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Wall Street Occupations

ULF AXELSON and PHILIP BOND∗

ABSTRACT

Many finance jobs entail the risk of large losses, and hard-to-monitor effort. We analyze the

equilibrium consequences of these features in a model with optimal dynamic contracting. We

show that finance jobs feature high compensation, up-or-out promotion and long work hours,

and are more attractive than other jobs. Moral hazard problems are exacerbated in booms,

even though pay increases. Employees whose talent would be more valuable elsewhere can be

lured into finance jobs, while the most talented employees might be unable to land these jobs

because they are “too hard to manage.”
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In the aftermath of the 2007 financial crisis, there has been much debate about the level and

structure of pay in the financial sector. Why are financial sector employees paid so much, and why

do they seem to be especially irresponsible in booms, even though their pay is higher than usual?

In this paper, we build a parsimonious model that addresses these questions and also explains other

distinguishing characteristics of financial sector careers—the extreme work hours, high reliance on

bonuses, and up-or-out career structures. We further explain entry and exit patterns for financial

sector employees.

There is no question that financial sector pay is extremely high. Bell and Van Reenen (2014)

report a 2010 average compensation level of £1,905,000 for a group of 1,408 senior bankers in the

UK, and Kaplan and Rauh (2010) show that a significant proportion of incomes from the very

top of the U.S. income distribution stem from the financial sector. Moving beyond people at the

very top of the income distribution, Oyer (2008) and Philippon and Reshef (2012) provide evidence

that the financial sector offers more compensation than other industries, even after controlling for

individual characteristics;1 in particular, Oyer estimates that the lifetime pay premium enjoyed by

an MBA graduate in the financial sector relative to other sectors (such as consulting) is $1.5 to

$5M in present value terms.

One might conjecture that such generous pay is compensation for the notoriously tough and

stressful work conditions in many financial sector jobs.2 Michel (2011) reports that investment

banking employees work up to 120 hours per week, while Bertrand, Goldin, and Katz (2010) report

average hours worked in investment banking at 73.6 hours per week. In addition, pay is highly

variable, job security is low, and firms rely heavily on up-or-out career structures.3 It is not

surprising that jobs in high-risk industries such as mining and oil production have high pay, and

maybe financial sector jobs are similar. However, in finance the onerous work conditions are chosen

by the employers, and are not unavoidable consequences of the production technology as in, for

example, mining. Furthermore, Oyer’s estimates of the lifetime pay premium when entering finance

explicitly accounts for the risk of exiting the sector.4 Consequently, instead of explaining high pay,

the unusual work conditions pose puzzles of their own.

Oyer also provides evidence for a further characteristic of financial sector jobs, namely, that if

an individual fails to land a job in the financial sector upon graduation solely because Wall Street
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is down, he is unlikely to enter the sector later in life when Wall Street has recovered. Given the

attractive compensation of financial sector jobs, this pattern of entry is puzzling, since one might

expect people to try very hard to gain entry into the sector even later in their careers. In other

words, these labor markets appear to be dynamically segregated, in that employees can only enter

the high-paying sector when young, so that the state of the economy upon graduation has life-long

implications.

In this paper, we build a model that parsimoniously explains these characteristics of financial

sector jobs. Our model also predicts that in the time series, high financial sector compensation

(especially bonuses) is correlated with more reckless behavior by financial sector employees. This

prediction is consistent with many accounts of the run-up to the financial crisis.

Our starting point is to observe that a combination of two characteristics seems especially

important in finance. First, for many finance jobs the exact effort of an employee is hard to

monitor, leading to a moral hazard problem. Second, one employee may oversee a large amount

of capital, making it important that employees take sufficient care.5 Together, these two features

imply that moral hazard problems in financial sector jobs are likely to be large. If employees

worked for only one period, this moral hazard problem would induce firms to pay financial sector

employees large bonuses. As in the efficiency wage literature (see Shapiro and Stiglitz (1984)), in

equilibrium these workers would then enjoy strictly higher utility than employees in other sectors

(these statements are formally established in Section IV).

In reality, of course, employees work for many periods. Our key theoretical contribution is to

analyze how firms structure dynamic contracts in response to the high rents that may have to

be given out on high moral hazard tasks. In a dynamic setting, a natural conjecture is that large

moral hazard problems in the financial sector would lead to an equilibrium career structure in which

everyone is initially assigned to low moral hazard tasks. Employees who succeed on these tasks

earn bonuses—possibly in the form of deferred compensation—which they can subsequently use as

performance bonds in higher moral hazard tasks. In this conjectured equilibrium, all employees

are on the same career track when they first enter the labor force, they have the same expected

compensation, and they work the same amount. But these predictions are inconsistent with the

empirical observation that financial sector jobs are notably different from other jobs, even at the
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start of an employee’s career. Hence, explaining why this type of equilibrium does not arise is the

key step in our analysis.

We show that when moral hazard problems are sufficiently large, it is more profitable for a firm

to assign a young employee to the high moral hazard task immediately, rather than wait until he

has succeeded on a low moral hazard task. The reason is that firms must pay large bonuses to

experienced employees assigned to the high moral hazard task, and these bonuses incentivize effort

earlier in employees’ careers, generating serial correlation in effort. The most profitable way for a

firm to take advantage of this serial correlation is to assign employees to the high moral hazard

task when young. So these employees work very hard, even when young, and face up-or-out career

structures. Moreover, their expected compensation is higher than that of other employees assigned

to the low moral hazard task throughout their careers, that is, the labor market is dynamically

segregated. These predictions are consistent with the observed structure of financial sector jobs.

The fact that some employees earn large rents relative to other equally talented individuals raises

the question of why this gap is not eliminated through entry by new firms, expansion of existing

firms, or the replacement of highly compensated employees by less compensated employees poached

from elsewhere. As in the efficiency wage literature, in our model incentive problems prevent firms

from replacing well-paid employees with cheaper ones. However, unlike in the efficiency wage

literature, we do not rule out the possibility of new entry or expansion, both of which seem relevant

in the financial sector, where one sees both active entry by new hedge funds and very large (and

growing) banks. Instead, the equilibrating force in our model is that output prices (returns) in the

financial sector fall to the point that further entry and/or expansion is not worthwhile. At this

break-even return, the supply of financial sector “output” is infinitely elastic. This feature of our

model is important, because it implies that prices are determined solely by the contracting problem

and not by the interaction of demand and supply. This in turn implies that returns in finance

are relatively insensitive to aggregate shocks. Instead, negative aggregate shocks are absorbed

largely by reductions in hiring rather than by firing experienced employees,6 which in combination

with dynamic segregation is why aggregate conditions when a worker enters the labor market have

lifelong effects (Oyer (2008)).

The equilibrium response of returns also explains why large bonuses and reckless behavior are
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observed together in our model. In our framework, both large bonuses and low effort are an

equilibrium response to good economic conditions. A positive aggregate shock has the standard

positive effect on the return to nonfinance activities. Because the nonfinance sector serves as an

outside option for failed finance workers, it becomes harder to incentivize finance workers in good

times. Furthermore, since there is no direct positive effect on the return to finance, it does not pay

for firms to increase bonuses to the point where finance employees take the same care as they do in

busts. The result is that, even though bonuses are increased somewhat, finance employees become

more reckless. Put differently, in good economic conditions bankers are confident that they will

“land on their feet.”This prediction is consistent with countercyclical investment performance in

both the buyout (Kaplan and Stein (1993)) and the venture capital markets (Gompers and Lerner

(2000)). It is also consistent with claims of irresponsible behavior in financial sector booms.

As an extension, we also analyze how observable differences in talent affect job placement.

Our model naturally generates two commonly noted forms of talent misallocation. The first one,

which we term “talent lured,” is the observation that jobs such as investment banking and money

management attract talented employees whose skills might be deployed in a socially more valuable

way were they to become, for example, engineers or PhDs. In our model, this type of misallocation

follows immediately from the fact that the rent earned by financial sector employees implies that

financial firms can outbid other employers for employees even if their talent is wasted in finance.

The second phenomenon, which we term “talent scorned,” is the opposite—jobs that deliver large

rents may reject the most talented applicants on the grounds that they are “difficult” or “hard

to manage.” In our model, this effect arises because talented employees, when fired, have higher

outside opportunities.

As noted above, our paper is related to and builds on the efficiency wage literature. Relative

to this literature, we show that dispersion of agents’ utility can arise in equilibrium even when

dynamic employment contracts are written optimally, thereby addressing the so-called “bonding

critique” of the efficiency wage literature,7 and that the dynamic contracts used in equilibrium

match (at least qualitatively) many features of the employment conditions observed in the financial

sector.

Several of the contract characteristics we derive for high moral hazard tasks have antecedents
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in the partial-equilibrium dynamic contracting literature. In particular, contracts exhibit memory,

as in Rogerson (1985),8 backloading of pay, as in Lazear (1981), or more recently, Edmans et al.

(2012), and an up-or-out flavor, as in Spear and Wang (2005) and Biais et al. (2010). Relative to

this literature, our analysis sheds light on the optimal sequencing of different tasks. In particular,

we characterize conditions under which employees are best assigned to a high moral hazard task

at the start of their careers. Separately, we also differ from this literature in that we embed the

contracting problem in an equilibrium framework, which we use to characterize the distribution of

contracts in the economy.

Although our analysis implies that financial sector compensation is negatively correlated with

effort in the time series, it is worth reiterating that employment contracts are optimally chosen

by shareholders in our paper. In this, our paper is very different from criticisms of executive pay

advanced by, for example, Bebchuk and Fried (2004). Also, our model does not imply that the

financial sector as a whole is too large, as suggested by, for example, Murphy, Shleifer, and Vishny

(1991), or more recently Philippon (2010), Glode, Green, and Lowery (2012), Bolton, Santos, and

Scheinkman (2014), or Biais, Rochet, and Woolley (2014). In particular, the last of these papers

shares with us an analysis of rents arising from moral hazard problems, and demonstrates how

these rents may grow during periods without a crisis (due to Bayesian updating about the true

productivity of the sector). In Biais, Rochet, and Woolley (2014), employees differ in unobservable

skill, with the consequence that, in equilibrium, employment in the financial sector is larger than

in the first-best and the marginal manager shirks. Instead, we abstract from unobservable skill

differences and instead focus on the dynamic implications of moral hazard problems, which are

absent in Biais, Rochet, and Woolley (2014) because of their assumption that agents work just one

period. In a contemporaneous paper, Myerson (2012) also explores the effect of moral hazard on

financial sector pay.

Finally, in a very interesting and related recent paper, Tervio (2009) explains high income in

a model that builds on talent discovery rather than incentive problems. In his setting, employee

rents arise because young, untried employees who get a chance to work in an industry where

talent is important enjoy a free option: if they turn out to be talented, competition between firms

drives up their compensation, while if not, they work in the normal sector of the economy. Firms
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cannot charge for this option when employees have limited wealth. Hence, entry into the sector

is limited, and compensation for “proved” talent very high. Because Tervio’s main focus is the

wage and talent distribution of a sector rather than career dynamics, he does not attempt to

explain dynamic segregation; instead dynamic segregation is an assumption in Tervio’s analysis. In

contrast, endogenizing dynamic segregation is at the heart of our analysis. In terms of applications,

while we find his exogenous dynamic segregation assumption realistic for the entertainment business

(which is his main example), this assumption seems less realistic for many professional jobs such as

banking, where the skills needed for success are less sector-specific. In contrast, incentive problems

are of central importance in the financial sector, and are correspondingly central to our analysis.

The paper proceeds as follows. Section I describes the model. Section II specifies the contracting

problem. Section III derives the frictionless benchmark, Section IV analyzes the one-period version

of our model, while Section V derives the core results of our paper in a dynamic setting. Section

VI studies the effects of aggregate shocks. Section VII introduces observable talent differences.

Section VIII addresses several remaining issues, including the possible application of our model to

explain the time series of pay in finance. Section IX concludes.

I. Model

We need two key elements in the model: employees who work for multiple periods, and tasks

that vary in their degree of moral hazard problems. There is a countably infinite number of periods,

and each period a measure one of young employees enter the labor market, work for two periods,

and then exit. Except for age, employees are identical—in particular, they have the same skill.

(Section VII analyzes an extension in which skills differ across employees.) Employees are risk

neutral, start out penniless, and have limited liability. Employees are employed by risk-neutral

firms that maximize profits and have “deep pockets,” so that limited liability constraints never

bind for firms. All firms have access to the same production technology, and are price-takers.

We first describe our model in terms of our leading financial sector example, and then discuss

other interpretations below. There are two tasks, labeled H and L, which differ in the amount of

the firm’s resources they require. Each employee is assigned to one task i ∈ {H,L} per period, but

firms are free to operate in both tasks and to switch employees across tasks in different periods.
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In both tasks, the employee exerts costly unobservable effort that increases the success probability

p of the task he is assigned to (for example, increases the probability of a successful trade), where

the private cost of effort γ (p) is strictly increasing and strictly convex, with γ (0) = γ′ (0) = 0 and

γ′ (p) =∞ for some upper bound p ≤ 1 on the success probability. We assume that the effort cost

γ (·) satisfies Assumption 1 below, where part (i) ensures that a firm’s marginal cost of inducing

effort is increasing in the effort level, and part (ii) ensures that old employees exert strictly positive

effort, even given the agency problem.9

ASSUMPTION 1: (i) pγ
′′′(p)
γ′′(p) > −1, and (ii) limp→0 γ

′′ (p) <∞.

Task H is a high-stakes task, in that it requires firm resources (“capital”) kH > 0. Our leading

example is that task H corresponds to asset management or trading acitivities, where an employee

is responsible for finding good investment opportunities for the asset base kH , as in hedge funds,

private equity funds, or mutual funds. It could also represent trading on an investment bank’s

own account, or complicated long-short “market-making” trades. If the trade fails, the firm loses

kH , while if the trade succeeds, the firm’s profit is gH − kH , where gH is the gross payoff from the

trade. Treating the amount of capital per employee kH as an exogenous parameter is obviously a

simplification; we discuss likely implications of endogenizing the scale in Section VIII. We think of

kH as representing an upper bound on the amount of capital that can be handled by one employee,

determined by either regulatory or technological forces. It is easy to show that the firm would

always operate at this upper bound as long as the cost of effort and the return on a successful

trade are independent of the amount of capital an employee oversees below this maximum amount.

