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Uncertainty Aversion and Equilibrium?

Jörn Rothe1

London School of Economics,
Department of Management,

Houghton Street, London, WC2A 2AE, United Kingdom
E-mail: J.D.Rothe@lse.ac.uk

Abstract. If rationality is not mutual knowledge in a game then standard
expected utility theory requires a rational player to have a specific belief
about the behaviour of a non-rational opponent. This paper argues that
this problem does not arise under Choquet expected utility theory, which
does not require a player’s beliefs to be additive. Non-additive beliefs al-
low the formalization of the idea that a player who faces a non-rational
opponent faces genuine uncertainty. Optimal strategies can then be derived
from assumptions about the rational player’s attitude towards uncertainty.
This paper investigates the consequences of such a view of strategic interac-
tion. We formulate equilibrium concepts, called Choquet-Nash equilibrium
in normal forms and perfect Choquet equilibrium in extensive forms, that
solves the infinite regress that arises in this situation and study existence
and properties of these equilibria in normal and extensive form games.

Keywords: extensive form games, equilibrium, non-additive beliefs, uncer-
tainty aversion.

1. Introduction

Game theory is about rational decision-making under strategic interaction. Players
are assumed to be rational in a decision-theoretic sense: they act as if they possess
a utility function over outcomes and beliefs given by a probability distribution over
states, and maximise subjective expected utility (Savage, 1954). Beliefs in turn are
derived from assumptions based on mutual knowledge of rationality.

In normal form games this leads to the game-theoretic solution concepts of dom-
inance, rationalizability, equilibrium and correlated equilibrium (Tan and Werlang,
1988; Aumann and Brandenburger, 1995). In extensive form games this leads to
equilibrium refinements (see, e.g., Selten, 1965; van Damme, 1992).

Yet this view leads to difficulties in extensive games (see, e.g., Selten, 1975, 1978;
Binmore, 1987; Reny, 1993). Equilibrium refinements assume that players continue
to regard their opponents as rational even after they have observed them deviating
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from rational play. More fundamentally, the natural explanation of experimental
evidence is that players are not necessarily rational. But then rationality cannot
even be mutual knowledge at the beginning of the game. Game theory suffers from
the defect that its solution concepts are based on rationality alone.

What is a rational strategy if rationality is not mutual knowledge? This paper at-
tempts to address this question by applying a weaker definition of decision-theoretic
rationality to games. Schmeidler (1989) has shown that Savage’s sure-thing Princi-
ple can be weakened so that players can still be modelled as maximising expected
utility subject to their beliefs, but now beliefs do no longer have to be additive.
Whereas Savage’s approach reduces uncertainty to risk, Schmeidler’s Choquet ex-
pected utility theory (henceforth CEU) gives rise to a qualitative difference between
risk and uncertainty.

This difference is important in games if we distinguish between rational and
non-rational players as in Kreps et al. (1982). A rational player is one who chooses
his strategy as to maximise utility given his beliefs. A rational player who faces
a rational opponent can anticipate her strategy if he knows her utility function
and can anticipate her beliefs. Consequently, a rational player who faces a rational
opponent faces risk, in the sense that his beliefs are given by objective probabilities
determined by best-reply considerations. Thus his beliefs are necessarily additive.

On the other hand, a rational player who faces a non-rational opponent faces
true uncertainty, if all he knows is that a non-rational player does not necessarily
choose a utility-maximising strategy. Under CEU, a rational player’s beliefs reflect
his attitude towards uncertainty. If the player is not uncertainty-neutral, his beliefs
will not be additive.

Schmeidler (1986, 1989) has also shown that maximisation of expected utility
under uncertainty aversion is equivalent to minimax behaviour under uncertainty
neutrality. We argue, therefore, that the rational strategy of an uncertainty-averse
player when facing a non-rational opponent is maximin play, if there is neither a
theory nor an empirical regularity that allows further restriction of the rational
player’s beliefs.

Overall, a player who is rational in the sense of CEU will therefore take both
possibilities into account: that the opponent may be rational and that she may not
be. He will therefore evaluate a strategy with the utility that results in case the
opponent is rational and with the strategy’s minimax utility in case the opponent is
non-rational. The overall expected utility of the strategy is thus the weighted sum,
where the weights come from a common prior about the opponent’s rationality.

Clearly, a rational player will now choose the strategy that maximises expected
utility. He will also anticipate that a rational opponent will do the same, and will
anticipate that the rational opponent will anticipate that, ad infinitum. This gives,
as usual, rise to an infinite hierarchy of beliefs.

This paper presents an equilibrium concept, called Choquet-Nash equilibrium,
that cuts through this infinite regress that arises in games if rationality is not
mutual knowledge. We formulate the equilibrium concept and discuss existence and
properties in normal form games. An equilibrium for extensive form games also
has to specify how players update their beliefs. Using the Dempster-Shafer rule,
that generalizes Bayes’ rule to non-additive probabilities, we define an equilibrium



concept, called perfect Choquet equilibrium, for extensive form games and study its
properties.

We show that in normal form games Choquet-Nash equilibria always exists, for
every prior probability of mutual rationality. If the game is zero-sum, Choquet-
Nash equilibria coincide with Nash equilibria. Thus the solution concept avoids the
indeterminacy associated with rationalizability. If the game is nonzero-sum, every
Nash equilibrium is a Choquet-Nash equilibrium, but not vice versa: A Choquet-
Nash equilibrium may be non-rationalizable. Thus in normal form games Choquet-
Nash equilibria are a proper generalization of Nash equilibria, thus allowing to model
the dependence of the equilibrium outcome on the degree to which rationality is
mutual knowledge.

In extensive form games, probability-zero histories only arise if rationality is
mutual knowledge at the beginning of the game. For extensive games we show
that, as a consequence, perfect Choquet equilibrium can differ fundamentally from
subgame-perfect equilibrium and its refinements.

