC

/y
e
a
r)

SDU

DU

Figure 3: Optimal emissions under SDU and DU in terms of (top) the emissions

control rate and (bottom) annual industrial CO2 emissions.
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