However, as we formalize below, we assume that the return gH/kH is decreasing in the economy-wide

resources devoted to H trades—as a trading strategy becomes “crowded,” its equilibrium return

goes down. This assumption of aggregate decreasing returns to scale is consistent with empirical

evidence from the mutual fund industry (Pastor, Stambaugh, and Taylor (2014)), the private equity

industry (Kaplan and Stromberg (2009)), and the venture capital industry (Gompers and Lerner

(2000)).

The amount kH that an employee could potentially lose is key in our model and our main results

are for kH large, a situation we think arises naturally in the financial sector. For example, Kaplan
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and Rauh (2010) estimate that the average employee in U.S. hedge funds oversaw approximately

$100M of funds in 2004, and the average partner in U.S. private equity firms oversaw approximately

$430M.10 To address concerns that these large quantities are limited to only a small segment of the

financial sector, we next consider the following back-of-the envelope calculation. The Bureau of

Labor Statistics measures total employment in the U.S. financial sector in 2012 to be approximately

8 million, while the Flow of Funds indicate that U.S. households hold, in aggregate, approximately

$55 trillion in financial assets. Hence, in some sense, the average financial sector employee is

responsible for approximately $7M of financial assets. Although it is not necessarily the case that

all this capital is lost when the employee makes a mistake, as we assume in the model, the potential

for value destruction per employee is still very large.

Moving beyond our trading interpretation, there are many other high-stakes tasks in finance,

such as M&A advising or conducting an IPO, that affect the entire value of large companies and

fit within our framework. Notwithstanding, for the most part we use the language of the asset

management/trading interpretation, largely because in this case kH is related to the empirically

observable quantity of funds under management. Likewise, we often refer to kH as capital.

In contrast to task H, task L is a low-stakes task, in that it requires few resources (beyond the

employee’s labor); for simplicity, we assume that it requires no resources, kL = 0. Task L can be

interpreted as a nonfinancial sector task or a “lower level” financial sector task such as preparing

analyst recommendations. If task L fails, the firm loses kL = 0, while if it succeeds, the firm’s

payoff is gL. (Note that an alternative and equivalent specification of task L is that it is a safe

investment, where capital kL generates gross firm payoffs of gL+kL and kL after success and failure,

respectively.)

As we describe below, competition among firms means that, in equilibrium, the payoffs gH and

gL must be such that profits net of employee compensation are zero.

Conditional on task assignments, the unobservability of an employee’s choice of effort generates

a standard moral hazard problem.11 While a number of studies (see, for example, the survey of

Rebitzer and Taylor (2010)) suggest that people may work hard even when effort is unobservable

because of some type of intrinsic motivation, such motivation is often viewed to be of limited

importance in the financial sector (see, for example, Rajan (2010, chapter 6)).
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As will be clear below, the task L moral hazard problem causes no distortion, since when firm

profits are zero, there is enough surplus available for the employee to induce him to exert first-best

effort. In this sense, task H is the more interesting task, and thus to focus our analysis we make

the simplifying assumption that the task L payoff is constant, that is, gL > 0 is a parameter of the

model.12 For task H, we denote by yH the economy-wide “supply” of task H, that is, the expected

number of task H successes in the economy.13 The equilibrium return gH/kH is then determined

by ζH (yH , kH), where ζH is a strictly decreasing function of both arguments; in this sense, ζH

plays the role of the (inverse) demand function. We also impose the following assumption.

ASSUMPTION 2: (i) For any kH , limyH→0 ζH (yH , kH) =∞.

(ii) For any yH > 0, limkH→∞ ζH (yH , kH) < 1.

Part (i) of Assumption 2 is a standard Inada condition. In terms of our trading interpretation,

it says that trading is very profitable if no-one else is trading. Part (ii) says that if the aggregate

number of task H successes is bounded away from zero, then the success return falls below one if

resources controlled by each employee are large enough. In our trading interpretation, this is just

a statement that as total capital deployed to buy an asset grows large, the price paid for the asset

eventually exceeds its true value, so that the gross return is eventually less than one.

Remark 1: Our specification of ζH (yH , kH) is natural in a trading or money management setting

where the equilibrium “alpha” from active management should be decreasing in the amount of smart

money chasing returns. However, it is possible to interpret task H more generally, so that the model

may be applied to a range of other occupations, including both nontrading areas of the financial

sector, such as M&A advising, and nonfinancial occupations, such as train drivers or lawyers. For

some of these applications, the natural equilibrium condition is simply gH = D (yH), where D is an

inverse demand curve that gives the price associated with aggregate output yH . In this case there is

no direct link with kH , which measures the cost of failure (presumably high for both M&A-advising

and train-driving). Our model nests this specification: simply set ζH (yH , kH) = 1
kH
D (yH), where

D is a strictly decreasing function with limyH→0D (yH) =∞.

II. Contracts and Equilibrium
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A. Contracts

We impose minimal contracting restrictions, and allow firms to offer arbitrary dynamic con-

tracts. Firms can commit to contract terms. However, we rule out indentured labor and model

employees as having limited commitment, in the sense that they can walk away from the contract

after the first period if another firm offers better terms. In other words, we assume one-sided

commitment.14 This assumption rules out contracts in which an employee is punished with zero

lifetime pay after failure in the first period, because the employee can always find work on the L

task with another firm in the second period.15

For ease of exposition, we restrict attention to deterministic contracts. We show in an earlier

draft of the paper, available upon request, that our results are robust to allowing for contracts

that specify lotteries, subject to the constraint that the firm (but not necessarily the employee) is

indifferent between lottery outcomes, since any lottery in which the firm is not indifferent would

be subject to manipulation by the firm.

Because the firm can commit, we can assume without loss of generality that all compensation

payments are deferred to the end of an employee’s career. Consequently, a contract is a septuple

C = (i, iS , iF , wSS , wSF , wFS , wFF ) that specifies task assignments when young (i), when old after

first-period success (iS), and when old after first-period failure (iF ), along with compensation

payments (wSS , etc.) that are contingent on outcomes in both periods.

It is helpful to first compute expected payments and success probabilities for old employees.

Given a first-period outcome X ∈ {S, F}, an old employee faces a “subcontract” (iX ,wX) where

wX = (wXS , wXF ) specifies payments contingent on success or failure in the second period. Given

wX , the employee chooses second-period effort p (wX), where

p (wX) ≡ arg max
p̃
p̃wXS + (1− p̃)wXF − γ (p̃) ,

or equivalently, p (wX) satisfies the incentive compatibility (IC) constraint

γ′ (p (wX)) = wXS − wXF , (1)
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implying that a larger success bonus wXS −wXF leads to higher effort. Given effort choice p (wX),

the employee’s expected compensation is E (w|X), which is given by

E (w|X) ≡ p (wX)wXS + (1− p (wX))wXF .

Hence, the employee’s expected future utility after first-period outcome X is E (w|X)−γ (p (wX)),

and two-period employee utility from a contract C is

U (C) = max
p̃
p̃ [E (w|S)− γ (p (wS))] + (1− p̃) [E (w|F )− γ (p (wF ))]− γ (p̃) .

First-period employee effort p is therefore determined by the IC constraint

γ′ (p) = [E (w|S)− γ (p (wS))]− [E (w|F )− γ (p (wF ))] . (2)

The IC constraint (2) illustrates the benefit of dynamic contracts: the utility the employee derives

from the second-period subcontract after first-period success can be used to motivate work in both

periods. Finally, two-period firm profits Π per worker employed on contract C are given by

Π (C; gH) = p [gi + p (wS) giS − E (w|S)− kiS ] + (1− p) [p (wF ) giF − E (w|F )− kiF ]− ki,

where p satisfies the first-period IC constraint (2).

B. Equilibrium

A (stationary) equilibrium consists of a payoff gH and a collection of contracts C, together with

a probability distribution λ with full support on C, such that the following three conditions hold:

1. Profit maximization: Each contract in C maximizes firm profits per employee subject to the

“participation” constraint that utility is at least minC∈C U (C), and one-sided commitment

constraints whereby each contract in C solves

max
C̃

Π
(
C̃; gH

)
subject to U

(
C̃
)
≥ min

C∈C
U (C)
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and such that, for X ∈ {S, F}, there is no alternative subcontract {ı̃X , w̃XS ≥ 0, w̃XF ≥ 0}

that another firm could offer an old employee that gives strictly positive firm profits and

strictly raises employee utility:

E (w̃|X)− γ (p (w̃X)) > E (w|X)− γ (p (wX))

and

p (w̃X) gı̃X − kı̃X − E (w̃|X) > 0.

2. Zero profits: Π (C; gH) = 0 for each contract C ∈ C.

3. Return consistent with aggregate task H activity: The return gH
kH

is consistent with the equi-

librium quantity of H successes. Formally, let yH (C) be the expected number of task H

successes generated by contract C.16 The aggregate number of task H successes is

yH =
∑
C∈C

λ (C) yH (C) .

The return consistency condition is then

ζH (yH , kH) =
gH
kH

.

(Note that for some of the other applications discussed, where ζH is an inverse demand curve,

this condition is simply the requirement that supply equals demand.)

An important feature of our model is that (at least for some parameter values) it gives rise

to equilibria in which different employees receive different contracts that deliver different utilities,

even though all employees are ex ante identical. Formally, we say that an employee is overpaid

if he receives a contract C ∈ C such that U
(
C
)
> minC∈C U (C), that is, his expected lifetime

utility strictly exceeds that of otherwise identical employees. Likewise, we say that an equilibrium

is overpaying if it features overpaid employees.

For use below, we write U ≡ minC∈C U (C). With a slight abuse of language we often refer to

this quantity as an employee’s reservation utility.
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Remark 2: An equivalent way to state the profit-maximization and zero-profit conditions above

is as follows: given gH and a contract C ∈ C, there is no contract C̃ that gives the employee strictly

more utility than C and the firm strictly positive profits. This alternative formulation makes

clearer that the participation constraint is driven by what an employee could get in alternative

employment, but has the drawback that it cannot be expressed as a straightforward maximization

problem.

Remark 3: Since our model has constant returns to scale at the firm level, but decreasing

returns at the aggregate level, the equilibrium conditions pin down the the aggregate number of

employees with each contract C ∈ C, while firm size is indeterminate.

III. Frictionless Benchmark

Our main results all stem from the moral hazard problem. Before proceeding, we briefly

describe the outcomes of a benchmark economy in which effort is fully observable, so that there is

no moral hazard. Throughout the analysis, let Si (p; gi) denote the one-period surplus from effort

p on task i, given return gi:

Si (p; gi) ≡ pgi − γ (p)− ki. (3)

When effort is observable, profit maximization implies that equilibrium effort maximizes surplus

by equating the marginal cost of effort to gi. We denote this effort level by p∗ (gi), that is,

γ′ (p∗ (gi)) = gi.

Moreover, because gL is fixed, we write p∗L ≡ p∗ (gL).

Profit maximization also implies that in equilibrium the surplus from each task is equalized,

that is, gH satisfies SH (p∗ (gH) ; gH) = SL (p∗L; gL).17 The fraction λ of the population of measure

two that is assigned to task H in any period is then given by the return consistency condition

ζH (2λp∗ (gH) , kH) = gH
kH

. Critically, and in contrast to the outcome of the moral hazard econ-

omy analyzed below, which task an employee is assigned to over his lifetime is indeterminate and

independent of age and success, and all employees earn the same utility.
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IV. A One-period Economy

Although our main contribution is the characterization of the dynamic equilibrium, we first

analyze a simpler one-period version. This helps us illustrate in a transparent way several features

that are important in the dynamic model—in particular, how the equilibrium features overpay

on task H when the scale kH becomes sufficiently large, and the determinants of the equilibrium

return gH in an overpaying equilibrium. By its nature, however, the one-period model cannot say

anything about either the sequencing of task assignments or career structures, which we analyze in

the dynamic version of the model. Moreover, the implications of aggregate shocks are very different

in the one-period model relative to the full model.

For this section only, assume that there is only one period and (for comparability with the

two-period economy) a measure two of employees. A contract is now simply a triple (i, wS , wF ),

which specifies the task assignment and payments after success and failure. Moreover, we note

immediately that the equilibrium payment after failure must be wF = 0. If instead wF > 0, a

firm can only break even if wS < gi. But then the employee’s gain from success is less than the

social value gi, and so the employee’s effort is less than the surplus-maximizing level p∗ (gi) and the

firm could strictly increase profits (while giving the worker the same utility) by reducing wF and

increasing wS . Given that wF = 0 , the IC constraint becomes γ′ (p) = wS : the worker chooses

effort p to equate his marginal cost of effort, γ′ (p), to the bonus, wS .

For employees assigned to task L, the firm can set the bonus wS to the value of success gL to

achieve the surplus-maximizing effort p∗L. Any employee assigned to task L in equilibrium must

receive this surplus-maximizing contract. We write the utility associated with this contract as uL,

uL ≡ max
p̃
p̃gL − γ (p̃) = p∗LgL − γ (p∗L) = SL (p∗L; gL) . (4)

Moreover, the endogenous reservation utility U must be at least uL. Suppose instead that U < uL

in some equilibrium. So some employees receive a contract that gives them utility U < uL, and

the firm makes zero profits. But this violates the profit-maximization condition, since the contract

(i, wS , wF ) = (L, gL − ε, 0) for some ε > 0 gives utility strictly in excess of U to the employee and

delivers strictly positive profits to the firm.
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An immediate consequence of U ≥ uL is that no task L employee can be overpaid in equilibrium.

We now characterize conditions under which employees on task H are overpaid, which amounts to

showing that employees on task H are paid wS > gL after success, but that some workers are still

employed on task L in equilibrium; we then have U = uL.