This paper joins a growing literature that applies CEU to games. The first of
these were Dow and Werlang (1994) and Klibanoff (1993). Dow and Werlang (1994)
consider normal form games in which players are CEU maximisers. Klibanoff (1993)
similarly considers normal form games in which players follow maximin-expected
utility theory (Gilboa and Schmeidler, 1989), which is closely related to CEU. In
Hendon et al. (1995) players have belief functions, which amounts to a special case
of CEU. Extensions and refinements have been proposed by Eichberger and Kelsey
(1994), Lo (1995a) and Marinacci (1994). These authors consider normal form games
and do not distinguish between rational and non-rational players. The paper clos-
est to ours is Mukerji (1994), who considers normal form games but distinguishes
between rational and non-rational players.1 Extensive games have been studied by
Lo (1995b) and Eichberger and Kelsey (1995). Lo (1995b) extends Klibanoff’s ap-
proach to extensive games, Eichberger and Kelsey (1995) are the first to use the
Dempster-Shafer rule in extensive games. They do not distinguish between rational
and non-rational players.

This paper is organized as follows. Section 2 outlines the decision-theoretic ap-
proach to game theory, based on expected utility theory in subsection 2.1 and based
on CEU in subsection 2.2. In section 3 the Choquet-Nash equilibrium is motivated
and defined for normal form games. Section 4 contains a series of examples to il-
lustrate the properties of Choquet-Nash equilibria. Section 5 defines the Dempster-
Shafer updating rule in subsection 5.1 and the perfect Choquet equilibrium for
extensive form games in subsection 5.2. Section 6 contains examples of extensive
games to illustrate their properties. Section 7 concludes.

2. Decision-Theoretic Rationality and Nash Equilibrium

2.1. Expected Utility Theory

A game in normal form is defined by specifying the set of players N , for each
player a set of strategies Si and each player’s von Neumann-Morgenstern utility
1 Another difference is that Mukerji (1994) formulates the equilibrium in terms of beliefs,

whereas we formulate it directly in mixed strategies, which is not equivalent under
non-additive beliefs.



function ui. Thus players are assumed to be rational: when faced with uncertainty
they maximise subjective expected utility. This concept of rationality has been
axiomatized by Savage (1954). The appendix contains details of his construction.

In a game rational beliefs must not only satisfy Savage’s axioms, but must in
addition be consistent with what players know about the structure of the game and
about each other’s rationality. In this way it is possible to derive game-theoretic
solution concepts in Savage’s framework from additional assumptions.

In particular, a rational player not only has a belief about the opponents’ actions,
but can also anticipate that rational opponents will hold such beliefs about himself.
Consequently, a rational player will also form a belief about these opponents’ beliefs.
But again, he can anticipate that rational opponents who know that the player is
rational do this as well, and this gives rise to an infinite regress. A Nash equilibrium
solves this infinite regress, i.e. is consistent with such a hierarchy of beliefs.2

If rationality is not mutual knowledge the question thus arises how a rational
player should act if if he knew that the opponent is not rational. In that case Savage’s
axioms imply that the rational player has a belief given by a unique probability
measure over the opponent’s actions.3 If neither a theory of bounded rationality
nor a stable empirical regularity of non-rational behaviour is available, there seems
to be no way to derive this belief. On the other hand, if there is no restriction on
this belief the folk theorem (see, e.g., Fudenberg and Maskin, 1986) applies and all
feasible and individually rational payoffs can be achieved in some equilibrium.

The idea of this paper is that a weaker rationality concept allows further as-
sumptions about the rational player from which rational actions can be derived.
On this basis a solution concept can be defined that is consistent with the infinite
regress that arises if rationality is not mutual knowledge.

Weakening the underlying rationality concept is also of independent interest.
Savage’s theory of rationality is normative (Savage, 1967), the question what a
rational strategy is if rationality is not mutual knowledge is a descriptive one. A
less restrictive concept of rationality will also be descriptively more adequate.

The next subsection describes a weaker version of decision-theoretic rationality.

2.2. Choquet Expected Utility Theory

Several axioms in Savage’s framework are empirically very restrictive, in particular
the assumptions that the preference relation over acts is complete, transitive and
satisfies the Sure-Thing Principle.

Choquet expected utility theory weakens the sure-thing principle.4 The descrip-
tive validity of the sure-thing principle is questioned by the Allais paradox, the

2 We do not intend to give a formal or precise argument here, see e.g.
Tan and Werlang (1988) or Aumann and Brandenburger (1995) for details.

3 The celebrated Kreps et al. (1982) approach to bounded rationality follows this line.
They show that it is possible to reconcile experimental evidence with game theoretic
solutions by assuming a specific belief about the behaviour of non-rational players. This
paper tries to extend their approach by relaxing the requirement of having a specific
belief.

4 Choquet expected utility has been developed by Schmeidler (1989) in the
Anscombe and Aumann (1963) framework, in which acts (”horse lotteries”) lead to
additive probability measures over events (”roulette lotteries”). Gilboa (1987) has ex-



Ellsberg paradox and similar findings, and it places a high demand on a player’s
rationality. Under Choquet expected utility, the sure-thing principle is not assumed
to hold for all acts, but only for acts that are comonotonic. Two acts5 f, f ′ ∈ F
are comonotonic iff ¬∃ω, ω′ ∈ Ω : f(ω) Â f(ω′) and f ′(ω) ≺ f ′(ω′), i.e. both acts
give rise to the same preference over states. In the following table, f , g and h are
pairwise comonotonic, f (or g or h) and h′ are not.

Table 1. Comonotonic and non-comonotonic acts.

ω1 ω2

f 10 6
g 16 0
h 10 0
h′ 0 4

Now consider objective mixtures between the above acts:

Table 2. Mixtures between comonotonic and non-comonotonic acts.