The participation constraint is nonbinding for an overpaid employee. Ignoring the participation

constraint, a firm’s profit-maximization problem for an employee on task H is

max
wS ,p

p (gH − wS)− kH subject to γ′ (p) = wS . (5)

Firm profits initially increase in the size of the bonus wS , since the concomitant increase in effort p

justifies the cost. As in the efficiency wage literature, this feature is what makes equilibrium overpay

possible: reducing compensation to the point where the employee’s participation constraint binds

may not be optimal for the firm as it will undermine incentives. For use throughout, denote the

bonus that maximizes profits (absent the participation constraint) by ∆ (gH), that is,

∆ (gH) ≡ arg max
wS

(
γ′
)−1

(wS) (gH − wS) . (6)

For any kH , there is a unique return g
H

(kH) at which firms just break even by giving H-employees

the profit-maximizing success bonus ∆
(
g
H

(kH)
)

. This is the equilibrium return under two con-

ditions: 1) the bonus ∆
(
g
H

(kH)
)

is (weakly) larger than gL, the bonus on the L task, so that the

participation constraint is satisfied, and 2) the return g
H

(kH) that allows firms to just break even

on task H is high enough that, in equilibrium, not all employees can be employed on task H.

If 1) holds but not 2), task H returns are high enough to draw everyone into task H, and

the equilibrium return exceeds g
H

(kH). Competition for employees then raises bonuses above

∆
(
g
H

(kH)
)

. If 2) holds but not 1), competition for employees pushes bonuses above ∆
(
g
H

(kH)
)

,

and the return must rise above g
H

(kH) for firms to break even. In both cases, the economy would

not feature overpay, as everyone would earn the same utility.

We now claim that if kH is large enough, both 1) and 2) will hold, so that g
H

(kH) is the

equilibrium return and ∆
(
g
H

(kH)
)

the equilibrium bonus. The following intuitive lemma helps
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establish this claim.

LEMMA 1: (i) g
H

(kH) is uniquely defined, is strictly increasing in kH , and approaches infinity as

kH → ∞. (ii) ∆ (gH) is uniquely defined, is strictly increasing in gH , and approaches infinity as

gH →∞.

Part (i) of Lemma 1 simply says that when there is more to lose (kH), in equilibrium there has

to be more to gain (gH) for the firm to break even. Part (ii) says that as the marginal productivity

of labor gH increases, the firm finds it optimal to incentivize higher effort with a higher bonus. An

implication of the lemma is that as kH grows large, the bonus ∆
(
g
H

(kH)
)

must also grow large,

and in particular larger than the bonus on the L task. This establishes that condition 1) above is

satisfied as kH grows large.

That not everyone can be employed on task H when the amount of capital kH per employee

grows large follows immediately from Assumption 2, which says that if too much capital in aggregate

is devoted to the H task, the return gH
kH

is driven below one so that firms cannot break even.

Economically, when capital-per-employee is large, the economy does not require many employees

to be assigned to task H. Hence, not all employees can be assigned to task H, and some workers

must instead be assigned to task L, where they earn strictly less utility.

Applied to the financial sector, this analysis shows how the combination of moral hazard and

scaleability combine to partition the labor market so that some employees work very hard and

receive very large bonuses, while other (ex ante identical) employees obtain less desirable jobs.

However, the one-period analysis is inherently incapable of shedding light on career structures, or

on whether firms respond to aggregate shocks by firing existing employees or reducing hiring. We

take up these topics in our analysis of the dynamic model.

Figures 1 and 2 illustrate an overpaying equilibrium. Figure 1 shows that at return g
H

, firms

cannot make strictly positive profits while satisfying the participation constraint, even though some

employees are overpaid relative to others. Figure 2 illustrates how the fraction of overpaid workers

is determined. In particular, Figure 2 illustrates that the equilibrium return g
H

of the overpaying

equilibrium is determined entirely by the contracting problem, and is independent of the trade-

profitability function ζH . Economically, and as one can see from the figure, the reason is that at
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the return g
H

, the “supply” of task H is perfectly elastic, since any division of employees between

the two contracts used in equilibrium is consistent with the profit-maximization condition. We

make heavy use of this property in our analysis of aggregate shocks in Section VI.

[FIGURES 1 AND 2 ABOUT HERE]

For comparison with the results of Section VI below, we consider here the effect of aggregate

shocks, which we model as a shift in the return functions ζH and gL. Focusing on the case of

an overpaying equilibrium in the one-period economy, the only effect of aggregate shocks is to

the number of employees assigned to the two contracts. The equilibrium contracts themselves

are unchanged. In particular, an upwards shift in ζH (·, kH) and gL, which one can interpret as

an economic boom, increases the number of employees assigned to task H, but does not affect

employee bonuses or effort.

Note that many of the elements in the one-period version of our model are present in existing

literature. The fact that firm profits are increasing in employee utility is a standard property of

partial-equilibrium analyses of moral hazard problems. Moreover, the implication that employee

utilities are not equalized in equilibrium can be found in a range of papers, most notably in Shapiro

and Stiglitz (1984), but also in more recent papers such as Acemoglu and Newman (2002) and

Biais, Rochet, and Woolley (2014).

However, the one-period version of our model contains a new element: employee utilities are

not equalized even though we allow for free entry and/or constant returns to scale at the firm

level. In contrast, the aforementioned papers use limited entry and decreasing returns to scale at

the firm level to avoid equilibrium utility equalization. Instead, we assume decreasing returns at

the aggregate level (that is, ζH is decreasing), and close the model by solving for the equilibrium

return.

This new ingredient is important for two reasons. First, we believe it is realistic for much (though

certainly not all) of the financial sector: financial sector firms appear relatively easy to scale up,

and in some parts of the financial sector, such as asset management, entry by new competitors is

very common. Second, as noted above, this feature of the model implies that equilibrium returns

are unaffected by aggregate shocks to ζH , which drives our results in Section VI below.18
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V. Equilibrium Contracts in the Dynamic Economy

In this section we establish the main result of the paper: if task H stakes kH are large, two

very different contracts—that is, career paths—coexist in equilibrium. In one contract, a young

employee is immediately assigned to the high moral hazard task H. The contract is up-or-out, in

the sense that if the employee succeeds, he continues to work in task H and is paid very generously,

while if he fails, he is “demoted” to task L and is paid less. In the other equilibrium contract,

an employee spends his entire career in task L, with no possibility of “promotion” to task H.

Expected compensation, employee effort, and expected utility are all higher in the first of these

contracts. We interpret these two coexisting contracts as financial sector and nonfinancial sector

jobs, or alternatively as high- and low-stakes jobs within the financial sector.

As a preliminary to solving for equilibria in the dynamic setting, observe that a lower bound

for the participation constraint in the dynamic economy is given by the utility the employee gets

if employed in the L task for both periods. Analogous to the one-period setting above, such a

contract involves giving the employee the full marginal product, which in the dynamic contract

means setting wSS = 2gL, wSF = wFS = gL, and wFF = 0. This is equivalent to a repeated

one-period contract, yields zero profits for the firm, and gives the employee 2uL in lifetime utility.

We refer to this contract as the CLL contract.

As discussed in the introduction, a natural conjecture would be for the equilibrium of the

dynamic model to take a very different form from the one described above, with all young employees

starting their careers in the low moral hazard task L, and only moving to task H after success. As

the following example demonstrates, this conjecture is correct when capital kH is sufficently small.

EXAMPLE: Let kH ≤ gL. Define g∗H as the equilibrium return in the frictionless benchmark of

Section III, in which surplus is equalized across tasks, that is, SH (p∗ (gH) ; gH) = SL (p∗L; gL).

We now show that, given some conditions on trade-profitability ζH , there is an equilibrium in

the dynamic setting such that g∗H is the equilibrium return, all employees earn the same utility,

and effort is first-best in all periods. As we verify in the Appendix, under the same circumstances

the one-period economy often features overpay and inefficiently low effort on task H. The result is

accomplished by giving the following dynamic contract to some subset λ < 1 of young employees.
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When young, the employee is employed on task L. After success, the employee is employed on

task H, where he receives the net profits from both tasks: (wSS , wSF ) = (g∗H + gL − kH , gL − kH) .

Note that since gL ≥ kH , these payments satisfy the limited liability constraint. After failure in

period 1, the employee is employed on task L, receiving all profits: (wFS , wFF ) = (gL, 0) . Since

the employee receives all profits net of the invested amount from the tasks he works on during his

lifetime, it is as if he owned the firm, and hence he fully internalizes the effect of his effort on total

surplus. Since the maximal surplus in the two tasks is the same, the maximal surplus is 2uL, and

so the employee earns the same utility as under contract CLL.19 The remaining fraction 1 − λ of

employees are assigned contract CLL. As long as the number of task H trades that can be sustained

at g∗H is lower than the number of task H successes associated with assigning all employees to the

contract above, namely, p∗Lp
∗ (g∗H) , there is a λ < 1 such that the return consistency condition

ζH (λp∗Lp
∗ (g∗H) , kH) =

g∗H
kH

is satisfied. Furthermore, since the contract generates maximal surplus,

it is impossible to find another contract that gives higher profits to the firm without violating the

participation constraint.

The example above relates to an important insight of contract theory: employees with more

wealth are easier to employ, because the wealth can be used as a bond to alleviate moral hazard.20

In our setting, assigning the employee to task L when young creates a payoff gL after success that

can be pledged as a bond on task H when old, which completely solves the moral hazard problem

and leads all employees to earn the same utility across tasks, as in the frictionless benchmark of

Section III.

We next establish our central result: as kH grows large, the equilibrium takes a very different

form from the above example. Two contracts coexist in equilibrium, with very different compen-

sation, effort, utility, and promotion characteristics.

PROPOSITION 1: For all sufficiently large kH , the unique equilibrium of the economy features:

1. Lower returns than in the one-period benchmark: gH < g
H

.

2. Overpay and more work for task H employees: a strict subset of young employees start on

task H, and receive strictly greater expected utility than young employees starting on task L,
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but also work harder.

3. Up-or-out for overpaid employees: task H employees remain on task H if they succeed, and

have higher success rates when old than when young; if they fail, they are “demoted” to task

L.

4. Dynamically segregated labor markets: in contrast to task H employees, task L employees are

never “promoted;”they remain in task L when old, and exert the same effort as when young.

The results in Proposition 1 show that there is a limit to how much can be achieved by using

the kind of career path illustrated in the example above, in which employees are assigned to the

low moral hazard task before “graduating” to work on the high moral hazard task. Instead, when

the capital at stake kH becomes sufficiently large, it is more efficient to assign some young workers

directly to the H task, and these workers will be overpaid relative to their unlucky identical twins

who are stuck on the L task throughout their career. As we explain in more detail below, this is

because as kH becomes large, the promise of work on task H after success—and the large surplus

this allows the employee to capture—creates a very strong incentive to work when young. Profit

maximization then leads the young employee to be assigned to task H.

The proof of Proposition 1 is constructive, and proceeds in two main steps. In the first step,

detailed in Sections V.A and V.B, we solve the partial-equilibrium problem of finding the profit-

maximizing contract that assigns an employee to the H task in at least some node. We do not

impose the participation constraint in this step: as we will show, the profit-maximizing contract

involving some activity on H satisfies this constraint in equilibrium. In the second step, detailed

in Section V.C, we use this partial-equilibrium result to solve for the full equilibrium.

We conduct the partial-equilibrium analysis under the assumption that the return gH satisfies

two basic properties (which we then verify are satisfied in equilibrium). First, the return gH is high

enough that there exists some contract with nonnegative profits that assigns an employee to task

H at some node. Second, the return satisfies part 1 of Proposition 1, that is, gH < g
H

. Intuitively,

this second property reflects the fact that dynamic contracts give the firm more tools to structure

incentives, which makes it possible for them to break even at a lower return. Free entry ensures that

the aggregate amount of H activity increases until returns are driven down to this new break-even
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level.

An immediate implication of gH < g
H

is that a firm cannot break even by hiring an old

employee on task H while delivering utility of at least uL. Consequently, the one-sided commitment

constraint reduces to

max
p
pwXS + (1− p)wXF − γ (p) ≥ uL for X = S, F, (7)

that is, each second-period subcontract must pay the employee at least as much as he would get in

a one-period contract on task L.

A. Up-or-Out

In this subsection and the next, we solve the partial-equilibrium problem of maximizing profits

subject to the one-sided commitment constraint (7) and to assigning the employee to task H in at

least some node:

max
C

Π (C) subject to (7) and (i, iS , iF ) 6= (L,L,L) . (8)

As noted, we do not impose the participation constraint.

We first show that the one-sided commitment constraint (7) must bind after failure in the first

period, and the employee must be allocated to task L—the failed employee is “out.” To see this,

note that giving the employee the minimal possible utility uL after failure has two positive effects

on profits. First, it increases incentives to work in period 1. Second, it maximizes profits after

failure, subject to delivering utility of at least uL. (This is so since gH < g
H

, so that an assignment

to H would produce strictly negative profits on the second-period task.) Hence, we have iF = L,

wFS = gL, and wFF = 0, which leads to firm profits of zero in the second period after first-period

failure.21

We next argue that if the employee is ever to be employed on task H, he must be employed on

task H after success—the successful employee is “up.” Suppose this were not the case, so that the

employee is assigned to task L after both success and failure, and hence must be assigned to task

H when young. But then the contract effectively becomes a one-period task H contract, which

eliminates all dynamic incentives and makes it impossible for the firm to break even. The reason is
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that because any subcontract must deliver utility weakly above uL, when the employee is assigned

to L in the second period he must be given payments of the form (wXS , wXF ) = (gL + wXF , wXF )

that induce surplus-maximizing effort pS = p∗ (gL) , with any additional promised utility paid in

the form of fixed pay wXF . But then the young employee faces a contract that delivers utility

uL+wFF after failure and uL+wSF after success, costing the firm wFF after failure and wSF after

success. This is equivalent to a one-period contract on task H.