ω1 ω2

1
2
f + 1

2
h 10 3

1
2
g + 1

2
h 13 0

1
2
f + 1

2
h′ 5 5

1
2
g + 1

2
h′ 8 2

Restricting the sure-thing principle to comonotonic acts means that if the player
is indifferent between f and g then he must also be indifferent between 1

2f + 1
2h and

1
2g + 1

2h, but he may, e.g., strictly prefer 1
2f + 1

2h′ to 1
2g + 1

2h′. The reason is that
mixtures of non-comonotonic acts can be interpreted as “hedging”, i.e. distributing
utility across states. Uncertainty aversion means that the player prefers objective
mixing (the hedging strategy) to his subjective weighting of pure acts.6

Schmeidler (1989) has shown that behaviour that is rational in this weaker sense
can still be described by expected-utility maximisation. Players do still act as if they
possess a von Neumann-Morgenstern utility function and beliefs, and take expected
values.

These beliefs, however, are no longer given by a probability measure over events,
but a capacity, i.e. non-additive measure over events. Formally: a capacity v maps
Σ into [0, 1] such that (i) v(∅) = 0, (ii) v(Ω) = 1 and (iii) E ⊆ E′ =⇒ v(E) ≤ v(E′).

tended this approach to the Savage framework. Other important contributions are, e.g.,
Wakker (1989) and Sarin and Wakker (1992, 1994).

5 Acts f ∈ F map states ω ∈ Ω into consequences z ∈ Z. For a formal statement of the
sure-thing Principle see the appendix.

6 This forces these weights to add to less than 1. For further discussion of comonotonicity
see, e.g., Chew and Wakker (1996).



Property (iii) weakens the finite-additivity requirement for finitely-additive mea-
sures: E ∩ E′ = ∅ =⇒ v(E ∪ E′) = v(E) + v(E′). Thus non-additive beliefs (which
still may, but in general needn’t be additive) have a qualitative flavour.

The expectation of a real-valued random variable X with respect to a non-
additive measure v is defined in the sense of Choquet (1953). Formally:7

∫
Xdv :=

∫ ∞

0

v(X ≥ t)dt +
∫ 0

−∞
[v(X ≥ t)− 1]dt.

Schmeidler’s theorem can now be stated:

Theorem 1 (Schmeidler, 1989). If, in the Anscombe and Aumann (1963) ver-
sion of the Savage framework, the sure-thing principle is restricted to comonotonic
acts then there exist a utility function u : Z → IR, bounded and cardinal,8 and a
capacity v : Σ → [0, 1], unique and non-atomic, such that f º f ′ ⇐⇒ ∫

u(f)dv ≥∫
u(f ′)dv.

It seems that we did not gain much so far: in order to derive a rational player’s
action when facing a non-rational opponent we must now specify the capacity v
instead of the measure p. However, Choquet expected utility allows, in contrast to
Savage’s subjective expected utility, the introduction of an additional assumption
about rational preferences over acts that characterizes the player’s attitude towards
uncertainty.

Formally, uncertainty aversion can be characterized in terms of the capacity9 v.
Note that the domain Σ of v is a lattice with respect to set inclusion. v displays
uncertainty aversion iff it is supermodular, i.e. v(E)+v(E′) ≤ v(E∩E′)+v(E∪E′).

Maximisation of Choquet expected utility under uncertainty aversion can now
be related to restrictions on sets of additive beliefs. Formally, the capacity v is a
set function just like a cooperative game. The core of v can be defined analogously:
C(v) := {p : Σ → [0, 1]| p a finitely additive measure such that p(E) ≥ v(E), ∀E ∈
Σ}. The core is nonempty if v is supermodular (Shapley, 1971).

Schmeidler (1986, 1989) has shown that maximisation of Choquet expected util-
ity under uncertainty aversion is equivalent to maximinimization of subjective ex-
pected utility over the core.

Theorem 2 (Schmeidler, 1986, 1989).

max
f∈A

∫
u(f)dv = max

f∈A
min

p∈C(v)

∫

Ω

u(f)dp.

Let us summarize the argument so far: Starting from Savage’s subjective ex-
pected utility theory, the restriction of the sure-thing principle to comonotonic acts
leads to the maximisation of Choquet expected utility, in which beliefs may, but

7 As usual we write v(X ≥ t) for v({ω ∈ Ω|X(ω) ≥ t}). The integrals on the right hand
side are extended Riemann integrals. If v is additive this is the usual expectation.

8 i.e. unique up to affine transformations
9 Schmeidler (1989) expresses uncertainty aversion in the Anscombe-Aumann framework

directly in terms of acts and proves that these definitions are equivalent.



needn’t be additive. Under uncertainty aversion, maximisation of Choquet expected
utility is equivalent to maximinimise over a set of additive beliefs given by the core
of the non-additive belief.

As a result, we are led to the question which restrictions can or should be
placed on the set of additive beliefs, over which the player maximinimizes in order
to determine the rational action vis-á-vis a non-rational opponent. We suggest to
make such a restriction part of the definition of an equilibrium.

3. Normal-Form Games

We consider finite10 2-player games in normal form in which rationality is not mutual
knowledge.

Assumption 1: (Choquet Rationality)
Rational players are assumed to be rational in the sense of Choquet expected utility.

To avoid complications and to be able to concentrate on the issues that arise
from lack of mutual knowledge of rationality alone, we make the usual assumption
that players have a common prior ε.

Assumption 2: (Common Prior)
Rational players believe that the probability that the opponent is rational is 1− ε. ε
is common knowledge among the rational players, i.e. it is a common prior.11

Under the objective prior, a rational player will evaluate a strategy with the
expected payoff, given that he faces either a rational or a non-rational opponent.
The strategy of the rational opponent will be determined endogenously. A rational
player must therefore evaluate the strategy in case he faces a non-rational opponent.
For Choquet-rational players this will depend on their attitude towards uncertainty.