B. Initial Assignment to Task H

Given the up-or-out characterization, that is, (iS , iF , wFS , wFF ) = (H,L, gL, 0), it remains to

determine the initial task assignment i and the remaining compensation terms wSS , wSF . For no-

tational convenience, we write ∆S = wSS − wSF . The contract terms i, wSF , and ∆S solve the

following profit-maximization problem, which corresponds to substituting the up-or-out character-

ization into (8):

max
i,∆S≥0,wSF≥0

p (gi − wSF )− ki + p (pS (gH −∆S)− kH) , (9)

where the employee’s effort decision pS in the second period after success and p in the first period

are determined by the IC constraints (1) and (2), which simplify to

γ′ (pS) = ∆S

γ′ (p) = wSF + max
p̃

(p̃∆S − γ (p̃))− uL = wSF + pS∆S − γ (pS)− uL.

Note that, compared to a one-period problem, ∆S has a double effect here: it incentivizes effort in

the first period as well as the second. An important consequence is that effort is serially correlated:

if the firm incentivizes high effort after success, it also inevitably incentivizes high effort in the first

period. We next show that when capital kH is large, the serial correlation of effort makes allocation

to task H in the first period profit-maximizing. The reason is that when kH is large, gH must be

large for firms to break even, so that the difference in firm payoff between failure and success makes

high effort on task H very important. Therefore, the bonus for success in the second period must

be large, which in turn induces so much effort in the first period that the young worker is most

efficiently allocated to task H.
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LEMMA 2: Let gH (kH) be a sequence of returns indexed by kH such that (a) gH (kH) < g
H

(kH),

and (b) there exists an up-or-out contract that gives nonnegative profits. For kH sufficiently large,

the solution to the profit-maximization problem (9) is unique, and assigns young workers to task

H.

The task assignment prediction of Lemma 2 is key to our analysis, and we prove it here (unique-

ness is proved in the Appendix). We focus on the case in which there exists an up-or-out contract

with i = L that gives nonnegative profits. (For the opposite case in which no up-or-out contract

i = L breaks even, the result is immediate.) Consider the contract terms (L,wSF ,∆S) that maxi-

mize profits within this class, inducing effort p in the first period and pS in the second period after

success. Our goal is to show that when kH is large, there exists a perturbed contract that sets

i = H and generates strictly higher profits. From (9), profits from the original contract are

p (gL − wSF ) + p (pS (gH −∆S)− kH) .

We make two observations about these profits. First, because gH < g
H
, there is no one-period

contract on the H task that breaks even; in particular, the second-period profits pS (gH −∆S)−kH

that stem purely from the H task net of the bonus ∆S are negative. Hence, total profits are bounded

from above by gL, the revenue generated after first-period success. Second, because (by supposition)

total profits are nonnegative, losses on the second-period project are less than gL :

pS (gH −∆S)− kH ≥ −gL. (10)

We now show that when kH is large, there exists a contract that instead allocates the employee

to the H task in the first period, and makes higher profits than gL, completing the proof. In

particular, consider the alternate contract (H, w̃SF ,∆S) , which (i) allocates the worker to task H

in the first period, (ii) keeps the bonus ∆S the same so that second-period effort pS after success

is unchanged, and (iii) sets w̃SF such that first-period effort is also pS , which from the first-period
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IC constraint implies that w̃SF satisfies22

γ′ (pS) = w̃SF + pS∆S − γ (pS)− uL.

Profits from this contract can be decomposed as

(1 + pS) (pS (gH −∆S)− kH) + pS (∆S − w̃SF ) . (11)

The first term is the firm’s profits from using a one-period H contract with bonus ∆S in the first

period, and then again in the second period after success. From (10), this term generates losses no

larger than (1 + pS) gL. The second term is the reduction in the cost of incentivizing first-period

effort pS that is afforded by the dynamic contract: in a one-period contract a bonus ∆S is required,

whereas in the dynamic contract the prospect of future bonuses means that a first-period bonus of

w̃SF is sufficient. By the IC constraints, the reduction in bonus equals

∆S − w̃SF = pS∆S − γ (pS)− uL. (12)

To complete the proof, we show that ∆S increases without bound as kH grows large.23 This

implies that the bonus savings and hence profits also increase without bound, and in particular

grow larger than the upper bound gL generated by the contract terms (L,wSF ,∆S). To show that

∆S grows without bound, first note that since ∆S maximizes profits in the (L,wSF ,∆S) contract, it

is easy to see from the profit-maximization problem (9) that ∆S must be no smaller than the bonus

∆ (gH) defined by (6) that maximizes one-period profits, since increasing ∆S has the added benefit

in the dynamic contract of increasing first-period effort. The result then follows from Lemma 1,

which shows that ∆ (gH) increases without bound as gH grows large: as kH grows large, gH must

grow large for firms to break even. This completes the proof of Lemma 2.

In the above proof of Lemma 2, we use a contract that implements the same success probability

on task H in both periods. This is not the profit-maximizing contract—as we now show, the profit-

maximizing contract incentivizes more effort and hence a higher success probability on task H after

first-period success. If wSF = 0, this property is immediate from the IC constraints. Economically,
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the bonus payment ∆S provides more incentives in the second period than in the first, because in

the first period the employee discounts the bonus by the cost of second-period effort pS , by the

probability that he is unlucky and fails in the first period, and by the fact that even if he fails he

still receives a continuation utility of uL. Moreover, this conclusion holds even if wSF > 0 :

LEMMA 3: If gH ≥ gL and gH > kH , the solution to the profit-maximization problem (9) has

pS > p, that is, effort rises after success.

The fact that effort increases after success constitutes a further sense in which employees are

moved “up” after success: more is expected of them when old.24

C. Completing the Equilibrium Characterization

So far, we have characterized the solution to the profit-maximization problem (8). We have also

shown that when kH is sufficiently large, and provided that gH satisifes the two conditions stated,

the profit-maximizing contract is CHH (gH) ≡ (H,H,L,wSS , wSF , gL, 0), where (wSS , wSF ) =

(wSF + ∆S , wSF ) solves the profit-maximization problem (9) subject to i = H.

We now use this result to characterize the equilibrium. Let geqH be such that it is just possible

for a firm to break even with contract CHH (gH),25 that is,

max
∆S≥0,wSF≥0

p (gH − wSF )− kH + p (pS (gH −∆S)− kH) = 0. (13)

We start by noting that geqH is indeed strictly less than g
H

, since otherwise the extra incentives

induced by a dynamic contract imply that there exists an up-or-out contract with strictly positive

profits, contradicting the definition of geqH . Concretely, dynamic contracting reduces the rent that

needs to be delivered to the employee, and this increases aggregate task H activity and reduces the

equilibrium return.

Two things remain to be shown to prove that the equilibrium is as described in Proposition

1. First, we need to show that not enough aggregate H activity can be sustained for everyone

to be employed with contract CHH , so that some employees need to be employed with the CLL

contract that leaves them stuck on the L task for their entire career. Second, we need to show

that CHH employees earn strictly higher expected lifetime utility than CLL employees. The last
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feature follows immediately from the proof of Lemma 2, where we showed that as kH grows without

bound, gH must grow without bound, so the optimal second-period bonus ∆S and hence utility for

CHH employees also grow without bound (and in particular become larger than 2uL, the expected

lifetime utility of CLL employees).

To show that not everyone can be employed with CHH in equilibrium, let p
(
CHH

)
and

pS
(
CHH

)
be the effort levels induced by the CHH contract, so that each young employee given

the CHH contract expects
(
1 + pS

(
CHH

))
p
(
CHH

)
task H successes. This quantity is certainly

bounded away from zero as kH grows large, since as just argued, the optimal second-period bonus

∆S grows without bound. Moreover, part (ii) of Assumption 2 then implies that if all employees

were given the CHH contract as kH grows large, the return would fall below the break-even level

geqH . Consequently, only a strict subset of young employees are given the CHH contract,26 with the

remaining employees assigned to the CLL contract. With the exception of uniqueness (which is

established in the Appendix), this completes the proof of Proposition 1.

Finally, we note that parallel to the one-period benchmark, geqH is determined solely by the

firm’s profit-maximization problem, and is independent of the trade-profitability function ζH . We

make extensive use of this property in our analysis of aggregate shocks below.

D. Applications

Not only does Proposition 1 provide an explanation of high compensation in the financial sector

that is neither a compensating differential nor a return to skill, but the equilibrium also has a

number of features that match, at least qualitatively, the characteristics of financial sector jobs:

Long hours: Employees who receive the CHH contract work harder than employees who receive

the CLL contract. This is consistent with the observation that financial sector jobs often entail

very long hours. For example, using a sample of University of Chicago MBA alumni, Bertrand,

Goldin, and Katz (2010) report that the average hours worked in investment banking is 73.6 hours

per week; the next highest figure reported is for consulting, at 60.7 hours per week. At the extreme,

as reported by Michel (2011), investment bankers work up to 120 hours per week. We reiterate,

however, that Proposition 1 says that the pay received by financial sector employees is more than

a compensating differential for these long hours. Hence, MBA students who land an investment
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job have effectively won a lottery, which is consistent with casual empiricism.

Serial correlation of hours: Overpaid employees work longer hours than non-overpaid employees

both early in their careers and later in their careers (provided they succeed when young). Again,

this is consistent with accounts of the financial sector.

Heavy use of both performance pay and backloading of pay: Employees who receive the CHH

contract receive larger bonuses than those receiving the CLL contract. Moreover, pay is more

backloaded in the CHH contract. First, observe that the firm could pay the employee up to wSF

after first-period success, without affecting incentives. Accordingly, we identify wSF with the first-

period bonus, and measure the backloading of the pay via the ratio wSS−wSF
wSF

, that is, the ratio of the

second-period bonus to the first-period bonus. For the CLL contract, this ratio is one, that is, there

is no backloading. For the CHH contract, this ratio exceeds one.27 These predictions are consistent

with perceptions that the financial sector makes heavy use of both performance pay and backloaded

pay. Using a sample of Stanford MBA alumni, for investment banking Oyer (2008) documents a

very steep slope in the relation between annual compensation and years since graduation. The

website www.careers-in-finance.com/ibsal.htm reports investment banking pay and tells a

similar story. Bell and Van Reenen (2014) report detailed compensation data for the “code staff”

of large banks headquartered in London.28 For this admittedly senior group of bank employees,

58.3% of total compensation is deferred, while out of the nondeferred portion 64.4% is bonus pay.

Importance of entering profession soon after graduation: As noted, Proposition 1 features dy-

namic segregation: if an employee is not assigned to task H when young, he never enters the

high-paying sector in his career. This is consistent with both anecdotal accounts (see, for exam-

ple, DeChesare (2012)29), and Oyer’s (2008) econometric finding that Stanford MBAs who fail to

get a job in finance upon graduation for reasons unrelated to skill or preferences typically do not

manage to make the transition into finance later on, despite the high pay differential. (Oyer uses

aggregate economic conditions as an instrument for initial job placement to avoid selection on skill

or preferences; we formally study the effect of aggregate shocks in the next section.)

Up-or-out: As noted, Proposition 1 predicts that the overpaying contract CHH has an up-or-out

feature: employees who fail in the first period are assigned to task L in the second period. This is

consistent with anecdotal accounts of bankers moving to a “normal company” as an “exit option”
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(see, for example, DeChesare (2012)30).

A slightly different way to interpret Proposition 1 is to map task H to a high-stakes financial

sector job, and task L to a lower-stakes financial sector job. This is consistent with anecdotal

accounts of people exiting investment banking to enter other lower-paid parts of the financial

sector, but not the reverse. It is also consistent with Hong and Kubik’s (2003) study of security

analysts. They show that it is much more common for security analysts to move from a high-paying,

more prestigious brokerage firm to a lower-paying, less prestigious one than the other way around.

VI. The Effect of Aggregate Shocks on Career Dynamics

We now extend our basic model to allow for aggregate shocks. This allows us to study the time-

series implications of our model along several dimensions, including: the effects of initial conditions

on an employee’s career; bonuses; profitability and riskiness of investments; and the response of

capital to investment opportunities. In particular, we predict that good economic conditions lead

to both high compensation and low effort, so that compensation and effort are negatively correlated

in the time series.

We start with a specification of our basic model in which kH is sufficiently large so that young

employees who start in task H are overpaid. To keep the analysis as simple as possible, assume the

aggregate state is either “good” (G) or “bad” (B), where the good state supports more aggregate

activity (a higher number of trades) yi in task i for a given success payoff: ζGH (·, kH) ≥ ζBH (·, kH)

and gGL ≥ gBL . We assume throughout that ζGH is sufficiently close to ζBH and gGL is sufficiently close

to gBL that—as we explain below—the stochastic economy continues to feature overpaid employees.

Throughout, we let all contracts be fully contingent on the aggregate shock realization.

A. Time-Series Implications: Initial Conditions Matter

We first extend our dynamic segregation result to a setting with aggregate shocks, to show

formally that prevailing labor market conditions at the time an employee enters the labor force have

long-lasting effects on his career. In particular, we show that when the economy enters the bad

state, firms respond on the hiring rather than the firing margin, so that entering young employees

have a lower chance of landing an overpaid job. Furthermore, because of dynamic segregation,
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they are unable to enter this job later on even if the economy recovers. Instead, it is the next

generation of young employees that get these jobs. This hiring pattern is consistent with Oyer’s

(2008) evidence for the financial sector, and more broadly, with Kahn’s (2010) finding for college

graduates in general.