Assumption 3: (Uncertainty Aversion)
Rational players are uncertainty averse.12

There is both an empirical and a pragmatic justification for imposing this as-
sumption. First, uncertainty aversion seems to be an empirical phenomenon. It is
usually proposed as an explanation for the Ellsberg paradox. Dow and Werlang
(1992) have proposed uncertainty aversion as an explanation of the phenomenon
that there is a whole range of asset prices (as opposed to a unique price) for which
an agent neither buys an asset nor sells the asset short. In general, just as risk aver-
sion is usually assumed in decision making under risk, uncertainty aversion seems
a reasonable assumption in decision making under uncertainty.13 Second, there are
pragmatic justifications for uncertainty aversion. Under uncertainty aversion the
core of a non-additive belief is nonempty. Moreover, there is a long tradition of
previous literature dealing with risk aversion, uncertainty aversion and the min-

10 The concept can easily be generalized to a finite number of players.
11 In particular, it is treated as an objective probability.
12 Note that we are in no way suggesting that it is rational to be uncertainty averse, just as

Assumption 2 does not suggest that it is rational to have a common prior. Uncertainty
aversion is an empirical assumption about rational players.

13 Note, however, that the notions of risk aversion and uncertainty aversion are logically
independent. Formally, risk aversion corresponds to a property of the utility function,
uncertainty aversion corresponds to a property of beliefs. So it is theoretically possible,
for example, to be both risk-loving and uncertainty-averse.



imax criterion.14 More fundamentally, however, the alternative assumptions are
uncertainty-appeal, which seems implausible, or uncertainty neutrality, in which
case Choquet expected utility reduces to expected utility theory, which implies that
a player has a unique belief about how non-rational opponents play.

Assumption 3 implies minimax-behaviour over a set of additive beliefs. It re-
mains to determine the size of this set.

Any restriction should come from a theory of bounded rationality. However, no
such theory seems available. It could also come from a stable empirical regularity
that could, for instance, be observed in experiments. But such regularities are only
available for specific games. Moreover, these regularities will not result from non-
rational play alone.

Thus we are led to argue that no restriction at all can be placed on this set. As a
consequence, it is rational for an uncertainty-averse player who maximises Choquet
expected utility to play his maximin-strategy against a non-rational opponent.

Assumption 4: (Unrestricted Non-Rationality)
Rational players treat non-rational players as unpredictable, i.e. no a priori restric-
tion is imposed on non-rational players.

A rational player will now anticipate that a rational opponent will maximise his
utility given his beliefs, that the rational opponent has the same prior probability
about being matched with a rational player and also reacts with minimax play to
non-rational opponents. But, surely, the rational opponent will anticipate this as
well, and the player should anticipate this as well, ad infinitum. This gives, as usual,
rise to an infinite hierarchy of beliefs.

In a Choquet-Nash equilibrium this infinite regress does not lead to an incon-
sistency. Each rational player maximises utility given his beliefs. These beliefs take
the common prior into account and that a rational opponent does the same. Under
Assumptions 1 – 4 a Choquet-Nash equilibrium is a strategy profile such that a
rational, uncertainty-averse player has no incentive to deviate.

Definition 1. Let G be a 2-player normal form game with finite pure strategy sets
S1, S2 and utility functions u1, u2. Denote mixed strategies by σi ∈ Σi, i = 1, 2. A
strategy profile (σ∗1 , σ∗2) ∈ Σ1 ×Σ2 is a Choquet-Nash equilibrium iff

σ∗1 ∈ arg max
σ1∈Σ1

[(1− ε)u1(σ1, σ
∗
2) + ε min

σ2∈Σ2
u1(σ1, σ2)]

and
σ∗2 ∈ arg max

σ2∈Σ2
[(1− ε)u2(σ∗1 , σ2) + ε min

σ1∈Σ1
u2(σ1, σ2)].

Note that if ε = 0, i.e. if rationality is mutual knowledge, this definition reduces
to the Nash equilibrium condition.

Theorem 3. For every ε ∈ [0, 1] a Choquet-Nash equilibrium exists.

Proof. The proof is a standard argument. We can define a maximin-correspon-
dence15 σ̂j(σi) := arg minσj ui(σi, σj) Since Sj is finite, this correspondence is well
14 ”A minimax solution seems, in general, to be a reasonable solution of the decision prob-

lem when an a priori distribution in Ω does not exist or is unknown to the experimenter.”
(Wald, 1950)

15 Recall that a minimax-strategy maximises a player’s security level and that a maximin-
strategy holds the opponent down to his security level.



defined on a compact, convex domain and upper-hemicontinuous. Thus we can
define best-reply correspondences σ∗i = σ∗i (σi, σj , ε) = arg maxσi [(1− ε)ui(σi, σj) +
εui(σi, σ̂j(σi))] which are again, for arbitrary ε, well-defined on a convex, compact
domain and upper hemi-continuous. Kakutani’s fixed point theorem then gives the
existence of a fixed point, which is a Choquet-Nash equilibrium. ut

Note the important difference between subjective expected utility and Choquet
expected utility in justifying the minimax-strategy against non-rational opponents.
Under subjective expected utility the maximin-strategy is rational only if the ra-
tional player believes that the non-rational opponent minimaxes him. This belief
seems difficult to justify. Under Choquet expected utility the maximin-strategy is
rational because the rational player cannot exclude the possibility that the non-
rational opponent plays, perhaps by chance, a minimax-strategy and because he
reacts aversely towards the uncertainty created by the lack of possibility to forecast
a non-rational opponent’s play.

4. Choquet-Nash Equilibria in Normal Form Games

In this section we go through a series of examples to illustrate the properties of
Choquet-Nash equilibria (henceforth CNE) in normal form games. We will only
consider two-player games.

4.1. Strict Dominance

Consider the following version of the prisoner’s dilemma:

L R

T 2,2 0,3
B 3,0 1,1

Both players have a strictly dominant strategy. Consequently, it does not matter
to them whether the opponent is rational or not, a strictly dominant strategy is
the only rational one. (B,R) is also the unique CNE, because a strictly dominant
strategy is of course also a minimax strategy.

4.2. Iterated Strict Dominance

Consider the following game, (similar to Fudenberg and Tirole (1991, p.6)):

L R

T 1,1 −99,0
B 0,1 0,0

In this game playing L is a strictly dominant strategy for player 2 (who chooses
columns). Consequently, iterated strict dominance yields T as the unique rational
strategy for player 1, if rationality is mutual knowledge. In particular, (T,L) is the
unique equilibrium and the unique rationalizable strategy profile of the game.

Still, (T,L) is not a plausible profile. For T to make sense for player 1 he must
be convinced that player 2 is rational. However, player 2 does not gain that much
from playing L instead of R. In addition, player 1 does not gain much from playing



T instead of B if player 2 plays L, but he looses very much when he does so if player
2 plays R.

The CNE in this game depends on ε. In every CNE, player 2 will play L because
this is his strictly dominant strategy. However, if ε is not sufficiently low, player 1
will play B. Note that this shows that non-rationalizable strategies may be CNE-
strategies.

4.3. Weak Dominance

L R

T 2,2 0,2
B 2,0 1,1

This game has two Nash equilibria. (T,L) is the payoff-dominant Nash equilib-
rium, but it involves weakly dominated strategies. (B,R) is a Nash equilibrium in
weakly dominant strategies but it is payoff-dominated.

The literature on cautious rationalizability maintains that it is not rational to
play weakly dominated strategies. This is formalized through the concept of caution,
according to which a player’s belief should assign some positive probability to every
possible strategy of the opponent. This solution concept thus excludes the Nash
equilibrium (T,L).

In contrast, (T,L) is a CNE if ε = 0. Thus it is not a priori nonrational to
play the payoff dominant equilibrium strategies in weakly dominated strategies if
rationality is mutual knowledge. However, (B,R) is the only CNE if ε > 0. In this
sense CNE replaces the ad hoc concept of caution.

4.4. Payoff Dominance

L R

T 2,2 0,0
B 0,0 1,1

This game has three Nash equilibria, (T,L), (B,R) and a Nash equilibrium in
mixed strategies. As can be checked easily, the mixed Nash equilibrium strategies
are also the players’ minimax strategies. It follows that the mixed Nash equilibrium
is also a CNE independently of the degree ε of mutual knowledge of rationality, thus
providing a rationale for mixed equilibria.16 Further, for every ε for which (B,R) is
a CNE (T,L) is a CNE as well. The opposite direction is not true, i.e. (T,L) is a
CNE for a lower degree of mutual knowledge of rationality than (B,R). In this sense
CNE provides some rationale for payoff dominance.

4.5. Risk Dominance

L R

T 9,9 0,7
B 7,0 8,8

16 However, this only holds for mixed equilibria in minimax strategies, not for all mixed
equilibria.



In this game the payoff dominant equilibrium (T,L) is risk dominated by the
equilibrium (B,R). Here, for every ε for which (T,L) is a CNE, (B,R) is a CNE as
well. The opposite direction is not true, i.e. (B,R) is a CNE for a lower degree of
mutual knowledge of rationality than (T,L). In this sense CNE provides a rationale
for risk dominance.

The last two examples show CNE allows a formal argument whether payoff or
risk dominance should have precedence.

4.6. Battle of the Sexes

Consider the following Battle-of-the-Sexes game:

L R

T 3,1 0,0
B 0,0 1,3

This game has 3 Nash equilibria, (T,L), (B,R) and p∗ = 3
4 , q∗ = 1

4 . (T,L)
and (B,R) are also Choquet-Nash equilibria for ε < 1

4 . The mixed strategy Nash
equilibrium, however, is only a Choquet equilibrium for ε = 0. Thus, Choquet-Nash
equilibria represent a formal approach to distinguish between the plausibility of
mixed equilibria according to the specific game in question.

4.7. Zero-Sum Games

Consider the following zero-sum game (”Matching Pennies”):

L R

T 1,−1 −1,1
B −1,1 1,−1

This game has a unique Nash equilibrium in mixed strategies p∗ = Prob(T ) = 1
2 ,

q∗ = Prob(L) = 1
2 . Note that this is also the unique CNE. This is easy to see:

Since it is already rational to play the minimax-strategy against rational opponents
and since minimaxing is also rational against non-rational opponents it is overall
rational. Note that this holds for all zero-sum games.

Remember, however, that all strategy profiles are rationalizable. Note that this
shows that Choquet-Nash equilibria differ from rationalizability.

4.8. Duopoly

Consider the Cournot duopoly, i.e. the quantity-setting game between two identi-
cal profit-maximizing firms. It is clear that the minimax-strategies will in general
depend on the specification of both the demand and the cost functions. As a con-
sequence, the CNE will also depend on these specifications.

In contrast, consider the Bertrand duopoly, i.e. the price-setting game. Here the
competitive prices are both equilibrium prices and minimax prices. As a result, the
CNE coincides with the competitive equilibrium, independent of the specification
of the demand and cost functions.

This finding reinforces the Bertrand paradox that these two models of duopolis-
tic competition do not lead to the same outcome, given that the specification of



the strategies is the modeller’s choice. It lends support to the – counterintuitive –
hypothesis that the Bertrand model is the more robust model of duopolistic com-
petition.

5. Extensive-Form Games

In normal forms Choquet-Nash equilibrium generalizes Nash equilibrium, taking
potential lack of mutual knowledge of rationality into account. Rationality may
indeed be mutual knowledge however, in which case the analysis does not add
anything new.