In this subsection we assume the shock only affects task H, that is, gGL = gBL and ζGH (·, kH) >

ζBH (·, kH). This assumption makes the analysis straightforward, because it implies that both the

equilibrium return gH and contracts are independent of the aggregate state, as we now show. The

key is to recall that in the overpay equilibrium characterized by Proposition 1, the return geqH is

independent of the trade-profitability function ζH , and is determined instead by the condition that

the firm has zero profits under the profit-maximizing contract (see (13), and the discussion in

Section IV). Because gGL = gBL , the employee’s minimum continuation utility (uL) is independent

of the state, and so the firm’s profit-maximization problem is the same as in the case without

aggregate shocks. Consequently, geqH is again the return at which a firm can just break even

assigning employees to task H, and remains the equilibrium return independent of the state, and

hence CHH remains the contract received by overpaid employees. In essence, the task H “supply”

curve is perfectly elastic at the return geqH , because it is consistent with any division of young

employees across contracts CLL and CHH . So as long as the trade-profitability function ζωH—

“demand”—does not vary too much across states, shocks are absorbed purely via changes in the

number of young employees given contract CHH . To be more specific, let λt be the number of

overpaid young employees hired for task H at date t. Denote by yωH the task H supply that can be

sustained at the equilibrium return geqH in state ω, that is, yωH solves geqH /kH = ζωH (yωH , kH). Denote

by p and pS the success probabilities for employees on task H when young and old, respectively:

Given the conjecture that returns are independent of the state, optimal contracts and hence effort

levels are also state-independent. Date t output from task H equals pλt + pλt−1pS , where pλt

is the output by the λt just-hired young employees and pλt−1pS is the output from the λt−1 old

employees who were hired last period and succeeded when young. Consequently, the number of

young employees hired for task H at date t is

λt =
yωtH
p
− λt−1pS . (14)
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As one would expect, more young employees are assigned to task H in good states, and when fewer

employees were hired at the previous date. We verify in the Appendix that it is indeed possible

to vary the number of employees hired by a sufficient amount to fully absorb the aggregate shock,

with no effect on the equilibrium return gH , as long as the shock is not too large.31

It is easy to see from (14) that if the economy remains in state ω ∈ {G,B} for a long time, the

number of young employees assigned to task H converges to λω, defined by λω ≡ yωH
p(1+pS) , and the

age profile of task H employees converges to p old employees for every young employee. As one

would expect, a sustained period in the good state leads to greater hiring of young employees into

the overpaid task H jobs, that is, λG > λB. Average success rates, on the other hand, are the same

in both scenarios.

PROPOSITION 2: Suppose that after many periods in the good state, the economy suffers the ag-

gregate shock and enters the bad state. For kH sufficiently large and an aggregate shock sufficiently

small, hiring of young employees into task H falls below even λB, and young employees who fail to

get employment in task H will not get employed in task H later in their career even if the economy

recovers. At the same time, the average success rate in task H actually increases.

The proof is almost immediate from (14), and we give it here. In the first period that the

economy is in the bad state, the number of young employees hired into task H is

λt =
yBH
p
− λGpS <

yBH
p
− λBpS = λB < λG.

The age profile in task H is now skewed towards experienced employees. Since experienced

employees have higher success rates, that is, pS > p (see Proposition 1), the average success

rate in task H increases when the bad shock hits.

A.1. Implication: Initial Conditions Matter

The most immediate implication of Proposition 2 is that the aggregate conditions when someone

first enters the labor force have lifelong consequences. This complements the result of the previ-

ous section that idiosyncratic shocks—in the form of an individual’s outcome in the labor market
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“lottery”–have lifelong effects, and is consistent with Oyer’s (2008) finding that Stanford MBAs

who graduate when the stock market is performing well are much more likely to be working in the

financial sector 10 (and more) years later. Given that, as documented by Oyer, expected compen-

sation in the financial sector is so high, one might expect MBAs who graduated during depressed

financial markets to switch into the financial sector at some point subsequent to graduation. Our

model, in which we identify task H with a high-paying financial sector job, gives an explanation

for why this does not happen.

A.2. Implication: Financial Sector Firms Respond to Bad Times by Hiring Less Rather Than

Increasing Firing

The reason task H hiring falls below λB is that in the good state, firms hired many employees

into task H, and the optimal contract prescribes that these employees are retained when old even

in a downturn, which comes at the expense of hiring new young employees. According to the U.S.

Bureau of Labor Statistics, and as predicted by our model, hiring by the financial sector fell in

2008. While firing is harder to empirically identify, the same data show that total separations also

fell in 2008: our model predicts no change in firing, while one might naively expect that separations

would increase.

A.3. Implication: Investments Undertaken in Bad Times are More Profitable and Have Higher

Success Rates

Proposition 2 predicts that average success rates in task H are higher in bad times. Applied to

the financial sector, this prediction says that investments have lower success rates in good times,

when the financial sector has a higher proportion of less experienced employees. Conversely,

investments appear to grow more prudent in bad times, even though (by definition) attitudes

towards risk are unchanged in our model. Related, the expected profitability of investments (gross

of compensation to managers) is countercyclical. This finding is consistent with anecdotal evidence

about poor investments made during the internet and biotech bubbles by venture capital firms, as

well as some of the most successful deals being initiated during busts. Academic studies have also

found evidence of such countercyclical investment performance in both the buyout (Kaplan and

Stein (1993)) and the venture capital (Gompers and Lerner (2000)) markets.
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A.4. Remaining Observations

Above, we note the prediction of countercyclical success rates on investments. More generally,

this prediction can be interpreted as countercyclical productivity in some segments of the economy.

Aggregate U.S. productivity has been countercyclical since the mid-1980s (see Gali and van Rens

(2014)). Indeed, and more speculatively, if one thinks that high moral hazard tasks account for a

larger share of the economy than previously, our model provides an explanation for why aggregate

U.S. productivity has shifted from being procyclical prior to the mid-1980s to being countercyclical

since.

Although we focus primarily on the implications of our model for career dynamics, it is inter-

esting to note that Proposition 2 can also be interpreted in terms of unemployment. To do so,

think of task L as corresponding to unemployment, with uL the level of utility obtained by the

unemployed. Then Proposition 2 says that if the economy shifts from an extended time in the

good state to an extended time in the bad state, unemployment first spikes up even as productivity

increases. Subsequently, unemployment partially recovers, while productivity drops back to its

prior level. Moreover, and consistent with the descriptive evidence of Bewley (1999), wages do not

fall when the economy enters bad times.

B. Time-Series Implications: Procyclical Moral Hazard

Next, we expand our analysis to the case in which aggregate shocks affect both tasks, that is,

gGL > gBL and ζGH (·, kH) > ζBH (·, kH). The significance of shocks for task L output is that they

affect uL, the minimum continuation utility that an employee can be given. This in turn affects

incentives. We show that in good times investments fail more frequently, even as employees receive

more generous bonuses. Moreover, we show that capital does not fully respond to improvements

in investment opportunities, that is, is “slow-moving.”

We make the standard assumption that the state follows a Markov process, with the transition

probability of moving from state ω ∈ {G,B} at date t to state ψ at date t + 1 denoted by µωψ.

We assume that the state is at least somewhat persistent, in the sense that the state is more likely

to be good (bad) tomorrow if it is good (bad) today, µGG > µBG.

Denote by gωH the task H state ω return. Define uωL analogously to uL in (4), with p∗ (gωL)
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replacing p∗L. Note that uGL > uBL since gGL > gBL . So when a young employee enters the labor force

at date t, the minimum expected continuation utility he can be given is

ūωL ≡
∑

ψ=G,B

µωψuψL.

The state persistence assumption µGG > µBG implies ūGL > ūBL , and so employees entering the labor

force in good times are harder to incentivize, because the minimum utility they can be threatened

with is higher. Put simply, employees expect to “land on their feet”even if they fail. This is the

key economic force driving our results below.32

In contracts for young employees starting in task H, firms commit to make success payments

of wωψSS and wωψSF . (Given our focus on the case in which kH is high and overpaid task H jobs exist,

we know the payments after failure are
(
wωψFS , w

ωψ
FF

)
=
(
gψL , 0

)
.) So to determine the equilibrium,

we must find the contract terms
(
wωGSS , w

ωB
SS , w

ωG
SF , w

ωB
SF

)
and return gωH for each of today’s state

realizations ω = G,B. For the case with overpaid employees, this involves solving for the return

at which the firm breaks even with the profit maximizing contract:

max
pω ,wωψSS ,w

ωψ
SF

pω

gωH +
∑

ψ=G,B

µωψ
[
p
(
wωψ
S

)
gψH − E

[
wωψ|S

]
− kH

]− kH (15)

subject to the first-period IC constraint

γ′ (pω) =
∑

ψ=G,B

µωψ
[
E
[
wωψ|S

]
− γ

(
p
(
wωψ
S

))]
− ūωL. (16)

Our main result, stated formally below, is that moral hazard problems in task H endogenously

worsen in good times, that is, are procyclical. The driving force is the IC constraint (16), which

captures the fact that the higher outside option ūωL in the good state makes it more costly to

incentivize employees. To establish procyclical moral hazard, we must show that this incentive

effect dominates the direct effect that, for any fixed level of task H activity yH , returns are higher

in good times, that is, ζGH (yH , kH) > ζBH (yH , kH), which tends to ameliorate the moral hazard

problem. However, precisely because employees are overpaid in equilibrium, the supply of task H
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activity is completely elastic (see the one-period benchmark model for a discussion of this point),

so that the trade-profitability function ζH has no direct impact on equilibrium returns (exactly as

in the previous subsection).33

Firms understand that employees are harder to motivate in good times, and raise compensation

to partially offset this effect. However, doing so is expensive, and the equilibrium effect is that

even though firms pay more to employees starting in good times, these employees exert less effort.

PROPOSITION 3: For kH sufficiently large and aggregate shocks sufficiently small:

1. Overpaid young employees work less hard in good times, pG ≤ pB (where the inequality is

strict unless all old employees work the socially efficient amount) but receive strictly higher

bonuses, E
[
wGψSS |ω = G

]
> E

[
wBψSS |ω = B

]
.

2. Equilibrium returns are strictly higher in good times, gGH > gBH .

3. Pay for luck: regardless of today’s state ω, the success bonus wωψSS − w
ωψ
SF is strictly higher

when next period’s state is good (ψ = G).

Part (1) is our formal result that failure rates are higher in good times and lower in bad times.

Although the implication is the same as Proposition 2, the mechanism is different. Whereas the

previous result reflects a change in the ratio of experienced to inexperienced employees, this new

result reflects a decrease in incentives of overpaid employees. In the particular case of the financial

sector, this prediction fits well with perceptions that traders and bankers are more careless in

financial booms. Part (1) also establishes that booms generate higher (promised) bonuses—but

the rise in bonuses is insufficient to offset of effect of improved outside options.34 Consequently,

our model predicts that compensation and failure rates are positively correlated in the time series

Part (2) is our slow-moving capital result. By definition, for any given level of trading activity,

in good times task H investments are more profitable than in bad times, that is, ζGH (yH , kH) >

ζBH (yH , kH). Other things equal, this pulls more capital into task H. However, because moral

hazard is countercyclical, the inflow of capital is tempered by the increased cost of incentivizing

employees. It is worth contrasting this result with the effect of aggregate shocks in the one-period

economy (when it exhibits overpay). There, an increase in trade-profitability ζH pulls in so much
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new capital that the equilibrium return remains at g
H

.35 Consequently, in the one-period economy

bonuses and success probabilities are unaffected by the state of the world.

Similar to other dynamic contracting papers (see, for example, DeMarzo et al. (2012)), our

model predicts “pay for luck” (Part (3)). This follows simply from the fact that the employee’s

marginal productivity is higher in the good state since the return is higher in the good state; hence,

it is cheaper to deliver utility to employees in the good state.36 Hence, in a dynamic setting such

as ours, Holmstrom’s (1979) well-known informativeness principle, which holds that compensation

should only be made contingent on variables that depend on an agent’s effort, does not hold.

A number of empirical papers document that pay for luck is a pervasive phenomenon, and have

interpreted this as evidence of inefficient contracting—a conclusion that our analysis casts some

doubt on.37 In the specific context of the financial sector, this result says that optimal contracts

should not be fully indexed for aggregate market returns, as is often argued.

VII. Distortions in the Allocation of Talent

We argue in the introduction that the available evidence suggests that high compensation in

the financial sector is not a pure skill premium. Accordingly, in our basic model we abstract from

skill differences by assuming that employees are ex ante identical. However, our model can be

extended to produce interesting implications for the matching of heterogeneously skilled employees

to different jobs. In particular, our model makes precise two forces that affect how talent is matched

to jobs. First, talent may be “lured,” in the sense that, for example, people who “should” (for

maximization of total output) be doctors or scientists become bankers instead. Second, talent may

be “scorned,” in the sense that the most able people do not necessarily get the best jobs.

We introduce differences in talent by assuming that only a null set of employees have higher

skills, while the remaining “ordinary” employees are homogeneous as before. This assumption

ensures that the basic structure of the equilibrium remains unchanged. Specifically, suppose that

a null set of employees have a cost ciγ (p) of achieving success p in task i, where ci < 1 for both tasks

i = L,H. One would expect these talented employees to be more generously rewarded than other

employees, and maximization of total output would dictate that they be given more responsibility

(in the sense of working harder) at all stages of their careers. We show, however, that this is not
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necessarily the case.

As in much of the preceding analysis, we focus here on the case in which kH is sufficiently high

that overpaid task H jobs emerge in equilibrium.

To understand how talent is lured in our model, consider an employee who is more skilled at

both tasks, but is especially skilled at task L, that is, cL < cH < 1. Provided cL is sufficiently

below cH , such an employee would be best allocated to task L (for maximization of total output).

However, any firm employing young employees at overpaid terms in task H can profitably “lure”

this employee. For example, the employee may increase task L output by $100,000 but task H

output by just $10,000. But if the utility premium offered by the overpaid task H jobs is $200,000,

firms can lure him to take such a job, and task L firms cannot compete. The key driving force

for this effect is that the moral hazard problem stops utilities from being equated across jobs in

equilibrium. This talent-lured force in our model is very much in line with popular impressions of

investment banks hiring away talented scientists from research careers.

Note, however, that a distinct “talent-scorned” force operates in the opposite direction: at the

same time the talented employee is more valuable, he is harder to motivate on tasks where up-or-out

incentives are used, in the following sense. If the more talented employee fails, his continuation

utility is higher than an ordinary employee’s, because one-sided commitment leads firms to compete

for his talents. This better outside option after failure makes the more talented employee harder

to incentivize when young. (Note that this is the same force as the one operating in the aggregate

shocks analysis of Section VI above.) Put simply, he is “difficult,” or “hard to manage.” Holding

task L talent fixed, the talent-scorned force dominates whenever the employee’s talent advantage in

task H is sufficiently small, that is, cH close enough to one. In this case, and perhaps surprisingly,

the most talented employee in the economy does not get the best job, even though he would prefer

to.38

As the employee’s task H talent advantage grows, however, the talent-lured force becomes the

dominant one. Of course, if the task H advantage is very large, surplus maximization would dictate

that the employee should be assigned to task H, and there is no longer a sense in which talent

is lured away from its most productive use. But numerical simulations (available upon request)

show that, given task L talent cL, there is an interval of task H talents cH such that employees are
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employed in task H even though they would increase output more if employed in task L. In this

case, talent is truly lured.

VIII. Discussion

A. Increasing Compensation in the Financial Sector

It is well documented that pay has increased remarkably in the financial sector over the last

three decades, and in particular relative to pay in the rest of the economy (see Philippon and Reshef

(2012), Kaplan and Rauh (2010), and Bell and Van Reenen (2014)). As Philippon and Reshef show,

much of the rise from the mid-1980s to 2007 cannot be attributed to an increase in human capital

or hours worked in the sector—in other words, the last three decades have seen a steady rise in

overpay in the financial sector. We believe our model of overpay can shed some light on this trend

in pay.

First, Section VI predicts that pay is higher when expectations about the future level of gL

are higher; this increases employees’ outside options after failure, and necessitates an increase in

incentives. To the extent that the last three decades has been a period when, in general, the future

has looked good, this predicts an increase in pay—and especially bonus pay—over time.

Second, and related, there is a perception that general skills have increased in importance over

the same time period; see, for example, both references and evidence (from the CEO market) in

Custodio, Ferreira, and Matos (2013). In our model, we can associate the importance of general

skills with uL, the utility an employee gets on the “normal” task L. An upward trend in the outside

option uL would generate an increase in pay over time, for the same reasons as above.

Third, our model ties overpay to the amount at stake kH that each employee is responsible for,

which has increased over the past three decades: see, for example, Kaplan and Rauh (2010) for

evidence of increases in assets under management per employee within hedge funds, private equity

funds, and venture capital funds.

To the extent an increase in kH is responsible for increasing pay, this begs the question of

why kH has increased. One possibility is technological advance. Another possibility, which is

consistent with the evidence of Philippon and Reshef (2012), is that it is the result of deregulation.
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In particular, these authors document a strong relation between deregulation events and the rise in

pay, where at least three of the four deregulation events they analyze have increased the potential

scale of projects in the financial sector (softening of bank branch regulation, repeal of the Glass-

Steagall Act, and an easing of restrictions on mergers between insurance companies and banks).

If our model-based explanations for the increase in overpay are correct, this has implications

both for predictions of overpay going forward and for the current policy debate on how to curb

financial market pay. In line with standard economic models, Philippon and Reshef (2012) interpret

overpay as a rent that is incompatible with competition, and hence unsustainable in equilibrium.

In contrast, our paper shows that overpay is consistent with competition, and so may survive going

forwards. Note, however, that our paper also predicts overpaid employees are not immune from

recessions, and so is consistent with declines in bonuses during the recent “great recession.”

In terms of policy, our analysis has a number of implications. First, limits on capital-per-

employee (that is, limits on kH) would reduce overpay, but would also reduce economy-wide surplus,

since this would force firms to do something they could freely do on their own (as we argued above,

firms would never want to scale down kH). Second, expanding the scope and/or enforcement

of employment bans within the financial sector following failure would potentially relax the one-

sided commitment constraint, and hence both reduce overpay and increase economy-wide surplus.

Third, and contrary to the claims of many commentators, implicit government guarantees may

actually reduce rather than increase overpay. To see this, consider the extreme case in which the

government guarantees the full capital at risk per employee, kH . In this case, firms can afford to

reward successful employees with the full success payoff gH , which results in surplus-maximizing

effort p∗ (gH) on task H as well as task L. In equilibrium, the return gH falls until surplus from

the two tasks is equalized, and overpay is eliminated.

B. Leaving to Start a Hedge Fund

The up-or-out terminology that we use to describe optimal contracts for overpaid employees

suggests that successful employees should gain promotion to senior positions with their employer

(for example, becoming Vice President,Director, Principal,or Managing Director). An alternative

and not uncommon path for successful financial sector employees is to leave their firm, take their
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accumulated bonuses, and combine them with outside capital to, for example, start their own

hedge fund. Anecdotal accounts suggest that many hedge funds are started in this way (see, for

example, journalistic accounts by Fishman (2004)39 and Makan (2012)40). At first blush, this

type of career path might seem at odds with the optimal dynamic contract in our setting as it

cuts the link between the employee and the initial firm after the first period. However, we now

show that our optimal dynamic contract can be reinterpreted as a sequence of optimal one-period

contracts in which the worker uses accumulated wealth from his previous employment to coinvest

with new financiers, and in which firms (or, in the hedge fund example, new investors) break even

period-by-period.

Consider the overpaying CHH contract characterized above. After an employee succeeds in the

first period, he anticipates payments wS = (wSS , wSF ) , which depend on whether he succeeds or

fails in the second period. These payments induce him to exert effort p (wS). Consequently, the

firm’s expected revenue is p (wS) gH − kH , and its expected compensation bill is E (w|S). The

firm’s overall profits would thus be the same (zero) if it paid the employee a bonus

WS = E (w|S)− (p (wS) gH − kH)

for first-period success and then the employee left the firm.

Armed with the bonus WS , the employee can start his own investment fund. If WS ≥ kH , he

can do so without raising outside financing. If instead WS < kH , he requires additional financing

of kH −WS . To raise this financing, he promises to pay investors an amount gH −wSS contingent

on success (and nothing after failure). Note that this gives the employee exactly the same state-

contingent payoffs as in the optimal dynamic contract. These financing terms are sufficient to

attract investors. It is straightforward to show that wSF = 0 when WS < kH ;41 it then follows

from the definition of WS that

p (wS) (gH − wSS) = kH −WS ,

so that investors receive the required rate of return in expectation.42
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C. Weaker Scale Economies

Above we assume a strong form of scale economies at the employee level, in the sense that an

employee’s cost of effort is independent of the amount of capital he manages up to a maximum of kH .

As discussed, we think this assumption makes sense for the financial sector. Nonetheless, it is worth

considering how our results would change if we relaxed this assumption. Biais et al. (2010) and

DeMarzo et al. (2012) analyze partial-equilibrium contracting models with just one type of project,

but where the cost of effort is proportional to project size. They find that the optimal contract

entails an increase in project size after success, for reasons that parallel Lemma 3, which shows

that effort increases after success. Based on these results in existing literature, we conjecture that

if we adopted the same assumption about effort costs, we would obtain a further form of promotion

in our model: overpaid employees who succeed when young would be “promoted” in the sense of

managing more capital when old. At the same time, our result that otherwise-identical employees

are given different contracts would remain, because under the proportional-effort cost assumption,

agency costs are proportional to capital managed, and so it is best to adopt the maximal feasible

capital for old employees, so as to free up employees to work on task L. Moreover, we conjecture

that this result is robust to having effort costs that grow slightly faster than proportionately in

capital, as considered in an extension discussed in Biais et al. (2010).

IX. Conclusion

In this paper, we analyze a model in which financial sector employees capture rents (are “over-

paid”) as a natural consequence of the large-scale nature of financial activities and the difficulty of

directly observing the actions of employees. The equilibrium dynamic contract features punishing

hours and up-or-out promotion structures consistent with observed work conditions in the financial

sector. Moreover, by allowing for aggregate shocks, we obtain implications for the effects of initial

conditions on an employee’s career, bonuses, profitability and riskiness of investments, and the

response of capital to investment opportunities. In particular, we show that financial employees

act less responsibly exactly during boom times when their pay is the highest. Finally, an extension

to observable skill differences delivers implications for when talent is “lured” away from socially

more useful occupations, as well as when high-skilled individuals are “scorned” and do not receive
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the most attractive jobs.

For tractability, we analyze the simplest possible model with both multiple tasks and long-lived

employees, both of which are essential for the subject of the paper. However, we believe the main

insights of our analysis would remain in settings with more than two tasks and/or employees who

live more than two periods.

We have completely abstracted from unobservable skill differences in our model. We do not

mean to suggest that unobservable skill differences are unimportant; our focus on the single friction

of moral hazard is to isolate an economic force leading to dynamic segregation among sufficiently

similar individuals. Clearly, if perceptions of an individual’s skill increase enough by mid-career,

this individual may be promoted and escape dynamic segregation. Indeed, casual empiricism sug-

gests that investment bankers who are unusually successful are sometimes poached by higher-paying

firms. On the other hand, for deal-making firms such as hedge funds and private equity funds, a

first-order concern for investors is the amount of “skin in the game,” or personal wealth reinvested

in the firm, that deal-makers have; as explicitly discussed in Section VIII, this is consistent with

our model.

In our model, the employee’s only choice is the amount of effort to exert in order to increase

the probability of success of the trade. To deepen the analysis of the effect of moral hazard

on risk-taking, an interesting extension might be one in which the employee learns something

relevant about the probability of success after effort is sunk, and then has the possibility of aborting

unpromising trades. This extension would capture a particular form of risk-shifting: after low effort,

the employee is faced with a choice between a safe investment (trade abandonment), and a less

profitable but higher variance investment.43 A possible response to this risk-shifting problem would

be for firms to structure contracts such that the employee has an incentive to abandon trades that

look unpromising, which can be done by giving the employee some positive pay if the trade is

abandoned. In fact, much of the critique of banker contracts in the wake of the financial crisis

is that the high level of bonuses relative to fixed pay induce excessive risk-taking. However, our

analysis makes clear that fixed-pay contracts would dampen search effort, since they make lazy

employees better off. Hence, an optimal contract would trade off the agency cost of excessive

risk-taking (pursuing unpromising risky trades) against the agency cost of underprovision of effort.
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Somewhat speculatively, it seems likely that when effort provision is important, as in our high-

stakes tasks, a higher level of excess risk-taking is tolerated in the optimal contract. Furthermore,

building on our results on procyclical moral hazard, it also seems plausible that excess risk taking

will be procyclical; because the effort problem is worse in good times, a firm might be willing to

accept more excess risk taking to alleviate the effort problem. We leave full development of a richer

model of this sort for future research.

Appendix: Proofs

Proof of Lemma 1: Part (i) is immediate. For part (ii), define p (gH) = arg maxp p (gH − γ′ (p)),

that is, p (gH) solves gH = γ′ (p) + pγ′′ (p). By a change of variables in the firm’s maximization

problem, one can see that ∆ (gH) = γ′
(
p (gH)

)
. By Assumption 1, the expression γ′ (p) + pγ′′ (p)

is strictly increasing in p, and ranges from from zero to ∞ as p ranges from zero to maximal effort

p̄. Hence, p (gH) is well defined and strictly increasing in gH , and p (gH) → p̄ as gH → ∞. We

then have

lim
gH→∞

∆ (gH) = lim
gH→∞

γ′
(
p (gH)

)
= lim

p→p̄
γ′ (p) =∞.

QED

Verification that the one-period economy features overpay in the example in Section V: Here,

we show that there are conditions under which the one-period economy features overpay under the

conditions of the Example in Section V, namely, kH ≤ gL and ζH (p∗ (gL) p∗ (g∗H) , kH) <
g∗H
kH

.

Suppose that the cost function γ has the property γ′ (p) > p2γ′′ (p) for some p.44 Given this, choose

p̌ and kH such that γ′ (p̌) > p̌2γ′′ (p̌) = kH , and choose gL ∈ [kH , γ
′ (p̌)).

On the one hand, for the one-period economy, straightforward combination of the zero-profit and

profit-maximization conditions implies that in any overpaying equilibrium, the overpaid employees

exert effort p̌. Since γ′ (p̌) > gL, these employees receive utility strictly above uL. So provided

ζH (p̌, kH) is sufficiently small, the one-period economy does indeed feature overpay.

Proof of Lemma 2: The main text establishes that for kH large enough, any solution to (9)

features i = H. Here we establish uniqueness of the remaining contract terms wSF and ∆S . Let
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(H,wSF ,∆S) be a solution to (9), and let Π be associated profits. By supposition, Π ≥ 0. The

first-order conditions for the solution to the profit-maximization problem (9) are

−ppS + p
∂pS
∂∆S

(gH −∆S) +
∂p

∂∆S
(gi − wSF + pS (gH −∆S)− kH) ≤ 0 (A.1)

−p+
∂p

∂wSF
(gi − wSF + pS (gH −∆S)− kH) ≤ 0, (A.2)

where ∂pS
∂∆S

= 1
γ′′(pS) and ∂p

∂∆S
= pS

∂p
∂wSF

= pS
1

γ′′(p) , and where the inequalities hold with equality

if ∆S > 0 and wSF > 0, respectively. First, note that i = H, gH > kH , and (A.1) and (A.2) imply

that ∆S = wSF = 0 cannot be a solution. Second, note that these same conditions imply that

∆S = gH if wSF > 0.

It follows that ∆S > 0. It then follows from (A.1) and (A.2) that if wSF = 0, then ∆S ≤ gH .

Combined with the second-period IC constraint, it follows that ∆S = γ′ (pS) ≤ gH , regardless of

the value of wSF .

Substituting the fact that maximized profits are Π into (A.1), and dividing by ppS , we obtain

1

pSγ′′ (pS)

(
gH − γ′ (pS)

)
+

1

pγ′′ (p)

Π + ki
p

= 1. (A.3)

Suppose that, contrary to the claimed result, the solution is not unique. Let (wSF ,∆S) and(
w̃SF , ∆̃S

)
be two distinct solutions. Let (p, pS) and (p̃, p̃S) be the effort levels induced by these two

contracts, and note that (p, pS) 6= (p̃, p̃S). By Assumption 1, pγ′′ (p) is increasing in p. Moreover,

from above, γ′ (pS) ≤ gH . Hence, the two terms on the left-hand side of (A.3) are weakly decreasing

in pS and p, respectively. Consequently, without loss of generality p̃S > pS and p̃ < p. Hence,

∆̃S > ∆S and w̃SF < wSF . But this gives a contradiction since, as noted above, wSF > 0 implies

∆S = gH , and ∆̃S ≤ gH . QED

Proof of Lemma 3: The main text establishes the result if wSF = 0. Here, suppose instead that

wSF > 0. The first-order conditions (A.1) and (A.2) from the proof of Lemma 2 imply ∆S = gH .