This changes dramatically in extensive form games. On the one hand, mutual
knowledge of rationality may well be an assumption to start with, but it cannot be
maintained after a player deviated from whatever action is defined as rational. Lack
of mutual knowledge of rationality thus arises endogenously in extensive forms17.
On the other hand, a rational strategy must certainly not give a rational player
an incentive to pretend not to be rational. As a consequence, in extensive forms
Choquet-Nash equilibria will not be just a generalization of equilibrium analysis,
but differ substantially from equilibrium refinements.

In order to define the analogue of Choquet-Nash equilibrium for extensive forms
we must first specify how rational players update their beliefs about the opponents
after observing their actions. Since beliefs are not necessarily additive, Bayes’ rule
does not apply.

5.1. Updating Non-Additive Beliefs

Capacities can be updated according to the Dempster-Shafer rule ? which general-
izes Bayes’ rule.

Definition 2. Let v be a capacity v : Σ → [0, 1]. Let A,B ∈ Σ. The posterior
capacity according to the Dempster-Shafer rule is given by:

v(A|B) :=
v(A∪B)−v(B)

1−v(B) .

There are no probability-zero-events unless rationality was mutual knowledge at
the beginning of the game, i.e. ε0 = 0. In all other cases the Dempster-Shafer rule
yields a well-defined posterior capacity.18. But even if ε0 = 0 a probability-zero-
event arises only after a non-rational action, because, by definition, rational players
should play rationally, and all players were assumed to be rational. Consequently,
even in this case it can be argued that a player’s non-rationality is revealed.

Applying the Dempster-Shafer rule to a prior ε that the opponent is non-rational
and the rational opponent chooses a certain action A, with probability σ gives the
posterior ε′ in the following way:19

17 Selten (1975) argues explicitly that we must define the rational solution as a limit-
ing form of bounded rationality. But of course trembles do not capture the essence of
bounded rationality, nor can the assumption be justified that trembles are independent.

18 See Gilboa and Schmeidler (1993) for more on updating ambiguous beliefs.
19 For details see appendix 2.



1− ε′ = v(R|A) =
(1− ε)σ

1− (1− ε)(1− σ)
.

5.2. Perfect Choquet Equilibrium

Consider now a finite two-player game in extensive form. In order to extend our
equilibrium concept we add the Dempster-Shafer updating rule as a perfection re-
quirement.

Assumption 5: (Dempster-Shafer Rule)
Rational players use the Dempster-Shafer rule to update their belief about the oppo-
nents’ rationality whenever this is possible, i.e. as long as an observed play did not
have capacity zero.

Under Assumptions 1 – 5 a perfect Choquet equilibrium is again a strategy
profile from which a rational, uncertainty-averse player will not deviate.

Definition 3. Let Γ be a 2-player game in extensive form20 with perfect recall. Let
the finite pure strategy set of player i at information set hi be Si,hi

and his utility
functions ui. Denote (local) mixed strategies at information set hi by σi,hi ∈ Σi,hi .
Player i’s behaviour strategy in Γ is σi = (σi,hi

)hi∈Hi
, where Hi denotes the set of

all information sets of player i. A strategy profile (σ∗1 , σ∗2) ∈ Σ1 × Σ2 is a perfect
Choquet equilibrium iff

σ∗i,hi
∈ arg max

σi,hi
∈Σi,h

[(1− εhi)ui(σi,hi , σ
∗
i,h′

i
, σ∗j ) + εhi) min

σj∈Σj

ui(σi,hi , σ
∗
i,h′

i
, σj)],

for both players i and j and for all information sets hi and h′i, h′i 6= hi. Here νhi is
player i’s posterior belief that the opponent is rational, given that the information
set hi has been reached. This belief comes from a common prior, updated by the
Dempster-Shafer rule:

1− εhi =
(1− εh̃i

)σ∗(hi)
1− (1− εh̃i

) · [1− σ∗(hi)]
.

Here, h̃i is player i’s information set that immediately precedes hi and σ∗(h) is the
probability that the information set hi is reached by the equilibrium strategies. The
common prior assumption means that by default ε∅ = ε.

The intended interpretation is this: In equilibrium, a rational player must not
have an incentive to deviate, and this must hold at every information set. So, at
each information set, an equilibrium strategy must maximise his expected utility
given his beliefs. A rational player will have two kinds of beliefs. The first belief
specifies at which node in the information set the player thinks he is if his opponent
is rational, i.e. the belief specifies what a rational opponent does. In equilibrium,
this belief must be consistent with the player’s own play at different information
sets σi,h′

i
, and the rational opponent’s equilibrium strategies σ∗j . Since the updating

rule pins down rational beliefs at every information set, and since in equilibrium

20 For a formal definition see Selten (1975) or Kreps and Wilson (1982). The restriction to
2 players is for simplicity only.



beliefs are correct, this first belief needn’t be made explicit. The second belief νhi

specifies whether the opponent is regarded as rational or not. This belief results
from the belief whether the opponent is rational at the preceding information set
of that player and the opponent’s rational strategies, combined by the Dempster-
Shafer rule. Players start with a common prior and are uncertainty averse, so that
they evaluate a strategy with its security level when facing a non-rational opponent.

Note that in a perfect Choquet equilibrium the equilibrium path is supported
by a different solution concept, i.e. minimax play, off the equilibrium path. Conse-
quently, the solution concept does not suffer from the logical deficiency of subgame
perfection, where the equilibrium path is supported by equilibrium reasoning off the
equilibrium path.

6. Perfect Choquet Equilibria in Extensive Form Games

In this section we discuss examples of extensive games to clarify the concept of a
perfect Choquet equilibrium (henceforth PCE).

6.1. Iterated Strict Dominance with Outside Option

Consider the following game:

Player 2tt U

D

(
0
2

)

t
L R

T
B

(
1 , 1
0 , 1

−99 , 0
0 , 0

)

This game is similar to the iterated-strict-dominance normal form game dis-
cussed in section 5, except that player 2 now has a strictly dominant outside option.
Clearly, player 1 can anticipate that his choice between T and B will only matter
after a non-rational choice by player 2, in which case T is very risky.

Since U is a strictly dominant strategy for player 2, it is the only PCE-strategy
for player 2. However, it follows that player 1, after observing D, can conclude that
his opponent is non-rational.21 If player 1 believes, however, that the opponent is
non-rational he will play B, because player 1 is uncertainty-averse. It follows that
the only PCE in this game, independent of the degree of mutual knowledge of
rationality ε, is (U,B,L).

6.2. The Centipede Game

Consider the following version of the Centipede game:

21 If ε = 0, D is a capacity zero event. As argued earlier, this event also reveals the
player’s non-rationality. This can be formalized by the Dempster-Shafer rule and a limit
argument for ε −→ 0.



t t t t
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D D D

(
1
3
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4
2

) (
3
5

)

(
6
4

)

Clearly, the only PCE-strategy for player 2 at his last information node is D,
because this is strictly dominant and his beliefs about player 1 do not matter.
Consider now player 1. If he plays D, he gets 4, if he plays A he will either meet
a rational or a non-rational opponent. The rational opponent will play D. Player 1
does not know what a non-rational player 2 will do, but he cannot exclude that a
nonrational player 2 will play D and player 1 is uncertainty averse. Consequently,
the only PCE strategy for player 1 is D.

6.3. The Chain-Store stage game:

The following game is the stage game of a Chain-Store game. Here we are interested
in the one-shot version only.

Player 1tt U

D

(
1
3

)

t Player 2
¡

¡
¡

¡
¡

@
@

@
@

@t t

L R

(
0
0

) (
2
1

)

This game has two Nash equilibria, (U,L) and (D,R). Only (D,R) is a subgame-
perfect equilibrium.

In every PCE, player 2 will play R, because R maximises his utility and it does
not matter whether player 1 is rational or not. Player 2 is in a decision situation,
not in a game situation. For player 1 the PCE will depend on his belief, i.e. the
prior probability ε, whether the opponent is rational or not. If player 1 plays U with
probability p, then his expected payoff will be 1 ·p from U and (1−p) · [(1− ε)2+ ε0]
from D, because with probability 1− ε player 2 is rational and play his equilibrium
strategy R, with probability ε player 2 will not be rational, and because player 1



is uncertainty averse he cannot exclude that the resulting payoff is 0. The overall
payoff from p is thus 2− p− 2ε(1− p), so if ε > 1

2 the PCE strategy for player 1 is
U, if ε < 1

2 the PCE strategy for player 1 is D.

7. Conclusion

Game Theory assumes that rationality is mutual knowledge. Yet this assumption
is empirically questionable, and it cannot be maintained in extensive games after
a deviation from rational play. This raises the normative question what a rational
strategy is if rationality may, but need not be mutual knowledge.

We drew a distinction between rational and non-rational players and modelled
rational players as rational in the sense of Choquet expected utility theory. This
means that rational players maximise expected utility given their beliefs, but that
these beliefs need not be additive. As a consequence rational play depends on play-
ers’ attitude towards uncertainty.

The assumptions that players are uncertainty averse and that there is no theory
of non-rationality that restricts beliefs about non-rational play gives rise to the con-
cept of Choquet-Nash equilibrium that solves the infinite regress of beliefs in normal
form games. A Choquet-Nash equilibrium exists for every common prior probabil-
ity of mutual rationality. This solution concept generalizes Nash equilibrium, but
differs both from rationalizability and from the Kreps et al. (1982) approach, and
sheds light on equilibrium and dominance arguments in analyzing normal forms.

The assumption that players use the Dempster-Shafer rule to update their non-
additive beliefs in extensive form games and that players conclude from probability
zero events that they face a non-rational opponent gives rise to the concept of
perfect Choquet equilibrium in extensive forms. This solution concepts avoids the
logical difficulty associated with Nash equilibrium refinements in the sense that no
equilibrium arguments are used off the equilibrium path. Perfect Choquet equilibria
differ from equilibrium refinements.

This work can be extended in several ways. First, the foundations of this solu-
tion concept and its mathematical structure need further study. In particular, the
solution concept can be refined if more restrictions are imposed on beliefs about non-
rational play. Secondly, the solution concepts can be more systematically applied to
classes of normal and extensive form games. This also raises the issue of economic
applications, for instance in mechanism design. Finally, the solution concept can be
taken as a reference point and compared with experimental evidence.
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Appendix

1. First Appendix

This appendix summarizes the concept of rationality as axiomatized by Savage (1954).
The basic elements of this theory are an infinite set Ω of states, ω ∈ Ω, an

σ-algebra A of events, E ∈ A ⊆ 2Ω , and a set Z of outcomes, z ∈ Z. An act
f , f ∈ F , is a measurable function that associates an outcome with each state,
formally: f : Ω → Z, f−1(z) ∈ A,∀z ∈ Z. The player has a preference ordering º
over acts, i.e. º ⊆ F ×F .

Savage’s Theorem says that if this preference relation satisfies the following seven
postulates then players act as if they possess a utility function over consequences and
beliefs given by a probability measure over states, and players maximise subjective
expected utility.

The first postulate (P1) says that the preference relation is complete and tran-
sitive, i.e. a complete preorder. Formally: f º f ′ ∨ f ¹ f ′, ∀f, f ′ ∈ F and
f º f ′ ∧ f ′ º f ′′ ⇒ f º f ′′, ∀f, f ′, f ′′ ∈ F .

From the preference relation over acts three more preference relations can be
derived. First, we can identify outcomes with those acts that lead with certainty to
that outcome, and thus derive a preference relation over outcomes, also denoted by
º. Formally:22 º ⊆ Z × Z, with z º z′ iff (if and only if) f =Ω z, f ′ =Ω z′ and
f º f ′. It is clear that (P1) implies that this is also a complete preorder.