Substitution into (A.2) then implies that

−p+
1

γ′′ (p)
(gi − wSF − kH) = 0. (A.4)
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Define u (p) ≡ pγ′ (p)− γ (p), and observe that u′ (p) = pγ′′ (p). Hence, the left-hand side of (A.4)

has the same sign as −u′ (p) + gi − wSF − kH .

To complete the proof, suppose that contrary to the claimed result p ≥ pS . By convexity of u

(Assumption 1) and u (0) = 0, we know u′ (p) ≥ u′ (pS) > pSu
′ (pS) ≥ u (pS) = γ′ (p)− wSF + uL,

where the last equality follows from the IC constraints. Since γ′ (p) ≥ γ′ (pS) = gH ≥ gi, this

implies that the left-hand side of (A.4) is strictly negative, giving a contradiction. QED

Proof of Proposition 1: Most of the proof is in the main text. Here, we fill in some formal

details (Claim A), and establish equilibrium uniqueness (Claim B).

Claim A: Let gH (kH) be a sequence of returns indexed by kH such that (a) gH (kH) < g
H

(kH),

and (b) maximized profits in problem (8) are nonnegative. For kH sufficiently large, CHH solves

the problem

max
C

Π (C; gH (kH)) subject to (7) and U (C) ≥ 2uL. (A.5)

In words, the contract CHH maximizes profits even without the restriction (i, iS , iF , wFS , wFF ) =

(H,H,L, gL, 0), and delivers utility of at least 2uL.

The main step is to establish the following subclaim.

Subclaim: For kH sufficiently large, CHH is the unique solution to the maximization problem

(8).

The Subclaim establishes Claim A as follows. From the Subclaim, no contract satisfying (7)

and the contract restriction that (i, iS , iF ) 6= (L,L,L) gives profits higher than CHH . Maximal

profits from a contract with (i, iS , iF ) = (L,L,L) and U (C) ≥ 2uL are zero. Finally, for kH large

enough, the main text establishes U
(
CHH

)
> 2uL. Hence, CHH solves problem (A.5).

Proof of Subclaim: Suppose to the contrary that there exists a contract C 6= CHH , with

(i, iS , iF ) 6= (L,L,L) and satisfying (7), that gives weakly higher profits than CHH . By supposition,

one can choose C such that it gives nonnegative profits. There must exist a contract C̃ with the

“out” feature (iF , wFS , wFF ) = (L, gL, 0) that satisfies the same criteria. If C already has this

property, we are done. Otherwise, let C̃ be the contract obtained by adding the “out” feature

(iF , wFS , wFF ) = (L, gL, 0) to C, while leaving all other components of C unchanged. Because

gH < g
H

and C satisfies (7), the contract C must generate strictly negative profits after failure,
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that is, p (wF ) giF − E (w|F ) − kiF < 0, and hence must generate strictly positive profits after

success, that is, gi + p (wS) giS − E (w|S) − kiS > 0. Hence, the new contract C̃ strictly raises

profits after failure, and because C satisfies (7), it also weakly increases the employee’s first-period

effort p. Consequently, total expected two-period profits from the perturbed contract C̃ are strictly

higher than those from C.

The main text establishes that no contract satisfying (7) and (i, iS , iF ) = (H,L,L) gives non-

negative profits. Hence, C̃ has the up-or-out feature (iS , iF , wFS , wFF ) = (H,L, gL, 0). So Lemma

2 applies, and implies that any contract with (i, iS , iF , wFS , wFF ) = (L,H,L, gL, 0) gives strictly

lower profits. Thus, the only possibility is that the contract C̃ features (i, iS , iF , wFS , wFF ) =

(H,H,L, gL, 0). But by Lemma 2, CHH is the unique maximizer of profits within this class, giving

a contradiction and completing the proof of the Subclaim.

Claim B: The equilibrium is unique. To establish uniqueness, we first show that for kH large

there is no equilibrium with gH < geqH . Suppose to the contrary that an equilibrium exists. By

Assumption 2, the equilibrium entails a contract C with (i, iS , iF ) 6= (L,L,L), and this contract

generates nonnegative profits. Hence, the conditions of the Subclaim above are satisfied, and so

CHH is the most profitable contract with (i, iS , iF ) 6= (L,L,L). But since gH < geqH , CHH has

strictly negative profits, and so, a fortiori, the contract C also has strictly negative profits, a

contradiction.

Second, we show that for kH large there is no equilibrium with gH > geqH . Suppose to the

contrary that there exists such an equilibrium. The contract CHH delivers strictly positive profits.

Hence, the reservation utility U must exceed U
(
CHH

)
. Moreover, the contract CHH must use

a second-period bonus ∆S = wSS − wSF of at least ∆ (gH), which by Lemma 1 grows arbitrarily

large as kH → ∞. Hence, U
(
CHH

)
→ ∞ as kH → ∞. The utility delivered by a contract that

assigns the employee to task L with certainty is bounded above by 2uL. Thus, for all kH large

enough, all employees must receive a contract that assigns them to task H in at least one node.

It is straightforward to show that as kH →∞ and hence gH →∞, the expected task H output of

any contract that assigns the employee to task H in some node remains bounded away from zero:

this is true if (iS , iF ) = (L,H), (H,L), (H,H), or (L,L), with i = H. But then for kH sufficiently

large it is impossible to satisfy the required equilibrium condition that the return gH is consistent
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with aggregate task H activity, since we have shown that task H output yH remains bounded away

from zero, so that ζH (yH , kH) remains bounded above.

Consequently, for kH sufficiently large the only possible equilibrium return is geqH . By the

Subclaim above, CHH is the unique contract satisfying (7) and (i, iS , iF ) 6= (L,L,L) that breaks

even at geqH . Hence, CHH and CLL are the only possible equilibrium contracts. The number of

employees receiving each contract is uniquely determined by the condition that geqH is consistent

with aggregate task H activity. Hence, the equilibrium is unique. QED

Proof of Proposition 2: Most of the details are in the main text. Here, we verify that returns

and hence contracts are state-independent and that λt converges.

To show that returns are state-independent, we need to show that it is possible to vary the

number of employees hired by a sufficient amount to fully absorb the aggregate shock. Formally,

this amounts to showing that λt remains between zero (one cannot hire a negative number of

new employees) and one (the total population of young employees). Define λ ≡ yBH−pSy
G
H

p(1−p2S)
and

λ̄ ≡ yGH−pSy
B
H

p(1−p2S)
. It is straightforward to establish that λt remains in the interval

[
λ, λ̄

]
.45 Consider

what happens as the shock size shrinks, that is, ζGH and ζBH approach some common ζ̄H . Let ȳH be

the output level associated with ζ̄H and the payoff gH , that is, ζ̄H (ȳH , kH) = gH
kH
. Then yBH and yGH

both approach ȳH and λ and λ̄ both approach ȳH
p(1+pS) . Thus, provided the shocks are sufficiently

small, there is indeed enough flexibility to absorb the shocks via hiring decisions, verifying the

conjecture that returns are independent of the state.

To confirm that λt converges, simply note that iteration of the hiring equation (14) gives

λt = (−pS)t λ0 +
1

p

t−1∑
s=0

(−pS)s y
ωt−s
H , (A.6)

which determines date t hiring as a function of the history of shock realizations. Hence if the

economy remains in state ω ∈ {G,B} for a long time, the number of young employees assigned to

task H converges to λω. QED

Proof of Proposition 3: By substituting the IC constraint (16) and recalling the definition of
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surplus (3), the profit maximization (15) can be rewritten as

max
pω ,wωψSS ,w

ωψ
SF

pω

gωH − γ′ (pω) +
∑

ψ=G,B

µωψS
(
p
(
wωψ
S

)
; gψH

)
− ūωL

− kH .
As in the proof of Lemma 3, define

u (p) ≡ pγ′ (p)− γ (p) .

Substituting this definition and the second-period IC constraint into IC constraint (16) yields

γ′ (pω) =
∑

ψ=G,B

µωψ
[
wωψSF + u

(
p
(
wωψ
S

))]
− ūωL.

Hence, (given the employee limited-liability constraint) the maximization problem (15) subject to

(16) is equivalent to

max
pω ,pωGS ,pωBS

pω

gωH − γ′ (pω) +
∑

ψ=G,B

µωψSH

(
pωψS ; gψH

)
− ūωL

− kH (A.7)

subject to

γ′ (pω) ≥
∑

ψ=G,B

µωψu
(
pωψS

)
− ūωL. (A.8)

Given this equivalency, we write contracts entirely in terms of their associated effort levels,
(
pω, pωψS

)
.

Step 1: We show

kH
pωu′ (pω)

− 1 +
S′H

(
pωψS ; gψH

)
u′
(
pωψS

) = 0. (A.9)

Suppose first that pωψS 6= p∗
(
gψH

)
for some ψ = G,B. Then (A.8) must hold with equality in

state ω. Differentiating the profit expression (A.7) with respect to pωψS and then substituting in

the zero-profit and profit-maximization conditions that must hold at equilibrium values gives

∂pω

∂pωψS

(
kH
pω
− pωγ′′ (pω)

)
+ pωµωψS′H

(
pωψS ; gψH

)
= 0.
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From (A.8) we have γ′′ (pω) ∂pω

∂pωψS
= µωψu′

(
pωψS

)
. Hence,

µωψu′
(
pωψS

)
γ′′ (pω)

(
kH
pω
− pωγ′′ (pω)

)
+ pωµωψS′H

(
pωψS ; gψH

)
= 0.

Rearranging and using u′ (p) = pγ′′ (p) delivers (A.9).

If instead pωψS = p∗
(
gψH

)
for both ψ = G,B, then the Lagrange multiplier on constraint (A.8)

is zero, and differentiation of (A.7) with respect to pω combined with the zero-profit and profit-

maximization conditions yields kH
pω −p

ωγ′′ (pω) = 0, which rearranges to (A.9) since S′H

(
p∗
(
gψH

)
; gψH

)
=

0.

Step 2: gGH > gBH , that is, part (2) holds.

Suppose to the contrary that gGH ≤ gBH . We first show that Step 1 implies that pωGS ≤ pωBS and

SH
(
pωGS ; gGH

)
≤ SH

(
pωBS ; gBH

)
. From (A.9),

S′H
(
pωGS ; gGH

)
u′
(
pωGS

) =
S′H
(
pωBS ; gBH

)
u′
(
pωBS

) .

From Assumption 1, u is convex, so
S′H(p̃;gH)

u′(p̃) is decreasing in p̃ for all p̃ such that γ′ (p̃) ≤ gH , which

is the relevant range here. So gGH ≤ gBH implies pωGS ≤ pωBS , which in turn implies SH
(
pωGS ; gGH

)
≤

SH
(
pωBS ; gBH

)
.

Next, consider the contract
(
pG, pGGS , pGBS

)
, which delivers zero profits in state ω = G. If

this contract satisfies constraint (A.8) for ω = B, then −ūGL < −ūBL , gGH ≤ gBH , SH
(
pGGS ; gGH

)
≤

SH
(
pGBS ; gBH

)
, and µGB ≤ µBB together imply that the contract delivers strictly positive profits

when used in ω = B, contradicting the equilibrium condition. If instead the contract violates

(A.8) for ω = B, then consider the profits from using the contract
(
p̃, pGGS , pGBS

)
in ω = B, where

p̃ is chosen to set (A.8) to equality. Note that p̃ > pG. The profits from this contract are

p̃

gBH +
∑

ψ=G,B

µBψ
(
SH

(
pGψS ; gψH

)
− u

(
pGψS

))− kH .
Using gGH ≤ gBH , pGGS ≤ pGBS , and µGB ≤ µBB, along with the fact that pωψS ≥ p

(
gψH

)
so that
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SH

(
·; gψH

)
− u (·) is decreasing, this expression is greater than

p̃

gGH +
∑

ψ=G,B

µGψ
(
SH

(
pGψS ; gψH

)
− u

(
pGψS

))− kH ,
which by (A.8) exceeds

p̃

gGH − γ′ (pG)+
∑

ψ=G,B

µGψSH

(
pGψS ; gψH

)
− ūGL

− kH ,
which by zero-profits equals p̃kH

pG
− kH > 0, again contradicting the equilibrium condition.

Step 3: pG ≤ pB, with the inequality strict unless pωψS = p∗
(
gψH

)
for all ω, ψ.

If pGψS = p∗
(
gψH

)
for ψ = G,B, the implication pG ≤ pB is immediate from (A.9), and is strict

provided pBψS 6= p∗
(
gψH

)
for ψ = G,B. The remainder of the proof deals with the case in which

pGψS 6= p∗
(
gψH

)
for ψ = G,B. Note that this implies that (A.8) holds with equality for ω = G.

Suppose to the contrary that pG ≥ pB. So by Assumption 1, pBu′
(
pB
)
≤ pGu′

(
pG
)
, and (A.9)

implies

S′H
(
pBBS ; gBH

)
u′
(
pBBS

) =
S′H
(
pBGS ; gGH

)
u′
(
pBGS

) ≤
S′H
(
pGBS ; gBH

)
u′
(
pGBS

) =
S′H
(
pGGS ; gGH

)
u′
(
pGGS

) .