Second, we can define a qualitative probability relation ≥ over events: Consider
two acts f and f ′ and two outcomes z and z′ with z º z′, such that f leads to
outcome z if event E obtains and to z′ otherwise and f ′ leads to the outcome z if
E′ obtains and to z′ otherwise. If the player prefers f to f ′ it must be because he
believes that E is more probable than E′. Formally:23 ≥ ⊆ A×A, with E ≥ E′ iff
f = (zE , z′

E
), f ′ = (zE′ , z

′
E′

) and f º f ′, z º z′.

The second postulate (P2) demands that this qualitative probability relation is
well-defined, i.e. that the relation between events does not depend on the particular
acts chosen to define it. Whenever two acts differ on some event, then the preference
between every other two acts that differ only on that event and agree with the first
two acts there, must be the same. This is the sure-thing principle. Formally: if
f =E g, f ′ =E g′, f ′ =E f and g′ =E g then f º g ⇐⇒ f ′ º g′, ∀E ∈ A and
∀f, f ′, g, g′ ∈ F .

The third preference relation that can be derived from preferences between acts
is a relation over acts conditional on events, denoted by ºE . An act is preferred to
another conditionally on event E iff every other two acts, that agree with the first
two acts on that event and with each other on its complement, are preferred in the
same way. Formally: f ºE g iff ∀f ′, g′ ∈ F : if f ′ =E g′ then f ′ =E f, g′ =E g ⇐⇒
f ′ º g′.

22 We write f =E z for f(ω) = z, ∀ω ∈ E, for f ∈ F and z ∈ Z.

23 E is the complement of E and we write (zE , z′
E

) for f(ω) =

{
z , if ω ∈ E

z′ , if ω ∈ E
.



The third postulate (P3) says that conditional preference is consistent with the
relation over outcomes. Formally: if E is non-null24 and if f =E z, f ′ =E z′ then
f ºE f ′ ⇐⇒ x º y, ∀f, f ′ ∈ F , ∀z, z′ ∈ Z and ∀E ∈ A.

The fourth postulate (P4) demands consistency between the qualitative proba-
bility relation and the relation between outcomes. Formally: if x Â y, x′ Â y′ then
(xE , yE) º (xE′ , yE′) ⇐⇒ (x′E , y′

E
) º (x′E′ , y

′
E′

), ∀E, E′ ∈ A and ∀x, x′, y, y′ ∈ Z.
The fifth postulate (P5) demands that the relation between outcomes is non-

trivial, i.e. that not all outcomes are equivalent. Formally: ∃z, z′ ∈ Z : z Â z′.
The sixth postulate (P6) demands, roughly, that no state is an atom, i.e. that

there is always a partition of the state space such that it is possible for each cell of
that partition to substitute an arbitrary outcome for the act on that cell without
altering the preference between any two acts. Formally: whenever f Â g then there
is a finite partition (Ωi)i=1,...,n of Ω such that ∀Ωi : if f ′ =Ωi

x, f ′ =Ωi
f then

f ′ Â g and if g′ =Ωi x, g′ =Ωi
g then f Â g′, ∀f, g ∈ F and ∀x ∈ Z.

The seventh and final postulate (P7) allows the extension of simple, i.e. finitely-
valued, acts to general acts. Formally: if ∀ω ∈ E : f º f ′(ω) then f ºE f ′,
∀f, f ′ ∈ F , ∀E ∈ A, and analogously for f ¹ f ′(ω).

Savage’s Theorem can now be stated formally:

Theorem 4 (Savage, 1954). If º ⊆ F ×F satisfies (P1) – (P7) then there exist
a utility function u : Z → IR, bounded and cardinal,25 and a probability measure
p : A → [0, 1], unique, non-atomic and finitely additive, such that f º f ′ ⇐⇒∫

u(f)dp ≥ ∫
u(f ′)dp.

2. Second Appendix
Applying the Dempster-Shafer rule to a prior ε that the opponent is non-rational
and the rational opponent chooses a certain action A, with probability σ gives the
posterior ε′ in the following way.

Formally, all given data are additive capacities:

v(R= player is rational) = 1− ε,

v(R= player is non-rational) = ε,

v(A= rational action|R) = σ,

v(A= non-rational action|R) = 1− σ,

If non-rational play is unrestricted, the associated capacity of a non-rational
player is given by

v(A|R) = 0,

v(A|R) = 0.

According to the Dempster-Shafer rule the posterior is given by

v(R|A) =
v(R ∪A)− v(A)

1− v(A)
24 An event E is null iff f ºE f ′,∀f, f ′, i.e. all acts are indifferent conditional on E.
25 i.e. unique up to affine transformations



and since the opponent is either rational or not we must have

v(R|A) + v(R|A) = 1.

Since

v(A|R) = 0 =
v(A ∪R)− v(R)

1− v(R)
=

v(A ∪R)− (1− ε)
ε

we have for ε 6= 0:
v(A ∪R) = 1− ε.

Similarly:

v(A|R) = 1− σ =
v(A ∪R)− v(R)

1− v(R)
=

v(A ∪R)− (ε)
1− ε

,

so that for ε 6= 1:

v(A ∪R) = (1− ε) · (1− σ) + ε = 1− σ(1− ε).

Now

v(R|A) + v(R|A) = 1

⇐⇒ v(R ∪A)− v(A)
1− v(A)

+
v(R ∪A)− v(A)

1− v(A)
= 1

⇐⇒ v(R ∪A) + v(R ∪A) = 1 + v(A),

so that substituting gives
v(A) = (1− ε)(1− σ).

Consequently, the Dempster-Shafer rule becomes

v(R|A) =
(1− ε)− (1− ε)(1− σ)

1− (1− ε)(1− σ)
=

(1− ε)σ
1− (1− ε)(1− σ)

.
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