The same argument as used in Step 2 implies that for ψ = B,G,

pBψS ≥ pGψS , (A.10)

and given that gGH ≥ gBH , implies that for ω = G,B,

pωGS ≥ pωBS , (A.11)

which again using convexity of u implies

S′H
(
pωGS ; gGH

)
≥ S′H

(
pωBS ; gBH

)
. (A.12)
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Separately, the zero-profit condition and pG ≥ pB together imply

gGH − γ′
(
pG
)

+
∑

ψ=G,B

µGψSH

(
pGψS ; gψH

)
− ūGL ≤ gBH − γ′

(
pB
)

+
∑

ψ=G,B

µBψSH

(
pBψS ; gψH

)
− ūBL .

Since gGH > gBH , it follows that

−γ′
(
pG
)

+
∑

ψ=G,B

µGψSH

(
pGψS ; gψH

)
− ūGL < −γ′

(
pB
)

+
∑

ψ=G,B

µBψSH

(
pBψS ; gψH

)
− ūBL .

Substituting in (A.8) and using the fact that it holds at equality for ω = G,

∑
ψ=G,B

µGψ
(
SH

(
pGψS ; gψH

)
− u

(
pGψS

))
<

∑
ψ=G,B

µBψ
(
SH

(
pBψS ; gψH

)
− u

(
pGψS

))
. (A.13)

The left-hand side of this inequality can be written as

∑
ψ=G,B

µBψ
(
SH

(
pGψS ; gψH

)
− u

(
pGψS

))
+
(
µGG − µBG

) ((
SH
(
pGGS ; gGH

)
− u

(
pGGS

))
−
(
SH
(
pGBS ; gBH

)
− u

(
pGBS

)))
.

Note that, for any p̃ and gH , SH (p̃; gH)− u (p̃) = p̃S′H (p̃)− kH . Hence, (A.11) and (A.12) imply

SH
(
pGGS ; gGH

)
− u

(
pGGS

)
≥ SH

(
pGBS ; gBH

)
− u

(
pGBS

)
,

so that (A.13) implies that for at least one of ψ = G,B,

SH

(
pGψS ; gψH

)
− u

(
pGψS

)
< SH

(
pBψS ; gψH

)
− u

(
pBψS

)
.

Hence, pGψS > pBψS for at least one of ψ = G,B, contradicting (A.10) and completing the proof.

Step 4: Pay for luck, that is, part (3).

Given gGH > gBH , it follows by the same argument as used repeatedly above that (A.9) implies

pωGS > pωBS . The pay for luck implication is then immediate from the second-period IC constraint.

Step 5: Completing part (1) by establishing higher bonuses.
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Given pG ≤ pB, it follows by the same argument as used repeatedly above that (A.9) implies

pGψS ≥ pBψS , with the inequality strict if pG < pB. So if pG < pB, the result is then immediate

from the second-period IC constraint. If instead pG = pB, then given ūGL > ūBL , pGψS ≥ pBψS , and

pωGS > pωBS (from Step 4), the first-period IC constraint (16) implies the result. QED
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Notes

1More generally, a large empirical literature argues that different jobs pay otherwise identical employees different

amounts; see, for example, Krueger and Summers (1988) and Abowd, Kramarz, and Margolis (1999).

2In common with high pay levels, these conditions have also attracted considerable public interest. See, for

example, The Cult of Overwork, James Surowiecki, The New Yorker, January 27, 2014.

3For evidence on bonuses, see, for example, Bell and Van Reenen (2014). Consistent with up-or-out career

structures, Hong and Kubik (2003) show that it is much more common for security analysts to move from a high-

paying, more prestigious brokerage firms to a lower-paying, less prestigious one than the other way around.

4Further, although more anecdotal, evidence against high pay being a compensating differential for onerous work

conditions is that people who obtain a job with an investment bank typically act as if they have won a lottery, a

reaction that our model explains but that is inconsistent with the compensating differential explanation. (Of course,

the compensating differential explanation says only that the marginal worker is indifferent. We have yet to meet the

marginal student who is just indifferent between receiving and not receiving an investment banking offer.) Moreover,

Philippon and Reshef (2012) control for hours worked and still find excess pay in the financial sector.

5See Section I for estimates of capital per employee in the financial sector.

6This prediction is consistent with data from the U.S. Bureau of Labor Statistics; see the discussion in Section VI.

7In particular, the efficiency wage literature attracted substantial criticism for its neglect of optimal—and especially

dynamic—contracting, a criticism broadly known as the “bonding critique.” Katz (1986) provides a useful review,

including a discussion of the bonding critique.

8Rogerson’s (1985) results show that, for any effort profile the principal wants to induce, an agent’s consumption

reflects the history of outputs. This history dependence is a consequence of risk-aversion, and in particular, of how

the degree of risk-sharing is set to provide incentives in the most efficient way. In contrast, the agent in our model is

risk-neutral, and history dependence instead relates to the optimal sequencing of effort levels and task assignments;

Rogerson’s analysis is silent on the first point, and his model has just one task.

9Given moral hazard, the firm’s marginal cost of inducing effort for an old worker is ∂
∂p

(pγ′ (p)). Part (ii) of

Assumption 1 ensures that this quantity approaches zero as p→ 0.

10In particular, Kaplan and Rauh (2010) report total money under management in 177 private equity firms in 2004

as $461.2B (Table 7). Given six partners per firm (p. 1029), this equates to approximately $430M per partner.

11As formulated, the only difference in the degree of moral hazard in the two tasks stems from kH > kL, which in

equilibrium implies gH > gL. However, we would obtain qualitatively similar results if instead moral hazard varied

due to different costs of effort, or different degrees of observability of output.

12Our results are qualitatively unaffected if this assumption is relaxed.

13Formally, yH = µp, where µ is the measure of employees (young and old) on task H in a given period, and p is

their average success probability.

14See, for example, Phelan (1995) and Krueger and Uhlig (2006). In our setting, in order for a firm to commit to
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a long-term contract it is sufficient for the firm to be able to commit to severance payments at the end of the first

period, where the size of the severance payment is potentially contingent on the first-period outcome.

15Most of our analysis would be qualitatively unaffected if we instead imposed two-sided commitment, that is,

employees cannot quit an employment contract. The main exceptions are Proposition 3 in Section VI, on procyclical

moral hazard, and our discussion of “talent scorned” in Section VII.

16That is, yH (C) = p1i=H + ppS1iS=H + (1− p) pS1iF=H , where 1 is the indicator function and p, pS , and pF are

success probabilities in contract C when young, when old after success, and when old after failure, respectively.

17If task H is very profitable (i.e., the trade-profitability function ζH is high), then it is possible that task L is not

performed in equilibrium; in this case, surplus is not equalized across tasks.

18In contrast, in Biais, Rochet, and Woolley (2014) an increase in the value of output would increase an employee’s

equilibrium compensation. In Acemoglu and Newman (2002), an increase in output value has no effect on equi-

librium compensation, but only because in their model effort choice is binary, and low effort leads to zero output.

Consequently, all equilibrium employment contracts induce the higher effort level, regardless of the value of output.

Shapiro and Stiglitz (1984) make the same assumption. In contrast, in our setting effort is a continuous variable.

19More specifically, the employee’s expected utilities after first-period success and failure are, respectively, p∗ (g∗H) g∗H−

γ (p∗ (g∗H))−kH +gL and uL. Since p∗ (g∗H) g∗H −γ (p∗ (g∗H))−kH is the surplus on task H when effort is p∗ (g∗H), and

since surplus across the two tasks at this effort level are equalized, expected utility after success reduces to gL + uL.

So the employee exerts effort p∗L in the first period, and has expected utility 2uL across the two periods.

20For an early statement of this point, see Jensen and Meckling (1976); for a more recent statement in a moral

hazard problem close to the one in this paper, see Holmstrom and Tirole (1997). For recent papers that explicitly

model the reduction in inefficiency associated with the dynamic accumulation of wealth, see, for example, DeMarzo

and Fishman (2007), Biais et al. (2007), and Biais et al. (2010).

21Our argument here is somewhat informal. For full details, see Claim A in the proof of Proposition 1 in the

Appendix.

22Note that the second-period IC constraint γ′ (pS) = ∆S implies w̃SF > 0.

23Note that the right-hand side of (12) can be written as maxp̃ p̃∆S − γ (p̃)− uL.

24At first sight, the prediction that senior employees work harder than junior employees may seem inconsistent

with anecdotal accounts of the financial sector that emphasize especially long hours by junior employees. However,

the prediction relates to effort on a high-productivity task. An earlier draft of this paper included an extension of the

model in which employees can also expend effort on a “menial” task that is both low in value and easily monitored

by the firm. In this extension, senior employees do not perform the menial task, and junior employees work more

hours in total, even though they work less on the high-productivity task.

25Note that the solution to (9) subject to i = H is strictly increasing in gH , is negative for gH sufficiently small,

and is positive for gH sufficiently large.
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26Formally, a fraction λ of young employees are given the CHH contract, where λ solves

ζ
(
λ
(

1 + pS
(
CHH

))
p
(
CHH

)
, kH

)
=
gH
kH

.

As kH grows large, the solution λ to this equation is guaranteed to be in the interval (0, 1) .

27To see this, note that if wSF = 0, there is no first-period bonus, so pay is maximally backloaded. If instead

wSF > 0, then we know wSS − wSF = gH . But in this case wSF < gH , since if instead wSF ≥ gH , the firm has

strictly negative profits. Hence, wSS−wSF
wSF

> 1.

28“Code staff” include senior management and anyone whose professional activities could have a material impact

on a firm’s risk profile.

29DeChesare, Brian, 2012, From analyst monkey to king of the jungle MD: The investment banking hierarchy,

http://www.mergersandinquisitions.com/investment-banking-hierarchy/

30Ibid.

31Formally, this amounts to showing that λt remains between zero (one cannot hire a negative number of new

workers) and one (the total population of young workers).

32Acemoglu and Newman (2002) note the existence of a similar effect of outside options, and use this observation

to consider cross-country differences in corporate structure. In contrast to their stationary model, we examine how

outside options fluctuate over time in response to aggregate shocks.

33However, the increase in gL has an indirect effect on equilibrium returns: because employees are more difficult

to incentivize, the equilibrium return gH must rise, as can be seen from the equilibrium profit condition (15) and is

formally established in Proposition 3.

34Related, Proposition 2 above established one type of cohort effect, namely, that entering the labor force in a

good aggregate state increases an employee’s lifetime utility because it increases his chances of entering an overpaid

job. Part (1) of Proposition 3 establishes a second type of cohort effect: even conditioning on an employee entering

an overpaid job, the employee earns more if he enters the labor force in a good aggregate state. Although we are

not aware of any direct evidence for financial sector jobs, Baker, Gibbs, and Holmstrom (1994) and Beaudry and

DiNardo (1991) provide empirical evidence for these type of within-firm cohort effects in wages for other sectors of

the economy.

35In the one-period case, this is true regardless of whether gL changes across states.

36A distinct explanation for the pay-for-luck result is given by Oyer (2004), who shows that it may be optimal to

index worker wages to firm profits over which the worker has no control when firm profits are correlated with worker

outside options. In contrast to our result, which builds on the benefits of providing the right incentives to work,

Oyer’s result is driven purely by the participation constraint of the worker.

37Since employees in our model are risk-neutral, pay for luck has no direct utility cost. However, since pay for luck

is strictly optimal, we conjecture that it would remain optimal even after some degree of risk-aversion is introduced.

38A contemporaneous paper by Ohlendorf and Schmitz (2012) studies a similar repeated moral hazard problem,
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and similarly shows that employers may avoid more talented employees. In their model, the firm avoids more talented

employees as a commitment device to avoid renegotiation after failure; in contrast, our result stems from competition

from other firms.

39Fishman, Steve, 2004, Get richest quickest, New York Magazine, November 22.

40Makan, Ajay, 2012, Skin in the game is crucial, but how much? Financial Times, November 18.

41The inequality WS < kH is equivalent to p (wS)wSS + (1− p (wS))wSF < p (wS) gH , which implies wSS < gH .

42Moreover, the employee’s best use of his accumulated bonuses is indeed to start an investment fund in this way.

This follows because the optimal contract CHH is renegotiation-proof. An earlier draft of this paper contains a formal

proof of this property (which emerges as a result rather than an assumption of our model).

43At a formal level, this is closely related to Gromb and Martimort’s (2007) analysis of experts. Moreover, note that

it is straightforward to show that, without additional information about trade success probabilities, the possibility

of trade abandonment by itself has no effect on equilibrium contracts and outcomes. The firm will simply pick a

contract that induces an amount of effort p such that continuing with the trade is always optimal. (This follows

from standard revelation-principle arguments; see Proposition 2 of Myerson (1982).)

44For example, γ (p) = p2

1−p has this property and satisfies Assumption 1, along with the other conditions required

of γ.

45If λt−1 ∈
[
λ, λ̄

]
, then

λt ≥
yBH
p1
− λ̄p2 =

yBH
(
1− p22

)
−

(
yGH − p2yBH

)
p2

p1 (1− p22)
=
yBH − p2yGH
p1 (1− p22)

= λ

and

λt ≤
yGH
p1
− λp2 =

yGH
(
1− p22

)
−

(
yBH − p2yGH

)
p2

p1 (1− p22)
=
yGH − p2yBH
p1 (1− p22)

= λ̄.
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Figure 1. One-period firm profits. The graph displays firm profits from
using a one-period contract to incentivize the employee in tasks L and H,
as a function of the success bonus. The graph is drawn for gH = gH , so that
maximal profits in task H are exactly zero. For bonuses below gi in task
i, the employee receives nothing after failure. The dashed lines have slope
−1, and reflect the fact that once the bonus reaches gi, profit maximization
is achieved by paying the worker after failure (while maintaining the bonus
gi).
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Equilibrium

Figure 2. An overpaying equilibrium for the one-period economy.

The graph shows an equilibrium with overpay. At gH , firms make exactly
zero profits in task H using the profit-maximizing contract, and this con-
tract delivers strictly higher employee utility than the task L contract (see
Figure 1). The horizontal line corresponds to allocating different fractions
of employees to these two contracts. The graph is drawn for the case in
which, if everyone is allocated to the H contract, it is impossible to sustain
the return gH/kH . Consequently, in equilibrium a strict subset of employees
receive each of the two contracts, and overpay exists.
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